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polyethylene quality. In addition, the reactor temperatures measured in a certain sequence.
Thus, some adjacent temperatures may exhibit common properties, in other words, they
have a block structure. To solve the unknown coefficient matrix B, we propose the MLR
model with low-rank and row-sparsity (MLRLRRS) below

min
B∈Rp×m

1

2
‖Y −XB‖2F + λ1‖B‖∗ + λ2‖B‖2,1, (1.2)

where λ1, λ2 ≥ 0 are tuning parameters. This model takes advantage of the nuclear norm
and ‖ · ‖2,1 norm, which achieves low-rank and the sparse-block simultaneously. ‖B‖∗ =∑s

i=1 σi(B) makes the estimator to catch the material information, where σ1(B) ≥ σ2(B) ≥
· · · ≥ σs(B) ≥ 0 are singular values of matrix B. ‖B‖2,1 =

∑J
j=1 ‖Bj‖F induces the model

to contain important block-predictors, where {Bj ∈ Rp×mj , j = 1, 2, · · · , J} is a partition
of the p rows in matrix B. In fact, the combination of the nuclear norm and the ‖ · ‖2,1
norm has been previously employed by Tang et al. [16] and Guyonin et al. [5]. These
two papers focused on robust principal component analysis (RPCA) based on low-rank and
block-sparse matrix decomposition. And they didn’t propose the model (1.2). In particular,
when λ2 = 0, this model can be viewed as the nuclear norm regularized matrix regression
which is studied by Lu et al. [8], Yuan et al. [22] and so on. When λ1 = 0 and considering
every predictor as a group, there are some relevant algorithm works which considered the
row-sparsity. Similä [14] designed two algorithms to solve this model with ‖B‖ℓ1/ℓ2 as
constraint. The first algorithm gives a pointwise solution, while the second one computes
the entire path of solutions as a function of the constraint parameter. Peng et al. [12]
established the row-wise and element-wise sparsity multivariate regression model. They
proposed a method called remMap regularized multivariate regression for identifying master
predictors for fitting multivariate response regression models under the high-dimension-low-
sample-size setting. Under high-dimensional scaling, Obozinski et al. [11] showed that
ℓ1/ℓ2-regularized model exhibits a threshold for the recovery of the exact row pattern with
high probability over the random design and noise. When m = 1, model (1.1) degrades
into the linear regression model. Therefore, the model (1.2) is sparse group Lasso model
proposed by Friedman et al. [3]. This model achieves the within-group and among-group
sparsity constraints simultaneously, choosing important groups we are interested in and
important features within the selected groups. To solve this advantageous model, Li et al.
[7] set up the linearized alternating direction method of multipliers (LADMM). Thus, this
paper will focus on designing LADMM to solve the proposed model (1.2).

The main contributions of our paper are threefold.

1. To analyse data with low-rank property and group-wise predictors, we propose a new
MLR model MLRLRRS, which achieves the within-block and among-block low rank
simultaneously.

2. For the new proposed model, we design a new LADMM for solving the new model
and establish its global convergency by virtue of its variational inequality problem. In
addition, we use the screening rule to select the penalty parameters.

3. We make some numerical experiments to show the accuracy and efficiency of the new
proposed LADMM on solving the new model.

The remaining parts of the paper are organized as follows. Some notations and known
results are summarized in Section 2. In Section 3, we give a new LADMM algorithm for
solving the new model. The convergence theorem of the new algorithm is established in
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Section 4. In Section 5, some numerical results are reported to show the accuracy of the
proposed algorithm. In the end, some conclusions and future works are made in Section 6.

2 Notations and Useful Results

For readability, we collect some notations and known results used in this paper.
Suppose B ∈ Rp×m, Z ∈ Rp×m, then the following notations are used throughout this

paper. The inner product of matrix: 〈B,Z〉 =
∑m

i=1

∑n
j=1 bijzij . Then we give some

notations of matrix norm. The Frobenius norm ‖B‖F =
√

〈B,B〉 =
√∑p

i=1

∑m
j=1 b

2
ij . The

ℓ1/ℓ2 norm ‖B‖ℓ1/ℓ2 =
∑p

i=1

√∑m
j=1 b

2
ij . The ‖ ‖2,1 norm ‖B‖2,1 =

∑J
j=1 ‖Bj‖F, where

{Bj ∈ Rp×mj , j = 1, 2, · · · , J} is a partition of the p rows in matrix B. The nuclear norm
‖B‖∗ =

∑s
i=1 σi(B), where σ1(B) ≥ σ2(B) ≥ · · · ≥ σs(B) ≥ 0 are singular values of matrix

B. Note that ‖B‖2,1 can be seen as the generalization of ‖B‖ℓ1/ℓ2 . When every Bj only

has one row of B, ‖B‖2,1 becomes ‖B‖ℓ1/ℓ2 . As we all know ‖B‖ℓ1/ℓ2 ensures the sparsity

of predictors. Thus, ‖B‖2,1 makes the model possess group sparsity. The nuclear norm
‖B‖∗ is a convex relaxation of non-convex Rank(B). Thus, using ‖B‖∗ is easy to design
optimization methods and can obtain an estimator with low rank.

In order to make our paper easier to be understood, some conclusions on the gradient
and subdifferential of matrix functions are reviewed here.

