
2022



416 T. WANG, X. CAI, Y. SONG AND X. GAO

However, there are some drawbacks in the DCA and its variants for solving DC program-
ming. First, the subdifferential may be a non-singleton set. In particular it may be empty
or may consist of several distinct elements. Second, even if the subdifferential is singleton
in each step, it might be highly discontinuous. So small deviations might lead to very dif-
ferent behaviors of the iteration [21]. To overcome the above drawbacks, Banert and Boţ
[6] considered a primal-dual reformulation of the difference-of-convex programming. Fur-
thermore, they proposed a general double-proximal gradient algorithm (DPGA) and proved
every cluster point is a solution of the optimization problem. Actually, DPGA can fall in
the framework of proximal alternating linearized minimization (PALM) algorithm [8], which
is a popular algorithm for solving nonconvex and nonsmooth optimization. Under the as-
sumption that the objective function satisfies the Kurdyka- Lojasiewicz property and some
suitable conditions, [8] proved that each bounded sequence generated by PALM globally
converges to a critical point.

As DPGA and PALM are the first-order algorithms, acceleration techniques are of great
practical interests to improve the performance of these algorithms. In general, there are
two classes of acceleration techniques, including Nesterov’s acceleration [18] and inertial
technique [19, 20]. In this paper, we focus on the inertial technique which was first proposed
by Polyak [23]. Recently, there are increasing interests in studying inertial type algorithms,
such as inertial forward-backward splitting methods for separable optimization problems
under the nonconvex setting [20] and strongly convex setting [19], inertial versions of the
Douglas-Rachford operator splitting method [10], inertial forward-backward-forward method
[9] based on Tseng’s approach [31] and general inertial proximal point method for the mixed
variational inequality problem [12]. Specially, Pock and Sabach [22] proposed the inertial
version of PALM (iPALM for short), and they proved that the generated bounded sequence
globally converges to critical point of the objective function, assuming that the objective
function possesses the Kurdyka- Lojasiewicz property. Further, [13] considered a Gauss-
Seidel type inertial proximal alternating linearized minimization (GiPALM) scheme where
the inertial step is performed whenever the x- or y- subproblem is updated.

The contributions of this paper can be summarized as follows. First, we propose the
double-inertial proximal gradient algorithm (DiPGA), which combines the Gauss-Seidel type
inertial techniques with double-proximal gradient algorithm, for solving DC programming.
In this case, DiPGA may not only have better acceleration effect, but also be more universal-
ity. Furthermore, we give the global convergence analysis of DiPGA under the assumption
that the objective function satisfies the Kurdyka- Lojasiewicz (KL) property. Finally, we
present the numerical experimental results of the proposed algorithm applied to the image
processing model and show its efficiency.

The rest of this paper is organized as follows. In Section 2, we introduce some notations
and preliminary. In Section 3, we present the problem to be solved and the primal-dual
reformulation of the difference-of-convex programming. We show that the primal-dual min-
imization problem and the primal optimization problem have a same optimal value. Mean-
while, any critical point of primal problem and critical point of its Toland dual problem
forms the critical point of the primal-dual problem. In Section 4, we state the DiPGA in
detail and provide its convergence analysis. Section 5 illustrates the numerical results of
applying DiPGA to image processing model and compares it with DPGA.

2 Preliminaries

In this section, we summarize some notations and elementary facts for further analysis.
The theory of convex analysis in finite-dimensional spaces can refer to [24]. We shall
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consider functions taking values in the extended real line R := R ∪ {+∞}. Let H be a real
finite-dimensional Hilbert space, ⟨·, ·⟩ denotes the inner product and the induced norm by
∥ · ∥ =

√
⟨·, ·⟩. The function f : H → R is convex if

f((1 − λ)x + λy) ≤ (1 − λ)f(x) + λf(y),

for all x, y ∈ H and 0 ≤ λ ≤ 1. The conjugate function f∗ : H → R of f is defined by

f∗(x∗) = sup {⟨x∗, x⟩ − f(x) | x ∈ H}.

If f is proper convex lower semicontinuous, then f∗∗ = (f∗)∗ = f by the Fenchel-Moreau
theorem [7]. If F : H → G is a point-to-set mapping, its graph is defined by

Graph F := {(x, y) ∈ H×G : y ∈ F (x)} .

Similarly the graph of a real-extended-valued function f : H → R is defined by

Graph f :=
{

(x, s) ∈ H× R : s = f(x)
}
.

For any subset S ⊆ H and any point x ∈ H, the distance from x to S, denoted by dist(x, S),
is defined as

dist(x, S) := inf
y∈S

∥y − x∥.

When S = ∅, we set dist(x, S) = +∞ for all x ∈ H.

Let us recall a few definitions concerning subdifferential calculus [4]. Recall that for
f : H → R be a proper lower semicontinuous function, the domain of f is defined through

dom f := {x ∈ H : f(x) < +∞}.

Definition 2.1. Let f : H → R be a proper lower semicontinuous function.

(i) For each x ∈ dom f , the Fréchet subdifferential of f at x, written as ∂̂f(x), is the set
of vectors u ∈ H which satisfy

lim inf
y ̸=x y→x

f(y) − f(x) − ⟨u, y − x⟩
∥y − x∥

≥ 0.

If x /∈ dom f , we set ∂̂f(x) = ∅.

(ii) The limiting-subdifferential, or simply the subdifferential for short, of f at x ∈ dom f ,
written as ∂f(x), is defined as

∂f(x) :=
{
u ∈ H : ∃ xn → x, f(xn) → f(x), un ∈ ∂̂f(xn) → u

}
.

Remark 2.2. From Definition 2.1, we can find that

(i) The above definition implies ∂̂f(x) ⊆ ∂f(x) for each x ∈ H, where the first set is
closed and convex while the second one is only closed.

(ii) Let (xn, un) ∈ Graph ∂f be a sequence that converges to (x, u). By the definition of
∂f , if f(xn) converges to f(x) as n → +∞, then (x, u) ∈ Graph ∂f .
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(iii) A necessary condition for x ∈ H to be a local minimizer of f is that x is a critical
point, that is,

0 ∈ ∂f(x).

(iv) If f : H → R is proper lower semicontinuous and h : H → R is continuously differen-
tiable, then for any x ∈ dom f , ∂(f + h)(x) = ∂f(x) + ∇h(x).

Definition 2.3 (Kurdyka- Lojasiewicz property [5]). Let f : H → R be a proper lower
semicontinuous function. For −∞ < η1 < η2 ≤ +∞, set

[η1 < f < η2] := {x ∈ H : η1 < f(x) < η2}.

