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VON NEUMANN-TYPE INEQUALITY FOR COMPLETELY
ORTHOGONALLY DECOMPOSABLE TENSORS*
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Abstract: This paper presents some generalizations of Von Neumann’s trace inequality for matrices to the
contents of completely orthogonally decomposable tensors. The angle between two completely orthogonally
decomposable (symmetrical) tensors is defined and taken into account in the Von Neumann-type inequal-
ity. Moreover, the properties of spectral functions in the case of completely orthogonally decomposable
asymmetrical and symmetrical tensors are studied, respectively.
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Introduction

Von Neumann’s trace inequality, a famous trace inequality of matrices related to singular
values, was proposed by Von Neumann[16] in 1937. This inequality is of great significance not
only in mathematical theory but also in practical applications, such as signal processing,
communication engineering, systems engineering and so on. It plays a key role in many
matrix approximation problems.

As we all know, matrix singular value decomposition (SVD) is a practical tool in matrix
analysis, engineering, statistics, and many other fields. With the SVD method, an original
matrix can yield a low-rank matrix that is closer to it. With the coming age of big data,
tensor, as a tool for describing high-dimensional data, has attracted more and more attention
and research[l, 4, 12]. Among these, tensor decomposition and approximation problems
are some of the focuses[7, 9]. Therefore, it would be meaningful if these properties and
decompositions could be directly generalized to higher-order tensors. Tensor decomposition
and approximation problem is essentially a higher-order generalization of the matrix.

The tensor decompositions derived from different matrix decomposition forms are differ-
ent. At present, the most commonly used extension from matrix SVD to higher-order tensors
is the so-called Higher-Order Singular Value Decomposition (HOSVD)[15]. Chrétienand and
Wei [3] extended Von Neumann’s trace inequality to tensors using SVD based on Tucker
decomposition of tensors.

The famous Von Neumann’s trace inequality explores the relationship between matrices
and their singular values. Inspired by it, we intend to study the intrinsic relationship between

*This work was supported by the National Natural Science Foundation of China (Grant No. 11901549
and 12171128) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY22A010022).
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396 JIE WANG

tensors and their SVDs. One of the difficulties is the appropriate description of orthogonal
decompositions of tensors. Actually, Kolda[10] presented several orthogonal decompositions
of tensors, where only the completely orthogonal decomposition of the tensor is a parallel
generalization of the matrix SVD.

This paper is structured as follows. In section 2, we will review some definitions and no-
tations for matrices and tensors. In section 3, we will propose Von Neumann-type inequality
based on completely orthogonally decomposable tensors and Fan-type inequality based on
completely orthogonally decomposable symmetrical tensors (SCODT), respectively. Sub-
sequently, we will discuss the spectral function for CODT in section 4, and the spectral
function for SCODT in section 5. Some conclusions will be presented in the last section to
conclude this paper.

Preliminary

In this section, we will briefly review some concepts and notations for matrices and tensors.
Given two (real) matrices A = (a;;) and B = (b;;) of the same size m x n, their Hadamard
product A+ B is a matrix with size m x n, which elements are given by (A * B);; = a;;b;;.
A matrix C = (¢;;) € R™*" is said to be absolutely doubly stochastic, if its sum of absolute

value of the elements in each row and column equals to 1, i.e., |Cle = e and e"|C| = €T

where |C| = (J¢;;|) and e = [1,--- ,1]T € R™; a matrix C € R™ " is called absolutely

doubly substochastic, if the sum of absolute value of the elements in each row and column
of C is at most 1. For every x € R”, we have the {,-norm (for p > 1) ||x||,, defined as

Ixll, = ﬁ/ (3 xilP).

i=1
A (real) m-th order I; x --- x I,-dimensional tensor (a.k.a. hypermatriz [13]) A, whose
element is specified as A = (ai;...;,,) where ¢; € {1,---,I;} and j € {1,--- ,m}. The set
of all tensors with size I x --- X I, is denoted by T(Iy,---,I,). Specially, when I; =
- = I, = n, the set of all the m-th order n-dimensional tensors is denoted by T, ,,. Given
a tensor A = (aiy...i,,) € T, if the entries a;,...;,, are invariant under any permutation
of their indices, then A is called a symmetric tensor. The set of all the m-th order n-
dimensional symmetric tensors is denoted by Sy, . For a tensor A = (a;,...i,,,) € Ty Gieevi
for i € {1,---,n} are called diagonal entries of A, and the other entries of A are called
off-diagonal entries of A. A tensor A is called diagonal if all of its off-diagonal entries are
zero. For a tensor A € T(m,n), we denote A as the eigenvalue map X : A — R", where r is
the rank of A. Given a tensor A = (a;,...i,,) € Tyn.n and a vector x € R”, then Ax™ ! is a
vector in R™ with its ith component as

n

—1y, .
(Ax™77); == Z Qi Lig * " Ty

12, sim=1
forie {1,---,n}. AX™ is a homogeneous polynomial of degree m, defined as
n
.AXm = XT(.AXmil) = Z Ajyoii, Liq Ly -
1;17... 7i7n:1
Given tensors A = (a;,..;,, ) and B = (b;,...;,,) € T(I1,- -+ , In), their inner product is defined

as
Iy

Im
<A, B> = Z s aili..imbil...im.