Suppose f(B) : Rp×m 7→ R is a matrix function, then the differential of f(B) is

∂f

∂B
=


∂f
∂b11

∂f
∂b12

· · · ∂f
∂b1m

∂f
∂b21

∂f
∂b22

· · · ∂f
∂b2m

...
...

. . .
...

∂f
∂bp1

∂f
∂bp2

· · · ∂f
∂bpm

 .

If Y ∈ Rn×m, X ∈ Rn×p, A, B ∈ Rp×m, we have

(1)
∂(∥Y−XB∥2

F)
∂B = −2XT(Y −XB);

(2) ∂⟨A,B⟩
∂B = A.

Definition 2.1. Suppose f(B) : Rp×m 7→ R is a matrix function, then the subdifferential
of f(B) is

∂f(B) =
{
M ∈ Rp×m|f(Z) ≥ f(B) + 〈M,Z −B〉, ∀ Z ∈ Rp×m

}
.

There are two commonly used examples.

Example 2.2. If B ∈ Rn×m, then

∂‖B‖F
∂B

=


B

∥B∥F
, if B 6= 0;

{M ∈ Rp×m|‖M‖F ≤ 1} , if B = 0.

Example 2.3. If the singular value decomposition (SVD) of B is B = UΣV T, then the
subdifferential of ‖B‖∗ (see [18] for details) is

∂‖B‖∗
∂B

= U · Sgn(Σ) · V T,
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where

Sgn(Σ) =

(
Ir Or×(m−r)

O(p−r)×r T(p−r)×(m−r)

)
,

T ∈ Γ := {T ∈ R(p−r)×(m−r)|σ1(T ) ≤ 1}, σ1(·) is the largest singular value.

By virtue of Example 2.2 and Example 2.3, we can easily get the solution of the following
two optimization problems.

Proposition 2.4. Given λ > 0, r > 0, and C ∈ Rp×m. If C has the singular value
decomposition C = UΛV T, then the minimizer

B̂ = argmin
B∈Rp×m

λ‖B‖∗ +
r

2
‖B − C‖2F

has a closed-form and

B̂ = U

(
Λ− λ

r
Ip×m

)
+

V T, (2.1)

where the entries of Ip×m are 0s except 1 in the main diagonal, z+ = max{0, z}.

To see the detailed proof of Proposition 2.4, one can refer to be found Theorem 3 in [9].
This proposition gives an explicit solution of nuclear norm regularized least squares model.
In view of the expression in (2.1), the rank of B̂ depends on λ/r. Furthermore, Rank(B)
gets small as the tuning parameter λ gets large. Thus we can obtain an low-rank estimator.
In the following, we will use Proposition 2.4 to solve the B-subproblem in iteration scheme
(3.3). We can select a large parameter λ1 to obtain a low-rank estimator.

Now, we will come into an optimization problem containing Frobenius norm.

Proposition 2.5. For the minimization problem

min
B∈Rp×m

λ‖B‖F +
µ

2
‖B − C‖2F, (2.2)

where λ > 0, µ > 0, and C ∈ Rp×m, the optimal solution has the following closed-form

B̄ = (1− λ/(µ‖C‖F))+ C. (2.3)

Proof. Considering Example 2.2, the KKT condition of (2.2) is

−µ(B − C) ∈ λ
∂‖B‖F
∂B

.

If B 6= 0, then we have µ(B − C) = λ B
∥B∥F

, i.e.,

(λ/‖B‖F + µ)B = µC. (2.4)

Taking Frobenius norm on both sides of the above equality, it is easy to obtain

‖B‖F = ‖C‖F − λ/µ.

Inserting this expression into (2.4), the expression of B is

B = C − λ/(µ‖C‖F) C = (1− λ/(µ‖C‖F)) C.

From (2.4), we can see every element of matrix B has the same sign as the corresponding
element of C. Thus, 1 − λ/(µ‖C‖F) must be positive if B 6= 0. The solution of (2.2) has
the form

(1− λ/(µ‖C‖F))+ C.
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Similar to Proposition 2.4, B̄ approaches to zero if λ grows large. In the following,
Proposition 2.5 will be used to obtain the estimator of the row-blocks in iteration scheme
(3.3). As shown here, we can choose large λ to make some blocks to be zero. Thus, the
predictors in model (1.2) could obtain group sparsity as discussed in linear regression, such
as [23].

3 Construction of Optimization Method

In this section, we apply the LADMM to solve MLRLRRS (1.2). For the subproblems
whose closed-form solutions are not easy to obtain, we illustrate how to linearize them
and get corresponding results. Considering these works, we can obtain an ADMM-based
algorithm for solving our model.

First, let’s rewrite the MLRLRRS (1.2). Suppose that all the p predictors are divided
into J groups, with the number pj in the jth group. So we use a notation Xj ∈ Rn×pj to
represent the jth block of design matrix X, and the corresponding block matrix of regression
coefficients is Bj ∈ Rpj×m. Then the MLR model with J blocks can be defined as

Y = XB +W =

J∑
j=1

XjBj +W

and the optimization problem (1.2) can be rewritten as

min
B∈Rp×m

1

2
‖Y −XB‖2F + λ1‖B‖∗ + λ2

J∑
j=1

‖Bj‖F. (3.1)

In order to use ADMM-based algorithm, we firstly introduce an auxiliary variable C =
(C1, C2, ..., CJ) ∈ Rp×m to the block term, where Cj (j = 1, 2, ..., J) has the same dimension
as Bj . Then optimization problem (3.1) can be rewritten as

min
B∈Rp×m

C∈Rp×m

1

2
‖Y −XB‖2F + λ1‖B‖∗ + λ2

J∑
j=1

‖Cj‖F

s.t. B = C.

