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Let ℓ be the current iteration index, the classical bundle methods keep memory of pre-
vious candidate points yi (i ∈ Jℓ), their function values f(yi) and subgradients gi ∈ ∂f(yi)
in a bundle of information

Bℓ :=
⋃
i∈Jℓ

{(yi, f(yi), gi)}, (1.2)

where Jℓ ⊆ {1, . . . , ℓ} denotes an index set corresponding to some previous candidate points,
∂f(y) denotes the subdifferential of f at y, and each element g ∈ ∂f(y) is called a subgra-
dient. The linearizations of f(x) at yi are defined by

f̄ i(x) := f(yi) + ⟨gi, x− yi⟩, i ∈ Jℓ,

and then the cutting-planes (piecewise-affine) model for f at the ℓth iteration is given by

f̌ ℓ
cp(x) := max

i∈Jℓ

{f̄ i(x)}.

If f is convex, the linearization errors for f at any point x

αi(x) := f(x)− f̄ i(x), i ∈ Jℓ (1.3)

are nonnegative, so f̌ ℓ
cp(x) provides a lower approximation to f , i.e.,

f̌ ℓ
cp(x) ≤ f(x),

which is crucial to the convergence analysis of most of the bundle methods. In the convex
setting, a number of variants of bundle methods have been proposed in recent years, such
as proximal bundle methods [21, 31, 43], level bundle methods [23, 25, 42], bundle-filter
methods [17], alternating linearization bundle methods [22], and doubly stabilized bundle
methods [32, 45], etc.

When f is nonconvex, the situation becomes much more complicated than the convex
case, since the linearization errors αi may be negative and thus the cutting-planes model is
no longer a lower approximation to f . Nevertheless, some strategies have been proposed for
overcoming this drawback. For instance, Kiwiel [20] proposed to replace the linearization
errors with a more general nonnegative measure function; Schramm and Zowe [38] incorpo-
rated a trust region strategy into bundle method to restrict the cutting-planes model in a
reliable region; Fuduli et al. [9] divided the linearization errors into two groups (nonnegative
and negative), aiming to establish both a lower and an upper polyhedral approximations
to the objective function. Hare and Sagastizábal [12, 13] proposed the redistributed prox-
imal bundle method for minimizing nonconvex nonsmooth functions. In their method, the
prox-parameter is split into two nonnegative terms, one is called the convexification pa-
rameter, and the other is the model prox-parameter; for the class of lower-C2 functions,
a cutting-plane model is used for approximating not the objective function f but a local
convexification of f constructed via the convexification parameter. The local convexifica-
tion is updated on the fly through verifying the nonnegativity of its linearization errors.
Subsequently, the redistributed proximal bundle method is extended to inexact informa-
tion setting [14], generalized variational inequality problems in Hilbert spaces [40], and DC
programming [41].

Generally, the types of bundle methods for nonconvex optimization have only linear con-
vergence rate. To the best of our knowledge, superlinear convergence rate have not been
established for bundle methods in the nonconvex setting. Although in [27] a bundle-Newton
method was shown to have global and superlinear convergence for nonsmooth functions, the
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superlinear convergence rate was shown under the assumption that the objective function
is strongly convex. It is our interest in this paper to propose a bundle-type method with
superlinear convergence speed. For nonsmooth convex problems, there are no shortages of
methods that are shown to have superlinear rate of convergence [4, 11, 30]. Essentially, these
methods utilize the second-order information via the Moreau-Yosida regularization. Specif-
ically speaking, the minimization of a nonsmooth convex function f(x) can be transformed
equivalently to the minimization of a smooth convex function

eRf(x) := min
y∈Rn

{
f(y) +

1

2
R∥y − x∥2

}
,

which is the Moreau-Yosida regularization of f with a positive parameter R. The unique
minimizer of f(y) + 1

2R∥y − x∥2 is the proximal point pRf(x). The derivative of eRf(x) is
given by G(x) := ∇eRf(x) = R(x− pRf(x)). The approximate second-order information of
eRf(x) can be obtained through the BFGS formula as in [30].

In this paper, our purpose is to combine the redistributed proximal bundle method [13]
with the proximal quasi-Newton method [4], and develop a variant of bundle method for
nonconvex optimization with superlinear convergence under suitable assumptions. Based
on the redistributed proximal bundle method, our method has the same convexification
process along the iterations. We add a quasi-Newton procedure at the end of a serious step.
This procedure produces a direction dk and possibly a step-size yielded from an Armijo-
type line search on f . Then the prox-center is updated by xk+1 = pa(xk) + τkd

k where
pa(xk) is the proximal point of the cutting-planes model. Therefore, the sequence {xk} is no
longer contained in the candidate point sequence {yℓ}. We show that the proposed method
is globally convergent in the sense that there exists an accumulation point of the serious
iterations such that it is a stationary point of f . Superlinear convergence rate is established
under some additional assumptions. Some preliminary numerical results demonstrate the
good performance of our method compared with the redistributed bundle method.

The remainder of this paper is organized as follows. In Section 2, we review some
definitions and results from variational analysis. An implementable algorithm and its global
convergence are presented in Sections 3 and 4, respectively. The rate of convergence of the
algorithm is studied in Section 5. Section 6 contains some encouraging preliminary numerical
experiments and comparisons. Conclusions are presented in Section 7. The Euclidean inner
product in Rn is denoted by ⟨x, y⟩ = xT y, and the associated norm by ∥ · ∥.

2 Preliminaries

In this section, we give some definitions in variational analysis [36] and show the properties
of some objects for later use.

Firstly, we recall the definition of regular subdifferential in [36, Definition 8.3]. Consider a
function f : Rn → R := [−∞,+∞] and a point x with f(x) finite, the regular subdifferential
of f at x is defined by

∂̂f(x) :=

{
g ∈ Rn : lim inf

y→x, y ̸=x

f(y)− f(x)− ⟨g, y − x⟩
∥y − x∥

≥ 0

}
.

The subdifferential is defined by

∂f(x) := lim sup
y−→

f
x

∂̂f(y),
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where y −→
f

x implies y → x and f(y) → f(x). Furthermore, the relation ∂̂f(x) ⊆ ∂f(x)

holds by [36, Theorem 8.6].
The function f is said to be prox-bounded [36, Definition 1.23 and Exercise 1.24] if there

exists R ≥ 0 such that the function f(·) + 1
2R∥ · ∥2 is bounded below. The threshold of

prox-bounbedness is denoted by rpb (≥ 0) which ensures f(·) + 1
2R∥ · ∥2 is bounded below

for all R ≥ rpb.

Definition 2.1 ([36, Definition 1.22]). For a proper lower semicontinuous function f : Rn →
R and parameter value R > 0, the Moreau envelope function eRf(x) and proximal mapping
pRf(x) are defined by

eRf(x) := min
y∈Rn

{
f(y) +

R

2
∥y − x∥2

}
,

pRf(x) := argmin
y∈Rn

{
f(y) +

R

2
∥y − x∥2

}
.

Definition 2.2 ([12, Remark 1] [36, Definition 10.29]). The function f is lower-C2 on an
open set V if for each x̄ ∈ V there is a neighbourhood V ′ of x̄ upon which a representation
f(x) = max

t∈T
ft(x) holds, where T is a compact set and the functions ft are of class C2

on V such that ft, ∇ft, and ∇2ft depend continuously not just on x ∈ V but jointly on
(t, x) ∈ T × V .

For convenience, we introduce an equivalent definition of lower-C2 functions.

Definition 2.3 ([36, Theorem 10.33]). The function f is lower-C2 on an open set V if f
is finite valued on V , and for any point x in V there exists a threshold η̄ > 0 such that
f + η

2∥ · ∥ is convex on an open neighborhood V ′ of x for all η ≥ η̄.

We first state a basic assumption on the objective function f .

Assumption 2.4. The objective function f given in problem (1.1) is lower-C2 on an open
bounded set V . In addition, given a point x̄0 ∈ Rn and a parameter M0 ≥ 0, the level set
Γ := {x ∈ Rn : f(x) ≤ f(x̄0) +M0} is a subset of V .

The following lemma collects some useful results with respect to Assumption 2.4.

Lemma 2.5. If the objective function f satisfies Assumption 2.4, then the following state-
ments are true:

(1) The level set Γ is nonempty and compact.

(2) The function f is bounded below and prox-bounded with threshold rpb = 0.

(3) There exists a threshold η̄ > 0 such that the function f(·) + 1
2η∥ · −x∥2 is convex on

Γ, for any η ≥ η̄ and any given x ∈ Γ.

(4) The function f is Lipschitz continuous on Γ.

(5) In addition, if R > η̄, then we have the following statements:

(5.a) The proximal mapping pRf(x) is single-valued (denoted by p(x)) and Lipschitz
continuous on Γ.
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(5.b) For all x ∈ Γ, the gradient of the Moreau envelope function eRf at x is given
by G(x) = R(x− pRf(x)), and the proximal point is uniquely determined by the
relation

p(x) = pRf(x) ⇐⇒ R(x− p(x)) ∈ ∂f(p(x)). (2.1)

(5.c) x∗ ∈ Γ is a stationary point of f if x∗ = pRf(x
∗).