We say that function f has the Kurdyka- Lojasiewicz (KL) property at x̄ ∈ dom ∂f if there
exist η ∈ (0,+∞], a neighborhood U of x̄ and a continuous concave function ϑ : [0, η) → R+

such that

(i) ϑ(0) = 0;

(ii) ϑ is C1 on (0, η);

(iii) for all s ∈ (0, η), ϑ′(s) > 0;

(iv) for all x in U ∩ [f(x̄) < f < f(x̄) + η], the Kurdyka- Lojasiewicz inequality holds, i.e.,

ϑ′(f(x) − f(x̄))dist(0, ∂f(x)) ≥ 1.

Definition 2.4. (Kurdyka- Lojasiewicz function [5]) Denote θη be the set of functions which
satisfy the above definitions (i), (ii) and (iii). If f satisfies the KL property at each point of
dom ∂f , then f is called a KL function.

Remark 2.5. One can easily check the Kurdyka- Lojasiewicz property is automatically
satisfied at any noncritical point x̄ ∈ dom f [5].

Lemma 2.6 (Uniformized KL property [8]). Let Ω be a compact set and let f : H → R be
a proper lower semicontinuous function. Assume that f is constant on Ω and satisfies the
KL property at each point of Ω. Then, there exist ε > 0, η > 0 and ϑ ∈ θη such that for any
x̄ ∈ Ω and all x in the following intersection:

{x ∈ H : dist(x,Ω) < ε} ∩ [f(x̄) < f(x) < f(x̄) + η],

one has,
ϑ′(f(x) − f(x̄))dist(0, ∂f(x)) ≥ 1.

The Moreau envelope function and proximal operator are fundamental for introducing
DiPGA and conducting its convergence analysis. Thus, we recall their definitions and sum-
marize their basic properties. Let f : H → R be a proper convex lower semicontinuous
function. Given v ∈ H and λ > 0, the Moreau envelope function efλ and the proximal

operator proxf
λ are defined respectively as

efλ(v) := inf

{
f(x) +

1

2λ
∥x− v∥2 : x ∈ H

}
and

proxf
λ(v) := arg min

{
f(x) +

1

2λ
∥x− v∥2 : x ∈ H

}
. (2.1)
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Proposition 2.7 (Proximal behavior [25]). Let f : H → R be a proper lower semicontinuous

function with infH f > −∞. Then, for every λ ∈ (0,+∞), the set proxfλ(v) is nonempty and

compact. In addition, efλ(v) is finite and depends continuously on (v, λ).

Remark 2.8. Let λ > 0 and f : H → R be proper convex lower semicontinuous. The set
proxf

λ(v) is a singleton and the proximal point is characterised by the following inequality
[7],

f(x) ≥ f(proxf
λ(v)) +

1

λ
⟨x− proxf

λ(v), v − proxf
λ(v)⟩.

The following lemma for smooth functions is very useful for the convergence analysis
[17].

Lemma 2.9. Let h : G → R be a continuous differentiable function and gradient ∇h is
Lipschitz continuous with the modulus L > 0, then for any x, y ∈ G,

|h(y) − h(x) − ⟨∇h(x), y − x⟩| ≤ L

2
∥y − x∥2 .

3 Problem Statement

Let G and H be real finite-dimensional Hilbert spaces. Let g : H → R and h : G → R be
proper convex lower semicontinuous functions. Let φ : H → R be a convex differentiable
function with L1 Lipschitz continuous gradient for some L1 > 0, and let K : H → G be a
linear mapping and K∗ : G → H be its adjoint. In this paper, we consider the following
optimization problem:

min
x∈H

P (x) := g(x) + φ(x) − h(Kx). (3.1)

Its Toland dual problem [29, 30] can be described as:

min
y∈G

D(y) := h∗(y) − (g + φ)∗(K∗y). (3.2)

Furthermore, the primal-dual problem corresponding to (3.1) and (3.2) is given by

min
x∈H,y∈G

Φ(x, y) := g(x) + φ(x) + h∗(y) − ⟨y,Kx⟩, (3.3)

where Φ : H×G → R is proper lower semicontinuous.

Let us give some relations between the problem (3.1), (3.2) and (3.3).

Proposition 3.1. (i) (3.1), (3.2) and (3.3) have a same optimal value.

(ii) For all x ∈ H and y ∈ G, then

Φ(x, y) ≥ P (x) and Φ(x, y) ≥ D(y).

(iii) Let x̄ ∈ H be a solution of (3.1). Then 0 ∈ ∂g(x̄) + ∇φ(x̄) − ∂(h ◦K)(x̄).

(iv) Let ȳ ∈ G be a solution of (3.2). Then 0 ∈ ∂h∗(ȳ) − ∂ ((g + φ)∗ ◦K∗) (ȳ).
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(v) Let (x̄, ȳ) ∈ H × G be a solution of (3.3). Then x̄ is a solution of (3.1), and ȳ is a
solution of (3.2). Furthermore, the following inclusion relations hold:

K∗ȳ ∈ ∂g(x̄) + ∇φ(x̄), (3.4)

Kx̄ ∈ ∂h∗(ȳ). (3.5)

Proof. (i) Applying the Fenchel-Moreau theorem [7] to h, we have

inf{g(x) + φ(x) − h(Kx) | x ∈ H}
= inf {g(x) + φ(x) − h∗∗(Kx) | x ∈ H}
= inf {g(x) + φ(x) − sup {⟨y,Kx⟩ − h∗(y) | y ∈ G} | x ∈ H}
= inf {g(x) + φ(x) + h∗(y) − ⟨y,Kx⟩ | x ∈ H, y ∈ G}
= inf {h∗(y) − sup {⟨x,K∗y⟩ − (g + φ)(x) | x ∈ H} | y ∈ G}
= inf {h∗(y) − (g + φ)∗ (K∗y) | y ∈ G} .

(ii) From the definition of the conjugate function, we know that for any x ∈ H and y ∈ G,

g(x) + φ(x) − h(Kx) = g(x) + φ(x) − h∗∗(Kx)

= g(x) + φ(x) − sup {⟨Kx, ỹ⟩ − h∗(ỹ) | ỹ ∈ G}
≤ g(x) + φ(x) − ⟨Kx, y⟩ + h∗(y).