(3.2)

The augmented Lagrangian function of (3.2) is

Lµ(B,C,A) :=
1

2
‖Y −XB‖2F + λ1‖B‖∗ + λ2

J∑
j=1

‖Cj‖F − 〈A,B − C〉+ µ

2
‖B − C‖2F,

and the iterative scheme of ADMM is
Bk = argmin

B∈Rp×m

Lµ(B,Ck−1, Ak−1),

Ck = argmin
C∈Rp×m

Lµ(B
k, C,Ak−1),

Ak = Ak−1 − τµ(Bk − Ck).

(3.3)
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Now, we discuss the solutions of the subproblems in (3.3). The B-subproblem can be
reformed as

Bk = argmin
B∈Rp×m

1

2
‖Y −XB‖2F + λ1‖B‖∗ − 〈Ak−1, B − Ck−1〉+ µ

2
‖B − Ck−1‖2F

= argmin
B∈Rp×m

1

2
‖Y −XB‖2F + λ1‖B‖∗ +

µ

2
‖B − Ck−1 −Ak−1/µ‖2F

= argmin
B∈Rp×m

λ1‖B‖∗ +
1

2
‖X̂B − Ŷk‖2F, (3.4)

where X̂ = (XT,
√
µIp×p)

T, Ip×p ∈ Rp×p is an identity matrix and Ŷk = (Y T,
√
µ(Ck−1 +

Ak−1/µ)T)T. If X̂TX̂ is not a diagonal matrix, this subproblem does not have a closed-form

solution. To deal with this problem, we can linearize the quadratic term 1
2‖X̂B − Ŷk‖2F in

(3.4) and replace it by

1

2
‖X̂Bk−1 − Ŷk‖2F + 〈X̂T(X̂Bk−1 − Ŷk), B −Bk−1〉+ ν

2
‖B −Bk−1‖2F, (3.5)

where ν is a positive parameter and its value defined in Theorem 4.5. Omitting the constant
term, we only need to consider the optimization problem

Bk = argmin
B∈Rp×m

λ1‖B‖∗ + 〈X̂T(X̂Bk−1 − Ŷk), B −Bk−1〉+ ν

2
‖B −Bk−1‖2F

= argmin
B∈Rp×m

λ1‖B‖∗ +
ν

2
‖B −Bk−1 + X̂T(X̂Bk−1 − Ŷk)/ν‖2F. (3.6)

According to Proposition 2.4, if Bk−1 − X̂T(X̂Bk−1 − Ŷk)/ν has the following SVD

Bk−1 − X̂T(X̂Bk−1 − Ŷk)/ν = UΛV T,

then the minimizer of (3.6) is

Bk = U

(
Λ− λ1

ν
Ip×m

)
+

V T. (3.7)

For the C-subproblem in (3.3), it can be written as

Ck = argmin
C∈Rp×m

λ2

J∑
j=1

‖Cj‖F − 〈Ak−1, Bk − C〉+ µ

2
‖Bk − C‖2F.

= argmin
C∈Rp×m

λ2

J∑
j=1

‖Cj‖F +
µ

2
‖Bk − C −Ak−1/µ‖2F

This optimization problem can be separated to J subproblems and the jth subproblem has
the following solution

Ck
j = argmin

Cj∈Rpj×m

λ2‖Cj‖F +
µ

2
‖Bk

j − Cj −Ak−1
j /µ‖2F

=

(
1− λ2

µ‖Bk
j −Ak−1

j /µ‖F

)
+

(
Bk

j −Ak−1
j /µ

)
, (3.8)
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which is from the result of Proposition 2.5.
Based on the above discussion, the iterative algorithm for MLRLRRS is described in

Algorithm 1.

Algorithm 1: LADMM for MLRLRRS (3.1).

Input: X,Y and tol. Choose λ1 > 0, λ2 > 0, µ > 0 and ν > µ+ ρ(XTX), where ρ(·) is
the spectral radius.

Choose the start point (B0, C0, A0).
1 for k = 1, 2, · · · do
2 Compute Bk by (3.7);
3 Compute Ck by (3.8);
4 Updata Ak via Ak = Ak−1 − τµ(Bk − Ck);
5 Check stopping criterion;
6 end

4 Convergency

In this section, we present the convergence result for the proposed LADMM in the last
section. We mainly establish the global convergence theorem and study the convergence
rate of LADMM. The procedure of the convergence analysis follows the idea in [7].

In order to make convergence analysis easily, we write the problem (3.2) as a variational
form. In order to do this, we give the Lagrange function of (3.2)

1

2
‖Y −XB‖2F + λ1‖B‖∗ + λ2

J∑
j=1

‖Cj‖F − 〈A,B − C〉, (4.1)

where A ∈ Rp×m is the Lagrangian matrix multiplier. Because problem (3.2) is a convex
problem with linear constraints and (0, 0) is a relatively interior point of its feasible area,
there is a Karush-Kuhn-Tucker (KKT) point which is comprised by solutions of problem
(3.2) and its dual form. Therefore, minimizing problem (3.2) is the same as finding a point

(B∗T, C∗T, A∗T)
T ∈ Ω := Rp×m × Rp×m × Rp×m satisfying

0 = λ1f(B
∗) +XT(XB∗ − Y )−A∗,

0 = λ2g(C
∗) +A∗,

0 = B∗ − C∗.

