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to errors with different shapes and tails. Related research includes the use of Huber loss
together with the adaptive lasso penalty [25], the regularized approximate quadratic estima-
tor with an ℓ1-penalty (RA Lasso) [10], ℓ1-norm regularized vector Huber regression model
with linear equality and inequality constraints [30], and ℓ0-norm regularized vector Huber
regression model [1]. Among them, ℓ1- or ℓ0-penalty is used to control the inherited sparsity
of the estimator, thereby alleviating the over-fitting issue and/or achieving data dimension
reduction. Moreover, there is now a substantial body of work on low-rank matrix Huber
regression, in which the nuclear norm regularization is often adopted to control the low-rank
structure of the coefficient matrix. For instance, Elsener and van de Geer [9] have studied
the nuclear norm regularized single response Huber regression model and proved the sharp
Oracle inequality of risk function, Chen et al. [7] have proposed a low-rank elastic-net regu-
larized multivariate Huber regression model and designed an accelerated proximal gradient
algorithm.

To sum up, little is known about statistical theory as well as efficient algorithms for esti-
mation of the low-rank tensor Huber regression models, although vector and matrix methods
have been extensively studied. However, those works on vector or matrix models cannot be
extended to tackle tensor models directly. On the one hand, the method of unfolding ten-
sor into vector or matrix will break down the spatial structure, and result in the loss of
information. On the other hand, it will lead to the dimensionality disaster and then the
over-fitting phenomenon, especially for small sample size data [31, 44]. This motivates us to
establish robust low-rank tensor Huber regression for original tensor data which is friendly
to outliers/heavy tailed errors.

Focusing on the low-rank tensor regression, numerous researchers have adopted nuclear
norm regularization techniques to enhance the low-rank structure, see, e.g., [23, 28, 29, 37].
It is worth pointing out that the existing statistical properties and numerical algorithms
along this line are mostly concentrated on ordinary least squares. For example, Raskutti
et al. [36] have deduced the statistical upper bound for the low-rank least squares tensor
model with the nuclear norm penalty, and Li et al. [26] have investigated the estimation
error upper bound for the proposed tensor response linear model with the nuclear-ℓ1-norm
regularization and developed an M-ADMM-based algorithm to achieve low-rank and sparse
tensor recovery. Little work has addressed the low-rank robust tensor regression.

This motivates us to build the nuclear norm regularized tensor Huber regression (NNTH)
model for robust estimation. The resulting NNTH estimator will be shown to possess nice
risk bound theoretically. In addition, to compute NNTH estimator, an efficient tensor alter-
nating direction method of multipliers (ADMM) algorithm is designed. The contributions
of this paper include: (1) An NNTH model is proposed to deal with original tensor data
directly. This model not only preserves low-rank structure of tensor data, but also reduces
the negative impact of outliers. (2) The risk bound of the resulting estimator is established.
(3) An ADMM algorithm is designed which enjoys low computational complexity and global
convergence.

The remainder of the paper is organized as follows. In Section 2, the NNTH model is
introduced for the low-rank tensor regression with outliers/heavy-tailed errors. In Section
3, we establish the risk bound for the resulting NNTH estimator. In Section 4, we design an
ADMM-based algorithm to solve the proposed NNTH model, and analyze the convergence
as well as the computational complexity of the algorithm. Simulation studies and a real
data analysis are discussed in Section 5. A brief conclusion is drawn in Section 6. For
convenience, notation that will be used throughout the paper is listed in Table 1.
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Table 1: A list of notation.

:= Defined as
Rm The m-dimensional real vector space
Rm×q The m× q-dimensional real matrix space
RI1×···×IM The I1 × · · · × IM -dimensional real tensor space
Id The identity matrix of dimension d
M̄ The closure of subspace M
M⊥ The orthogonal complement of subspace M
⟨·, ·⟩ The inner product
⊗ The Kronecker product
∥ · ∥∗ The matrix/tensor nuclear norm
∥ · ∥ The matrix spectral norm
∥ · ∥∗∗ The dual norm of tensor ∥ · ∥∗
∥ · ∥F The Frobenius norm
∥ · ∥2 The Euclidean norm of vectors
∇f(·) The gradient of function f
∂f(·) The subdifferential of function f
∇2f(·) The Hessian matrix of function f
Proxβf (·) The proximal operator of f associated with a parameter β
[n] The index set {1, . . . , n}
vec(X) The column vector generated by stacking all columns of the matrix X
vtt(·) The inverse transformation of vec(·)
E(x) The expectation of random variable x
AT The transpose of the matrix A
B(d) The d-mode unfolding of the tensor B
foldd(B(d)) The inverse operation of B(d)

rank(B) The Tucker rank of tensor B
σ(A) The singular value of the matrix A
λmin(M) The minimum eigenvalue of square matrix M
λmax(M) The maximum eigenvalue of square matrix M
Pr(A) The probability of the occurrence of the event A
Pr(A|B) The probability of the event A under the precondition B
|A| The number of elements in set A
A×d B The d-mode product of the tensor A and the matrix B