The other inequality is verified by an analogous calculation.
(iii) By definition, it is trivial [27].
(iv) The proof of this statement is analogous with (iii).
(v) Let (x̄, ȳ) be a solution of (3.3). It is worth noting that the optimal values of (3.1), (3.2)
and (3.3) must be finite if such a solution exists. Fixed ȳ ∈ H, the function Φ(x, ȳ) is convex
and takes a minimum at x̄. Thus

0 ∈ ∂g(x̄) + ∇φ(x̄) −K∗ȳ.

(3.4) follows directly. The same argument works for the function Φ(x̄, y) and implies

0 ∈ ∂h∗(ȳ) −Kx̄.

According to Young-Fenchel inequality [7], we know the following equality from (3.4) and
(3.5),

h∗(ȳ) + h(Kx̄) = ⟨ȳ, Kx̄⟩,

(g + φ)∗ (K∗ȳ) + (g + φ)(x̄) = ⟨x̄,K∗ȳ⟩ .

Therefore, by subtracting these equalities,

(g + φ)(x̄) − h(Kx̄) = h∗(ȳ) − (g + φ)∗ (K∗ȳ)

= h∗(ȳ) − sup {⟨x,K∗ȳ⟩ − g(x) − φ(x) | x ∈ H}
≤ h∗(ȳ) + g(x̄) + φ(x̄) − ⟨x̄,K∗ȳ⟩ .

Since (x̄, ȳ) is a solution of (3.3), by (i), we have P (x̄) = inf P (x) = Q(ȳ).
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Definition 3.2. (Critical points [28]) We denote the set of critical points (x̄, ȳ) ∈ H × G
of the function Φ, which satisfy the inclusions (3.4) and (3.5), by crit Φ. The set of critical
points of the objective function P is defined by

crit P := {x ∈ H : ∂(h ◦K)(x) ∩ (∂g(x) + ∇φ(x)) ̸= ∅} ,

and similarly the set of critical points of the objective function D is denoted by

crit D := {y ∈ G : ∂ ((g + φ)∗ ◦K∗) (y) ∩ ∂h∗(y) ̸= ∅} .

Remark 3.3. From Definition 3.2, we know the following results.

(i) If (x̄, ȳ) ∈ H×G is a critical point of Φ, then

K∗ȳ ∈ K∗∂h(Kx̄) ∩ (∂g(x̄) + ∇φ(x̄)), (3.6)

Kx̄ ∈ K∂(g + φ)∗(K∗ȳ) ∩ ∂h∗(ȳ). (3.7)

(ii) Since K∗∂h(Kx) ⊆ ∂(h ◦ K)(x) and K∂(g + φ)∗ (K∗y) ⊆ ∂ ((g + φ) ◦K∗) (y), we
know that if (x̄, ȳ) ∈ H×G is a critical point of the objective function Φ, then x̄ is a
critical point of P and ȳ is a critical point of D.

4 DiPGA and its Convergence Analysis

We propose the following double-inertial proximal gradient algorithm (DiPGA) iterative
scheme for difference-of-convex programming.

Algorithm 1: Double-inertial proximal gradient algorithm.

Step 1. Choose starting point (x0, x̄0, y0, ȳ0) ∈ H×H×G×G, x̄0 = x0, ȳ0 = y0. Take
α1, β1, α2, β2 ∈ [0, 1) and γ > 0, µ > 0.
Step 2. For each n = 0, 1, · · ·, {(xn, yn)}n∈N is generated as follows:
Compute

xn+1 = proxγg (xn + γK∗ȳn − γ∇φ(x̄n) + β1 (xn − x̄n−1)) , (4.1)

x̄n+1 = xn+1 + α1(xn+1 − x̄n). (4.2)

Compute
yn+1 = proxµh∗ (yn + µKx̄n+1 + β2 (yn − ȳn−1)) , (4.3)

ȳn+1 = yn+1 + α2(yn+1 − ȳn). (4.4)

Remark 4.1. (i) If α1 = α2 = 0, then DiPGA reduces to inertial proximal algorithm
[20]. It should be noted that the inertial proximal algorithm is also a special case of
iPALM [22]. Specially, we take the Gauss-Seidel type inertial scheme in DiPGA, i.e., the
inertial step is performed whenever x− or y− subproblem is updated. Correspondingly,
iPALM takes the Jacobian type inertial scheme and the inertial step can be iterated in
parallel.

(ii) If α1 = β1 and α2 = β2, then DiPGA reduces to a Gauss-Seidel type inertial proximal
alternating linearized minimization algorithm [13].
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4.1 Some preparations

First, we introduce some useful notations in the whole process as follows:

zn := (xn, yn), z̄n := (x̄n, ȳn) and ẑn := (xn, yn, x̄n, ȳn).

Lemma 4.2. Let {ẑn}n∈N be the sequence generated by DiPGA. Then we have

Φ(xn+1, yn+1) + M1 ∥xn+1 − x̄n+1∥2 + M2 ∥yn+1 − ȳn+1∥2

≤ Φ(xn, yn) + M3 ∥xn − x̄n∥2 + M4 ∥yn − ȳn∥2 ,
(4.5)

with

M1 =
1

2γα2
1

− L1

2α2
1

− 1 + α2

2α2
1

− 1

2α2
1

, M2 =
1

2µα2
2

− α2
1∥K∥2

2α2
2

,

M3 =
1

2γ
+

(α1 − β1)2

2γα2
1

+
1

2α1
,

M4 =
1

2µ
+

(1 + α1)∥K∥2

2
+

(α2 − β2)2

2µα2
2

+
α2
1∥K∥2

2α2
,

where L1 is the Lipschitz constant of ∇φ.
Proof. By the definition of the proximal operator given in (2.1) and the iterative step (4.1),
we know

xn+1 = argmin
x∈H

{g(x) +
1

2γ
∥x− x̄n − γK∗ȳn

+ γ∇φ(x̄n) + (α1 − β1)(xn − x̄n−1)∥2}.
(4.6)

The optimality condition of (4.6) is, for any x ∈ H,

g(x) − g(xn+1) +
1

γ
⟨x− xn+1, xn+1 − x̄n − γK∗ȳn + γ∇φ(x̄n) + (α1 − β1)(xn − x̄n−1)⟩ ≥ 0.

Particularly, taking x = xn,

g(xn+1) − g(xn) ≤ ⟨xn − xn+1,∇φ(x̄n) −K∗ȳn⟩ +
α1 − β1

γ
⟨xn − xn+1, xn − x̄n−1⟩

+
1

γ
⟨xn − xn+1, xn+1 − x̄n⟩

≤ ⟨xn − xn+1,∇φ(x̄n) −K∗ȳn⟩ +
α1 − β1

γ
⟨xn − xn+1, xn − x̄n−1⟩

+
1

2γ
∥xn − x̄n∥2 −

1

2γ
∥xn+1 − x̄n∥2 −

1

2γ
∥xn+1 − xn∥2 ,

(4.7)

where the second inequality dues to the relation

⟨a− b, c− d⟩ =
1

2
(∥a− d∥2 − ∥a− c∥2) +

1

2
(∥b− c∥2 − ∥b− d∥2).

