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Though theoretically, under some conditions the SD method is Q-linearly convergent, it
can be very slow, especially when the Hessian of f is ill-conditioned [1]. The Barzilai-Borwein
[5] gradient (BB) method, in some extension, avoids the drawback of the SD method and
performs much better than the SD method in practice. Hence, the BB gradient algorithms
get great attention.

The BB gradient algorithm was proposed by Barzilai and Borwein [5], which still utilizes
the negative gradient direction as the search direction, while the step size is not directly
selected by a line search manner. The BB gradient algorithm uses the information of the
current iteration point and the previous iteration point to determine the BB step size. There
are two choices of the step size, i.e.,

ηk =
sTk−1sk−1

sTk−1yk−1
or ηk =

sTk−1yk−1

yTk−1yk−1
, (1.4)

where sk−1 = xk−xk−1 and yk−1 = ∇f(xk)−∇f(xk−1). Barzilai and Borwein [5] presented
a convergence analysis in the two-dimensional quadratic case. They established the R-
superlinear convergence of the BB method. Based on the work of Raydan [32], Birgin,
Martine, and Raydan [8] proposed an effective gradient projection BB algorithm to solve
convex constrained optimization problems. Dai and Fletcher [13] studied the projection BB
algorithm for solving large-scale constrained quadratic programming. Dai [12] proposed a
new gradient algorithm that used the step sizes of the SD algorithm and the BB algorithm
alternately. Kafaki and Fatemi [3] derived a new two-point step size from the modified
quasi-Newton equation. Dai et al. [15] used the geometric average of two BB steps to get a
new step size. Dai and Kou [14] proposed the BB conjugate gradient method by combining
the BB algorithm with the conjugate gradient algorithm. Huang et al. [26] introduced a
new mechanism to make the BB method have the two-dimensional quadratic termination
property. Dai et al. [16] proposed a family of spectral gradient methods, whose step size was
determined by a convex combination of the long BB step size and the short BB step size.
He et al. [23] proposed to solve variational inequality problems with BB step size projection
methods and reported convincing numerical results. For more works on BB-like methods
see [21] and references therein.

We observe that the research of the BB step size is based on the Euclidean divergence.
It is known that the Euclidean divergence is a kind of the Bregman divergence [9]. It is
natural to consider the BB step size based on the Bregman divergence. The mirror descent
algorithm [28] is a first-order optimization algorithm that generalizes the classic gradient
descent method by the Bregman divergence. It performs better than the classic gradient
method in some problems, especially on the unit simplex [7]. Inspired by the mirror descent
algorithm, we introduce a method of computing the BB step size based on the Bregman
divergence in this paper. We compare the Bregman BB step size with the Euclidean BB
step size in the same methods including the mirror descent method and the Frank-Wolfe
method.

Our main contributions are summarized as follows: Firstly, we propose a BB step size
based mirror descent method, namely MDBB, which applies the classic BB step size to the
mirror descent method directly, see Subsection 3.1 for details. Secondly, based on the above
MDBB algorithm, we establish a more general MDBB (denote MDBB-I) algorithm that the
MDBB algorithm can be regarded as a special case of MDBB-I algorithm, the details can
refer to Subsection 3.2. Thirdly, a more general BB step size is applied to the MDBB-I, we
get a new algorithm, namely MDBB-II which can cover MDBB and MDBB-I algorithms,
and refer to Subsection 3.3 for details. Fourthly, the above three BB step size frameworks are
applied to the FW algorithm and get three BB step size based FW algorithms, see Section
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4 for details. Finally, the all above algorithms are verified by some numerical experiments
(Section 5) which shows the effectiveness of general BB step size techniques proposed in this
paper.

The rest of this paper is organized as follows. In Section 2, we briefly review the related
theoretical results. In Section 3 and Section 4, the BB step size based on the Bregman
divergence is introduced in detail. Results of numerical experiments on the D-optimal design
problem are reported and discussed in Section 5. Finally, we conclude this paper in Section
6.