Proof. The proof of (1)-(4) can be found in [13, Proposition 1].
To see item (5), combining Definition 2.1 and Assumption 2.4, for any x ∈ Γ, we get

pRf(x) := argmin
{
f(y) +

1

2
R∥y − x∥2, y ∈ Rn

}
⊆

{
y ∈ Rn : f(y) +

1

2
R∥y − x∥2 ≤ f(x)

}
⊆ {y ∈ Rn : f(y) ≤ f(x)}
⊆ {y ∈ Rn : f(y) ≤ f(x̄0) +M0} = Γ,

which implies pRf(x) = argmin
y∈Γ

{f(y) + 1
2R∥y − x∥2}.

If R > η̄, we further obtain that the proximal mapping pRf(x) and the Moreau envelope
function eRf(x) can be rewritten as

pRf(x) = argmin
y∈Γ

{
f(y) +

1

2
R∥y − x∥2

}
= argmin

y∈Γ

{
f+
x (y) +

R− η̄

2
∥y − x∥2

}
= pR−η̄f

+
x (x),

eRf(x) = min
y∈Γ

{
f(y) +

1

2
R∥y − x∥2

}
= min

y∈Γ

{
f+
x (y) +

R− η̄

2
∥y − x∥2

}
= eR−η̄f

+
x (x),

where f+
x (y) := f(y) + 1

2 η̄∥y − x∥2 is a convex function on level set Γ, for any x ∈ Γ.
By [36, Theorem 2.26], we know that pR−η̄f

+
x (x) is single-valued and continuous. More-

over, eR−η̄f
+
x (x) is continuously differentiable with the gradient

∇eR−η̄f
+
x (x) = R(x− pR−η̄f

+
x (x)). (2.2)

Thus, the item (5.a) holds and p(x) = pRf(x). Furthermore, (2.2) can be rewritten as

∇eRf(x) = G(x) = R(x− pRf(x)),

and (2.1) holds by the first-order optimality conditions of min
y∈Γ

{f(y) + 1
2R∥y − x∥2}.

Taking x = x∗ and p(x) = x∗ in (2.1), we have 0 ∈ ∂f(x∗) which implies (5.c).

Remark 2.6. (a) Obviously, C2 functions (or maximum of a finite collection of C2 functions)
and any finite-valued convex function are lower-C2 by Definitions 2.2 and 2.3, respectively.
The class of lower-C2 functions is a useful subset of locally Lipschitz continuous functions
(see [36, Theorem 10.31]).

(b) Assumption 2.4 depends on a given x̄0 and a parameter M0, where x̄0 plays the role
of the first prox-center and starting point, while M0 is an unacceptable increase parame-
ter. Under this assumption, the objective function f needs not necessarily to be convex or
smooth. Some examples of such functions can be found in [13].
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(c) Suppose the threshold value η̄ is known, then given any R > η̄, we can utilize a
convex bundle method for iteratively calculating a fixed point of proximal mapping pRf by
using the relation

pRf(x) = pR−η̄

(
f +

1

2
η̄∥ · −x∥2

)
(x),

but this is an ideal situation. In section 3, the threshold value η̄ is estimated along the
iterative process by using the bundle of information.

3 Algorithm Development

In this section, we propose our method which incorporates a quasi-Newton procedure into
a proximal bundle method. The proposed method generates three sequences, namely, {yℓ},
the sequence of candidate points generated from solving quadratic programming (QP) sub-
problems; {pa(xk)}, the sequence of candidate points that satisfy some descent condition;
and {xk}, the sequence of prox-centers obtained from executing quasi-Newton procedures.

3.1 Bundle for nonconvex function

In the convex case, from (1.3) the linearization errors for f at the current prox-center xk

are given by

αk
i := f(xk)− f(yi)− ⟨gi, xk − yi⟩, i ∈ Jℓ, (3.1)

which are always nonnegative. Additionally the convexity of f gives gi ∈ ∂αk
i
f(xk). In order

to reduce storage, the bundle of information (1.2) can be rewritten as Bℓ =
⋃

i∈Jℓ
{(αk

i , g
i)}.

Whereas, for a nonconvex function f , the associated linearization errors may be negative
which impairs convergence of the bundle method. Our method manages nonconvexity by
the strategy proposed in [13] which utilizes the “locally convexification” function

hk
ℓ (·) := f(·) + 1

2
ηℓ∥ · −xk∥2,

where ηℓ is the convexification parameter. The linearization errors for hk
ℓ (·) at xk are

hk
ℓ (x

k)− [hk
ℓ (y

i) + ⟨gi + ηℓ(y
i − xk), xk − yi⟩] = αk

i +
1

2
ηℓ∥yi − xk∥2, i ∈ Jℓ. (3.2)

Our method keeps memory of the previous iterations in a bundle of information with respect
to hk

ℓ (·) {
(αk

i , g
i,△k

i , e
k
i ), i ∈ Jℓ

}
(3.3)

where αk
i := f(xk) − f(yi) − ⟨gi, xk − yi⟩, gi ∈ ∂f(yi), gk ∈ ∂f(xk), △k

i := yi − xk and
eki := 1

2∥y
i − xk∥2. A cutting-plane of hk

ℓ (·) at the current prox-center xk is associated with
a special quadruplet (0, gk, 0, 0) which can be obtained through replacing the yi in (3.3) by
xk. Let the index ik be such that

(
αk
ik
, gkik ,∆

k
ik
, ekik

)
:=

(
0, gk, 0, 0

)
.

We construct the piecewise linear model ȟk
ℓ (·) of the function hk

ℓ (·) instead of f , based
on the information in the bundle as follows

ȟk
ℓ (y) = max

i∈Jℓ

{hk
ℓ (y

i) + ⟨gi + ηℓ(y
i − xk), y − yi⟩}

= f(xk) + max
i∈Jℓ

{−(αk
i + ηℓe

k
i ) + ⟨gi + ηℓ△k

i , y − xk⟩}.
(3.4)
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The next candidate point yℓ+1 is defined by

yℓ+1 := pρℓ
ȟk
ℓ (x

k) = argmin
y∈Rn

{
ȟk
ℓ (y) +

1

2
ρℓ∥y − xk∥2

}
, (3.5)

where ρℓ is the prox-parameter of the model. Since ȟk
ℓ is a piecewise linear function, yℓ+1 is

uniquely obtained and (3.5) amounts to solving a QP subproblem. The optimality condition
of (3.5) gives

yℓ+1 = xk − 1

ρℓ

∑
i∈Jℓ

λℓ
i(g

i + ηℓ△k
i ) and

∑
i∈Jℓ

λℓ
i(g

i + ηℓ△k
i ) ∈ ∂ȟk

ℓ (y
ℓ+1), (3.6)

where λℓ is the solution to the dual problem

min
λ∈R|Jℓ|

+

1

2ρℓ

∥∥∥∥∥∑
i∈Jℓ

λi(g
i + ηℓ△k

i )

∥∥∥∥∥
2

+
∑
i∈Jℓ

λi(α
k
i + ηℓe

k
i ), s.t.

∑
i∈Jℓ

λi = 1. (3.7)

For convenience, we introduce the following notations:

Iactℓ = {i : λℓ
i > 0}, g−ℓ

ηℓ
=

∑
i∈Jℓ

λℓ
i(g

i + ηℓ△k
i ) =

∑
i∈Iact

ℓ

λℓ
i(g

i + ηℓ△k
i ) and (3.8)

(αk
−ℓ, g

−ℓ,△k
−ℓ, e

k
−ℓ) =

∑
i∈Jℓ

λℓ
i(α

k
i , g

i,△k
i , e

k
i ) =

∑
i∈Iact

ℓ

λℓ
i(α

k
i , g

i,△k
i , e

k
i ), (3.9)

where −ℓ denotes the index of the aggregate bundle element.
By complementarity, we obtain

ȟk
ℓ (y

ℓ+1) = f(xk)− (αk
i + ηℓe

k
i ) + ⟨gi + ηℓ△k

i , yℓ+1 − xk⟩, ∀ i ∈ Iactℓ . (3.10)

Furthermore, summing up instances of (3.10), and in view of (3.9), we obtain

ȟk
ℓ (y

ℓ+1) = f(xk)− (αk
−ℓ + ηℓe

k
−ℓ) + ⟨g−ℓ + ηℓ△k

−ℓ, yℓ+1 − xk⟩. (3.11)

From (3.6), (3.8) and (3.9), we obtain

ρℓ(x
k − yℓ+1) = g−ℓ

ηℓ
= g−ℓ + ηℓ △k

−ℓ . (3.12)

3.2 Convexification

Recalling that if the objective function f is convex, then its cutting-planes model is a lower
approximation of f and therefore each of its linearization error αk

i is always nonnegative
with gi ∈ ∂αk

i
f(xk). In case of a nonconvex f , a cutting-plane model of the “locally con-

vexification” function hk
ℓ is constructed and the nonnegativity of linearization errors with

respect to hk
ℓ serves as a necessary condition for the convexification technique. Each of the

linearization errors has the form αk
i +ηℓe

k
i given in (3.2), and for any i ∈ Jℓ, it can be shown

that
gi + ηℓ△k

i ∈ ∂αk
i +ηℓeki

ȟk
ℓ (x

k) whenever αk
i + ηℓe

k
i ≥ 0.