2 Methodology

2.1 Tensor Basics

An Mth-order tensor X ∈ RI1×I2×···×IM is an M -way array consisting of entries xi1...iM

with each ij varying among 1, . . . , Ij for all j ∈ [M ]. Vectors and matrices are typical low
order tensors with M = 1 and M = 2, respectively. Some useful operations that transform
a tensor into a matrix or a vector are recalled. The operator vec(X ) stacks the entries of X
into a

∏
m Im dimensional column vector. The m-mode unfolding, termed as X(m), maps a

tensor X into a Im ×
∏

m′ ̸=m Im′ matrix. Define the inner product and the Frobenius norm
for tensors with symbols ⟨·, ·⟩, ∥ · ∥F , respectively, formulated by

⟨X ,Y⟩ :=
I1∑

i1=1

· · ·
IM∑

iM=1

xi1...iM yi1...iM ∈ R, ∥X∥F :=
√
⟨X ,X⟩,

for all X ,Y ∈ RI1×···×IM . The m-mode product of the tensor X with a matrix U ∈ RRm×Im ,
termed as X ×mU , yields a tensor Y ∈ RI1×I2×···×Rm×···×IM with its entries yi1i2...rm...iM =∑Im

im=1 Xi1i2...im...iMUrmim .



442 Y. WEI, ZI. LUO AND Y. CHEN

The Tucker decomposition is one of the most important decompositions for general high
order tensors. For a tensor X ∈ RI1×···×IM , there exists a tensor G ∈ Rr1×···×rM and M
matrices Um ∈ RIm×rm(m ∈ [M ]) (usually have orthogonal columns, i.e., UT

mUm = Irm ,m ∈
[M ]), such that

X = G ×1 U1 ×2 · · · ×M UM .

Introducing the Tucker rank of X , written as rank(X ), with definitional expression as the
vector (rank(X(1)), . . . , rank(X(M))), where each rank(X(m)) is called the m-rank of X .
Recall from [29] that the tensor nuclear norm is defined as

∥X∥∗ :=
1

M

M∑
m=1

∥X(m)∥∗. (2.1)

Declared by [42, Lemma 1], the dual norm of the nuclear norm is defined as

∥X∥∗∗ := inf
1
M (Y(1)+···+Y(M))=X

max
d=1,...,M

∥∥∥Y (d)
(d)

∥∥∥ , (2.2)

where Y
(d)
(d) is the d-mode unfolding of Y(d). Moreover, it has been shown that

∥X∥∗∗ ≤ 1

M

M∑
d=1

∥X(d)∥ ≤ max
d=1,...,M

∥X(d)∥. (2.3)

More tensor basics can be found in [22, 35].

2.2 Low Rank Regularized Tensor Huber Regression

Consider the tensor regression problem in which covariate tensors Xi ∈ RI1×I2×···×IM and
responses yi ∈ R are related by

yi = ⟨B,Xi⟩+ ϵi, ∀i ∈ [N ], (2.4)

where {Xi : i ∈ [N ]} are independent and identically distributed (i.i.d.) covariate tensors,
{ϵi : i ∈ [N ]} are i.i.d. errors, and B ∈ RI1×I2×···×IM is the unknown coefficient tensor. The
distributions of the random covariate tensor X and the random variable ϵ|X (the random
error conditioning on X ) are both assumed to have mean zero.

Outliers are frequently encountered in practical problems, as claimed by Hampel et al.
[14] that a general dataset contains about 1% − 10% or more outliers. Here, outliers re-
fer to the points inconsistent with the general behavior or characteristics of other points
in the sample space {yi : i ∈ [N ]} due to the external interference (see, e.g.,[14, 2]). Be-
sides the influence of outliers, the random error ϵ may be heavy-tailed, which means that
the moment generating function E{exp(tϵ)} = ∞ for all t > 0 [13]. Typical heavy-tailed
distributions include the LogNormal distribution, and the Weibull distribution with shape
parameter in (0, 1). Taking outliers and heavy-tailed errors into consideration, it is natural
to adopt the Huber loss function to estimate the coefficient tensor B based on observations
{(Xi, yi) : i ∈ [N ]}. The resulting optimization model is

min
B∈RI1×···×IM

1

N

N∑
i=1

hα(yi − ⟨B,Xi⟩),
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where hα is the Huber function defined as

hα(z) =

{
1
2 |z|

2, if |z| ≤ α,
α(|z| − 1

2α), otherwise.
(2.5)

Here, α > 0 is the robustification parameter that controls the blending of the quadratic
loss (bias) and the absolute loss (robustness) [18, 19]. To better illustrate the effect of the
Huber loss, the proximal operator of hα is analyzed. Recall from [3, Definition 12.23] that
the proximal operator of a function f : R → R, associated with a parameter β > 0, at point
x ∈ R, is defined by

Proxβf (x) = argmin
y∈R

{
βf(y) +

1

2
(y − x)2

}
. (2.6)

Direct manipulations lead to the following explicit formula of Proxβhα
.