(4.2)

where f(B∗) ∈ ∂(‖B∗‖∗) and g(C∗) ∈ ∂
(∑J

j=1 ‖C∗
j ‖F

)
. Denote Ω∗ as the collection of the

points in Ω satisfying (4.2). Let ω∗ = (B∗T, C∗T, A∗T)
T
be any point in Ω∗, then (3.2) can

be transformed to the following variational inequality (VI)

V I(Ω, F ) : 〈ω − ω∗, F (ω∗)〉 ≥ 0, ∀ ω ∈ Ω,

where

ω =

B
C
A

 , F (ω) =

λ1f(B) +XT(XB − Y )−A
λ2g(C) +A

B − C

 . (4.3)
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With the help of this transformation, the estimator in every iteration of the proposed
algorithm can be expressed as the following VI problem.

Lemma 4.1. Denote M = (−µIp µIp Op)
T, G =

(ν − µ)Ip −XTX Op Op

Op Ip Op

Op Op
1
µIp

. Then

the solution sequence {ωk−1} satisfies

〈ω′ − ωk, F (ωk) +M(Ck−1 − Ck)−G(ωk−1 − ωk)〉 ≥ 0, ∀ ω′ ∈ Ω. (4.4)

Proof. Consider the first order optimality conditions of the minimization problems (3.6)
and (3.8), we can see that the iterative scheme in Algorithm 1 is equivalent to find ωk =

(BkT, CkT, AkT)
T
∈ Ω, f(Bk) ∈ ∂(‖Bk‖∗) and g(Ck) ∈ ∂(

∑J
j=1 ‖Ck

j ‖F) such that
0 = λ1f(B

k) + X̂T(X̂Bk−1 − Ŷk) + ν(Bk −Bk−1),

0 = λ2g(C
k) + µ(Ck −Bk +Ak−1/µ),

0 = Bk − Ck − (Ak−1 −Ak)/µ,

(4.5)

where
X̂T(X̂Bk−1 − Ŷk) = (XTX + µIp×p)B

k−1 − (XTY +Ak−1 + µCk−1). (4.6)

Inserting (4.6) into (4.5) and considering notation M and G, problem (4.5) can be rewritten
as the VI problem (4.4).

In view of Lemma 4.1, we can easily obtain the following lemma.

Lemma 4.2. For any ω∗ ∈ Ω∗, the solution sequence {ωk−1} satisfies

〈ωk−1 − ω∗, G(ωk−1 − ωk)〉
≥ 〈ωk−1 − ωk, G(ωk−1 − ωk)〉 − 〈Ak−1 −Ak, Ck−1 − Ck〉. (4.7)

Proof. Since (4.4) holds for any ω′ ∈ Ω, let ω′ = ω∗ ∈ Ω∗, then we have

〈ω∗ − ωk, F (ωk) +M(Ck−1 − Ck)−G(ωk−1 − ωk)〉 ≥ 0. (4.8)

Moreover, we have B∗ − C∗ = 0. So (4.8) becomes to

〈ωk − ω∗, G(ωk−1 − ωk)〉 ≥ 〈ωk − ω∗, F (ωk)〉 − µ〈Bk − Ck, Ck−1 − Ck〉
= 〈ωk − ω∗, F (ωk)〉 − 〈Ak−1 −Ak, Ck−1 − Ck〉, (4.9)

where Ak−1 −Ak = µ(Bk − Ck).
Note that F (ω) defined in (4.3) is monotone. It follows that

〈ωk − ω∗, F (ωk)− F (ω∗)〉 ≥ 0,

and

〈ωk − ω∗, F (ωk)〉 ≥ 〈ωk − ω∗, F (ω∗)〉 ≥ 0. (4.10)

Substituting (ωk−ωk−1)−(ωk−1−ω∗) for ωk−ω∗ in inequality (4.9) and considering (4.10),
the desired result is proved.
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Now, combining Lemma 4.1 and Lemma 4.2, we can show that the sequence {ωk−1}
generated by LADMM is contractive with respect to the solution set Ω∗.

Corollary 4.3. For any ω∗ ∈ Ω∗, we obtain

‖ωk − ω∗‖2G ≤ ‖ωk−1 − ω∗‖2G − ‖ωk−1 − ωk‖2G. (4.11)

Proof. Considering (4.7), ∀ ω∗ ∈ Ω∗, it is easy to obtain

‖ωk − ω∗‖2G = ‖ωk−1 − ω∗‖2G + ‖ωk−1 − ωk‖2G − 2〈ωk−1 − ω∗, G(ωk−1 − ωk)〉
≤ ‖ωk−1 − ω∗‖2G − ‖ωk−1 − ωk‖2G + 2〈Ak−1 −Ak, Ck−1 − Ck〉. (4.12)

According to (4.2), we have λ2g(C
k−1) +Ak−1 = 0. So the following results are true

〈Ck−1 − Ck, λ2g(C
k) +Ak〉 ≥ 0,

〈Ck − Ck−1, λ2g(C
k−1) +Ak−1〉 ≥ 0.