Notation. We start by establishing the notation used throughout the paper. We use
∥ · ∥ for the Euclidean norm ∥ · ∥2 and the standard notation ⟨·, ·⟩ for the Euclidean inner
product. We recall that for any set C. C denotes the closure of C and int C denotes the
interior of C. The effective domain of a function f , i.e., set of all x such that f(x) < ∞ is
denoted by dom f . The inverse of a function f is denoted by f−1. ∇f(x)−1 is the inverse
of ∇f(x). The other notations are standard from convex analysis [33, 6].

2 Preliminaries

In this section, we recall some theoretical results that will be useful for the analysis in Section
3.

2.1 Bregman Divergence

The Bregman divergence defines a more general divergence, which is widely used in clustering
[20, 4], machine learning [31], and information geometry [2]. The definition of the Bregman
divergence is the following.

Definition 2.1 (Kernel function [17]). A function ϕ : Rn → R
∪
+∞ is called a kernel

function on C if

(i) ϕ is closed convex proper(c.c.p.),

(ii) domϕ = C, where domϕ denotes the closure of domϕ.

(iii) ϕ is continuously differentiable and strictly convex on int dom ϕ ̸= ∅.

A kernel function ϕ induces a Bregman divergence Dϕ(·, ·) defined as

Dϕ(x, y) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x− y⟩ ∀x ∈ domϕ, y ∈ int domϕ. (2.1)

Examples [4] of the kernel function ϕ and the induced Bregman divergences are listed in
Table 1.

2.2 Mirror Descent

We now introduce the mirror descent algorithm. The most common approach to constructing
a sequence {xk}nk=1 is based on the gradient descent. The gradient descent update is

xk+1 = xk − ηk∇f(xk),

where {ηk}nk=1 denotes a sequence of step sizes. Note that the gradient descent step can
alternatively be expressed as

xk+1 = argmin
x∈C

{f(xk) + ⟨∇f(xk), x− xk⟩+
1

2ηk
∥x− xk∥2}.
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Domain ϕ(x) Dϕ(x, y)
R x2 (x− y)2

R+ xlogx xlog(xy )− (x− y)

[0, 1] xlogx+ (1− x)log(1− x) xlogx
y + (1− x)log 1−x

1−y

R ex ex − ey − (x− y)ey

Rn ∥x∥2 ∥x− y∥2
Rn xTAx (x− y)TA(x− y)

n−Simplex
∑n

j=1 x
(j)log2x

(j)
∑n

j=1 x
(j)log2(

x(j)

y(j) )

Rn
+

∑n
j=1 x

(j)logx(j)
∑n

j=1 x
(j)log(x

(j)

y(j) )−
∑n

j=1(x
(j) − y(j))

Table 1: Bregman divergences generated from some convex functions.

By re-expressing the gradient step in this way, Nemirovski and Yudin [30] introduced a
generalization of gradient descent as follows:

xk+1 = argmin
x∈C

{f(xk) + ⟨∇f(xk), x− xk⟩+
1

ηk
h(x, xk)}. (2.2)

When h(·, ·) : Rn × Rn → R+ is a penalty function. Clearly, when h(x, xk) =
1
2∥x − xk∥2

and C = Rn, we can immediately derive the standard gradient descent method. Hence, the
iterative scheme (2.2) is a generalization of gradient descent method. A standard choice
for the penalty function h(·, ·) is called the Bregman divergence. Let h(·, ·) = Dϕ(·, ·), the
mirror descent step is defined as

xk+1 = argmin
x∈C

{f(xk) + ⟨∇f(xk), x− xk⟩+
1

ηk
Dϕ(x, xk)}.

3 Mirror Descent Method

In this section, we present the mirror descent Barzilai-Borwein (MDBB) method and its two
variants for solving problem (1.1).

3.1 Mirror Descent Barzilai-Borwein Method

We first consider the unconstrained problem. The mirror descent step is

xk+1 = argmin
x

{f(xk) + ⟨∇f(xk), x− xk⟩+
1

ηk
Dϕ(x, xk)}.

Finding the minimum by differentiation yields the step

∇ϕ(xk+1) = ∇ϕ(xk)− ηk∇f(xk),

or equivalently,

xk+1 = ∇ϕ−1(∇ϕ(xk)− ηk∇f(xk)). (3.1)

According to (3.1), we list some of the most classical examples.
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Example 3.1. When ϕ(x) = 1
2∥x∥

2, x ∈ Rn, the gradient vector is ∇ϕ(x) = x. Then it
shows that

xk+1 = xk − ηk∇f(xk).