i1=1 im=1
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Decomposable tensors

A tensor U € T(Iy,--- ,I,) is called a decomposable tensor[10], if U can be written as

Z/l:u(l)®u(2)®-~-®u(m),

where “®” denotes outer product and each u¥) € R% for j = 1,--- ,m. Specially, when
u® = ... = ul™ = u, U can be abbreviated as U = u®™. Each component of I is
Uiy .4, = uz(-ll)uz(-f) e uEZL).

A decomposable tensor is a tensor of rank-1. A tensor is rank-1 if it can be expressed as the
outer product of a series of vectors, such as i = uM @ ---@u™ for ul¥) € R%. A tensor A
is rank-r if r is the smallest integer such that A is the weighted sum of rank-1 tensors, i.e.,

A= Z%‘llgl) R ® ugm)'
i=1

A decomposable tensor has a higher-order singular value decomposition(HOSVD). The
HOSVD is a kind of multidimensional generalization of the matrix singular value decompo-
sition, which defined by De Lathauwer et al[15].

The symbol St(m,n) denotes a Stiefel manifold, which is the set of all m-tuples or-
thonormal vectors in R™. Given column vectors vi,---,v,, € R™ a matrix [vi, -+ ,v,,] €
St(m,n), if ||v;|| =1 and v, Lv; for all i # j € {1,...,m}.

Completely orthogonally decomposable tensors

Given a real matrix A € R™*"™ it can be expressed as the following formality,
T
A=USVT =) o],
i=1

which is the SVD of A, U = [uy, - ,u,] € St(r,m), V = [vqy,---,v,] € St(r,n), and
¥ = diag(o1,- -+ ,0,) is a diagonal matrix in R"™*" | where r is the rank of A. Therefore,
a matrix can be decomposed into a sum of rank one matrices. Analogously, defined in the
same way, a tensor that can be expressed as the sum of rank one tensors is called completely
orthogonally decomposable tensor, refer to [10].

Definition 2.1 (CODT). Let A € T(Iy,---,I,) be a tensor. A is called a completely
orthogonally decomposable tensor, if A can be represented as

A= Z oiul(-l) ® - ® ul(-m), (2.1)
i=1
where [ugj), e ,ugj)} € St(r,1;) for j € {1,--- ,m} and o; > 0 for ¢ € {1,--- ,r}, the corre-

sponding r is the completely orthogonal rank of A. In this case, o; are called a singular value

of A, ugl), e ,ul(-m) are called singular vectors corresponding to o; for all ¢ € {1,--- ,r},

and the decomposition (2.1) is called the higher-order singular value decomposition of A.
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Definition 2.2 (SCODT). Let A € S, ,, be a tensor. A is called a completely orthogonally
decomposable symmetrical tensor, if A4 can be represented as

A= A0, (2.2)
=1

n
or abbreviated as Y. \;u®™. It also can be written as
i=1

A=A-(U,---,0) (2.3)
where U = [uy,--- ,u,| € St(r,n), A € Sy, is a diagonal tensor and its diagonal elements
are order singular values of tensor A, and A\; > 0 with ¢ € {1,--- ,r}, the corresponding r is

the completely orthogonal symmetrical rank of A.

Usually, the diagonal elements of tensor A are arranged in order by size, called ordered
singular value. Let || - || denote a unitarily invariant norm, then || A| = ||[A- (U1, -+ ,Un)| =
||A]] for the above tensor A.

Throughout the rest of this paper, the set of all the completely orthogonally decompos-
able (symmetrical) tensors is denoted by CODT (SCODT) . If a tensor A is completely
orthogonally decomposable (symmetrical), then it is denoted by A € CODT (SCODT) .

Von Neumann-type Inequality for CODT

In this section, we intend to study the relationship between tensors and their SVDs based
on the Von Neumann’s trace inequality. At the beginning of this section, some lemmas
are given for the requirement. After that, the angles between two CODTs are defined and
the Von Neumann-type inequality for CODT is established. Meanwhile, through the similar
analysis, the Fan’s inequality for matrices is extended to the content of SCODT. For Lemma
3.1 and Lemma 3.2, see [6].