From Lemma 2.5(3) we see that if the value of ηℓ associated with hk
ℓ is greater than a certain

threshold η̄, then hk
ℓ becomes convex on the level set Γ. Our adopt the convexification

strategy proposed in [13], which iteratively updates the convexification parameter ηℓ so
that the linearization errors αk

i + ηℓe
k
i ≥ 0, for all i ∈ Jℓ, with the intention that ηℓ can

asymptotically approach the threshold η̄. A minor difference is that our lower bound for ηℓ
is set to be always nonnegative.
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Lemma 3.1. Set the lower bound

η̄ℓ := max
{
max{−αk

i /e
k
i : i ∈ Jℓ, e

k
i > 0}, 0

}
. (3.13)

Whenever ηℓ ≥ η̄ℓ, the linearization errors αk
i + ηℓe

k
i ≥ 0, for all i ∈ Jℓ.

Proof. If eki = 0 then yi = xk and by (3.1) αk
i = 0. Thus αk

i + ηℓe
k
i = 0. Now consider

the indices i ∈ Jℓ such that eki > 0. From (3.13) we see that if η̄ℓ = 0 then −αk
i /e

k
i ≤ 0

for all i ∈ Jℓ such that eki > 0 and therefore αk
i ≥ 0. It follows that for all such i,

αk
i + ηℓe

k
i ≥ αk

i + η̄ℓe
k
i = αk

i ≥ 0. Now consider the case of a positive η̄ℓ. If i is such that
eki > 0 and −αk

i /e
k
i < 0 then αk

i > 0 yielding αk
i + ηℓe

k
i ≥ αk

i > 0. For i such that eki > 0
and −αk

i /e
k
i ≥ 0 we have αk

i + ηℓe
k
i ≥ αk

i + η̄ℓe
k
i ≥ αk

i + eki
(
−αk

i /e
k
i

)
= 0.

Because the convexification process tries to build up the model ȟk
ℓ as a lower approxima-

tion of hk
ℓ within the level set Γ, it is necessary to keep the bundle points yi inside Γ. For the

candidate point yℓ+1 generated from (3.5), it may happen that f(yℓ+1) > f(xk) +M0, i.e.,
yℓ+1 may fall out of Γ. In this case, the bundle should be discarded and the algorithm should
be restarted with an updated value of the model prox-parameter ρℓ. The new value should
be greater so that the next candidate point is closer to the prox-center xk and therefore
closer to Γ. It can be shown that such restarts happen a finite number of times (cf. Lemma
4.1 below).

3.3 The quasi-Newton procedure

In this subsection, we introduce a new quasi-Newton procedure based on [4] which can
effectively improve the convergence rate of proximal bundle method. In the following, we
describe our quasi-Newton procedure in detail.

Procedure quasi-Newton(QN)

1 Input c, γ ∈ (0, 1), Rℓ, ηℓ, ρℓ, M0, m2 ∈ (0,m1), x
k and pa(xk).

2 Calculate Ga(xk) := Rℓ(x
k − pa(xk)), sk−1 := xk − xk−1, tk−1 := Ga(xk)−Ga(xk−1), and

generate Bk by the following formula

Bk :=


(1 +Rℓ)I, if k = 0,
Bk−1, if k ≥ 1 and tTk−1sk−1 ≤ 0,

Bk−1 −
Bk−1sk−1s

T
k−1Bk−1

sT
k−1

Bk−1sk−1
+

tk−1t
T
k−1

tT
k−1

sk−1
, otherwise,

(3.14)

where I is identity matrix. Calculate dk := −(B−1
k −R−1

ℓ I)Ga(xk).
3 If k = 0, let β1 := ∥Ga(x0)∥. For k ≥ 1, if

∥Ga(xk)∥ ≤ cβk and f(pa(xk) + dk) ≤ f(x̄0) +M0, (3.15)

let βk+1 := ∥Ga(xk)∥, τk := 1, xk+1 := pa(xk) + τkd
k, and terminate the procedure;

otherwise, let βk+1 := βk.
4 Compute the step size τk := max{τ | τ = γj , j = 0, 1, 2, . . . } such that

f(pa(xk) + τkd
k) ≤ f(xk)− τk

m2(ηℓ + 2ρℓ)

2R2
ℓ

∥Ga(xk)∥2 (3.16)

is satisfied. Set xk+1 := pa(xk) + τkd
k, and terminate the procedure.
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Remark 3.2. (a) pa(xk) represents the approximate proximal point of xk, which can be
obtained by choosing a “good” candidate point (see Step 4 in Algorithm 1 below).

(b) The search direction dk is reasonable. Particularly, by [26, Theorem 3.1], if f is a
smooth convex function with invertible Hessian matrix∇2f(p(xk)), then Bk ≈ ∇2eRℓ

f(xk) =
RℓI −Rℓ[∇2f(p(xk))R−1

ℓ + I]−1. Together with (I − ST )−1 = I + S(I − TS)−1T (S, T are
two matrices), we obtain B−1

k ≈ ∇2eRℓ
f(xk)−1 = ∇2f(p(xk))−1 +R−1

ℓ I. Thus,

dk ≈ −(∇2eRℓ
f(xk)−1 −R−1

ℓ I)∇eRℓ
f(xk) = −∇2f(p(xk))−1∇f(p(xk)).

Hence, dk can be viewed as an approximate Newton direction of f at p(xk).
(c) By (3.14), we can ensure Bk is symmetric positive definite, for any k ≥ 0. More

specifically, B0 is symmetric positive definite, and Bk inherits the positive definiteness of
Bk−1 for the second case in (3.14). The third case can refer to [47, Theorem 5.1.3].

(d) We obtain an equivalent update formula for xk+1. In fact

xk+1 = pa(xk)− τk(B
−1
k −R−1

ℓ I)Ga(xk)

= xk −R−1
ℓ Ga(xk)− τk(B

−1
k −R−1

ℓ I)Ga(xk)

= xk − [τkB
−1
k + (1− τk)R

−1
ℓ I]Ga(xk).

(3.17)

(f) The second inequality of (3.15) can guarantee that xk+1 falls into Γ.

3.4 The algorithm

In this subsection, we present our bundle-type quasi-Newton method in Algorithm 1. As
usual, we assume that there is an oracle that can compute the function value f(x) and one
arbitrary subgradient g(x) ∈ ∂f(x) for any point x ∈ Rn.

Remark 3.3. (1) In Step 1, λℓ and yℓ+1 can also be computed by solving (3.7) and (3.6).
(2) In view of (3.11) and (3.12), the predicted decrease δℓ+1 defined in Step 1 has an

equivalent expression

δℓ+1 = f(xk) +
1

2
ηℓ∥yℓ+1 − xk∥2 − ȟk

ℓ (y
ℓ+1)

= f(xk) +
1

2
ηℓ∥yℓ+1 − xk∥2 − [f(xk)− αk

−ℓ − ηℓe
k
−ℓ + ⟨g−ℓ + ηℓ△k

−ℓ, y
ℓ+1 − xk⟩]

= αk
−ℓ + ηℓe

k
−ℓ + ρℓ∥yℓ+1 − xk∥2 + 1

2
ηℓ∥yℓ+1 − xk∥2

=
Rℓ + ρℓ

2
∥yℓ+1 − xk∥2 + αk

−ℓ + ηℓe
k
−ℓ.

(3.21)
(3) In Step 3, the bundle reset ensures that the sequences {xk} and {yℓ} eventually lie

in the level set Γ (see Lemma 4.1 for details).
(4) In Step 7, the update rule for the convexification parameter can ensure ηℓ ≥ η̄ℓ, and

thus αk
−ℓ + ηℓe

k
−ℓ ≥ 0, which in turn implies δℓ+1 ≥ 0 by (3.21).

(5) The prox-center is updated by executing Procedure quasi-Newton and thus {xk} is
not contained in the sequence {yℓ} of candidate points.