Similarly, using (2.1) and the iterative step (4.3),

yn+1 = argmin
y∈G

{h∗(y) +
1

2µ
∥y − ȳn − µKx̄n+1 + (α2 − β2)(yn − ȳn−1)∥2}.
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Particularly, taking y = yn,

h∗(yn+1) − h∗(yn) ≤ ⟨yn − yn+1,−Kx̄n+1⟩ +
α2 − β2

µ
⟨yn − yn+1, yn − ȳn−1⟩

+
1

2µ
∥yn − ȳn∥2 −

1

2µ
∥yn+1 − ȳn∥2 −

1

2µ
∥yn+1 − yn∥2 .

(4.8)

On the other hand, using the smoothness and convexity of φ, we have

φ(xn+1) − φ(x̄n) ≤ ⟨∇φ(x̄n), xn+1 − x̄n⟩ +
L1

2
∥xn+1 − x̄n∥2 , (4.9)

φ(x̄n) − φ(xn) ≤ ⟨∇φ(x̄n), x̄n − xn⟩. (4.10)

Adding (4.7), (4.8), (4.9) and (4.10) to get

g(xn+1) + φ(xn+1) + h∗(yn+1) − g(xn) − φ(xn) − h∗(yn)

≤ ⟨xn − xn+1,∇φ(x̄n) −K∗ȳn⟩ +
α1 − β1

γ
⟨xn − xn+1, xn − x̄n−1⟩ +

L1

2
∥xn+1 − x̄n∥2

+
1

2γ
∥xn − x̄n∥2 −

1

2γ
∥xn+1 − x̄n∥2 −

1

2γ
∥xn+1 − xn∥2 + ⟨∇φ(x̄n), xn+1 − xn⟩

+ ⟨yn − yn+1,−Kx̄n+1⟩ +
α2 − β2

µ
⟨yn − yn+1, yn − ȳn−1⟩

+
1

2µ
∥yn − ȳn∥2 −

1

2µ
∥yn+1 − ȳn∥2 −

1

2µ
∥yn+1 − yn∥2 .

Using the definition of Φ, we obtain

Φ(xn+1, yn+1) ≤ Φ(xn, yn) + ⟨xn − xn+1,−K∗ȳn⟩ + ⟨yn − yn+1,−Kx̄n+1⟩

− ⟨yn+1,Kxn+1⟩ + ⟨yn,Kxn⟩ +
L1

2
∥xn+1 − x̄n∥2

+
1

2γ
∥xn − x̄n∥2 −

1

2γ
∥xn+1 − x̄n∥2 −

1

2γ
∥xn+1 − xn∥2

+
1

2µ
∥yn − ȳn∥2 −

1

2µ
∥yn+1 − ȳn∥2 −

1

2µ
∥yn+1 − yn∥2

+
|α1 − β1|

2s1γ
∥xn − x̄n−1∥2 +

|α1 − β1|s1
2γ

∥xn − xn+1∥2

+
|α2 − β2|

2s2µ
∥yn − ȳn−1∥2 +

|α2 − β2|s2
2µ

∥yn − yn+1∥2 ,

(4.11)

where s1 > 0, s2 > 0. From (4.2), we obtain

x̄n+1 − xn+1 = α1(xn+1 − x̄n) = α1(xn+1 − xn) + α1(xn − x̄n).

Thus,

∥xn+1 − x̄n∥2 =
1

α2
1

∥x̄n+1 − xn+1∥2 ,

and

∥xn+1 − xn∥2 =
1

α2
1

∥(x̄n+1 − xn+1) − α1(xn − x̄n)∥2

=
1

α2
1

∥x̄n+1 − xn+1∥2 + ∥xn − x̄n∥2 −
2

α1
⟨x̄n+1 − xn+1, xn − x̄n⟩

≤1 + α1

α2
1

∥x̄n+1 − xn+1∥2 +
1 + α1

α1
∥xn − x̄n∥2 ,

(4.12)
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where the last inequality follows from Cauchy-Schwarz and Young inequalities.

Similarly, using (4.4) we have

∥yn+1 − ȳn∥2 =
1

α2
2

∥ȳn+1 − yn+1∥2 ,

and

∥yn+1 − yn∥2 ≤ 1 + α2

α2
2

∥ȳn+1 − yn+1∥2 +
1 + α2

α2
∥yn − ȳn∥2 . (4.13)

On the other hand, for any s3 > 0 and s4 > 0, we have

⟨Kxn −Kxn+1,−ȳn⟩ + ⟨yn − yn+1,−Kx̄n+1⟩ − ⟨yn+1,Kxn+1⟩ + ⟨yn,Kxn⟩
= ⟨K(x̄n+1 − xn+1), yn+1 − yn⟩ + ⟨K(xn − xn+1), yn − ȳn⟩

≤ ∥K∥2

2s3
∥x̄n+1 − xn+1∥2 +

s3
2
∥yn+1 − yn∥2 +

∥K∥2 s4
2

∥xn+1 − xn∥2 +
1

2s4
∥yn − ȳn∥2 .

(4.14)

Combining (4.11), (4.12), (4.13) with (4.14) yields

Φ(xn+1, yn+1) ≤ Φ(xn, yn)

+

(
1

2γ
+

(1 + α1)(|α1 − β1|s1 − 1)

2α1γ
+

|α1 − β1|
2s1γα2

1

+
(1 + α1) ∥K∥2 s4

2α1

)
∥xn − x̄n∥2

+

(
1

2µ
+

(1 + α2)(|α2 − β2|s2 − 1)

2α2µ
+

1

2s4
+

|α2 − β2|
2s2µα2

2

+
(1 + α2)s3

2α2

)
∥yn − ȳn∥2

−

(
1 − (1 + α1)(|α1 − β1|s1 − 1)

2γα2
1

− L1

2α2
1

− ∥K∥2

2s3
− (1 + α1) ∥K∥2 s4

2α2
1

)
∥xn+1 − x̄n+1∥2

−
(

1

2µα2
2

− (1 + α2)(|α2 − β2|s2 − 1)

2µα2
2

− (1 + α2)s3
2α2

2

)
∥yn+1 − ȳn+1∥2 .