It is the standard gradient descent step.

Example 3.2. When ϕ(x) =
∑n

i=1 x
(i)log(x(i)) − x(i), x ∈ Rn

+, the gradient vector is

∇ϕ(x) = (logx(1), logx(2), · · · , logx(n))T . We can get

x
(i)
k+1 = elog(x

(i)
k )−ηk∇f(x

(i)
k ) = x

(i)
k e(−ηk∇f(x

(i)
k )), i = 1, · · · , n.

Example 3.3. When ϕ(x) =
∑n

i=1 −logx(i), x ∈ Rn
++, the gradient vector is ∇ϕ(x) =

(− 1
x(1) , · · · ,− 1

x(n) )
T . The update of variable x is

x
(i)
k+1 =

x
(i)
k

ηkx
(i)
k ∇f(xk)(i) + 1

.

Example 3.4. When ϕ(x) =
∑n

i=1 e
x(i)

, x ∈ Rn, the gradient vector is

∇ϕ(x) = (ex
(1)

, ex
(2)

, · · · , ex
(n)

)T .

We can get

x
(i)
k+1 = log(ex

(i)
k − ηk∇f(x

(i)
k )).

In this paper, we use the gradient descent step (3.1) to update variable and use (1.4)
to compute the BB step size. We name the new method as the Mirror Descent Barzilai-
Borwein (MDBB) method. We have to search for the minimizer of the problem (1.1) within
the nonempty closed convex set C. This point x′

k+1 computed by (3.1) might not be in the
convex feasible region C, so we project x′

k+1 back to a close by xk+1 in C, i.e.,

xk+1 = Px∈C(x, x
′
k+1) = argmin

x∈C
∥x− x′

k+1∥2.

A formal description of the MDBB algorithm is as follows.

Algorithm 1 MDBB: The mirror descent Barzilai-Borwein method

1: Initialization: select an initial point x0, an initial step η0.
2: x′

1 = argminx{f(x0) + ⟨∇f(x0), x− x0⟩+ 1
η0
Dϕ(x, x0)},

3: x1 = Px∈C(x, x
′
1).

4: for k = 1 to n do
5: sk−1 = xk − xk−1, yk−1 = ∇f(xk)−∇f(xk−1),

6: ηk =
sTk−1sk−1

sTk−1yk−1
or ηk =

sTk−1yk−1

yT
k−1yk−1

,

7: x′
k+1 = argminx{f(xk) + ⟨∇f(xk), x− xk⟩+ 1

ηk
Dϕ(x, xk)},

8: xk+1 = Px∈C(x, x
′
k+1).

9: end for



338 Y. SHAO, Q. WANG AND D. HAN

3.2 MDBB-I

In this subsection, we present a variant of the MDBB, named MDBB-I, for solving the
problem (1.1). We review the origin of the quasi-Newton method. The Taylor expansion is
applied to the objective function f(x) at the point xk, and the second-order approximation
is as follows

f(x) ≈ f(xk) +∇f(xk)
T (x− xk) +

1

2
(x− xk)

TGk(x− xk), (3.2)

where Gk = ∇2f(xk) is Hessian matrix of f(xk). Now, we find the gradient of function f(x)
and deduce its derivatives in detail,

∇f(x) ≈ ∇f(xk) +Gk(x− xk). (3.3)

Set x = xk−1 in (3.3), we obtain

∇f(xk)−∇f(xk−1) ≈ Gk(xk − xk−1). (3.4)

Let sk−1 = xk − xk−1, yk−1 = ∇f(xk)−∇f(xk−1), (3.4) can be expressed as

yk−1 ≈ Gksk−1 or sk−1 ≈ G−1
k yk−1 (3.5)

which is called the quasi-Newton condition. Let Bk approximates Gk, the quasi-Newton
condition can be expressed as

yk−1 = Bksk−1 or sk−1 = B−1
k yk−1. (3.6)

In the BB step size, Bk = 1
ηk
I is required to satisfy the quasi-Newton condition.

min
η

||Bksk−1 − yk−1||2

or min
η

||sk−1 −B−1
k yk−1||2.