Lemma 2.1. Given α, β > 0, and x ∈ R, we have

Proxβhα
(x) =


x− βα, if x > (1 + β)α,

x
β+1 , if |x| ≤ (1 + β)α,

x+ βα, otherwise.

The graph of Proxβhα is plotted in Figure 1 with various α at β = 3. As we can see,
the blue solid line(α = 0) refers to the case of the least squares loss, and the effect of graph
shrinkage is intensified with the increase of α.

Figure 1: Proxβhα(x) at β = 3.

It is worth mentioning that in the foregoing tensor regression model, the number of
parameters ΠM

d=1Id is often larger than the sample size N , and the resulting high-dimensional
setting inspires us to incorporate “sparsity” to further reduce the number of parameters of
interest. Here, the low-rankness based on tensor Tucker decomposition (see, e.g., [22]) is
adopted for sparsity characterization of the coefficient tensor B. The reasons for using low-
Tucker-rankness are three-fold. The first one is the tractability of Tucker decomposition,
using singular value decomposition on all unfolding matrices. The second one is the flexibility
of low-rankness, allowing different values of ranks along different modes. The third one is
the applicability of practical datasets, for instance, the application in neuroimaging analysis
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[27]. In such senses, the estimator of the low-rank regularized Huber regression can be solved
by

min
B∈RI1×···×IM

1

N

N∑
i=1

hα(yi − ⟨B,Xi⟩) + λ∥B∥∗. (2.7)

Here ∥B∥∗ is the tensor nuclear norm of B which serves as a convex surrogate of the Tucker
rank, and λ > 0 is the regularization parameter. Thus, the resulting approach is termed as
nuclear norm regularized tensor Huber regression (NNTH for short).

3 Risk Bounds

This section is devoted to the risk bound analysis of the NNTH estimator generated by
the optimal solution to problem (2.7). For convenience, we denote y = (y1, . . . , yN )T ∈ RN ,
X = (X1, . . . ,XN ) ∈ RI1×···×IM×N . Denote the true coefficient tensor by B∗, and the NNTH
estimator simply by B̂. Recall that the Huber regression coefficient tensor is given by

B∗
α ∈ argmin

B∈RI1×···×IM

E {hα(y − ⟨B,X⟩)} ,

where the expectation is taken over the regression errors. The statistical error ∥B̂ −B∗∥F is
then bounded by

∥B̂ − B∗∥F ≤ ∥B̂ − B∗
α∥F + ∥B∗

α − B∗∥F , (3.1)

where the first term on the right-hand side is the estimation error, and the other term is
the approximation error. In what follows, upper bounds of these two errors will be given so
as to arrive the risk bound of B̂. To proceed, some moment conditions on X and ϵ|X are
introduced as below, which are adopted from [10].

Condition 3.1. E{E(|ϵ|k|X )}2 ≤ Mk < ∞, for some k ≥ 2.

Condition 3.2. 0 < κl = λmin(E(A)) ≤ λmax(E(A)) = κu < ∞ with A = vec(X )vec(X )T .

Condition 3.3. For any V ∈ RI1×···×IM , ⟨X ,V⟩ is sub-Gaussian with parameter at most
κ2
0∥V∥2F , i.e., E{exp(t⟨X ,V⟩)} ≤ exp(t2κ2

0∥V∥2F /2), for any t ∈ R.

It is worth pointing out that Condition 3.1 is valid for most common distributions,
such as the normal distribution, the Weibull distribution and the LogNormal distribution.
Approximation error can be inferred from [10] by taking β∗

α = vec(B∗
α) and β∗ = vec(B∗)

as follows.

Theorem 3.4. Under Conditions 3.1–3.3 there is an absolute positive constant C1, such
that

∥B∗
α − B∗∥F ≤ C1

√
κuκ

−1
l (κk

0 +
√
Mk)α

1−k, (3.2)

where k, κu, κl, κ0, Mk are defined as in Conditions 3.1–3.3.

According to the expression on the right side of inequality in Theorem 3.4, when α → ∞,
the error ∥B∗

α − B∗∥F → 0, that is, B∗
α → B∗. Furthermore, this theorem also shows that if

the higher-order moment of error exists, the approximation error will decrease rapidly when
α increases.