4 Convergence Analysis

In this section, we shall establish the global convergence of Algorithm 1. Naturally, we
assume that the tolerance parameter ϵ = 0. We are looking for only stationary points for
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Algorithm 1: Bundle-type quasi-Newton method

Step 0. (Initialization) Choose a point x̄0 ∈ Rn and an unacceptable increase parameter
M0 > 0. Set the initial point x0 = x̄0, and choose a stopping tolerance ϵ ≥ 0, a
convexification growth parameter Θ > 1, parameters 0 < m2 < m1 < 1, ρ0 > 0, and
c, γ ∈ (0, 1). Initialize the iteration counter ℓ = 0, the serious step counter k = 0 with
i0 = 0, and the index set of candidate point J0 = {0}. Call the oracle to obtain f(x0) and
g0 ∈ ∂f(x0). Choose the starting parameter η0 = 0 and R0 = ρ0.

Step 1. (Solve QP) Define the piecewise linear model ȟk
ℓ based on Jℓ and (3.4).

Compute yℓ+1 and ȟk
ℓ (y

ℓ+1) by (3.5) and calculate the predicted decrease

δℓ+1 := f(xk) +
1

2
ηℓ∥yℓ+1 − xk∥2 − ȟk

ℓ (y
ℓ+1).

Step 2. (Stopping criterion) Call the oracle to obtain f(yℓ+1) and gℓ+1 ∈ ∂f(yℓ+1). If
δℓ+1 ≤ ϵ, then stop the algorithm. The approximate minimal value is min{f(xk), f(yℓ+1)}
and the approximate minimal point is the point that yields less function value.

Step 3. (Bundle reset) If f(yℓ+1) > f(xk) +M0, then the objective increase is
unacceptable. Restart the algorithm by setting

η0 := ηℓ, ρ0 = Θρℓ, R0 := η0 + ρ0, x0 := xk, ℓ := 0, k := 0, i0 := 0, J0 := {0} ,

and going to Step 1.
Step 4. (Descent test) If the descent condition

f(yℓ+1) ≤ f(xk)−m1δℓ+1 (3.18)

holds, then declare a serious step, set pa(xk) := yℓ+1, and go to Step 5. Otherwise,
declare a null step and go to Step 6.

Step 5. (Update prox-center) Compute xk+1 by executing the quasi-Newton

procedure in Section 3.3.
Step 6. (Update bundle information) Select an index set Jℓ+1 satisfying

Jℓ+1 ⊇ {ℓ+ 1} and

{
either Jℓ+1 ⊇ Iactℓ

or Jℓ+1 ⊇ {−ℓ}. (3.19)

If a null step is declared then compute αk
ℓ+1, ∆

k
ℓ+1, and ekℓ+1 by (3.3). Make sure

ik is in Jℓ+1 and go to Step 7. If a serious step is declared then call the oracle to
obtain f(xk+1) and gk+1 ∈ ∂f(xk+1). Set ik+1 = ℓ+ 1 and
(αk+1

ℓ+1 ,△
k+1
ℓ+1 , e

k+1
ℓ+1 ) := (0, 0, 0). Update the bundle according to the following rule,

for all ℓ+ 1 ̸= i ∈ Jℓ+1,
αk+1
i = αk

i + f(xk+1)− f(xk) + ⟨gi, xk − xk+1⟩,
△k+1

i = △k
i + xk − xk+1,

ek+1
i = eki + 1

2∥x
k+1 − xk∥2 − ⟨△k

i , x
k+1 − xk⟩.

Set k = k + 1 and go to Step 7.
Step 7. (Update parameter η) Update the convexification parameter η,{

ηℓ+1 = ηℓ, if η̄ℓ+1 ≤ ηℓ,
ηℓ+1 = Θη̄ℓ+1, Rℓ+1 = ρℓ + ηℓ+1, otherwise.

(3.20)

where η̄ℓ+1 is given by (3.13). Set ρℓ+1 = ρℓ, ℓ = ℓ+ 1, and return to Step 1.
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the nonconvex objective function f . In subsection 4.1, we will show that Algorithm 1 is
well-defined and that the model function employed by Algorithm 1 satisfies some crucial
conditions used in [12]. The global convergence of Algorithm 1 is established in subsection
4.2.

4.1 Well-definedness of Algorithm 1 and model properties

In order to ensure that each step of Algorithm 1 is well-defined, we need to give some
lemmas. The first lemma shows that Algorithm 1 only has finite number of bundle resets,
and the sequences {yℓ} and {xk} eventually lie in the level set Γ.

Lemma 4.1. Consider the sequences of iterations {yℓ} and {xk} generated by Algorithm
1. If the objective function f satisfies Assumption 2.4, then Algorithm 1 has only a finite
number of restarts in Step 3. Hence, eventually the sequences {yℓ} and {xk} lie in Γ, and
the model prox-parameter sequence {ρℓ} becomes constant.

Proof. By Assumption 2.4, f is locally Lipschitz continuous on the open bounded set V ⊃ Γ,
and therefore the compactness of Γ yields a constant L such that L ≥ ∥g∥ for any g ∈ ∂f(x)
with x ∈ Γ.

Algorithm 1 is initialized by x0 = x̄0 ∈ Γ. For each k > 0 the prox-center xk is obtained
from the quasi-Newton procedure in Section 3.3. In view of (3.15) and (3.16), we have
f(xk+1) ≤ f(x̄0) +M0, and therefore xk ∈ Γ for all k.

Our sequence
{
yℓ
}
corresponds to the sequence {xn} in [13]. We apply [13, Lemma 1]

to get that there can only be a finite number of restarts and after the last restart, we will
always have f(yℓ+1) ≤ f(xk) +M0 ≤ f(x̄0) +M0 and therefore yℓ+1 ∈ Γ. As the value of
ρℓ will not be updated it will remain constant.

If (3.18) holds, Algorithm 1 proceeds to Step 5. The following lemma shows that the
step size τk is well-defined at each iteration of Algorithm 1.

Lemma 4.2. For any k, if (3.18) holds and Step 5 is executed, then

f(pa(xk)) ≤ f(xk)− m2(ηℓ + 2ρℓ)

2R2
ℓ

∥Ga(xk)∥2 , (4.1)

where m2 is a real number in (0,m1). Moreover, there exists τ̄ ∈ (0, 1] such that

f(pa(xk) + τdk) ≤ f(xk)− τ
m2(ηℓ + 2ρℓ)

2R2
ℓ

∥Ga(xk)∥2, for all τ ∈ (0, τ̄ ]. (4.2)

Proof. If the descent condition (3.18) holds and Step 5 is executed, then pa(xk) satisfies the
inequality

f(pa(xk)) ≤ f(xk)−m1[f(x
k) +

1

2
ηℓ∥pa(xk)− xk∥2 − ȟk

ℓ (p
a(xk))].

By (3.11) and (3.12), we obtain

f(xk)− ȟk
ℓ (p

a(xk)) = f(xk)− [f(xk)− (αk
−ℓ + ηℓd

k
−ℓ) + ⟨g−ℓ + ηℓ△k

ℓ , p
a(xk)− xk⟩]

≥ ρℓ∥pa(xk)− xk∥2.
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Combining the two inequalities mentioned above, in view of the fact that 0 < m2 < m1 < 1,
we have

f(pa(xk)) ≤ f(xk)−m1

[
f(xk) +

1

2
ηℓ∥pa(xk)− xk∥2 − ȟk

ℓ (p
a(xk))

]
≤ f(xk)−m1[

1

2
ηℓ∥pa(xk)− xk∥2 + ρℓ∥pa(xk)− xk∥2]

= f(xk)−m1
ηℓ + 2ρℓ

2
∥pa(xk)− xk∥2

= f(xk)−m1
ηℓ + 2ρℓ
2R2

ℓ

∥Ga(xk)∥2

< f(xk)− m2(ηℓ + 2ρℓ)

2R2
ℓ

∥Ga(xk)∥2.

(4.3)

If Ga(xk) = 0, then dk = 0. Hence, for any τ > 0, (4.2) holds.
If Ga(xk) ̸= 0, (4.3) and the continuity of f indicate that there exists τ̄ ∈ (0, 1] such that

for any τ ∈ (0, τ̄ ]

f(pa(xk) + τdk) ≤ f(xk)− m2(ηℓ + 2ρℓ)

2R2
ℓ

∥Ga(xk)∥2

≤ f(xk)− τ
m2(ηℓ + 2ρℓ)

2R2
ℓ

∥Ga(xk)∥2.

In the following lemma, we state some properties about the model function ȟk
ℓ and

Algorithm 1. These properties are crucial for the convergence of our method and the proofs
are similar to those of [13, Lemma 2] and we omit its proof here.

Lemma 4.3. Consider the family of the model functions ȟk
ℓ given by (3.4), and the sequences

of iterates {yℓ} and {xk} generated by Algorithm 1. Then the following statements are true:

(1) ȟk
ℓ is a convex function.

(2) ȟk
ℓ (x

k) ≤ f(xk).

(3) For any prox-center xk, if yℓ+1 is a null step and ηℓ = ηℓ+1, then

ȟk
ℓ+1(w) ≥ ȟk

ℓ (y
ℓ+1) + ρℓ⟨xk − yℓ+1, w − yℓ+1⟩ ∀w ∈ Rn.