Then, we have

〈Ak−1 −Ak, Ck−1 − Ck〉 ≤ λ2〈Ck−1 − Ck, g(Ck)− g(Ck−1)〉 ≤ 0. (4.13)

Combining (4.13) and (4.12), we can obtain the desired conclusion (4.11).

Furthermore, considering Lemma 4.1, Lemma 4.2 and Corollary 4.3, we can easily get
the following three conclusions.

Corollary 4.4. (i) limk→∞ ‖ωk−1 − ωk‖G = 0.

(ii) The solution sequence {ωk−1} is bounded.

(iii) The sequence {‖ωk−1 − ω∗‖G} decrease for any ω∗ ∈ Ω∗.

Now we can give the convergence theorem for Algorithm 1.

Theorem 4.5. Given µ > 0, ν > µ+ ρ(XTX) and (B0T, C0T, A0T)
T
∈ Ω. Denote {ωk−1}

as the solution sequence generated by LADMM Algorithm 1. Then, {ωk−1} converges to the
solution of model (3.2).

Proof. The conclusion (i) in Corollary 4.4 implies that

lim
k→∞

‖Bk−1 −Bk‖G = 0, lim
k→∞

‖Ck−1 − Ck‖G = 0, lim
k→∞

‖Ak−1 −Ak‖G = 0.

Conclusion (ii) in Corollary 4.4 shows that {ωk−1} converge. Assume that this point of

convergence is ω∞ = (B∞T, C∞T, A∞T)
T
. If {ωkj} is a subsequence of {ωk−1} converging

to ω∞, then we have
Bkj → B∞, Ckj → C∞, Akj → A∞,

and {
limj→∞ ‖Bkj −Bkj+1‖G = 0, limj→∞ ‖Ckj − Ckj+1‖G = 0,

limj→∞ ‖Akj −Akj+1‖G = 0.
(4.14)

Now, we only need to demonstrate that ω∞ satisfies the KKT conditions (4.2). In view of
(4.4) and (4.14), it is easy to obtain

lim
j→∞

〈ω′ − ωkj , F (ωkj )〉 ≥ 0, ∀ ω′ ∈ Ω.
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It follows that

〈ω′ − ω∞, F (ω∞)〉 ≥ 0, ∀ ω′ ∈ Ω.

So, the cluster point ω∞ satisfies (4.2), i.e., ω∞ ∈ Ω∗. Note that the conclusion (iii) in
Corollary 4.4 means that for any k ≥ 0,

‖ωk − ω∞‖G ≤ ‖ωk−1 − ω∞‖G.

Thus, ω∞ is the unique point of convergence. That is, {ωk−1} converges to ω∞. The desired
result is obtained.

Remark 4.6. As a direct result of Theorem 4.1 in [6], the iteration complexity for the
proposed Algorithm 1 is O(1/k). Here the iteration complexity is in the sense of average.
The detailed procedure can be referred to [6].

Now, let’s introduce the stopping criteria for Algorithm 1. Considering the kth iteration
of Algorithm 1, we obtain

∂(λ1‖Bk‖∗) 3 −ν(Bk −Bk−1)− X̂T(X̂Bk−1 − Ŷk),
∂(λ2‖Ck‖2,1) 3 µ(Bk − Ck)−Ak−1.

It follows that

Dk ∈ ∂(λ1‖Bk‖∗ + λ2‖Ck‖2,1 +
1

2
‖Y −XBk‖2F),

where

Dk := −ν(Bk −Bk−1)− X̂T(X̂Bk−1 − Ŷk) + ∂(λ2‖Ck‖2,1) +XT(XBk − Y )

= (µ− ν)(Bk −Bk−1)− µ(Ck − Ck−1).

Note that, the KKT system for problem (3.2) is given by:

B − C = 0, XT(XB − Y ) + ∂(λ1‖B‖∗) + ∂(λ2‖C‖2,1) = 0.

Thus the following stopping criterion is employed

max

{
‖Bk − Ck‖F,

‖Dk‖F
max{1, ‖Y ‖F}

}
< 10−4.

5 Numerical Experiments

In this section, we report some numerical results of Algorithm 1 when solving problem
(1.2). We have implemented the LADMM algorithm in MATLAB(Version R2015a). All
runs are performed on a desktop with Intel(R) Core(TM) i5-8500 CPU (3.00 GHz) and 8
GB RAM. For the tuning parameters λ1 and λ2, we choose them with the help of tuning
parameter selection works [2, 13]. As in classical ADMM algorithm, the parameters is set
as µ = (1 +

√
5)/2. And as discussed in Lemma 4.1, we choose ν = 1.01(µ+ ρ(XTX)).
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5.1 Simulation studies

The random dat used in our experiments is generated as follows. We construct the pre-
dictor matrix X by generating its rows xi as i.i.d. realizations from a multivariate normal
distribution N (0,Σ), with Σ =

(
ρ|j−k|)

p×p
, 0 < ρ ≤ 1, 1 ≤ j, k ≤ p. The true coefficient

matrix B∗ = bB1B
T
2 , with b > 0, B1 is a p× r matrix and B2 is a m× r matrix. All entries

in B1 and B2 are i.i.d. N (0, 1). Each row in Y = (y1, y2, · · · , yn)T is then generated as
yi = BTxi+ ϵi, 1 ≤ i ≤ n, where ϵi denoting the i-th row of the noise matrix W = (wij)n×m

and wijs are i.i.d. N (0, 1).
For every fixed (n,m, p, r, ρ, b), we generate the data 100 times. Then we report the

estimation MSE ‖B̂−B∗‖2F/(pm) (Est-Err) and prediction mean-squared-errors MSE ‖Y −
XB̂‖2F/(mnv) (Pre-Err) of validation data. We also presented the median rank of the esti-
mator and the average CPU times (in seconds).