(3.7)

The ηk in (1.4) is the solution of the two optimization problems in (3.7), respectively.
Based on the generation procedure of the BB step size, we present a new BB step size.

In the mirror descent method,

f(x) ≈ f(xk) +∇f(xk)
T (x− xk) +

1

ηk
Dϕ(x, xk). (3.8)

Differentiate both sides of the formula (3.8),

∇f(x)−∇f(xk) ≈
1

ηk
(∇ϕ(x)−∇ϕ(xk)). (3.9)

In (3.9), set x = xk−1, sk = ∇ϕ(xk) − ∇ϕ(xk−1), and yk = ∇f(xk) − ∇f(xk−1). Let
Bk = 1

ηk
I and make it satisfy the quasi-Newton condition (3.6). Combined with (3.7), we

can get two new step sizes ηk. The current sk−1 = ∇ϕ(xk)−∇ϕ(xk−1) is more general than
the original sk−1 = xk − xk−1. Here are three examples to illustrate the difference.

Example 3.5. When ϕ(x) = 1
2∥x∥

2, x ∈ Rn, the Dϕ(x, y) =
1
2∥x− y∥2, it shows that

sk−1 = ∇ϕ(xk)−∇ϕ(xk−1) = xk − xk−1.
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Example 3.6. When ϕ(x) =
∑n

i=1 −log(x(i)), x ∈ Rn
++, the associated Bregman divergence

is

Dϕ(x, y) =

n∑
i=1

(−log(
x(i)

y(i)
) +

x(i)

y(i)
− 1).

we get

sk−1 = ∇ϕ(xk)−∇ϕ(xk−1)

= (
1

x
(1)
k

− 1

x
(1)
k−1

,
1

x
(2)
k

− 1

x
(2)
k−1

, · · · , 1

x
(n)
k

− 1

x
(n)
k−1

)T .

Example 3.7. When ϕ(x) =
∑n

i=1 e
x(i)

, x ∈ Rn, the associated Bregman divergence

Dϕ(x, y) =

n∑
i=1

ex
(i)

−
n∑

i=1

ey
(i)

−∇ϕ(y)T (x− y).

We obtain sk−1 = ∇ϕ(xk)−∇ϕ(xk−1) = (ex
(1)
k − ex

(1)
k−1 , · · · , ex

(n)
k − ex

(n)
k−1)T .

We apply the type of BB step size to the MDBB method (Algorithm 1) to get the new
algorithm, i.e., the MDBB-I method, which is formally described below.

Algorithm 2 MDBB-I: Variant I of the mirror descent Barzilai-Borwein method

1: Initialization: select an initial point x0, an initial step η0.
2: x′

1 = argminx{f(x0) + ⟨∇f(x0), x− x0⟩+ 1
η0
Dϕ(x, x0)}.

3: x1 = Px∈C(x, x
′
1).

4: for k = 1 to n do
5: sk−1 = ∇ϕ(xk)−∇ϕ(xk−1), yk−1 = ∇f(xk)−∇f(xk−1),

6: ηk =
sTk−1sk−1

sTk−1yk−1
or ηk =

sTk−1yk−1

yT
k−1yk−1

,

7: x′
k+1 = argminx{f(xk) + ⟨∇f(xk), x− xk⟩+ 1

ηk
Dϕ(x, xk)},

8: xk+1 = Px∈C(x, x
′
k+1).

9: end for

3.3 MDBB-II

The problem (3.7) can be seen as minimizing the distance of Bksk−1 and yk−1 (or sk−1

and B−1
k yk−1) based on the Euclidean divergence. So we can use the Bregman divergence

Dϕ(Bksk−1, yk−1) to replace the ∥Bksk−1−yk−1∥2 (Also, ∥sk−1−B−1
k yk−1∥2 can be replace

by Dϕ(sk−1, B
−1
k yk−1).), which is a general method to minimize the distance. We use two

examples to illustrate this method.

Example 3.8. Let ϕ(x) = 1
2∥x∥

2, where x ∈ Rn. The Bregman divergence associated with
ϕ is

Dϕ(y, x) =
1

2
∥y − x∥2.