(4) For any w ∈ Rn, we have

ȟk
ℓ (w) ≥ f(yℓ) + ηℓe

k
ℓ + ⟨gℓ + ηℓ△k

ℓ , w − yℓ⟩, where gℓ ∈ ∂f(yℓ).

In Algorithm 1, the selection of index set Jℓ+1 given by (3.19) and the update rule
(3.20) of ηℓ in Step 7 ensure Lemma 4.3 (1), (2) and (4) hold. By contrast, Lemma 4.3 (3)
holds only after the convexification parameter ηℓ eventually stabilizes, which we state in the
following lemma.

Lemma 4.4. There exist an index ℓc > 0 and a constant η̂ ≥ 0 such that

ηℓ ≡ η̂, for all ℓ ≥ ℓc.

In addition, if η̂ ≥ η̄, where η̄ is given in Lemma 2.5(3), then

ȟk
ℓ (w) ≤ f(w) +

η̂

2
∥w − xk∥2, for all ℓ ≥ ℓc and w ∈ Γ.
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Proof. See [13, Lemma 3].

Recalling that Lemma 4.1 and Lemma 4.4, we know that the convexification parameter
sequence {ηℓ} and the prox-parameter sequence {ρℓ} stabilize eventually. There exists an
index ℓ′′ (not less than ℓc) such that

ηℓ ≡ η̂, ρℓ ≡ ρ̂ and Rℓ ≡ R̂ := η̂ + ρ̂, for all ℓ ≥ ℓ′′.

4.2 Global convergence of Algorithm 1

In what follows, we will study the global convergence of our algorithm. We first set the
tolerance parameter ϵ = 0 and show the effectiveness of the stopping criterion given in Step
2. The following lemma follows from [13, page 2455].

Lemma 4.5. If δℓ+1 = 0 and ηℓ ≥ η̄ then xk is a stationary point of f .

Let η̂ and ρ̂ be the stabilized values for the convexification parameter sequence {ηℓ} and
the model prox-parameter sequence {ρℓ}, respectively, as in Lemma 4.1 and Lemma 4.4.
Denote

R̂ = η̂ + ρ̂ .

Just like previous bundle methods, the convergence analysis of our method includes two
different asymptotic cases, depending on whether the Algorithm 1 produces a finite or an
infinite number of serious steps. In the following theorem, we will prove that the sequence
generated by Algorithm 1 converges to the stationary point for function f when the stabilized
value η̂ of the convexification parameter sequence is large enough. In the proof of the next
theorem, we will invoke the result in [12, Theorem 2], of which a careful examination reveals
that the result also holds for any R > 0 such that R

(
x0 − p

)
∈ ∂f(p) ⇒ p = pRf(x

0). This
together with Lemma 2.5(5.b) implies that the conclusion in [12, Theorem 2] holds if R > η̄.

For convenience, we introduce some notations. Let the minimal value of f be f̄ . Let
N := {0, 1, 2, 3, . . . } and

K0 := {0} ∪ {k ∈ N : Line 4 of Procedure quasi-Newton is not excuted at iteration k}.

In view of Lemma 4.4, we denote

ȟk
η̂(·) := ȟk

ℓ (·), for ℓ sufficiently large such that ηℓ ≡ η̂ .

Given an infinite set K ⊆ N , we denote by xk K−→ x∗ that {xk} converges to x∗ with k ∈ K.

Theorem 4.6. Let the objective function f satisfy Assumption 2.4. Suppose η̂ ≥ η̄ and
{∥B−1

k ∥} is bounded, then one of the following two conclusions holds.

(1) There is a last serious point xk̄, followed by infinitely many null steps. Then the
sequence {yℓ} converges to xk̄, and xk̄ is a stationary point for f .

(2) There is an infinite number of serious steps. Then there exist an infinite subset K ′ ⊆ N

and a point x∗ such that x∗ is a stationary point of f with xk K′

−−→ x∗ and ∥Ga(xk)∥ K′

−−→
0.



380 C. TANG, H. CHEN, J. JIAN AND S. LIU

Proof. (1) Suppose after the last serious point xk̄, an infinite sequence {yℓ} is generated by
Algorithm 1. We apply [12, Theorem 2] to obtain that, as ℓ → ∞, the entire sequence {yℓ}
converges to the proximal point p = pR̂f(x

k̄) and

lim
ℓ→∞

ȟk̄
η̂(y

ℓ+1) = f(p) +
1

2
η̂∥p− xk̄∥2.

Thus, as ℓ → ∞

δℓ+1 = f(xk̄) +
1

2
η̂∥yℓ+1 − xk̄∥2 − ȟk̄

η̂(y
ℓ+1)

→ f(xk̄) +
1

2
η̂∥p− xk̄∥2 − f(p)− 1

2
η̂∥p− x∗∥2

= f(xk̄)− f(p).

Since the descent condition (3.18) dose not hold, we know that

f(yℓ+1) > f(xk̄)−m1δℓ+1,

which implies that f(xk̄) ≤ f(p) by taking the limit as ℓ → ∞.
Furthermore, by the definition of proximal mapping given in Definition 2.1, p = pR̂f(x

k̄)
implies

f(p) +
1

2
R̂∥p− xk̄∥2 ≤ f(xk̄).

That is, p = xk̄ = pR̂f(x
k̄), so xk̄ is a stationary point for f by Lemma 2.5 (5.c).

(2) We denote by ℓk +1 the index of an iteration when a serious step is declared and the
current prox-center is xk, i.e., yℓk+1 = pa(xk).

By Lemma 4.1, the infinite sequences {pa(xk)} and {xk} eventually lie in Γ. Since Γ is
a compact set, both {pa(xk)} and {xk} have at least one accumulation point. Let x∗ be an
arbitrary accumulation point of {xk}. Without loss of generality, suppose the infinite subset
K ′ ⊆ N and two vectors p∗ and x∗ are such that

pa(xk)
K′

−−→ p∗ ∈ Γ, xk K′

−−→ x∗ ∈ Γ . (4.4)

As {ηℓ} and {ρℓ} are stabilized at η̂ and ρ̂, respectively, due to (3.20), we have {Rℓ} stabilized
at R̂. From Line 2 of Procedure quasi-Newton , we see Ga(xk) = Rℓ(x

k − pa(xk)) and thus

Ga(xk)
K′

−−→ R̂ (x∗ − p∗) . (4.5)

First, suppose the set K0 is finite. Next, we show that x∗ = p∗. Because K0 is finite,
eventually Line 4 in Procedure quasi-Newton is always executed. There exists an index
k̂ ∈ N such that

f(xk+1) = f(pa(xk) + τkd
k) ≤ f(xk)− τk

m2(η̂ + 2ρ̂)

2R̂2
∥Ga(xk)∥2 , for all k > k̂ . (4.6)

We know that f is bounded below by Lemma 2.5. Then summing up the instances of (4.6)
and taking the limit give

m2(η̂ + 2ρ̂)

2R̂2

∞∑
k=k̂+1

τk∥Ga(xk)∥2 ≤ f(xk̂+1)− f̄ < ∞,
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which implies
lim
k→∞

τk∥Ga(xk)∥2 = 0. (4.7)

We claim that x∗ = p∗. Suppose this is not the case. We proceed to find a contradiction.
Because x∗ ̸= p∗, we have from (4.5) that limK′∋k→∞ ∥Ga(xk)∥2 > 0. In view of (4.7) we
get

lim
K′∋k→∞

τk = 0 . (4.8)

By the definition of step size τk, we know that

f(pa(xk) +
τk
γ
dk) > f(xk)− m2(η̂ + 2ρ̂)

2R̂2

τk
γ
∥Ga(xk)∥2 , for all k > k̂ . (4.9)

Since {∥B−1
k ∥} is bounded, it follows from the definition of dk in Line 2 of Procedure quasi-

Newton and (4.5) that
{
dk

}
k∈K′ is bounded. Taking the limit of (4.9), in view of the

continuity of f , (4.4), (4.8), the boundedness of dk, and (4.7), we obtain f(p∗) ≥ f(x∗). On
the other hand, taking the limit of (4.1) and combining (4.4) and (4.5) we obtain

f(p∗) ≤ f(x∗)− m1(η̂ + 2ρ̂)

2
∥x∗ − p∗∥2.

It must be the case that x∗ = p∗. However, this contradicts the presumption that x∗ ̸= p∗.
Consequently the presumption is false and we have x∗ = p∗.

Second, we consider the case when K0 is infinite. In this case, Line 3 of Procedure quasi-
Newton is executed an infinite number of times. Let K0 consist of k0 = 0 < k1 < k2 < · · · .
By the construction of βk, we have

∥Ga(xki)∥ ≤ c∥Ga(xki−1)∥ ≤ ci∥Ga(x0)∥, i = 1, 2, . . . .