As declared by Negahban et al. [32], the decomposability of the regularizer and the
restricted strong convexity (RSC) are two key properties for establishing a sharp convergence
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result for a regularizedM -estimator. Before embarking on the upper bound of the estimation
error ∥B̂ − B∗

α∥F , the d-mode decomposability in [42] is recalled as below.

Denote △̂ := B̂ − B∗
α ∈ RI1×···×IM . For each d ∈ [M ], let B∗

α(d) = UdSdV
T
d be the

condensed singular value decomposition of B∗
α(d) with Ud ∈ RId×rd and Vd ∈ R(

∏
d′ ̸=d Id′)×rd ,

where rd is the rank of B∗
α(d). Set

△̂′′
d =

(
IId − UdU

T
d

)
△̂(d)

(
I∏

d′ ̸=d Id′
− VdV

T
d

)
, and △̂′

d := △̂(d) − △̂′′
d , (3.3)

then
∥B∗

α(d) + △̂′′
d∥∗ = ∥B∗

α(d)∥∗ + ∥△̂′′
d∥∗. (3.4)

Together with the triangle inequality with respect to ∥ · ∥∗, we have

∥B̂∥∗ =
1

M

M∑
d=1

∥△̂′
d + △̂′′

d +B∗
α(d)∥∗ ≥ 1

M

M∑
d=1

(
−∥△̂′

d∥∗ + ∥△̂′′
d∥∗ + ∥B∗

α(d)∥∗
)
. (3.5)

Meanwhile, similar to [42, Lemma 2] for nuclear norm regularized tensor least squares esti-
mator, the NNTH estimator B̂ also possesses the following property.

Lemma 3.5. If λ ≥ 2∥∇Hα(B∗
α)∥∗∗, then rank

(
△̂′

d

)
≤ 2 rank

(
B∗

α(d)

)
for each d ∈ [M ],

and
∑M

d=1 ∥△̂′′
d∥∗ ≤ 3

∑M
d=1 ∥△̂′

d∥∗.

Proof. By mimicking the proof of [33, Lemma 1 (a)], we can obtain that for any d ∈ [M ],

rank
(
△̂′

(d)

)
≤ 2 rank

(
B∗

α(d)

)
, which indicates rank(△̂′) ≤ 2 rank (B∗

α). To derive the

second part, one has

−∥∇Hα(B∗
α)∥∗∗ · ∥△̂∥∗ ≤

〈
∇Hα(B∗

α), △̂
〉
≤ Hα

(
△̂+ B∗

α

)
−Hα (B∗

α)

≤ λ
(
∥B∗

α∥∗ − ∥B̂∥∗
)
≤ λ

M

M∑
d=1

(
∥△̂′

d∥∗ − ∥△̂′′
d∥∗
)

where the first inequality is from the Hölder inequality deduced from the dual norm, the
second inequality is from convexity of the Huber loss function, the third inequality is from
the optimality of B̂ to problem (2.7), and the last one is from (3.5). Along with λ ≥
2∥∇Hα(B∗

α)∥∗∗, the desired inequality follows readily from the triangle inequality ∥△̂(d)∥∗ ≤
∥△̂′

d∥∗ + ∥△̂′′
d∥∗. This completes the proof.

Define the following two constraint sets regarding to △,

C (△) := {△ ∈ RI1×···×IM : ∥△′′∥∗ ≤ 3∥△′∥∗}, and B(△) := {△ ∈ RI1×···×IM : ∥△∥F ≤ 1}.
(3.6)

Fan et al. [10] have proved that the vector Huber loss function satisfies RSC under some
conditions by using [32, Lemma 2]. This property can be extended to the tensor case.

Lemma 3.6. Suppose that Conditions 3.1− 3.3 hold, then the RSC condition

δHα(△,B) := Hα(B +△)−Hα(B)− ⟨∇Hα(B),△⟩ ≥ κH∥△∥2F − τH∥△∥2∗ (3.7)

holds for any tensor △ ∈ C (△) ∩ B(△) with κH = κ1

4 , τH = 8κ2
log(

∑M
d=1 Id)
N , where

κ1, κ2, c
′
1, c

′
2 are absolute positive constants.
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Lemma 3.6 shows that RSC holds with absolute constants that do not depend on α,
which makes a key role in the following theorem. Combining with the decomposability of
the nuclear norm and RSC of the Huber loss function, we can give an upper bound of the
estimation error as below.