(4.15)

Take s1 =
1

|α1 − β1|
, s2 =

1

|α2 − β2|
, s3 =

α2
1 ∥K∥2

1 + α2
and s4 =

1

(1 + α1) ∥K∥2
, we know

Φ(xn+1, yn+1) ≤ Φ(xn, yn) +

(
1

2γ
+

(α1 − β1)2

2γα2
1

+
1

2α1

)
∥xn − x̄n∥2

−
(

1

2γα2
1

− L1

2α2
1

− 1 + α2

2α2
1

− 1

2α2
1

)
∥xn+1 − x̄n+1∥2

+

(
1

2µ
+

(1 + α1) ∥K∥2

2
+

(α2 − β2)2

2µα2
2

+
α2
1 ∥K∥2

2α2

)
∥yn − ȳn∥2

−

(
1

2µα2
2

− α2
1 ∥K∥2

2α2
2

)
∥yn+1 − ȳn+1∥2 .

(4.16)

It can be seen that (4.5) follows immediately from (4.16).

Remark 4.3. Let ϵ > 0 be a real number for which

s = (1 − ϵ) − (α2
1 + (α1 − β1)2)(1 + ϵ) > 0, t = (1 − ϵ) − (α2

2 + (α2 − β2)2)(1 + ϵ) > 0.
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(i) If

δ1 =
(L1 + 2 + α2)(α2

1 + (α1 − β1)2)

2α2
1s

+
1

2α1s
,

1

γ
= 2 + L1 + α2 + 2(1 + ϵ)α2

1δ1, (4.17)

then M1 = (1 + ϵ)δ1 and M3 = (1 − ϵ)δ1.

(ii) If

δ2 =
α2
1∥K∥2(α2

2 + (α2 − β2)2)

2α2
2t

+
(1 + α1)∥K∥2

2t
+

α2
1∥K∥2

2α2t
,

1

µ
= α2

1∥K∥2 + 2(1 + ϵ)α2
2δ2, (4.18)

then M2 = (1 + ϵ)δ2 and M4 = (1 − ϵ)δ2.

Equipped with the above results, we construct a function S : H×G×H×G → R,

S(x, y, x̄, ȳ) = Φ(x, y) + δ1 ∥x− x̄∥2 + δ2 ∥y − ȳ∥2 .

Lemma 4.4. Take the parameters γ, µ according to (4.17) and (4.18) respectively as shown
in Remark 4.3. Suppose Φ is assumed to be bounded below. Let {ẑn}n∈N be the sequence
generated by DiPGA. Then the following statements hold.

(i) The sequence {S(ẑn)}n∈N is nonincreasing and in particular,

ρ1

(
∥zn − z̄n∥2 + ∥zn+1 − z̄n+1∥2

)
≤ S(ẑn) − S(ẑn+1), (4.19)

where ρ1 = ϵmin{δ1, δ2}.

(ii) We have
+∞∑
n=0

∥zn − z̄n∥2 < +∞,

which means that limn→+∞ ∥zn − z̄n∥ = 0, and hence limn→+∞ ∥zn+1 − zn∥ = 0.

Proof. (i) Take ρ1 = ϵmin{δ1, δ2}, then the conclusion follows immediately from Lemma
4.2 and Remark 4.3.
(ii) Since Φ is assumed to be bounded below, S is also bounded below. From (i), we know
{S(ẑn)}n∈N is nonincreasing, hence it converges to some real number S̄.

Let N be a positive integer. Summing (4.19) from n = 0 to N − 1 we get

N−1∑
n=0

(
∥zn − z̄n∥2 + ∥zn+1 − z̄n+1∥2

)
≤ 1

ρ1
(S(ẑ0) − S(ẑN )).
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According to Remark 4.3, it is easy to check that ρ1 is inf-bounded. Taking limit as N →
+∞, we obtain

+∞∑
n=0

(
∥zn − z̄n∥2 + ∥zn+1 − z̄n+1∥2

)
≤ 1

ρ1
(S(ẑ0) − S̄) < +∞.

Hence,
∑+∞

n=0 ∥zn − z̄n∥2 < +∞, which deduces that limn→+∞ ∥zn − z̄n∥ = 0.

From (4.12) and (4.13), we have

+∞∑
n=0

∥xn+1 − xn∥2 < +∞,

and
+∞∑
n=0

∥yn+1 − yn∥2 < +∞.

So we can easily get

+∞∑
n=0

∥zn+1 − zn∥2 =

+∞∑
n=0

(
∥xn+1 − xn∥2 + ∥yn+1 − yn∥2

)
< +∞,

which deduces that limn→+∞ ∥zn+1 − zn∥ = 0.

Lemma 4.5. Take the parameters γ, µ according to (4.17) and (4.18) respectively as shown
in Remark 4.3. Let {ẑn}n∈N be the sequence generated by DiPGA. For all n ≥ 0, define

An+1 = (An+1
x , An+1

y , An+1
x̄ , An+1

ȳ ),

where

An+1
x =

x̄n − xn+1

γ
+ ∇φ(xn+1) −∇φ(x̄n) −K∗yn+1 + K∗ȳn

+ 2δ1(xn+1 − x̄n+1) +
β1 − α1

γ
(xn − x̄n−1),

An+1
y =

ȳn − yn+1

µ
+ Kx̄n+1 −Kxn+1 + 2δ2(yn+1 − ȳn+1) +

β2 − α2

µ
(yn − ȳn−1),

An+1
x̄ = 2δ1(x̄n+1 − xn+1),

An+1
ȳ = 2δ2(ȳn+1 − yn+1).

Then An+1 ∈ ∂S(ẑn+1) and

∥An+1∥ ≤ ρ2(∥z̄n+1 − zn+1∥ + ∥z̄n − zn∥),

where ρ2 =
√

2 max

{
1 + L1γ

α1γ
+ ∥K∥ + 4δ1,

1 + µ∥K∗∥
α2µ

+ 4δ2,
|β1 − α1|

α1γ
,
|β2 − α2|

α2µ

}
.
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Proof. The first order optimality conditions of (4.1) and (4.3) yield

0 ∈ ∂g(xn+1) +
1

γ
(xn+1 − x̄n − γK∗ȳn + γ∇φ(x̄n) + (α1 − β1)(xn − x̄n−1)) ,

0 ∈ ∂h∗(yn+1) +
1

µ
(yn+1 − ȳn − µKx̄n+1 + (α2 − β2)(yn − ȳn−1)).