The following two cases are considered.
• Experiment 1
In this simulation, we set n = 200,m = 600, p = 1000, and the true rank of coefficient

matrix r ∈ {2, 5}, the correlation coefficient ρ = 0.1, 0.5, 0.9 and signal strength b = 0.1, 0.3.
All combinations of correlation and signal strength are covered in the simulations. The
results of the numerical study are summarized in Table 1.

• Experiment 2
In this case, we generated n = 100 observations with p = 250 predictors and m = 250

responses. To indicate the group structure of a predictors, all predictors are designed with
ten blocks, say {X1, X2, · · · , X10}. Each block obeys Gaussian distribution N (0,Σ). For

the block Xj , j = 1, · · · , 10, we select Σj = j · (Σkl)p×p and Σkl satisfies Σkl =

{
ρ, k 6= l,

1, k = l,

where 0 < ρ < 1. Considering the sparsity of the blocks, we select the second 125 rows of B∗

to be zero. To ensure the low-rank property of B∗, we generate it as B∗ = b

(
B1

O

)
∗BT

2 , with

b > 0, B1 ∈ R125×r and B2 ∈ R250×r. All entries in B1 and B2 are i.i.d. N (0, 1). Finally,
each row in Y = (y1, y2, · · · , yn)T is then generated as yi = B∗Txi + ϵi, 1 ≤ i ≤ n, where ϵi
denoting the i-th row of the noise matrix W = (wij)n×m and wijs are i.i.d. N (0, 1). The
values of (r, b, ρ) are set as in Experiment 1. The numerical results are demonstrated in
Table 2 and Table 3. And the bold results are the best one among the compared methods.

In Table 2 and Table 3, APGL is the accelerated proximal gradient (APG) algorithm with
line-search designed in [17]. LADM is the linearized alternating direction method proposed
in [19]. LADMM represents the linearized alternating direction method of multipliers for
solving sparse group Lasso [7]. Note that, APGL and LADM are used to solve nuclear
norm penalized multivariate regression model, i.e., model (1.2) with λ2 == 0. LADMM is
designed for solving sparse group Lasso in the scenario of multiple linear regression. Ignoring
the structural characteristics of MLR, MLR can be transformed to multiple linear regression.
Thus it can be solved by LADMM proposed in [7].

From Table 2 and Table 3, we can see our method performs better than APGL, LADM
and LADMM in terms of Est-Err and Pre-Err. The reason is that the experiments designed
here possess a block structure. Our model is specifically designed for data with this structural
characteristic. But APGL and LADM solve optimization problem with only nuclear norm
regularizer and they don’t consider block structure. When it comes to CPU time, our
method seems to be the worse one. This can be explained as follows. In all the compared
methods, the main work is SVD. Since different ways of computing SVD give different CPU
times, here we aim to show how these methods perform. Thus, we used the efficient Matlab
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Table 1: The performance of Algorithm 1 for Experiment 1.

b
r = 2 r = 5

ρ = 0.1 ρ = 0.5 ρ = 0.9 ρ = 0.1 ρ = 0.5 ρ = 0.9

0.1

Est–Err 1.17e-1 1.14e-1 1.23e-1 2.14e-1 2.07e-1 2.02e-1
Pre–Err 1.60e-1 1.47e-1 1.56e-1 2.31e-1 2.22e-1 2.21e-1
Rank 2 2 2 5 5 5
CPU 7.50 9.30 9.50 7.88 8.33 9.29

0.3

Est–Err 2.82e-1 2.81e-1 2.82e-1 5.70e-1 6.13e-1 6.02e-1
Pre–Err 4.70e-1 4.62e-1 5.05e-1 6.60e-1 7.07e-1 7.07e-1
Rank 2 2 2 5 5 5
CPU 8.43 7.57 6.10 8.54 6.07 8.63

Table 2: The performance of Algorithm 1 for Experiment 2 with r = 2.

b
ρ = 0.5

APGL LADM LADMM Algorithm 1

0.05

Est-Err 5.03e-2(4.91e-4) 4.75e-2(4.82e-4) 4.23e-2(4.63e-4) 3.42e-2(8.49e-4)
Pre-Err 1.25(8.54e-3) 1.06(6.22e-3) 8.21e-1(4.61e-3) 7.11e-1(3.01e-3)
Rank 2 2 – 2
CPU 0.06 0.04 0.79 0.64

0.06

Est-Err 6.23e-2(4.96-4) 4.87e-2(4.81e-4) 4.47e-2(2.39e-4) 3.31e-2(6.94e-4)
Pre-Err 1.39(6.18e-3) 1.09(6.31e-3) 8.65e-1(5.21e-3) 7.35e-1(1.03e-2)
Rank 2 2 – 2
CPU 0.07 0.04 0.81 0.65