Theorem 3.7. Under the conditions used in Lemmas 3.5 − 3.6 and ∥B∥∗ ≤ R1, there are
absolute positive constants C2 and C3 such that

∥B̂ − B∗
α∥F ≤

(
C2κ2R1N

−1log

(
M∑
d=1

Id

)
+ C3λ

)
κ−1
1 M−1

M∑
d=1

√
rd. (3.8)

Proof. Define a function F : RI1×···×IM → R,

F (△) = Hα(B∗
α +△)−Hα(B∗

α) + λ(∥B∗
α +△∥∗ − ∥B∗

α∥∗) (3.9)

Because of F (0) = 0, the error △̂ = B̂ − B∗
α satisfies F (△̂) ≤ F (0) = 0. Due to Lemma 3.6,

Cauchy-Schwarz inequality, triangle inequality, λ ≥ 2∥∇Hα(B∗
α)∥∗∗ and ∥B∥∗ ≤ R1,

F (△̂) ≥
〈
∇Hα(B∗

α), △̂
〉
+ κH∥△̂∥2F − τH∥△̂∥2∗ − λ∥△̂∥∗

≥ κH∥△̂∥2F −
(
2τHR1 +

3λ

2

)
∥△̂∥∗. (3.10)

From Lemma 3.5, we can get an upper bound of ∥△̂∥∗ by

∥△̂∥∗ ≤ 4∥△̂′∥∗ ≤ 4

M

M∑
d=1

√
2rd∥△̂′

(d)∥F ≤ 4∥△̂∥F
M

M∑
d=1

√
2rd.

Taking κH = κ1

4 and τH = 8κ2
log(

∑M
d=1 Id)
N , we obtain the desired assertion by (3.9) and

(3.10).
The following lemma will serve a more reasonable value of λ comparing to that in Lemma

3.5.

Lemma 3.8. If Condition 3.3 holds, then there are absolute constants C ′, c1, c2 > 0 for a
sample size N makes

Pr

C ′ακ0

√
Ij +

∏
j′ ̸=j Ij′

N
≥ 2∥∇Hα(B∗

α)∥∗∗

 ≥ 1− c1 exp

{
−c2

(
Ij +

∏
j′ ̸=j Ij′

N

)}
,

(3.11)
where j := argmin

d∈[M ]

∥X(d)∥, and Ij +
∏

j′ ̸=j Ij′ is the sum of rows and columns of ∥X(j)∥.

Proof. By invoking ∇Hα(B) = − 1
N

∑N
i=1 h

′
α (yi − ⟨B,Xi⟩) · Xi, (2.2) and (2.3), we can get

∇∥Hα(B∗
α)∥∗∗ ≤ 1

N

N∑
i=1

∥Xi(j) · h′
α(yi − ⟨B∗

α,Xi⟩)∥, (3.12)

where Xi(j) is the j-mode unfolding of Xi. Analog to the proof of [33, Lemma 3], let
Sm−1 := {u ∈ Rm|∥u∥2 = 1} denote the unit Euclidean sphere. The norm has the variational
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representation

∥Xi(j) · h′
α(yi − ⟨B∗

α,Xi⟩)∥ = sup
u∈SIj−1,v∈S

∏
j′ ̸=j

I
j′−1

uT
i X

T
i(j)h

′
α(yi − ⟨B∗

α,Xi⟩)vi

≤ sup
u∈SIj−1,v∈S

∏
j′ ̸=j

I
j′−1

|⟨Xi(j)ui, h
′
α(yi − ⟨B∗

α,Xi⟩)vi⟩|.(3.13)

Let N1 and N2 denote 1/4 coverings of SIj−1 and S
∏

j′ ̸=j Ij′−1, respectively. The coverage

numbers are |N1| ≤
(
1 + 2

1/4

)Ij
= 9Ij , |N2| ≤

(
1 + 2

1/4

)∏
j′ ̸=j Ij′

= 9
∏

j′ ̸=j Ij′ . We now claim

that

∇∥Hα(B∗
α)∥∗∗ ≤ 1

N

N∑
i=1

sup
u∈N1,v∈N2

|⟨Xi(j)ui, h
′
α(yi − ⟨B∗

α,Xi⟩)vi⟩|. (3.14)

Select u ∈ N1 ⊆ SIj−1 and v ∈ N2 ⊆ S
∏

j′ ̸=j Ij′−1. It can be calculated that

1∏
j′ ̸=j Ij′

〈
Xi(j)ui, h

′
α (yi − ⟨B∗

α,Xi⟩) vi
〉
=

1∏
j′ ̸=j Ij′

∏
j′ ̸=j Ij′∑
k=1

(
xT
i(j)kui

) (
vTi h

′
α (yi − ⟨B∗

α,Xi⟩)
)

and for any k = 1, . . . ,
∏

j′ ̸=j Ij′ ,

E
{(

xT
i(j)kui

) (
vTi h

′
α (yi − ⟨B∗

α,Xi⟩)
)}

= 0,
∣∣vTi h′

α (yi − ⟨B∗
α,Xi⟩)

∣∣ ≤ α.