To minimize Dϕ(B
−1
k yk−1, sk−1) is equivalent to minimize ∥B−1

k yk−1 − sk−1∥2. The step
size is the original BB step size.
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Example 3.9. Let ϕ(x) = 1
4∥x∥

4 defined on Rn. The Bregman divergence associated with
ϕ(x) is

Dϕ(y, x) = ϕ(y)− ϕ(x)− ⟨∇ϕ(x), y − x⟩

=
1

4
∥y∥4 + 3

4
∥x∥4 − ∥x∥2 · xT y.

Let Bk = 1
ηk
I and we have

Dϕ(B
−1
k yk−1, sk−1) =

1

4
∥B−1

k yk−1∥4 +
3

4
∥sk−1∥4 − ∥sk−1∥2 · sTk−1B

−1
k yk−1

=
1

4
η4k∥yk−1∥4 +

3

4
∥sk−1∥4 − ∥sk−1∥2 · sTk−1 · ηkyk−1.

(3.10)

To minimize (3.10) for ηk, we get

ηk =

(
∥sk−1∥2 · sTk−1yk−1

∥yk−1∥4

) 1
3

.

This is a new BB step size based on the Bregman divergence (3.10). We apply this
BB step size to the MDBB-I algorithm (Algorithm 2) to get a new method, i.e., MDBB-II
algorithm, which is formally described below.

Algorithm 3 MDBB-II: Variant II of the mirror descent Barzilai-Borwein method

1: Initialization: select an initial point x0, an initial step η0.
2: x′

1 = argminx{f(x0) + ⟨∇f(x0), x− x0⟩+ 1
η0
Dϕ(x, x0)}.

3: x1 = Px∈C(x, x
′
1).

4: for k = 1 to n do
5: sk−1 = ∇ϕ(xk)−∇ϕ(xk−1), yk−1 = ∇f(xk)−∇f(xk−1),

6: ηk =
(

∥sk−1∥2·sTk−1yk−1

∥yk−1∥4

) 1
3

,

7: x′
k+1 = argminx{f(xk) + ⟨∇f(xk), x− xk⟩+ 1

ηk
Dϕ(x, xk)},

8: xk+1 = Px∈C(x, x
′
k+1).

9: end for

4 Frank-Wolfe Algorithm

The Frank-Wolfe (FW) algorithm is also known as the projection-free or condition gradient
algorithm [22]. The main advantages of this algorithm are to avoid the projection step and
to ensure that the update vector remains inside the feasible domain. The method is formally
described below.

There are various ways to set the parameter ηk in order to guarantee the convergence of
the FW method. We apply the Bregman BB step size above to the FW method.

(1) FWBB: ηk =
sTk−1sk−1

sTk−1yk−1
or ηk =

sTk−1yk−1

yT
k−1yk−1

, where sk−1 = xk − xk−1, yk−1 = ∇f(xk) −
∇f(xk−1).

(2) FWBB-I: ηk =
sTk−1sk−1

sTk−1yk−1
or ηk =

sTk−1yk−1

yT
k−1yk−1

, where sk−1 = ∇ϕ(xk)−∇ϕ(xk−1), yk−1 =

∇f(xk)−∇f(xk−1).
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Algorithm 4 FW: Frank-Wolfe Algorithm

1: Input:f : C → R.
2: Initialize:any x1 ∈ C.
3: for k = 1 · · · N do
4: vk = argminv∈C ⟨v,∇f(xk)⟩,
5: xk+1 = (1− ηk)xk + ηkvk, ηk ∈ [0, 1].
6: end for

(3) FWBB-II: ηk =
(

∥sk−1∥2·sTk−1yk−1

∥yk−1∥4

) 1
3

, where sk−1 = ∇ϕ(xk) − ∇ϕ(xk−1), yk−1 =

∇f(xk)−∇f(xk−1).

Specifically, the FWBB method is formally described below.

Algorithm 5 FWBB: Frank-Wolfe Barzilai-Borwein Algorithm

1: Input:f : C → R.
2: Initialize:any x0 ∈ C, an initial step η0 ∈ [0, 1].
3: v1 = argminv∈C ⟨v,∇f(x0)⟩.
4: x1 = (1− η0)x0 + η0v1.
5: for k = 1 · · · N do
6: sk−1 = xk − xk−1, yk−1 = ∇f(xk)−∇f(xk−1),

7: ηk =
sTk−1sk−1

sTk−1yk−1
or ηk =

sTk−1yk−1

yT
k−1yk−1

,

8: vk = argminv∈C ⟨v,∇f(xk)⟩,
9: xk+1 = (1− ηk)xk + ηkvk.