Consider the function S(x, y, x̄, ȳ) = Φ(x, y) + δ1∥x − x̄∥2 + δ2∥y − ȳ∥2. By the general
calculation of the subdifferential [25] and Remark 2.2 (iii), we obtain

∂xS(x, y, x̄, ȳ) = ∂g(x) + ∇φ(x) −K∗y + 2δ1(x− x̄),
∂yS(x, y, x̄, ȳ) = ∂h∗(y) −Kx + 2δ2(y − ȳ),
∂x̄S(x, y, x̄, ȳ) = 2δ1(x̄− x),
∂ȳS(x, y, x̄, ȳ) = 2δ2(ȳ − y).

Then we get that An+1 ∈ ∂S(ẑn+1). Moreover,

∥∥An+1
x

∥∥ ≤ 1

α1γ
∥xn+1 − x̄n+1∥ +

L1

α1
∥xn+1 − x̄n+1∥

+ ∥K∗∥ ∥yn+1 − ȳn∥ + 2δ1 ∥xn+1 − x̄n+1∥ +
|β1 − α1|

α1γ
∥xn − x̄n∥

= (
1 + L1γ

α1γ
+ 2δ1) ∥xn+1 − x̄n+1∥ +

∥K∗∥
α2

∥yn+1 − ȳn+1∥ +
|β1 − α1|

α1γ
∥xn − x̄n∥ ,

and∥∥An+1
y

∥∥ ≤ 1

α2µ
∥yn+1 − ȳn+1∥ + ∥K∥ ∥xn+1 − x̄n+1∥ + 2δ2 ∥yn+1 − ȳn+1∥

+
|β2 − α2|

α2µ
∥yn − ȳn∥

= (
1

α2µ
+ 2δ2) ∥yn+1 − ȳn+1∥ + ∥K∥ ∥xn+1 − x̄n+1∥ +

|β2 − α2|
α2µ

∥yn − ȳn∥ .

Thus we can get∥∥An+1
∥∥ ≤

∥∥An+1
x

∥∥+
∥∥An+1

y

∥∥+
∥∥An+1

x̄

∥∥+
∥∥An+1

ȳ

∥∥
≤ (

1 + L1γ

α1γ
+ ∥K∥ + 4δ1) ∥xn+1 − x̄n+1∥ + (

1 + µ∥K∗∥
α2µ

+ 4δ2) ∥yn+1 − ȳn+1∥

+
|β1 − α1|

α1γ
∥xn − x̄n∥ +

|β2 − α2|
α2µ

∥yn − ȳn∥

≤ ρ2(∥z̄n+1 − zn+1∥ + ∥z̄n − zn∥).

This completes the proof.

4.2 Convergence analysis of DiPGA

The following result summarizes several properties of the cluster point set. Let ẑ∗ :=
(x∗, y∗, x∗, y∗) be a cluster point of the sequence {ẑn}. The cluster point set of {ẑn} is
denoted by Ω∗.
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Lemma 4.6. Take the parameters γ, µ according to (4.17) and (4.18) respectively as shown
in Remark 4.3. The sequence generated by DiPGA is denoted as {ẑn}n∈N, which is assumed
to be bounded. Then the following assertions hold.

(i) Ω∗ is a nonempty compact set, and

lim
n→+∞

dist(ẑn,Ω
∗) = 0. (4.20)

(ii) Ω∗ ⊆ crit S.

(iii) The function S is constant on Ω∗.

Proof. (i) First, it is clear that the set of cluster points of a bounded sequence is nonempty.
Set Ω = Ω∗. Observe that Ω can be viewed as an intersection of compact sets

Ω =
⋂
q∈N

⋃
n≥q

{ẑn},

so it is also compact. Moreover, assume (4.20) does not hold. In this case, there exist
an ε > 0 and a subsequence {ẑnk

}k∈N of {ẑn}n∈N with dist(ẑnk
,Ω∗) > ε for all k ≥ 0.

However, the cluster point of this subsequence is also an element of Ω∗. This contradicts
the assumption that dist(ẑnk

,Ω∗) > ε for all k ≥ 0.
(ii) Let ẑ∗ ∈ Ω∗, then there exists a subsequence {ẑnk

}k∈N of {ẑn}n∈N converging to ẑ∗. So
we have x̄nk−1 → x∗ as k → +∞. Note that Lemma 4.4 implies

lim
k→+∞

∥xnk
− x̄nk−1∥ = 0.

From the iterative step (4.1), we have

xn+1 ∈ argmin
x∈H

{
g(x) +

1

γ
⟨γ∇φ(x̄n) − γK∗ȳn + (α1 − β1)(xn − x̄n−1), x− x̄n⟩

+
1

2γ
∥x− x̄n∥2

}
.

(4.21)

Take x = x∗ in (4.21), we get

g(xn+1) + ⟨xn+1 − x̄n,∇φ(x̄n) −K∗ȳn − β1 − α1

γ
(xn − x̄n−1)⟩ +

1

2γ
∥xn+1 − x̄n∥2

≤ g(x∗) + ⟨x∗ − x̄n,∇φ(x̄n) −K∗ȳn − β1 − α1

γ
(xn − x̄n−1)⟩ +

1

2γ
∥x∗ − x̄n∥2 .

Choosing n = nk − 1 leads to

g(xnk
) + ⟨xnk

− x̄nk−1,∇φ(x̄nk−1) −K∗ȳnk−1⟩

+⟨xnk
− x̄nk−1,−

β1 − α1

γ
(xnk−1 − x̄nk−2)⟩ +

1

2γ
∥xnk

− x̄nk−1∥2

≤ g(x∗) + ⟨x∗ − x̄nk−1,∇φ(x̄nk−1) −K∗ȳnk−1⟩

+⟨x∗ − x̄nk−1,−
β1 − α1

γ
(xnk−1 − x̄nk−2)⟩ +

1

2γ
∥x∗ − x̄nk−1∥2 .
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By taking the limit superior above as k → +∞, we obtain

lim sup
k→+∞

g(xnk
) ≤g (x∗) + lim sup

k→+∞

(
⟨x∗ − x̄nk−1,−

β1 − α1

γ
(xnk−1 − x̄nk−2)⟩

+ ⟨x∗ − x̄nk−1,∇φ(x̄nk−1) −K∗ȳnk−1⟩ +
1

2γ
∥x∗ − x̄nk−1∥2

)
,

(4.22)

where using the facts that the boundedness of the sequence {zn}n∈N and γ defined as (4.17),
the continuity of ∇φ and limk→+∞ ∥xnk