So we get
lim
i→∞

∥Ga(xki)∥ ≤ lim
i→∞

ci∥Ga(x0)∥ = 0,

which implies that
lim

K0∋k→∞
∥Ga(xk)∥ = 0. (4.10)

Since the infinite sequences {pa(xk)} and {xk} lie eventually in Γ which is a compact set,
there exists an infinite set K ′′ ⊆ K0 ⊆ N and two vectors p̂∗ and x̂∗ such that

pa(xk)
K′′

−−→ p̂∗ ∈ Γ and xk K′′

−−→ x̂∗ ∈ Γ.

Therefore, the definition of Ga(xk) and (4.10) reveal x̂∗ = p̂∗.
In summary, whether K0 is finite or infinite, we can find a subsequence of

{
xk

}
such

that the associated accumulation point equals that of
{
pa(xk)

}
. In the rest of the proof, for

simplicity, we will unify the notations in the two cases as (4.4) with p∗ = x∗.
Recall that in each serious step, pa(xk) satisfies the descent condition,

f(pa(xk)) ≤ f(xk)−m1δℓk+1.

Taking the limit as k → ∞, we get that

δℓk+1
K′

−−→ 0,
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which further implies that αk
−ℓk

+ η̂ek−ℓk
must converge to 0 due to an equivalent expression

of δℓk+1 in (3.21).
Combining (3.11) and (3.12) and letting ℓ = −ℓk, we obtain

ȟk
η̂(p

a(xk)) = f(xk)− (αk
−ℓk

+ η̂ek−ℓk
)− ρ̂∥pa(xk)− xk∥2.

Taking the limit as k → ∞ gives

lim
K′∋k→∞

ȟk
η̂(p

a(xk)) = f(x∗).

By Definition 2.1, pa(xk) = pρ̂ȟ
k
η̂(x

k) implies that for any w ∈ Γ,

ȟk
η̂(p

a(xk)) +
1

2
ρ̂∥pa(xk)− xk∥2 ≤ ȟk

η̂(w) +
1

2
ρ̂∥w − xk∥2 ≤ f(w) +

1

2
R̂∥w − xk∥2,

where the second inequality follows from Lemma 4.4 and the fact that η̂ ≥ η̄. Taking the
limit as K ′ ∋ k → ∞, we have that

f(x∗) ≤ f(w) +
1

2
R̂∥w − x∗∥2, for any w ∈ Γ.

We also know that x∗ ∈ Γ and thus

f(x∗) ≤ f(x0) +M0 < f(w) ≤ f(w) +
1

2
R̂∥w − x∗∥2, for any w /∈ Γ.

Hence,

f(x∗) ≤ f(w) +
1

2
R̂∥w − x∗∥2, for any w ∈ Rn.

That is, x∗ = pR̂f(x
∗), and hence x∗ is a stationary point for f by Lemma 2.5 (5.c).

5 Superlinear Convergence Rate

In this section, we establish the superlinear convergence rate of Algorithm 1. We first present
some definitions and results about strong monotonicity and strong convexity from [36].

Definition 5.1 ([36, Definition 12.53]). A mapping T : Rn → Rn is strongly monotone if
there exists σ > 0 such that T − σI is monotone, or equivalently:

⟨vx − vy, x− y⟩ ≥ σ∥x− y∥2,

where vx ∈ T (x) and vy ∈ T (y).

Definition 5.2 ([36, Definition 12.58]). A proper function f : Rn → R is strongly convex if
there is a constant σ > 0 such that

f((1−λ)x+λy) ≤ (1−λ)f(x)+λf(y)− 1

2
σλ(1−λ)∥x− y∥2, for any x, y when λ ∈ (0, 1).

Lemma 5.3 ([36, Exercise 12.59]). For a function f : Rn → R and a constant σ > 0, the
following properties are equivalent:

(1) ∂f is strongly monotone with constant σ;

(2) f is strongly convex with constant σ;
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(3) f − 1
2σ| · |

2 is convex.

After ηℓ and ρℓ stabilize eventually, we define p(·) := pR̂f(·),

G(x) := R̂(x− p(x)) and ζk := (1−m1)

(
f(xk) +

η̂

2
∥pa(xk)− xk∥2 − ȟk

η̂(p
a(xk))

)
. (5.1)

The following lemma gives the errors arising from the model function ȟk
ℓ (·) and the approx-

imate proximal point pa(xk).

Lemma 5.4. For each k ≥ 0, let

ea
R̂
f(xk) := f(pa(xk)) +

R̂

2
∥pa(xk)− xk∥2.

If all the parameters stabilize and η̂ ≥ η̄, then the following statements are true for k
sufficiently large

eR̂f(x
k) ≤ ea

R̂
f(xk) ≤ eR̂f(x

k) + ζk, ∥pa(xk)− p(xk)∥ ≤
√
2ζk/ρ̂,

∥Ga(xk)−G(xk)∥ ≤ R̂
√

2ζk/ρ̂ and ζk ≤ L(1−m1)

m1R̂
∥Ga(xk)∥. (5.2)

Proof. It is easy to see from its definition that eR̂f(x
k) ≤ ea

R̂
f(xk). In each serious step, we

know (3.18) holds and

ea
R̂
f(xk) = f(pa(xk)) + R̂∥pa(xk)− xk∥2/2

≤ f(xk)−m1

(
f(xk) + η̂∥pa(xk)− xk∥2/2− ȟk

η̂(p
a(xk))

)
+ R̂∥pa(xk)− xk∥2/2

= (1−m1)

(
f(xk) +

η̂

2
∥pa(xk)− xk∥2 − ȟk

η̂(p
a(xk))

)
+ ȟk

η̂(p
a(xk)) +

ρ̂

2
∥pa(xk)− xk∥2

= ζk + ȟk
η̂(p

a(xk)) +
ρ̂

2
∥pa(xk)− xk∥2.

By Lemma 4.1, eventually
{
xk

}
lies in Γ. As a proximal point p(xk) satisfies f(p(xk)) ≤

f(xk) and thus p(xk) ∈ Γ. By the fact pa(xk) = pρ̂ȟ
k
η̂(x

k) and Lemma 4.4, we know that

ȟk
η̂(p

a(xk)) +
ρ̂

2
∥pa(xk)− xk∥2 ≤ ȟk

η̂(p(x
k)) +

ρ̂

2
∥p(xk)− xk∥2

≤ f(p(xk)) +
η̂

2
∥p(xk)− xk∥2 + ρ̂

2
∥p(xk)− xk∥2

= eR̂f(x
k).

Consequently, ea
R̂
f(xk) ≤ eR̂f(x

k) + ζk.

By Lemma 2.5 (3), if η̂ ≥ η̄, then f(y) + η̂∥y − xk∥2/2 is convex on the level set Γ.
Therefore, Lemma 5.3 implies θ(y) := f(y)+ η̂∥y−xk∥2/2+ ρ̂∥y−xk∥2/2 is strongly convex
on the level set Γ with constant ρ̂. By [35, Proposition 6], we obtain

θ(y) ≥ θ(z) + ⟨ξ, y − z⟩+ ρ̂∥y − z∥2/2, for any y, z ∈ Γ, (5.3)



384 C. TANG, H. CHEN, J. JIAN AND S. LIU

where ξ ∈ ∂θ(z). Let us put y = pa(xk) and z = p(xk) in (5.3). We have

θ(y) = θ(pa(xk)) = ea
R̂
f(xk) and θ(z) = θ(p(xk)) = eR̂f(x

k).

Moreover, since p(xk) minimizes θ, let ξ = 0 ∈ ∂θ(p(xk)). So it follows from (5.3) that

ea
R̂
f(xk) ≥ eR̂f(x

k) + ρ̂∥pa(xk)− p(xk)∥2/2.

Therefore,
∥pa(xk)− p(xk)∥ ≤

√
2ζk/ρ̂.

Further,

∥Ga(xk)−G(xk)∥ = ∥R̂(xk − pa(xk))− R̂(xk − p(xk))∥
= R̂∥p(xk)− pa(xk)∥

≤ R̂
√
2ζk/ρ̂.

Finally, recalling the descent condition (3.18) and the definition of ζk gives

f(pa(xk)) ≤ f(xk)− m1

1−m1
ζk,

which together with Lemma 2.5 (4) implies that

ζk ≤ 1−m1

m1
(f(xk)− f(pa(xk))) ≤ 1−m1

m1
L∥xk − pa(xk)∥ =

(1−m1)L

m1R̂
∥Ga(xk)∥.

In the following theorem, we will establish the superlinear convergence of Algorithm 1.
In [4, Theorem 3], a proximal quasi-Newton method for minimizing convex functions was
shown to have superlinear convergence. Here, without assuming convexity of the objective
function, we are able to show the superlinear convergence speed with the same assumptions
as in [4, Theorem 3] except that we require

{
xk

}
converges to x∗. Let η̂ and ρ̂ be the

stabilized values for {ηℓ} and {ρℓ} used in Algorithm 1 so that R̂ = η̂ + ρ̂.