10: end for

Remark: To ensure convergence, the Frank-Wolfe requires some bounds on the parameter
ηk. In this paper, we choose ηk = max(min(ηk, 1), 0.0001) to ensure the BB stepsize in
FWBB meet the requirements of the Frank-Wolfe Algorithm.

5 Numerical Results

In this section, we present the numerical results. We use two types of the gradient algorithms
outlined in Section 3 and Section 4, i.e, the mirror descent algorithm and the FW algorithm,
to clarify that the Bregman BB step size can improve the convergence rate of the algorithm
compared with the Euclidean BB step size. All the codes are written in Python 3.8 and run
on a personal computer with Intel (R) Core (TM) i5-8265u CPU @ 1.60GHz 1.80GHz, 8G
RAM.

An appropriate stopping criterion for any optimization algorithm is paramount to ensure
that an accurate solution is located. Our termination criterion is

|f(xk)− f(xk−1)| < ϵ,

where f(xk) are function value at k iteration and ϵ is some user-defined tolerance, such as
10−3, 10−4. This stopping criterion is a relatively common condition, see [11, 18, 24] for
details. When the iteration termination condition reaches the accuracy or the number of
iterations reaches the maximum number of iterations (Nmax=30000), the operation stops.
The stopping criterion is implemented in all numerical results.
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In statistics, the D-optimal design problem corresponds to maximizing the determinant
of the Fisher information matrix [27]. The D-optimal design problem is defined as

min f(x) := −log(det(
∑n

i=1 x
(i)viv

T
i ))

s.t
∑n

i x
(i) = 1, x(i) ≥ 0, i = 1, · · · , n,

where vi ∈ Rm, i = 1, · · · , n, n ≥ m + 1. We construct the D-optimal design instances
from LibSVM data [10]. In particular, we consider several regression datasets - the goal is
to find the most relevant data points where one shall run the experiment to evaluate the
corresponding label.

In this part, we solve the D-optimal design problem by using Gradient Descent Barzilai-
Borwein(GDBB), MDBB, MDBB-I and MDBB-II algorithms. In MDBB, MDBB-I, MDBB-

II algorithms, we choose ϕ(x) =
∑n

i=1 e
x(i)

for simplicity.

Table 2: Performance comparison on D-optimal design problems on six different datasets:
bodyfat (n = 252,m = 14), housing (n = 506,m = 13), mpg (n = 392,m = 7), space-
ga (n = 3107,m = 6), mg (n = 1385,m = 6), cpusmall (n = 8192,m = 12). “iter” is the
number of iterations, “time[s]” is CPU time in seconds, “the absolute value of relative error”
is |f(xk)− f(xk−1)|.

Data Algorithm
ϵ = 10−8 ϵ = 10−10 ϵ = 10−12

iter time[s] iter time[s] iter time[s]