Lemma 3.1 (Von Neumann’s trace inequality). Let the non-increasingly ordered singular
values of A,B € R™*™ be 01(A) > --- > 0,(A) and 01(B) > --- > o,(B), where r =
min{m,n}. Then, the following inequality holds

tr(ABT) <) 0i(A)oi(B).
i=1
Lemma 3.2 (Fan’s inequality). Any real symmetric matrices X and 'Y satisfy the inequality
tr(XY) < MX)TA(Y),
equality holds if and only if X and Y have a simultaneous ordered spectral decomposition.

Lemma 3.3. Let U} = (u}j), ooy Un = (uf}) € R™™ be orthogonal matrices, and denote
C=U; - +xUp, then C is absolutely doubly substochastic.

Proof. First, we can prove that the Hadamard product of two orthogonal matrices is doubly
substochastic. Suppose that U; and Us be orthogonal matrices, it is easy to see that for
each i€ {1,--- ,n},

Z [T * Ta]i5] < \/(%11)2 +o (%1771)2\/(10?1)2 +o ot (u,)? < 1,
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n
and for each j € {1,---,n} we similarly obtain ) [(U; % Us);;| < 1. Then Uy x U, is
i=1
absolutely doubly substochastic.

Furthermore, we can prove that the Hadamard product of an orthogonal matrix and an
absolutely doubly substochastic matrix is absolutely doubly substochastic. Suppose that Uy,
is orthogonal and Uj is absolutely doubly substochastic, then it is easy to verify that for
each i€ {1,--- ,n}

J

(Ua % Ug)igl <D 1(Up)is| <1,
=1 j=1

n
and for each j € {1,--- ,n} we can similarly obtain ) |(Uy * Ug);;| < 1.
i=1

According to the above deduction, it is naturally deduced that C is absolutely doubly
substochastic. O

Lemma 3.4. Let A = (a;;) € R"™" be absolutely doubly substochastic, then there exists an
absolutely doubly stochastic matric W = (w;;) € R™*™ such that |A| < |W/, i.e., |a;j| < |wij]
for each i,j.

Lemma 3.5. Let P be a polyhedral set in R™. Assume that P has at least one vertex. Then
if a linear function f : R™ — R™ attains a mazimum over P, it attains a mazimum at a
vertex of P.

Lemma 3.6. Let ay;,a2i, - ,am; €ER fori=1,2,--- n, then
n n n n
Z lariaz; - - ami| < 77 Z lay|™- 7 Z lag;|™ -~ Z |G ™
i=1 i=1 i=1 i=1
The equality holds if and only if La“‘ = [azi] — o= amid  here

2 n n
"\‘/Z laxi|™ "\L/Z lagi|™ "3 lamal™
i=1 i=1

i=1
A4y 7a'mi7é07 andi:1a27"' , 1.

Proof. Let x,y € R™ be two vectors, p > 1 and ¢ > 1 be numbers such that % + % = 1. The
well-known Holder inequality [5] reads as

n n

n
Dl < 7D lalP > lvile,
=1

i=1 i=1

the equality holds if and only if the vectors [|z;|P] and [|y;|?] are linearly dependent. Let y

be with y; = ag; ... am; and x with 2; = ay; for alli € {1,...,n}, and p :=m and ¢ := 5.
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Then, from the Holder inequality, it can be deduced that

n n
Z |latiag; -+ ami| = Z ziyil
i=1 =

IIXIIpIIqu

IN

n

n
, m m.
= ™ E |:L'Z|m m— E ‘yi|7”*1
=1 i=1

n

n
= {2 fenit 7 D o il (3.1)
i=1

The following derivation is in the same way as deduced above,

n
R
i=1

n

< mel Z(|a2i‘ﬁ)m—1

=1

=" Z‘a21|m = Z‘a31~ amz|7- (32)

Thus, together with (3.1), it can be deduced that

n

—_m
g la1;a2i - - Gl < 7 g |aqs|™ 7 E lagi|™ E lasi ... ami|™—2.
i=1

m—1 n _m__ m_\m=L
" 2 :(|a3i‘m—1 ...la,,ni|'m,—1)"m,
i=1

-

Continuously applying inductive steps to >, |as; - - . Gmi] 72 we can get the final inequal-
ity.