− x̄nk−1∥ = 0. Hence (4.22) reduces to

lim sup
k→+∞

g(xnk
) ≤ g(x∗). (4.23)

Similarly, we have

lim sup
k→+∞

h∗(ynk
) ≤ h∗(y∗). (4.24)

On the other hand, by the lower semicontinuity of g and h∗, we get

g(x∗) ≤ lim inf
k→+∞

g(xnk
), h∗(y∗) ≤ lim inf

k→+∞
h∗(ynk

). (4.25)

In view of (4.23), (4.24) and (4.25), we can obtain that g(xnk
) → g(x∗) and h∗(ynk

) → h∗(y∗)
as k → +∞. Hence,

lim
k→+∞

S(ẑnk
) = lim

k→+∞
{g(xnk

) + h∗(ynk
) + φ(xnk

) − ⟨ynk
,Kxnk

⟩

+δ1 ∥xnk
− x̄nk

∥2 + δ2 ∥ynk
− ȳnk

∥2
}

= g(x∗) + h∗(y∗) + φ(x∗) − ⟨y∗,Kx∗⟩
= S(ẑ∗).

Then following from Lemma 4.4 (ii) and Lemma 4.5, we know that An ∈ ∂S(ẑn) and An → 0
as n → +∞. The closeness of ∂S implies that 0 ∈ ∂S(ẑ∗). Thus ẑ∗ is a critical point of S.
(iii) Take an arbitrary point ẑ∗ ∈ Ω∗, then there exists a subsequence {ẑnk

}k∈N converging
to ẑ∗ as k → +∞. Besides, the sequence S(ẑnk

) converges to S(ẑ∗) and {S(ẑn)}n∈N is
nonincreasing. Thus we have limn→+∞ S(ẑn) = S(ẑ∗) independent of ẑ∗. Hence S is
constant on Ω∗.

Remark 4.7. If one of the following statements is true,

(i) The objective function Φ is coercive.

(ii) The lower level sets of Φ are bounded.

then the sequence {ẑn}n∈N generated by DiPGA is bounded.

Remark 4.8. Take the parameters γ, µ according to (4.17) and (4.18) respectively as shown
in Remark 4.3. The sequence generated by DiPGA is denoted as {ẑn}n∈N, which is assumed
to be bounded. Then similar to Lemma 4.6, one can deduce that every cluster point of
{zn}n∈N is also a critical point of Φ.

We are now ready for proving the main result of the paper.
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Theorem 4.9. Suppose that Φ is a KL function and take the parameters γ, µ according to
(4.17) and (4.18) respectively as shown in Remark 4.3. The sequence generated by DiPGA
is denoted as {ẑn}n∈N, which is assumed to be bounded. Then

+∞∑
n=0

∥zn+1 − zn∥ < +∞,

and {zn}n∈N converges to a critical point of Φ.

Proof. As Lemma 4.6 (iii),
lim

n→+∞
S(ẑn) = S(ẑ∗).

We consider the following two cases.
(i) If there exists an integer n′ for which S(ẑn′) = S(ẑ∗). Rearranging terms of (4.19), for
any n > n′, we have

ρ1 ∥zn+1 − z̄n+1∥2 ≤ S(ẑn) − S(ẑn+1) ≤ S(ẑn′) − S(ẑ∗) = 0.

So, we have zn+1 = z̄n+1 for any n > n′. Associated with (4.12) and (4.13), it follows that
zn+1 = zn for any n > n′ and the assertion holds.
(ii) Now we assume S(ẑn) > S(ẑ∗) for all n ≥ 0. Since limn→+∞ S(ẑn) = S(ẑ∗), it follows
that for any η > 0, there exists a nonnegative integer n0 such that S(ẑn) < S(ẑ∗) + η for
all n ≥ n0. From (4.20), we know that limn→+∞ dist(ẑn,Ω

∗) = 0. This means that for
any ε > 0, there exists a positive integer n1 such that dist(ẑn,Ω

∗) < ε for all n ≥ n1.
Consequently, for all n > l := max{n0, n1},

dist(ẑn,Ω
∗) < ε, S(ẑ∗) < S(ẑn) < S(ẑ∗) + η.

Since Ω∗ is nonempty compact set and S is constant on Ω∗, applying Lemma 2.6, we deduce
that for any n > l,

ϑ′(S(ẑn) − S(ẑ∗))dist(0, ∂S(ẑn)) ≥ 1.

From Lemma 4.5, we get that

ϑ′(S(ẑn) − S(ẑ∗)) ≥ 1

ρ2(∥z̄n − zn∥ + ∥z̄n−1 − zn−1∥)
=

1

ρ2(Gn + Gn−1)
, (4.26)

where Gn = ∥z̄n − zn∥ . On the other hand, from the concavity of ϑ, we get that

ϑ(S(ẑn) − S(ẑ∗)) − ϑ(S(ẑn+1) − S(ẑ∗)) ≥ ϑ′(S(ẑn) − S(ẑ∗))(S(ẑn) − S(ẑn+1))

≥ ρ1G
2
n

ρ2(Gn + Gn−1)
.

(4.27)

For convenience, we define

∆n = ϑ(S(ẑn) − S(ẑ∗)) − ϑ(S(ẑn+1) − S(ẑ∗)).

From (4.27), we obtain

G2
n ≤ 2ρ2

ρ1
∆n × 1

2
(Gn + Gn−1).

Using the fact that 2
√
ξη ≤ ξ + η for all ξ, η ≥ 0, we infer

2Gn ≤ 2

√
2ρ2
ρ1

∆n × 1

2
(Gn + Gn−1) ≤ 2ρ2

ρ1
∆n +

1

2
(Gn + Gn−1). (4.28)
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So using inequality (4.28), we can obtain the fact that for all j ≥ 1,

j∑
i=1

Gi ≤
1

2
(G0 −Gj) +

2ρ2
ρ1

[ϑ(S(ẑ1) − S(ẑ∗)) − ϑ(S(ẑj+1) − S(ẑ∗))]. (4.29)

Then from (4.29), we can easily get

j∑
i=1

Gi ≤
1

2
G0 +

2ρ2
ρ1

ϑ(S(ẑ1) − S(ẑ∗)) < +∞.

Hence we have
+∞∑
n=0

∥z̄n − zn∥ < +∞.

From (4.12) and (4.13),
∑+∞

n=1 ∥xn+1 − xn∥ < +∞ and
∑+∞

n=1 ∥yn+1 − yn∥ < +∞ hold. It
is obvious that

+∞∑
n=0

∥zn+1 − zn∥ < +∞, (4.30)

and the sequence {zn}n∈N is a Cauchy sequence and hence is convergent. Now the result
follows immediately from Remark 4.8, that is, {zn}n∈N converges to a critical point of Φ.