It is known from [43, Theorem 2.6.3] that, for any t > 0, there exists an absolute constant
C1 > 0 such that

Pr

(∣∣∣∣∣ 1∏
j′ ̸=j Ij′

⟨Xi(j)ui, h
′
α (yi − ⟨B∗

α,Xi⟩) vi⟩

∣∣∣∣∣ ≥ t

∣∣∣∣∣Xi(j)

)
≤ 2 exp

−
C1

(∏
j′ ̸=j Ij′

)2
t2

α2∥Xi(j)ui∥22

 .

(3.15)

From Condition (3.3) and [43, Corollary 2.8.3], for any s > 0, there is an absolute
constant C2 > 0 which satisfies

Pr

(∣∣∣∣∣ 1∏
j′ ̸=j Ij′

∥∥Xi(j)ui

∥∥2
2
− 1∏

j′ ̸=j Ij′
E
{∥∥Xi(j)ui

∥∥2
2

}∣∣∣∣∣ ≥ s

)

≤ 2 exp

−C2

∏
j′ ̸=j

Ij′ ·min

(
s2

K4
,

s

K2

) ,

where K =
∥∥∥xT

i(j)ku
∥∥∥2
Ψ2

= κ2
0. Define event Γ(s) :=

{
1∏

j′ ̸=j Ij′

∥∥Xi(j)ui

∥∥2
2
≤ 2K + s

}
. Due

to

1∏
j′ ̸=j Ij′

∏
j′ ̸=j Ij′∑
k=1

E
{∥∥Xi(j)ui

∥∥2
2

}
= E

{(
xT
i(j)1ui

)2}
≤ 2K,
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under the condition of Γ(s), it can be obtained from the total probability formula that

Pr

(∣∣∣∣∣ 1∏
j′ ̸=j Ij′

〈
Xi(j)ui, h

′
α (yi − ⟨B∗

α,Xi⟩) vi
〉∣∣∣∣∣ ≥ t

)

≤ Pr

(∣∣∣∣∣ 1∏
j′ ̸=j Ij′

〈
Xi(j)ui, h

′
α (yi − ⟨B∗

α,Xi⟩) vi
〉∣∣∣∣∣ ≥ t

∣∣∣∣∣Γ(s)) + Pr(Γc(s)

)

≤ 2 · exp

−
C1

(∏
j′ ̸=j Ij′

)
t2

α2(2K + s)

+ 2 · exp
{
−
C2

∏
j′ ̸=j Ij′

K2
·min

(
s2

K2
, s

)}

≤ 2 · exp

−
C1

(∏
j′ ̸=j Ij′

)
t2

α2(K2 + 1 + s)

+ 2 · exp
{
−
C2

∏
j′ ̸=j Ij′

K2
·min

(
s2

K2 + 1
, s

)}
.

Take s =
√

C1

2C2

Kt
α , yielding

Pr

(∣∣∣∣∣ 1∏
j′ ̸=j Ij′

〈
Xi(j)ui, h

′
α(yi − ⟨B∗

α,Xi⟩)vi
〉∣∣∣∣∣ ≥ t

)

≤



4 · exp

−
C1

(∏
j′ ̸=j Ij′

)
t2

2α2(K2 + 1)

, t ≤
(
K +K−1

)
α

√
2C2

C1
,

4 · exp

−
√

C1C2

2

(∏
j′ ̸=j Ij′

)
t

Kα

, t >
(
K +K−1

)
α

√
2C2

C1
.

Furthermore, we can get

Pr (2∥∇Hα(B∗
α)∥∗∗ ≥ t)

≤ 9Ij+
∏

j′ ̸=j Ij′ ·
N∑
i=1

Pr

(∣∣〈Xi(j)ui, h
′
α(yi − ⟨B∗

α,Xi⟩)vi
〉∣∣ ≥ t

2

)

≤


4N · 9Ij+

∏
j′ ̸=j Ij′ · exp

− C1t
2

8α2(K2 + 1)
(∏

j′ ̸=j Ij′
)
, t ≤

(
K +K−1

)
α

√
2C2

C1
,

4N · 9Ij+
∏

j′ ̸=j Ij′ · exp

{
−
√

C1C2

8

t

Kα

}
, t >

(
K +K−1

)
α

√
2C2

C1
.

Take t = C ′ακ0

√
Ij+

∏
j′ ̸=j Ij′

N , when N ≥ C ′′
(
Ij +

∏
j′ ̸=j Ij′

)
, Pr (2∥∇Hα(B∗

α)∥∗∗ ≥ t) → 0,

where C ′ and C ′′ are absolute constants. That means, there are absolute constants c1, c2
making the following formula true

Pr

2∥∇Hα(B∗
α)∥∗∗ ≥ C ′ακ0

√
Ij +

∏
j′ ̸=j Ij′

N

 ≤ c1 exp

{
−c2

(
Ij +

∏
j′ ̸=j Ij′

N

)}
.