Let’s prove the equality. By the Holder inequality, the equality holds if and only if [|z;|?]
and [|y;|?] are linearly dependent. Thus the equality holds in (3.1) if and only if

m
m—1
Y

|a1i|m = kl\am ctQmg

which implies |aq;| = k1|ag; - - - ami|ﬁ. Similarly, the equality holds in (3.2) if and only if

1
lagi| = kalas; - - ami|™2.

Inductively,

lam—1)il = km—1|amil.
For this formula, by reverse derivation, we deduce that |ay;l, -, |am:| for i = 1,--+ | n are
mutually linear dependent. This completes the proof. O

The case for matrices

In order to explore the angles between two tensors, we firstly consider the content between
two matrices. Given two s-dimensional subspaces G and H in R™. Given two orthonormal
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matrices Og,Og € R™** which the columns be orthogonal bases in subspaces G and H
respectively. Typically, the angles between subspaces G and H are defined as the ranges of
given matrices Og and Oy. If YT(OLOy)Z = diag(o1,- - , 0s) is the SVD of OLOg, then
angles denoted as 9 between Og and Op defined in the following

OGY = [g17"' ags]a
OHZ: [h17"' 7hs]7

cos; =p; fori=1,---s.

Given two matrices A, B € R"*"  then the singular value decomposition of A
and B are A = US4V and B = PYXpQT, respectively. Here U = [uy,---,u,], V =
[Vla"' aVT], P = [pla' t 7p’l‘]a Q = [qla" . 7qT]7 zA = dlag(a-l(A)7 70-7‘(14))’ and zB =
diag(o1(B),- -+ ,0.(B)). Define

cos; = |PTw|| fori=1,---,r,
cosn; = ||Q vyl fori=1,--- ,r,
cos ¢ = ||U p;|| fori=1,--- 7,

cosp; = |[VTqy| fori=1,---,r.

Denote
cos f = max { cos0;,i =1,--- 7},
cos?) = max { cosn;, i =1,--- , 7}, (3.3)
Cosqg:max{cos¢i7¢:1,...,r}7 .
COS@:maX{COSSDiJ = 17.-. ,T‘}-

As discussed above, considering the angles between two matrices, we obtain the following
singular value inequality related to the angle between two matrices.

Proposition 3.7. Let A,B € R"*?, r = min{n,p}, and its ordered singular values be
01(A) > -+ > 0,.(A) and 01(B) > --- > 0,.(B) respectively. Then

(A, B) < max{cos 0 - cosf},cos ¢ - cos ¢} Z 0:(A)o;(B),
i=1
where 0,1, ¢, 5 are defined as (3.3).

Proof. Compute

I T

(A,B) = > 0i(A)o;(B)(wi, pj)(vi,a;) = D 0i(A)os(B) My, (3.4)

i,j=1 1,5=1
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where M = (UTP)x(VTQ) = [M;;]. The row sum of M for each i € {1,--- 7} is as follows,

T

Z|Mij| = ) (i, pj)ll{vi,q;)]

j=1

< D wp)? | D (visq)?
=1 =1

= [ 2 PTuf | D (@)
j=1 j=1

= [P uilllQvil

= cosb; - cosn;

< cosf-cos 7,

and its column sum for each j € {1,--- ,r} is as follows,
SOl = Y [w,py)l(viay)l
i=1 i=1
< D p)2 | D (visq)?
i=1 \ i=1
= DWW | D (VTay)?
i=1 i=1
= U,V ayll

= COS@; - COSP;

< cosé - COS P,

Denote M = min{ L L }M . Then, M is both row and column absolutely

cos 0-cos 7’ cos <Z>-cos @
doubly substochastic. Therefore, M is absolutely doubly substochastic. Combining (3.4), it
can be obtained that,

T

> ai(A)o;(B)M;

ij=1

(4,B)

= max{cosf - cosij,cosd-cosp} Z 0i(A)a;(B)M,;.
ij=1

Since M is absolutely doubly substochastic, by Lemma 3.4 there exists an absolutely doubly
stochastic matrix C' = [C;;] € R"™*" such that

(A, B) < max { cos 0 - cos ), cos ¢ - cos ¢} Z 0i(A)o;(B)C;j,
ij=1

Define a linear function f(C) := Y =103 C; on the set of absolutely doubly substochastic
matrices, by Lemma 3.5, it attains its maximum at a vertex. If 7 is a permutation such that
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C;; = 1if and only if j = 7(4), then

(A, B) < max { cosf - cosij,cos ¢ - cos p } Z 0i(A)o;(B)Ci;

ij=1

= max { cos§ - cos 1}, cos § - cos P } Z 0i(A)or(i)(B) (3.5)