0.07

Est-Err 6.62e-2(2.15-3) 5.06e-2(5.03e-4) 4.63e-2(2.67e-4) 3.29e-2(1.59e-4)
Pre-Err 1.43(1.42e-2) 1.14(6.98e-3) 9.01e-1(5.53e-3) 7.82e-1(1.17e-3)
Rank 2 2 – 2
CPU 0.06 0.04 0.76 0.64

Mex interface mexsvd which can be found in the package APGL. In addition, some other
accelerated techniques such as truncation technique, continuation technique are employed in
APGL and LADM. Here, we mainly focus on designing an algorithm to solve optimization
problem extracted from data having low-rank and row-block structure. This also shows that
we must design particular algorithms to analysis the data sets with special properties. For
the measurement Rank, we can see that our model gives the same median rank as APGL
and LADM. However, the LADMM don’t consider the low-rank property. Thus, it can’t
achieve an estimator with low rank. Combining the above discussion, the proposed model
not only gives a more accurate estimator but also a low-rank estimator.

5.2 Real data analysis

In this subsection, we will apply our model to the polyethylene data set [15, 1]. This data set
focuses on studying the reaction process of low-density polyethylene (LDPE). The reaction
process is controlled by 20 reactor temperature measurements T1—T20, the wall temperature
and the feed rate. The number avg.molecular weight, weight avg.molecular weight, long
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Table 3: The performance of Algorithm 1 for Experiment 2 with r = 5.

b
ρ = 0.5

APGL LADM LADMM Algorithm 1

0.05

Est-Err 7.59e-2(9.81e-4) 6.51e-2(7.36e-4) 5.67e-2(4.85e-4) 4.61e-2(4.77e-4)
Pre-Err 1.57(1.58e-2) 1.31(8.84e-3) 1.01(6.67e-3) 8.78e-1(6.93e-3)
Rank 5 5 – 5
CPU 0.07 0.05 0.17 0.68

0.06

Est-Err 9.29e-2(1.69e-4) 7.68e-2(5.87e-4) 6.25e-2(5.23e-4) 5.31e-2(4.69e-4)
Pre-Err 1.79(8.23e-3) 1.53(6.57e-3) 1.18(7.47e-3) 9.85e-1(6.57e-3)
Rank 5 5 – 5
CPU 0.08 0.05 0.20 0.70

0.07

Est-Err 1.07e-1(3.35e-3) 8.71e-2(1.25e-3) 7.11e-2(3.22e-3) 6.12e-2(3.89e-3)
Pre-Err 2.02(2.53e-2) 1.65(1.89e-2) 1.26(1.24e-2) 1.03(1.07e-2)
Rank 5 5 – 5
CPU 0.07 0.05 0.17 0.69

chain branching, short chain branching, content of vinyl group, and content of vinyledene
group are used to evaluate polyethylene quality. Thus, there are n = 56 observations with
p = 22 and m = 6 in this data set. As in [10], we applied log transformation to the
responses, and then standardized them. In addition, the 20 reactor temperatures measured
in a certain sequence. Thus, some adjacent temperatures may exhibit common properties,
in other words they have a block structure. From the the correlation coefficient matrix of
predictors displayed in Table 4 and Table 5, we can see that the two adjacent temperatures
are in high correlation except T7 and T8, T11 and T12, T12 and T13, T14 and T15. This implies
that, they are in one group. Therefore, we should consider the block structure in predictors
when analyzing data.

Consider that this data set has no test set and contains few samples. We split this data
set equally into two parts: training set (Xtraining, Ytraining) and test set (Xtest, Ytest). Then,

we use training data (Xtraining, Ytraining) and regression the model to obtain an estimator B̂.

After that, we use B̂ and the test data (Xtest, Ytest) to measure the mean squared prediction
error (MSPE)

MSPE = E
{
‖Ytest −XtestB̂‖2

}
.

To avoid the contingency of division, we split the data set 100 times. Then we compute the
mean value and standard deviation of MSPE. The numerical results are shown in Table 6.

To show the performance clearly, we also draw the boxplot of the 100 repeated results
in Fig. 1.

In view of Table 6 and Fig. 1, the MLRLRRS performs an excellent prediction. The
good performance of model (1.2) can also be explained by the fact that the predictors show
some block/group structures. In view of the correlation coefficient matrix of predictors
displayed in Table 4 and Table 5, some block structure are shown, such as {T1, T2, T3, T4, T5},
{T6, T7}, {T8, T9}, {T10, T11}, {T13, T14},{T15, T16}, {T17, T18, T19, T20}. Our proposed model
is designed specially for the data set with block structure among predictors.