This completes the proof.
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From Lemma 3.8, we can get a reasonable value of λ, C ′ακ0

√
Ij+

∏
j′ ̸=j Ij′

N , which depends

on the parameters α, κ0 and

√
Ij+

∏
j′ ̸=j Ij′

N . Combining this value and Theorems 3.4 − 3.7
lead to the following main result.

Theorem 3.9. Under the conditions of Theorems 3.4 and 3.7, with λ = C ′ακ0

√
Ij+

∏
j′ ̸=j Ij′

N ,
we have the following bound

∥B̂ −B∗∥F ≤ C1
√
κuκ

−1
l

(
κk
0 +

√
Mk

)
α1−k +

(
C2κ2R1N

−1log

(
M∑
d=1

Id

)
+ C3λ

)
κ−1
1 M−1

M∑
d=1

√
rd

with high probability.

Remark 3.10. When α → ∞, problem (2.7) becomes the low-rank regularized least squares
regression, which has no approximation error. Theorem 3.7 implies that the upper bound
of ∥B̂ −B∗

α∥F is controlled by
∑M

d=1

√
rd, which is the same as that in [26, Theorem 1] with

s = 0 and αk = 1
M . And Theorem 3.9 also indicates that the estimation can be robustified

by choosing α if ϵ is heavy-tailed.

Remark 3.11. From the value of λ, it can be seen that λ is proportional to

√
Ij+

∏
j′ ̸=j Ij′

N .
So this value will become larger as the dimension of tensor data increases. It makes the
low-rank constraint effect of problem (2.7) stronger, so as to get a lower rank estimator to
achieve the purpose of data dimension reduction.

4 ADMM-Based Algorithm

Introducing auxiliary tensors Zd ∈ RI1×···×IM , ∀d ∈ [M ] and a vector t ∈ RN , problem (2.7)
can be equivalently rewritten as

min
B,{Zd}M

d=1,t

1

N

N∑
i=1

hα(ti) + λ · 1

M

M∑
d=1

∥Zd(d)∥∗,

s.t. B= Zd, ∀d ∈ [M ],
yi − ⟨B,Xi⟩= ti, ∀i ∈ [N ].

(4.1)

The augmented Lagrangian function associated with the problem (4.1) can be written as

Lρ

(
B, {Zd}Md=1, t; {Qd}Md=1, r

)
=

1

N

N∑
i=1

hα(ti) +
λ

M

M∑
d=1

∥Zd(d)∥∗ +
M∑
d=1

⟨Qd,Zd − B⟩+ ρ

2

M∑
d=1

∥Zd − B∥2F

+

N∑
i=1

ri (ti − yi + ⟨B,Xi⟩) +
ρ

2

N∑
i=1

(ti − yi + ⟨B,Xi⟩)2 ,
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where ρ > 0 is the augmented Lagrangian parameter, and {Qd}Md=1, r are Lagrangian mul-
tipliers. The iterative scheme of ADMM is described as:

Bk+1 = argmin
B

{
Lρ(B, {Zk

d }Md=1, t
k; {Qk

d}Md=1, r
k)
}
,

({
Zk+1

d

}M
d=1

, tk+1
)

= argmin
{Zd}M

d=1,t

{
Lρ(Bk+1, {Zd}Md=1, t; {Qk

d}Md=1, r
k)
}
,

Qk+1
d = Qk

d + τρ
(
Zk+1

d − Bk+1
)
, d ∈ [M ],

rk+1
i = rki + τρ

(
tk+1
i − yi + ⟨Bk+1,Xi⟩

)
, i ∈ [N ].

(4.2)

where τ > 0 is referred as the dual step size, with a typical choice τ = 1.618 which is
adopted in this paper. For the first subproblem in (4.2), by vectorizing all the tensors, e.g.,
xi = vec(Xi) and denote X = (x1, · · · , xM )T , we can get the following closed form solution

Bk+1 = vtt

((
XTX +MI

)−1

(
M∑
d=1

(
zkd +

qkd
ρ

)
−XT

(
tk − y +

rk

ρ

)))
, (4.3)

where zkd = vec(Zk
d ), q

k
d = vec(Qk

d) and vtt is the inverse operator of vec in the underlying
spaces. For any given d ∈ [M ], we can get the Zd-update by employing the singular value
thresholding in [6]

Zk+1
d = foldd

[
Prox λ

Mρ∥·∥∗

(
Bk+1

(d) −
Qk

d(d)

ρ

)]
. (4.4)

For any given i ∈ [N ], we can employ the proximal operator as described in Lemma 2.1 to
get the ti-update by

tk+1
i = Prox 1

Nρhα(·)

[
yi − ⟨Bk+1,Xi⟩ −

rki
ρ

]
. (4.5)

The framework of ADMM for solving problem (4.1) is then summarized in Algorithm 1.