=1

< max { cos B - cos ﬁ,cosé - COS @} ZUi(A)Ui(B)'

i=1

The case for CODT

Analogously, we could have the above ideas to define the angle between two CODTs. Given
two completely orthogonally decomposable tensors A and B with size I; x - -+ X I, then

A=Aq- Uy, ,Up),

and
B:AB'(V1>"' an)7

where Uy, = [ugk), e ,ufok)] and Vi, = [vgk)7 e ,vﬁk)} for k =1,---,m. We define the angles
of A and B as follows,

cos@§k) = ||VjTu§-k)H, fork=1,---,mandj=1,---,r, (3.6)
cos5j(»k) = HUijyC)H, fork=1,---,mandj=1,---,r, .
and
cos&zmax{cos@§k) |k=1,---,mand j=1,--- 1},
cosézmax{cos6§k) |k=1,--- ,mand j=1,---,r}, (3.7)
cosn:max{cosﬂj(-k),cos5§k) |k=1,--- ,mand j=1,--- 7}

Considering the angle of two CODTSs, we discuss the relationship between two CODTs
and their SVDs based on the classic Von Neumann’s inequality and obtain the following
Von Neumann-type inequality.

Theorem 3.8 (Von Neumann-type inequality). Let A,B € T(Iy,---,I,) be completely
orthogonally decomposable tensors, r = min{Iy,--- ,I,,} and the ordered singular values of
A and B be 01(A) > --- > 0,(A) and 01(B) > --- > o,.(B), respectively. Then the following
inequality holds

s
(A, B) < max{cos™ 6, cos™ 4} - Zoi(A)ai(B),
i=1
where 6 and 6 are defined as (3.7). Moreover, the above equality holds if Qj(-k) = 0 and
3 =0 forallk € {1,--- ,m}, je {1, ,r}.
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Proof. Since A and B are completely orthogonally decomposable tensors, they can be ex-
pressed by the definition 2.1 as follows

A=Y oi(Au @ @u™,

and .
B = Zoi(B)vgl) R @vi™.
Denote Uy, = [ugk),~~ Sk)] and Vi, = [vgk),u- (k)] then Uy, Vi € St(r, 1) for k =
1,---,m. Then
(AB) = 3 oi(Ao;B)u @ ou™ vV e o v{™)
ij=1
= Y o Ao B)u Vi) ™ v
i,j=1
= > 0i(A)a;(B) UL Vi)ij -+ (Un Vin)ij
ij=1
= > 0i(A)a;(B)W;;.
i,j=1
Denote W = [Wi;] = [(U1 " Va)ij -+ (Um ' Vin)ij] and Wy, = Ui "Vj, for all k € {1,---,m},

then W is an absolutely doubly substochastic matrix. Actually, matrlces Uk and Vk can be
extended to orthogonal matrix U and V by adding some column U, . and Vk, which can be

denoted as Uy = [Uy U] and Vi, = [Vi V,] respectively. Then,

o ulv., UV,
U= " “k*l forke{l, - m}

which is a orthogonal matrix. Natually, as a submatrix of the orthogonal matrix U,;r Vi,
Wi = U,;r Vi is absolutely doubly substochastic. Thus, by Lemma 3.3, W is absolutely
doubly substochastic.

Combining Lemma 3.6, the row sum of W for each i € {1,--- ,r} is as follows,
1 1 m m
oWl = 3 v ™ v
j=1 j=1
< g Do vy S ™ vy
j=1 j=1
1 m
< (VTuf)2- (Vu™)2
j=1 j=1
1
= Vu®f--l ||

IA
Q
o O
w0 w0
I
>
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and its column sum of W for each j € {1,--- ,r} is as follows,

i‘Ww‘ = Z' 7 1) ) u(_m)7v(_m)
i=1

INA

3
‘H‘M
_?

3
M%
§

=1 =1
- )2 - QN
< OV | DU,
i=1 i=1
= JuTvl o)
= cos6§ ~'-COS5J»
< cos™ 6.

Denote W = min{ —— cosm Pl Coslm 5 W, it is obvious that W is row absolutely doubly substochas-

tic and column absolutely doubly substochastic, respectively. Therefore, W is absolutely
doubly substochastic. Furthermore, compute

(A,B) = ZT: 0i(A)o;(B)W;; = max{cos™ 0, cos™ §} XT: oi(A)o; (B)Wj.

i,j=1 t,j=1

It is known that W is absolutely doubly substochastic, by Lemma 3.4, there exists an
absolutely doubly stochastic matrix C' = [¢;;] € R™*" such that |IW| < |C|, then