Theorem 5.5. Let f satisfy Assumption 2.4 and x∗ be a stationary point of f . Suppose
that there exists σ1 > 0 such that η̂ = η̄ + σ1, and the function G(x) defined in (5.1) is
semismooth at x∗. Suppose there exists a lower bound σ4 such that ∥B−1

k ∥ ≤ σ4 for all
k ∈ N . Suppose xk → x∗,

ζk = o(∥Ga(xk)∥2) and lim
k→∞

dist(Bk, ∂G(xk)) = 0.

Then there exists an integer k̄ > 0 such that for any k ≥ k̄, τk ≡ 1 and the sequence {xk}
converges to x∗ superlinearly.

Proof. We first show that there exists an integer k̄ > 0 such that τk ≡ 1 for any k ≥ k̄.
Because η̂ = η̄ + σ1, it follows from Lemma 2.5(3) and Lemma 5.3 that for any x ∈ Γ, the
function defined as hx

η̂(·) := f(·) + 1
2 η̂∥ · −x∥2 is strongly convex on Γ with modulus σ1. For

each x ∈ Γ, the definition of the Moreau envelope function gives

eρ̂h
x
η̂(x) = min

y∈Rn

{
f(y) +

1

2
η̂∥y − x∥2 + 1

2
ρ̂∥y − x∥2

}
= eR̂f(x).
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By Theorem 2.2 in [26], the strong convexity of hx
η̂(x) with modulus σ1 implies the strong

convexity of eρ̂h
x
η̂(x) with modulus σ0 ≥ σ1ρ̂

σ1+ρ̂ . By Definition 5.1 and Lemma 5.3, we obtain

⟨G(x)−G(y), x− y⟩ ≥ σ1ρ̂

σ1 + ρ̂
∥x− y∥2, for all x, y ∈ Γ,

where G(x) = ∇eR̂f(x) = ∇eρ̂h
x
η̂(x) and G(y) = ∇eR̂f(y) = eρ̂h

x
η̂(x). Taking x = xk and

y = x∗, applying Lemma 2.5(5.c) we get G(x∗) = 0 and

∥xk − x∗∥ ≤ σ1 + ρ̂

σ1ρ̂
∥G(xk)∥. (5.4)

By lim
k→∞

dist(Bk, ∂G(xk)) = 0 and ∥B−1
k ∥ ≤ σ4, for any σ3 > 0 there exists k1 > 0 such

that for all k ≥ k1,

∥I −B−1
k Vk∥ ≤ ∥B−1

k ∥∥Bk − Vk∥ ≤ σ3, for some Vk ∈ ∂G(xk). (5.5)

The condition ζk = o(∥Ga(xk)∥2) and (5.2) imply∣∣∣∣ ∥G(xk)∥
∥Ga(xk)∥

− 1

∣∣∣∣ ≤ √
2µkζk

Ga(xk)

and therefore ζk = o(∥G(xk)∥2). It then follows that there exist k2 > 0 and σ2 ≥ 0 such
that

max

{
ζk

∥Ga(xk)∥2
,

ζk
∥G(xk)∥2

}
≤ ρ̂

2R̂
σ2
2 , for all k > k2,

i.e.,

ζk ≤ ρ̂

2R̂2
σ2
2 min{∥G(xk)∥2, ∥Ga(xk)∥2} . (5.6)

For any k sufficiently large, apply Lemma 5.4, (5.6), and (5.4) to see

∥xk − x∗∥ ≤ σ1 + ρ̂

σ1ρ̂

(
∥Ga(xk)∥+ ∥Ga(xk)−G(xk)∥

)
≤ σ1 + ρ̂

σ1ρ̂
(∥Ga(xk)∥+ R̂

√
2ζk/ρ̂)

≤ σ1 + ρ̂

σ1ρ̂
(∥Ga(xk)∥+ σ2∥Ga(xk)∥)

=
σ1 + ρ̂

σ1ρ̂
(1 + σ2)∥Ga(xk)∥.

(5.7)

For k sufficiently large, the definition of xk+1 and the stabilization of Rℓ imply

xk+1 − xk = pa(xk)− xk + τkd
k

= pa(xk)− xk − τkR̂
(
Bk

−1 − R̂−1I
) (

xk − pa(xk)
)

=
[
I + τkR̂

(
Bk

−1 − R̂−1I
)] (

pa(xk)− xk
)
.

(5.8)

Because xk → x∗ we have xk+1−xk → 0. In view of (5.8) and the boundedness of {τk} and{
Bk

−1
}
we get pa(xk) − xk → 0. Because xk → x∗ we have pa(xk) → x∗. The definition
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of Ga(xk) and the stabilization of Rℓ then give ∥Ga(xk)∥ → 0, and hence the operation in
Line 3 of Procedure quasi-Newton implies the existence of an index k̄ sufficiently large such
that k̄ ∈ K0, giving τk̄ = 1.

By [15, Theorem XV.4.1.4] the convexity of hx
η̂(·) on Γ yields the Lipschitz continuity of

∇eρ̂h
x
η̂(x) = G(x) on Γ with modulus ρ̂. From Lemma 5.4, (5.6), and the fact that G(x∗) = 0

we can get

∥Ga(xk̄+1)∥ ≤ ∥Ga(xk̄+1)−G(xk̄+1)∥+ ∥G(xk̄+1)∥

≤ R̂
√

2ζk̄+1/ρ̂+ ∥G(xk̄+1)∥

≤ (1 + σ2)∥G(xk̄+1)∥

≤ (1 + σ2)∥G(xk̄+1)−G(x∗)∥

≤ (1 + σ2)ρ̂∥xk̄+1 − x∗∥,

(5.9)

where the last inequality follows from the Lipschitz continuity of G(x) on Γ. The reasoning
in (5.7) and (5.9) yields

∥Ga(xk̄)−G(xk̄)∥ ≤ σ2ρ̂∥xk̄ − x∗∥ . (5.10)

From the definition of G(x) and Lemma 2.5(5.b) we see that G(x) is single-valued on Γ.
Recalling the definition of a semismooth function [34, Page 3], the assumption that G(x) is
semismooth at x∗ entails the condition that x∗ ∈ int Γ. Therefore, there exists an open ball
B(x∗, r) ⊆ Γ. As G(x) is semismooth at x∗, applying Theorem 2.3 in [34] gives

∥G(x∗ + h)−G(x∗)− V h∥ = o(∥h∥) with V ∈ ∂G(x∗ + h).

The indices k1 and k2 can be chosen sufficiently big such that the parameters σ2 and σ3

are sufficiently small and

cσ1

(σ1 + ρ̂)(1 + σ2)2
− σ3 − σ4σ2ρ̂ > 0 . (5.11)

Consequently, when x is sufficiently close to x∗,

σ4∥G(x)−G(x∗)−V (x−x∗)∥≤
(

cσ1

(σ1 + ρ̂)(1 + σ2)2
− σ3 − σ4σ2ρ̂

)
∥x−x∗∥ where V ∈ ∂G(x).

(5.12)
In view of the fact τk̄ = 1, (3.17), (5.10), (5.12), (5.11), and (5.7), we have

∥xk̄+1 − x∗∥ = ∥xk̄ −B−1
k̄

Ga(xk̄)− x∗∥

= ∥(xk̄ − x∗)−B−1
k̄

Vk̄(x
k̄ − x∗)−B−1

k̄
(Ga(xk̄)−G(x∗)− Vk̄(x

k̄ − x∗))∥

≤ ∥I −B−1
k̄

Vk̄∥∥xk̄ − x∗∥+ ∥B−1
k̄

∥∥Ga(xk̄)−G(x∗)− Vk̄(x
k̄ − x∗)∥

≤ σ3∥xk̄ − x∗∥+ σ4(∥Ga(xk̄)−G(xk̄)∥+ ∥G(xk̄)−G(x∗)− Vk̄(x
k̄ − x∗)∥)

≤ (σ3 + σ4σ2L)∥xk̄ − x∗∥+ σ4∥G(xk̄)−G(x∗)− Vk̄(x
k̄ − x∗)∥

≤ cσ1

(σ1 + ρ̂)(1 + σ2)2
∥xk̄ − x∗∥

≤ c

(1 + σ2)ρ̂
∥Ga(xk̄)∥ .

(5.13)
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Combining (5.9) and (5.13) reveals

∥Ga(xk̄+1)∥ ≤ c∥Ga(xk̄)∥. (5.14)

The proven conditions pa(xk) → x∗ and Ga(xk) → 0 together with the definition of dk

imply dk → 0. Consequently, the continuity of f gives f
(
pa(xk) + dk

)
→ f(x∗). The fact

that x∗ ∈ int Γ gives f(x∗) < f(x̄0)+M0 and therefore we have f
(
pa(xk) + dk

)
≤ f

(
x̄0

)
+

M0 for k sufficiently large. Together with (5.14) and (3.15), we see that the sufficiently large
k̄ satisfies k̄ + 1 ∈ K0. This implies that for all k ≥ k̄, we have k ∈ K0 and τk ≡ 1.