Form the above analysis, we can summarize how to apply the new model to real data.
Given a data set in reality, the procedure of using our model to make analysis is: first we
compute the correlation coefficient matrix of predictors. Then we pick up high correlated
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Table 4: The correlation coefficient matrix of predictors.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 1.00 1.00 0.98 0.95 0.94 0.84 0.79 0.65 0.53 0.38
T2 1.00 1.00 0.99 0.96 0.95 0.85 0.80 0.66 0.55 0.40
T3 0.98 0.99 1.00 0.98 0.95 0.83 0.77 0.61 0.51 0.38
T4 0.95 0.96 0.98 1.00 0.96 0.82 0.74 0.55 0.46 0.35
T5 0.94 0.95 0.95 0.96 1.00 0.90 0.81 0.59 0.49 0.37
T6 0.84 0.85 0.83 0.82 0.90 1.00 0.90 0.62 0.51 0.38
T7 0.79 0.80 0.77 0.74 0.81 0.90 1.00 0.77 0.66 0.51
T8 0.65 0.66 0.61 0.55 0.59 0.62 0.77 1.00 0.92 0.74
T9 0.53 0.55 0.51 0.46 0.49 0.51 0.66 0.92 1.00 0.90
T10 0.38 0.40 0.38 0.35 0.37 0.38 0.51 0.74 0.90 1.00
T11 0.18 0.21 0.22 0.21 0.21 0.20 0.31 0.51 0.69 0.90
T12 -0.11 -0.09 -0.05 -0.04 -0.07 -0.10 -0.06 0.01 0.18 0.42
T13 -0.27 -0.25 -0.19 -0.16 -0.21 -0.26 -0.27 -0.28 -0.12 0.12
T14 -0.41 -0.39 -0.31 -0.25 -0.32 -0.39 -0.44 -0.53 -0.38 -0.14
T15 -0.52 -0.50 -0.40 -0.33 -0.40 -0.48 -0.57 -0.74 -0.64 -0.45
T16 -0.52 -0.50 -0.39 -0.32 -0.40 -0.49 -0.61 -0.84 -0.75 -0.59
T17 -0.46 -0.45 -0.35 -0.28 -0.36 -0.46 -0.59 -0.84 -0.79 -0.68
T18 -0.39 -0.37 -0.27 -0.20 -0.28 -0.38 -0.52 -0.80 -0.76 -0.64
T19 -0.33 -0.31 -0.20 -0.12 -0.20 -0.31 -0.46 -0.76 -0.72 -0.61
T20 -0.25 -0.22 -0.12 -0.03 -0.11 -0.22 -0.38 -0.70 -0.66 -0.55

APGL LADM LADMM Algorithm 1
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Figure 1: The boxplot of MSPE for analyzing polyethylene data.
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Table 5: The correlation coefficient matrix of predictors.

T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

T1 0.18 -0.11 -0.27 -0.41 -0.52 -0.52 -0.46 -0.39 -0.33 -0.25
T2 0.21 -0.09 -0.25 -0.39 -0.50 -0.50 -0.45 -0.37 -0.31 -0.22
T3 0.22 -0.05 -0.19 -0.31 -0.40 -0.39 -0.35 -0.27 -0.20 -0.12
T4 0.21 -0.04 -0.16 -0.25 -0.33 -0.32 -0.28 -0.20 -0.12 -0.03
T5 0.21 -0.07 -0.21 -0.32 -0.40 -0.40 -0.36 -0.28 -0.20 -0.11
T6 0.20 -0.10 -0.26 -0.39 -0.48 -0.49 -0.46 -0.38 -0.31 -0.22
T7 0.31 -0.06 -0.27 -0.44 -0.57 -0.61 -0.59 -0.52 -0.46 -0.38
T8 0.51 0.01 -0.28 -0.53 -0.74 -0.84 -0.84 -0.80 -0.76 -0.70
T9 0.69 0.18 -0.12 -0.38 -0.64 -0.75 -0.79 -0.76 -0.72 -0.66
T10 0.90 0.42 0.12 -0.14 -0.45 -0.59 -0.68 -0.64 -0.61 -0.55
T11 1.00 0.72 0.45 0.20 -0.18 -0.34 -0.51 -0.48 -0.45 -0.40
T12 0.72 1.00 0.86 0.67 0.26 0.08 -0.16 -0.17 -0.17 -0.17
T13 0.45 0.86 1.00 0.92 0.57 0.40 0.13 0.11 0.11 0.09
T14 0.20 0.67 0.92 1.00 0.84 0.71 0.44 0.42 0.41 0.39
T15 -0.18 0.26 0.57 0.84 1.00 0.94 0.73 0.71 0.69 0.66
T16 -0.34 0.08 0.40 0.71 0.94 1.00 0.91 0.90 0.88 0.86
T17 -0.51 -0.16 0.13 0.44 0.73 0.91 1.00 0.99 0.98 0.96
T18 -0.48 -0.17 0.11 0.42 0.71 0.90 0.99 1.00 1.00 0.98
T19 -0.45 -0.17 0.11 0.41 0.69 0.88 0.98 1.00 1.00 0.99
T20 -0.40 -0.17 0.09 0.39 0.66 0.86 0.96 0.98 0.99 1.00

Table 6: The numerical results of Algorithm 1 for analysing polyethylene data set.

APGL LADM LADMM Algorithm 1
MSPE 25.57(9.58e-1) 23.31(8.84e-1) 20.22(6.67e-1) 17.71(7.93e-1)
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predictors to form blocks. At last, using the new model and the designed algorithm to
analyze the data under the obtained block structures. Note that, if some a predictor belongs
to two or more block, we can train the model for each one.

6 Conclusion

In this paper, we propose a MLR model with low-rank and row-sparsity which can deal
with the matrix data whose coefficient matrix possesses low-rank and sparse row-group
properties simultaneously. To solve the new model, we design a LADMM algorithm and
establish its global convergency. An advantage of the proposed LADMM is that it is easily
implementable. Moreover, we carry out some numerical studies including real data analysis
to show the accuracy and efficiency of the proposed method.
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