(A,B) < max{cos™6,cos™d} - Z oi(A)o;(B)|é;|

i,j=1
< max{cos™ @, cos™ §} - max{ Z oi(A)o;(B)|si;|}
1,7=1
where S = [s;;] is an absolutely doubly-stochastic matrix, 7" denotes the set of all abso-

m
lutely doubly-stochastic matrices. The function f(S) = > 0;(A)o;(B)s;; is a linear (and
ij=1
therefore convex) function on a polyhedral, then it attains its maximum at a vertex, i.e., a
permutation matrix P = [p;;]. If 7 is the permutation of {1,...,m} such that p;; = 1 if and

only if j = w(¢), then

max{cos™ 0, cos™ §} - Z oi(A)o;(B)pij

ij=1

(A, B)

IN

= max{cos™6,cos™ §} - Z 0i(A)or i) (B)

i=1

< max{cos™ 0, cos™ 5} - Z oi(A)oi(B).

i=1

Furthermore, if 9§-k) = 0 and (5J(-k) =0for k € {1,---,m} and j € {1,---,r}, then the
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following equality holds,

AB) = Y alnB) e e ou™ vD e evi)
1,7=1
= 3 ooy (B) vy - ™ Vi)

= Y oi(A)oi(B).
i=1

This completes the proof. O
Corollary 3.9. Let A,Be€ T (I, - ,1I,,) be completely orthogonally decomposable tensors,

r=min{ly,---,I,}, and its ordered singular values be o1(A) > --- > 0,(A) and 01(B) >
-+ > 0,.(B) respectively. Then

A= B]* > Z(Ui(A) —0:(B))?,

with the equality holds if and only if (A, B) = zl 0:(A)oi(B).
Proof. By Theorem 3.8,
|A-B|? = (A-B,A-B)
YR 2B+ Y B
i=1

i=1

Y

Z o2 (A) — 2max{cos™ 0, cos™ &} - Z oi(A)o;(B) + Z o?(B)
i=1 i=1 i=1

> Y (0i(A) ~ i)

i=1

Obviously, the equality holds if and only if (A, B) = > 0;(A)o;(B). O
i=1

The case for SCODT

Having completed the generation from the Von Neumann’s trace inequality to the content of
CODT, let’s consider the Fan’s inequality to the content of tensor by using similar method.
In the following, we denote U = [uy,- - ,u,] and V = [vy,---,v,], it can be seen that
U,V € St(r,n). Define the angles between U and V as follows,

COS &; = ||‘/T]_1,L||7 fOI‘ 1= 17... Ty
COSBZ-:HUTVZ_”7 fori=1,---,r, 58)
cos oy = max{cosai | 7 = ]_’ ,7"}

cos f = max{cosf; |i=1,---,r}
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Lemma 3.10 (Abel’s equality). Given numbers ay,--- ,a, and by,--- b, arbitrarily, the
following equality holds

Lemma 3.11. Let B = (biy...i,,) € Sm.n be a decomposable tensor with its eigenvalues
AM(B) > > M\ (B)>0. Let ul ... ul) be a set of orthogonal vectors in R™. Then, the
following inequality holds,

S

OLTCRE Y
j=1

Proof. Without loss of generality, suppose that B € S,, ,, be a diagonal tensor. It is obvious
that the diagonal elements of B are b;..., = A\;(B) for i € {1,--- ,m}, and

=S AB) WY

then

ZB (7) Z}\l Z ] )m < ZAZ(B)(Z uz(.j))2 _ Z(u(j))TBu(j) — Z)\Z(B)
j=1 i=1 j=1 i=1 j=1 i=1

This completes the proof. O

Similar to the previous derivation, it is not difficult to derive the following result for
SCODT.

Theorem 3.12 (Fan-type inequality). Let A,B € S, ., be completely orthogonally decom-
posable symmetrical tensors, with the eigenvalues A\ (B) > --- > A (B) > 0 of B, then the
following inequality holds,

(A, B) < min { max{cos” o, cos™ B} - Z A (A)X(B)], Z Ai(A)/\i(B)}.