In what follows, we show that the sequence {xk} converges to x∗ superlinearly. By
Lemma 5.4 and ζk = o(∥Ga(xk)∥2), we have

∥Ga(xk)−G(xk)∥ ≤ R̂
√

2ζk/ρ̂ = o(∥G(xk)∥) = o(∥xk − x∗∥), (5.15)

where the last equality follows from the Lipschitz continuity of G(x). We know that

∥G(xk)−G(x∗)− Vk(x
k − x∗)∥ = o(∥xk − x∗∥) with Vk ∈ ∂G(xk) (5.16)

by the semismoothness of G(x) at stationary point x∗.
For all k ≥ k̄, in view of the fact τk ≡ 1 and (3.17), we obtain

∥xk+1 − x∗∥ = ∥xk −B−1
k Ga(xk)− x∗∥

= ∥(xk − x∗)−B−1
k Vk(x

k − x∗)−B−1
k (Ga(xk)−G(x∗)− Vk(x

k − x∗))∥
≤ ∥I −B−1

k Vk∥∥xk − x∗∥+ ∥B−1
k ∥∥Ga(xk)−G(xk)∥

+ ∥B−1
k ∥∥G(xk)−G(x∗)− Vk(x

k − x∗)∥,

where Vk ∈ ∂G(xk) is such that ∥Bk − Vk∥ = dist(Bk, ∂G(xk)). Combining (5.5), (5.15),
and (5.16) we get

∥xk+1 − x∗∥ = o(∥xk − x∗∥).

6 Numerical Experiments

In this section, we evaluate the numerical performances of Algorithm 1. The algorithm
was implemented in MATLAB (R2017a) with the QP (3.5) solved by the famous software
MOSEK. We tested a set of 20 problems listed in Table 1. Problems 1 to 8 are from [28],
and the remainder are from [18, Section 2] with three sets of dimensions. We used the same
initial points of the problems as specified in those references.

We manage the size of the bundle via the following strategy. If the number of cutting-
planes stored in the bundle is greater than the number N := min{10n, 50}, then we delete
from Jℓ all the indices i such that λℓ

i = 0.
In our tests, the parameters were selected as m1 = 0.15, m2 = 0.05, c = 0.99, γ = 0.4,

ε = 1E-5; the unacceptable increase parameter M0 = 2000 for Wong1 and M0 = 10 for other
all test problems; the convexification growth parameter Θ = 3 for Wong1 and Θ = 2 for other
all test problems; the model prox-parameter ρ0 = 3 for EVD52, ρ0 = 0.1 for Active Faces

and Brown 2 and for other test problems ρ0 was set according to the following formula,

ρ0 =

{
100, if |f(x0)| <= 2E-13,

∥g0∥
0.2|f(x0)| , otherwise.
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Table 1: Tested nonconvex problems
No. Problem Dimension Minimal Value
1 Crescent 2 0
2 Colville 1 5 -32.348679
3 HS78 5 -2.9197004
4 El-Attar 6 0.5598131
5 Gill 10 9.7857721
6 Steiner 2 12 16.703838
7 EVD52 3 3.5997193
8 Wong1 7 680.63006
9 Active Faces 2 0
10 Brown 2 2 0
11 Chained Crescent I 2 0
12 Chained Crescent II 2 0
13 Active Faces 10 0
14 Brown 2 10 0
15 Chained Crescent I 10 0
16 Chained Crescent II 10 0
17 Active Faces 100 0
18 Brown 2 100 0
19 Chained Crescent I 100 0
20 Chained Crescent II 100 0

To evaluate the efficiency of Algorithm 1, we also implemented a version of the algorithm
without the quasi-Newton procedure, denoted by NoQN. The only difference is that this
version skips the Step 6, i.e., if a serious step is declared then set xk+1 = yℓ+1 and go
directly to Step 7. All the other settings including bundle compression and parameters
were the same as in the test for Algorithm 1. Essentially, the algorithm NoQN is just the
redistributed bundle method developed in [13].

Table 2: Numerical results

No.
Alg. 1 NoQN [13]

nf f∗ CPU nf f∗ CPU
1 53 8.03E-07 0.903 29 0.914173 2.641
2 102 -32.3487 0.410 135 -32.3486 1.024
3 193 -2.91968 0.676 27 -2.67144 0.256
4 172 0.559815 0.603 73 0.858586 0.571
5 402 9.786009 1.156 669 10.10416 5.107
6 288 16.70384 0.652 80 16.70385 0.676
7 67 3.599724 0.401 163 3.599921 1.668
8 215 680.6301 0.742 187 680.6305 1.583
9 12 1.24E-08 0.168 9 1.32E-08 0.082
10 17 9.22E-07 0.070 13 2.88E-08 0.076
11 53 8.03E-07 0.128 29 0.914173 0.158
12 53 8.03E-07 0.121 29 0.914173 0.176
13 27 0.003193 0.115 6 6.53E-07 0.033
14 66 3.88E-06 0.125 22 4.21E-06 0.122
15 220 7.89E-07 0.308 10 0.635473 0.054
16 225 7.80E-06 0.532 10 0.646517 0.055
17 71 0.003951 0.655 51 1.05E-05 0.385
18 71 2.48E-01 0.400 36 5.30E-06 0.247
19 242 3.96E-08 0.668 40 6.751946 0.258
20 534 7.67E-06 3.884 24 0.321092 0.147

The numerical results are listed in Table 2 where the nf, f∗, and CPU in the column
header respectively refer to the number of function evaluations, the best value returned by
the algorithm, and the CPU time in seconds consumed by the algorithm. A comparison
of the results of Algorithm 1 and those of the algorithm NoQN suggests that Algorithm 1,
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Table 3: Results for Algorithm NoQN run to the same nf with Alg. 1

No.
NoQN [13] Alg. 1
f∗ CPU f∗ CPU

1 9.1414E-01 0.523 8.0272E-07 0.903
2 -3.2337E+01 0.635 -3.2349E+01 0.410
3 -2.9000E+00 1.137 -2.9197E+00 0.676
4 5.5981E-01 1.100 5.5982E-01 0.603
5 1.0125E+01 2.709 9.7860E+00 1.156
6 1.6703838E+01 2.138 1.6703841E+01 0.652
7 3.6323E+00 0.448 3.5997E+00 0.401
8 6.806302E+02 1.519 6.806301E+02 0.742
9 1.3234E-08 0.064 1.2448E-08 0.168
10 1.1824E-09 0.086 9.2185E-07 0.070
11 9.1415E-01 0.287 8.0272E-07 0.128
12 9.1415E-01 0.287 8.0272E-07 0.121
13 6.5312E-07 0.146 3.1933E-03 0.115
14 3.4441E-10 0.362 3.8771E-06 0.125
15 1.1582E-09 1.237 7.8896E-07 0.308
16 9.9683E-03 1.296 7.8008E-06 0.532
17 1.0453E-05 0.539 3.9513E-03 0.655
18 1.1461E-08 0.510 2.4771E-01 0.400
19 2.4158E+00 1.933 3.9615E-08 0.668
20 1.2238E-03 6.933 7.6742E-06 3.884

with quasi-Newton procedure, consumes more function evaluations. However, it yields much
more accuracy in the optimal values of the functions. Some of the optimal values returned
by algorithm NoQN is very far away from the true optimal values.

To investigate the impact of the quasi-Newton procedure on the number of function
evaluations, we changed the stopping criterion of NoQN to the following: the algorithm is
terminated only if the consumed function evaluations reaches to the number nf recorded in
Table 2. That is to say, we ran the algorithm NoQN without stop until it consumed the
same number of function evaluations as did by Algorithm 1. Table 3 lists the results and
Figure 1 is a comparison of the performance profiles of the two versions. From Figure 1 we
can see that Algorithm 1 yielded better optimal values and less CPU time. This suggests
that with a quasi-Newton procedure, our algorithm can have greater performance than the
redistributed bundle method.
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0.6

0.8
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NoQN

1 1.5 2
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0.5

1
cpu
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Figure 1: Performance profiles
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7 Conclusions

In this paper we have proposed an accelerated bundle-type method for solving unconstrained
optimization problem, and the objective function can be locally Lipschitz continuous but
neither smooth nor convex. This method combines the redistributed bundle method and
the idea of a proximal quasi-Newton method. At each iteration, the convexification param-
eter and the prox-parameter are suitably modified to guarantee that the proximal point of
a piecewise affine model of a local convexification function approximates well-enough the
proximal point of f at xk. We have incorporated a quasi-Newton procedure at the end of
a serious step. Our main results are the global convergence and superliner convergence of
the proposed algorithm, which are stated in Theorem 4.6 and 5.5, respectively. Numerical
results show that the proposed algorithm is promising.
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[14] W. Hare, C. Sagastizábal and M. Solodov, A proximal bundle method for nonsmooth
nonconvex functions with inexact information, Comput. Optim. Appl. 63 (2016) 1–28.
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