bodyfat

GDBB 601 0.441 618 0.494 632 0.487

MDBB 250 0.221 273 0.294 295 0.301

MDBB-I 244 0.234 268 0.241 292 0.287

MDBB-II 88 0.095 107 0.116 122 0.130

housing

GDBB 1574 1.434 3285 3.229 6383 7.015

MDBB 678 0.718 782 0.877 886 1.080

MDBB-I 673 0.668 777 0.903 889 1.050

MDBB-II 214 0.238 258 0.328 258 0.391

mpg

GDBB 1027 0.730 1099 0.982 1174 1.145

MDBB 659 0.653 734 0.644 810 0.680

MDBB-I 624 0.467 690 0.707 756 0.628

MDBB-II 174 0.160 197 0.208 232 0.243

space-ga

GDBB 5364 15.045 5559 15.339 5853 15.316

MDBB 3393 9.024 4205 10.632 4854 11.816

MDBB-I 3838 9.295 3838 9.762 4372 10.614

MDBB-II 412 1.395 457 1.347 499 1.264

mg

GDBB 6018 14.237 11378 23.287 16429 23.215

MDBB 2605 5.314 4621 9.145 6921 10.673

MDBB-I 2071 4.350 3274 7.837 4580 7.020

MDBB-II 284 0.741 370 0.950 472 0.792

cpusmall

GDBB 10948 90.454 11134 93.223 11202 129.883

MDBB 4284 34.422 4634 41.444 4993 55.218

MDBB-I 4179 34.878 4493 38.409 4818 56.013

MDBB-II 484 4.451 579 5.225 660 7.507

It can be seen from the Figure 1 and Table 2 that the Bregman BB step size can improve
the convergence rate of the algorithm compared with the Euclidean BB step size. In par-
ticular, the time cost of the MDBB-II method is greatly reduced and its convergence rate is
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Figure 1: Comparison of GDBB, MDBB, MDBB-I, and MDBB-II algorithms on the D-
optimal design problem in housing, cpusmall, and mg data, where tol=10−10.The first col-
umn is the value of the objective function. The second column is the absolute value of
relative error.
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faster compared with the others.

In MDBB, we only change the generation of xk. But this method reduce nearly half of
the number of the iterations of the GDBB, which is really effective. The performance of the
MDBB-I is similar to the MDBB. In the MDBB-II method, we use minη Dϕ(B

−1
k yk−1, sk−1)

to replace minη ∥B−1
k yk−1 − sk−1∥2, which is a more generalized way to measure the gap

between B−1
k yk−1 and sk−1. In the MDBB-II method, we used the BB step size ηk =(

∥sk−1∥2·sTk−1yk−1

∥yk−1∥4

) 1
3

.

Next, we use the FWBB, FWBB-I, and FWBB-II methods mentioned above to solve the
D-optimal design problem. In the FW algorithm numerical experiments, we project the BB
step size in [0, 1] to satisfy the FW algorithm. Our numerical results are shown here.

Table 3: Performance comparison on D-optimal design problems on four different datasets:
housing (n = 506,m = 13), mg (n = 1385,m = 6), abalone (n = 4177,m = 8), cpusmall
(n = 8192,m = 12). “iter” is the number of iterations, “time[s]” is CPU time in seconds,
“the absolute value of relative error” is |f(xk)− f(xk−1)|.

Data eplison
ϵ = 10−4 ϵ = 10−6 ϵ = 10−8

iter time[s] iter time[s] iter time[s]

housing

FWBB 2772 0.415 3771 0.374 14967 1.470

FWBB-I 2694 0.395 3409 0.398 9433 1.010

FWBB-II 2056 0.284 2220 0.297 3217 0.436

mg

FWBB 4281 0.445 8631 0.903 11576 1.167

FWBB-I 4172 0.528 7972 0.993 10379 1.359

FWBB-II 1644 0.248 2208 0.323 2715 0.394

abalone

FWBB 2784 0.565 6186 1.289 14380 2.962

FWBB-I 2752 1.946 5900 1.629 10284 5.290

FWBB-II 2559 0.946 2936 0.841 5319 1.727

cpusmall

FWBB 12526 3.333 6362 1.322 25307 6.961

FWBB-I 12384 5.798 5657 1.466 22666 10.396

FWBB-II 9252 4.305 2850 0.876 11985 5.590

It can be seen from Figure 2 and Table 3 that the FWBB-I and the FWBB-II can reduce
the number of iterations and improve the convergence rate of the FW method compared
with the FWBB. On cpusmall data, the FWBB-II and FWBB-I spend more time than
the FWBB. The main reason is the Bregman BB step size has exponential function and
logarithmic function, it spend much time to compute the Bregman BB step size.

6 Conclusion

In this paper, we proposed some BB step sizes based on the Bregman divergence. We also
applied these new BB step sizes formulae to the mirror descent method and the Frank-
Wolfe method for the convex optimization problem. And we implemented these methods
to the D-optimal design problem and reported some preliminary results to demonstrate the
effectiveness of the proposed algorithms.
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Figure 2: Comparison of FWBB-I, FWBB-II, and FWBB on D-optimal design problems
in housing, mg, and abalone data, where tol=10−8. The first column is the value of the
objective function. The second column is the absolute value of relative error.
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