Proof. Part I. Without loss of generality, suppose \;(A)\;(B) > 0 for i = 1,--- ,n. By
definition of completely orthogonally decomposable symmetrical tensors, A and B can be
expressed by

AZZ)\i(A)ui®~-~®uu

and

<

B = )\j(B)Vj@"‘@Vj,
j=1

where U = [uy, - ,u,] and V = [vy,---,v,] are matrices in Str(r,n). Then, the inner
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product of A and B expressed as

(AB) = 3 MANB) (W E- Bu,v; @@ V;)
= Z )\z(A))\j(B)<uzan> <u1’V]>
= i Ai(A)N(BYUTV)j5--- (UTV)s

Denote J = [(UTV);; -+ (UTV);;]. Tt can be deduced that J is an absolutely doubly sub-
stochastic matrix. Actually, U and V can be extended to orthogonal matrix Uand V by
adding some column U’ and V', which can be denoted as U = [U U'l and V = [V V']
respectively. Then,

vtv UtV

UTV_ ' T T
uv Vv

which is an orthogonal matrix. Natually, as a submatrix of the orthogonal matrix UTV,
UV is absolutely doubly substochastic, and so is J. Consider the row sum of J for each
i€ {l,---,r} as follows,

T
Z‘Jiﬂ Z u;, v [(ui, vj)
j=1

T T
< v (i, vj)m--- r Z(umvj)”
j=1 j=1
T K
SIND SN DAl
j=1 j=1
= VT~ [Vl
= cos" q;
< cos" a,

T ~
and its column sum of J for each j € {1,---,r} satisfy > |J;;| < cos™ 8. Denote J =
i=1

min{ }J, it is obvious that J is absolutely doubly substochastic. Then there

cos" a’ cos" cos™ B
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exists an absolutely doubly stochastic matrix C' = [¢;;] € R™" such that |J| < |C|, and

S M AN (B

1,j=1

(A, B)

= max{cos” a, cos” 5} Z Ai(A))‘j(B)jij

ij=1
< max{cos" o, cos” 3} - Z Ai(A)N; (B)|é5]
ij=1
< macfeos™ o cos” B max { D0 A(A(B)lsi ).

ij=1
where S = [s;;] € R™*" is a doubly stochastic matrix, T' denotes the set of all the absolutely

T
doubly stochastic matrices with size » x r. The function f(S) = > A (A)N;(B)s;; is
i,j=1
a linear (and therefore convex) function on a polyhedral, then it attains its maximum at
a vertex, for instance, at the permutation matrix P = [p;;]. If 7 is the permutation of

{1,...,r} such that p;; = 1 if and only if j = 7 (i), then

(A,B) < max{cos" a,cos™ 3} - Z Xi(A)A;(B)pij

ij=1

= max{cos” «,cos" 3} - Z Ai(A)A iy (B)

i=1

< max{cos” a, cos™ 3} - z’": Ai (AN (B).

i=1
When o; =0 and 8; =0 for 4,5 = 1,--- ,r, then the following equality holds,
(A,B) = Z Ai(AA(B)(u; @ -+ @, v; @ - @ vy) = i)\i(A))\i(B).
i,j=1 i=1
This completes the proof of the following inequality,
(A, B) < max{cos" a, cos™ 5} - ET: Xi(A)X;(B).
i=1
Part II. Let’s consider this problem from another perspective. Compute
(A,B)=(A-(U,---,U),By=(A,B-(U",--- ,U")).

Denote C := B - (UT,--- ,UT), it is obvious that C = (c;,...;,, ) is a m-th order r-dimensional
decomposable tensor. Then,

(A,B) = (A,C) = ZAZ-(A)CM.



410 JIE WANG

By Lemma 3.10 and Lemma 3.11, we deduce that

r—1

Z{(/\i( ) = Ais1(A ch J}H )i:lcj.i.j

=1

(A, B)

r—1

> [ = A4 ZA B+ T<A>§Aj<8>

IN

i=1

r

= D N(ANB
i=1

The above equality holds if and only if ¢;...; with j = 1,2,--- ,r are the eigenvalue of B.

Thus .
(A,B) <> X(A)Ai(B)
i=1

Combing part I and part II, we deduce that
(A, B) < min { max{cos” a, cos” 8} - Z Ai(A)A(B), Z )\i(A))\i(B)}.
i=1 i=1
This completes the proof. O
Moreover, we deduce the following proposition for SCODT.

Proposition 3.13. Let A, B € T,,,, be completely orthogonally decomposable symmetrical
tensors, then the following inequality holds,

AB Zi n+1 zB)

Proof. By Theorem 3.12,

(A,-B) < Z Ai(A)Ai(=B) = Z Ai(A)(=Ant1-i(B)) = — Z Ai(A)Ans1-i(B),
i=1 i=

which implies that

Spectral Function for Asymmetric CODT

As an important topic in matrix theory, the theory of unitarily invariant matrix norms
plays an important role in matrix spectral decomposition. In the following, a spectral
decomposition property of matrices is generated to the content of tensor.

For any tensor A € T'(I1,---,I,,), we denote o as the singular value map o : A — R",
where 7 is the rank of A. A real valued function f on R” is called a pre-norm, if it is
continuous, and satisfies
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(i) positivity: f(x) > 0 for all x € R, and f(x) = 0 if and only if x = 0;
(ii) homogeneity: f(ax) = |a|f(x) for all real @ and x € R".