5 Application to Image Processing

Image processing problems [6, 33] can be conveniently described as follows. Given a matrix
L : H → H denoting space-invariant blurring linear operator, a noise ν, and b ∈ Rm

+

the vector of measurement. The goal is to reconstruct the original gray-scale picture of
the size m × n pixels x ∈ H := Rmn with entries in [0,1], where 0 represents pure black
and 1 represents pure white, from the noisy measurement b. Often these problems can be
represented as a minimize problem as follows,

min
x∈H

µ

2
∥Lx− b∥2 + J(Dx), (5.1)

where µ > 0 is a regularization parameter, D : Rmn → R2mn is the discrete gradient
operator and J : H → G is a regularization function. There are several choices of the
function J proposed by [14, 15, 33], all of which are commonly to characterize the inherent
properties of Dx, such as sparsity. In this paper, we choose Zhang penalty[33].

The Zhang penalty is defined by

Zhangα(z) =

2mn∑
j=1

gα(zj),

where α > 0 and

gα(zj) =

{
1

α
|zj | if |zj | < α,

1 if |zj | ≥ α.

=
1

α
|zj | −

{
0 if |zj | < α,
1

α
(|zj | − α) if |zj | ≥ α.

Denoting the part after the curly brace as hα(zj) and hα(z) :=
2mn∑
j=1

hα(zj).
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Now the model (5.1) can be written as a DC optimization problem as follows:

min
µ

2
∥Lx− b∥2 +

1

α
∥Dx∥1 − hα(Dx). (5.2)

It can be seen that (5.2) is consistent with (3.1) when g(x) =
1

α
∥Dx∥1 , φ(x) = µ

2 ∥Lx− b∥2

and h(Kx) = hα(Dx). Hence, DiPGA can be applied to the model (5.2).

5.1 The concrete solution method of subproblem

In order to apply DiPGA to the problem (5.2), we have to solve the following optimization
subproblem

inf { 1

2γ
∥x− b∥2 + ∥Dx∥1 | x ∈ H}, (5.3)

where γ > 0, b ∈ H and ∥ · ∥1 denotes (as usual) the sum of the absolute values. It can be
seen that (5.3) is equivalent to the following problem,

min ∥y∥1 +
1

2γ
∥x− b∥2

s.t. Dx = y.
(5.4)

We can solve (5.4) by alternating direction method of multipliers (ADMM). Its augmented
Lagrange function is

Lβ(x, y, λ) = ∥y∥1 +
1

2γ
∥x− b∥2 − λT (Dx− y) +

β

2
∥Dx− y∥2,

where λ is Lagrange multiplier and β is the penalty parameter. Apply ADMM to (5.4) and
generate the iterates via

xk+1 = argmin
x∈H

{ 1

2γ
∥x− b∥2 − (λk)T (Dx− yk) +

β

2
∥Dx− yk∥2},

yk+1 = argmin
y∈H

{∥y∥1 − (λk)T (Dxk+1 − y) +
β

2
∥Dxk+1 − y∥2},

λk+1 = λk − β(Dxk+1 − yk+1).

5.2 Numerical results

Numerical experiment has been implemented in MATLAB on a PC with Inter Core i5 8265U
and 8GB of RAM.

As follows, we test three images. Their names are Lean, Cameraman and Chart, and
their sizes are 256×256, 512×512 and 1024×1024 respectively. We add the Gaussian white
noise with mean 0 and standard deviation 0.01 for the three images. We solve the model
(5.2) by double-proximal gradient algorithm (DPGA) and DiPGA. We choose initial value
x0 = b, pick v0 ∈ ∂h(Kx0) and compute the parameters µ and γ by invoking Remark 4.3.
The original clean images, the input noisy images and the recovered images by DPGA and
DiPGA are shown in Figure 1.

Signal-to-noise ratio (SNR), which is typically considered as a measurement of denoising
quality, defined as

SNR = 20log10

∥u∗∥2
∥u− u∗∥2

,



DOUBLE-INERTIAL PROXIMAL GRADIENT ALGORITHM FOR DC PROGRAMMING 433

Figure 1: From left to right: original clean image, noisy image with Gaussian noise, image
denoising using DPGA, image denoising using DiPGA. Test problem Cameraman (the first
row), 512 × 512; test problem Chart (the second row), 1024 × 1024; test problem Lean (the
third row), 256 × 256.

where u∗ and u represent the original and the recovered images respectively. Table 1 reports
the number of iteration, CPU time and the SNR values of DPGA and DiPGA with respect
to the three test images. Obviously, both DPGA and DiPGA are effective for solving the
above model. With respect to the number of iteration, CPU time and the value of SNR,
DiPGA is the winner. Hence, we know that DiPGA is feasible significant.

Figure 2 shows the development of the SNR values when choosing different parameters
in DiPGA. It shows the efficiency of DiPGA perform better when the values of parameters
are larger. It is worth noting that DiPGA reduces to GiPALM when α1 = β1 and α2 = β2.
It is obvious that algorithm DiPGA has an advantage over algorithm GiPALM in terms of
iteration.

Figure 3 shows the evolution of SNR of the test problem Cameraman and problem Lean.
We run the test problem for 50 iterations and plot the evolution of SNR using DPGA and
DiPGA.

6 Conclusions

In this paper, we proposed the improved optimization algorithm called the double-inertial
proximal gradient algorithm (DiPGA). This algorithm combined the double-proximal gra-
dient algorithm with the inertial scheme. It was applicable to solve the difference-of-convex
programming. Suppose that the underlying function has the Kurdyka- Lojasiewicz property
and the parameters satisfy certain conditions, the global convergence results of DiPGA can
be established. In addition, we applied the proposed algorithm to image processing model
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Figure 2: Development in signal-to-noise ration versus iterations. Left: problem Camera-
man. Right: problem Lean.

Figure 3: Plot of SNR versus iterations. Left: problem Cameraman. Right: problem Lean.

Table 1: Comparison between DPGA and DiPGA for test problems

Algs. \ Images
Cameraman Chart Lean

Iter. CPU(s) SNR Iter. CPU(s) SNR Iter. CPU(s) SNR

DPGA 28 3.6719 23.9586 41 6.4844 27.0971 38 4.3281 26.9921

DiPGA 17 2.9531 24.0006 25 5.9219 27.1044 22 3.7500 27.0052

to show its efficiency.
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