It is a norm if it further satisfies the triangle inequality. For a pre-norm f, its dual norm,
denoted by fP, is defined as

= = max (X,y). 4.1
Fo) = max (x,y) (4.1)
Lemma 4.1 ([16]). A pre-norm f is a norm if and only if f = fPP.

We call a function g : R” — R* symmetric gauge if it is a norm satisfies

(i) symmetry: g(x) = g(Px) for any permutation matrix P € R™*";

(ii) absoluteness: g(x) = g(|x|) for any vector x € R".
For any tensor Z € T(Iy,--- ,I,), define

$(Z) :=g(0(2)). (4.2)

Obviously, ¢(-) is a unitarily invariant norm. Thus it can be seen that each unitarily in-
variant norm can be defined by a symmetric guage function. The following theorem proves
that the unitarily invariant norm for each tensor can determine a symmetric guage func-
tion. Therefore, there is a one-to-one correspondence between unitarily invariant norm and
symmetric guage function in tensor space.

Theorem 4.2. Unitarily invariant norm in completely orthogonally decomposable tensors
space is exactly the composite function of g o o, where g is a symmetric gauge function.

Proof. First, we can deduce that
(goo)? =g o0 (4.3)

Actually, using Theorem 3.8, for any tensor B € CODT), there exists a tensor A € CODT
such that

(goo)”(B) = g<§?,%’§=1<“4’ B) < {max{cos" 0, cos" 0} - > ai(A)i(B) | g(o(A)) = 1},
=1

the equality holds when the angles between A and B satisfy 9](-k) = 0 and 6J(-k) = 0 for
kEe{l,---,n}and j € {1, - ,r}. Moreover,

(97 0 0)(B) = g"(0(B)) = g(a%%%:lw(,zl), a(B))-

Thus it proves that (4.3). Furthermore, using Lemma 4.1 and formula (4.3), we derive

)DD OO'>D:gDDOO‘:gOO‘.

(goo)™" =g

According to Lemma 4.1 again, it deduce that goo is a norm. This completes the proof. O
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Spectral Function for SCODT

In this section, spectral property for SCODT will be discussed. We denote A as the eigenvalue
map A : S — R” for each S € SCODT(m,n), where S € SCODT (m,n) means that S is
a m-th order n-dimensional tensor in SCODT. Let f : R — [—00,+00] be a extended-real
function. If f is a convex function or if a minimum point of f is being sought, then f is
called proper if

f(x) > —o0, for every x € dom(f)

and if there also exists some point xg in its domain such that f(z¢) < 400, wherein dom(f)
denote the domain of f:

dom(f) = {f(z) < +o0 | z € R}.
Let f be a proper convex function on R™, the Fenchel conjugate is defined as
fr(y) =sup{(z,y) — f(z) |z € R}.

Lemma 5.1. Suppose the extended-real function f is proper. Then f is closed and convex
if and only if f = f**. In this case, f* is also proper.

In the following, with Theorem 3.12, it is not difficult to prove that there is a one-to-one
relationship between invariant norm for completely orthogonally decomposable symmetrical
tensors and eigenvalue function.

Theorem 5.2. Unitarily invariant norm in completely orthogonally decomposable symmet-
rical tensors space is exvactly the composite function of h o X\, where h is symmetric and
convex.

Proof. First, we should prove that
(ho\)* = h* oA, (5.1)
Actually, for any S € SCODT(m,n),
(ho M)*(S) = sup{(X,S) —ho A(X) | X € SCODT(m,n)},

and

(h* 0 A)(S) = sup{{MX), A(S)) — ho A(X) | A\(X) € SCODT(m,n)}.
By Theorem 3.12, it can be deduce that

(hoX)*(S) < (h" 0 A)(S),

and the above equality is established if the angles between S and X are equal to zero. This
proves (5.1). Furthermore, if h is proper, closed and convex, with using Lemma 5.1 and the
equality (5.1), then we derive

(hoXN)** =(h*oAN)"=h"™oA=hoA.

According to Lemma 5.1 again, it deduce that h o A is closed and convex. This completes
the proof.
O
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Conclusion

In this paper, we considered generalizations of the important Von Neumann’s trace inequality
and Fan’s inequality for matrices to completely orthogonally decomposable tensors and
completely orthogonally decomposable symmetrical tensors respectively. Especially, the
angle between two CODTs is defined and considered in it. Meanwhile, spectral properties
for CODT and SCODT are studied as well.
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