Algorithm 1 ADMM for Solving Problem (4.1)
Input: The observations {(Xi, yi) : i ∈ [N ]} and parameters ρ, λ, τ , α.
Output: Bk.
Step 1. Initialize

(
B0, {Z0

d}Md=1, {t0i }Ni=1, {Q0
d}Md=1, {r0i }Ni=1

)
to be zero, and k = 0;

Step 2. Compute
(
Bk+1, {Zk+1

d }Md=1, {t
k+1
i }Ni=1, {Q

k+1
d }Md=1, {r

k+1
i }Ni=1

)
by (4.3), (4.4), (4.5)

and (4.2), respectively;
Step 3. Set k = k + 1. If some stopping criterion is met, then stop; Otherwise, go to

Step 2.

Stopping Criterion. Applying the classical convex optimization theory, we adopt the
relative primal infeasibility and relative dual infeasibility, defined as below, to measure the
quality of the approximate solution:

ηP := max {ηZ1 , . . . , ηZM
, ηr1 , . . . , ηrN , ηQ1 , . . . , ηQM

, ηt1 , . . . , ηtN } ,

ηD :=

∥∥∥−∑M
d=1 Qk

d +
∑N

i=1 r
k
i Xi

∥∥∥
F

1 + ∥Bk∥F
,
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where

ηZd
:=

∥∥∥Zk
d − foldd

[
Prox λ

M ∥·∥∗

(
Zk
d(d) −Qk

d(d)

)]∥∥∥
F

1 +
∥∥Zk

d

∥∥
F

, ηQd
:=

∥∥Zk
d − Bk

∥∥
F

1 +
∥∥Qk

d

∥∥
F

, for d ∈ [M ],

and

ηri :=

∣∣ 1
N∇hα

(
tki
)
+ rki

∣∣
1 +

∣∣tki ∣∣ , ηti :=

∣∣tki − yi + ⟨Bk,Xi⟩
∣∣

1 +
∣∣rki ∣∣ , for i ∈ [N ].

It is reasonable to terminate Algorithm 1 if max{ηp, ηD} ≤ ε, where ε ≥ 0 is a prescribed
accuracy parameter.

Global Convergence. The global convergence of Algorithm 1 follows readily from the
classical two-block ADMM for convex program, since we can treat B and

(
{Zd}Md=1, t

)
as

these two blocks. The proximal ADMM scheme (see, e.g., [12]) can also be employed to ap-
proximately update Bk to reduce the computational cost from (4.3). The global convergence
in this regime is also guaranteed by [12, Appendix B.2].

Computational Complexity. Let n =
∏M

d=1 Id. The main computation in each iteration
of Algorithm 1 comes from the updates for B, {Zd}Md=1 and

{
t, {Qd}Md=1, r

}
, which are of

order O
(
n3
)
, O
(
Mnmin

(
Id,
∏

d′ ̸=d I
′
d

))
and O ((M +N)n), respectively. Hence, the per-

iteration computational complexity of Algorithm 1 is of order O(n3) in high-dimensional
regression settings, dominated by the matrix inverse in (4.3). Fortunately, as one can see,
the involved matrix inversion remains the same in the entire iteration process, which can be
computed before the main loop. Additionally, the conjugate gradient (CG) method can be
called to handle the underlying linear system for an approximate update for B.

5 Numerical Experiments

In this section, we conduct numerical experiments to examine the effectiveness of the NNTH
estimator and to evaluate the performance of our proposed ADMM algorithm. All numerical
experiments are implemented in MATLAB (R2018b), running on a laptop with Intel Core
i5 CPU (1.867GHz) and 8 GB RAM.

5.1 Simulation Studies

We randomly generate the ground-truth coefficient tensor B∗ = b · C ×1 M1 ×2 M2 ×3 M3,
where C ∈ Rr1×r2×r3 , M1 ∈ RI1×r1 , M2 ∈ RI2×r2 , M3 ∈ RI3×r3 are with element-wise i.i.d.
standard Gaussian distribution, and b > 0 is the signal strength. The responses are generated
by yi = ⟨B,Xi⟩+εi, i ∈ [N ], where Xi ∈ RI1×I2×I3 has standard normal entries, and random
errors εi’s are generated from the following three distributions: (i) normal errors with mean
0 and variance 4 (N(0, 4)); (ii) log-normal distribution(LogNormal), ε = exp(1+5Z), where
Z is the standard normal distribution; (iii) Weibull distribution with shape parameter 0.2
and scale parameter 0.7.

Set I1 = 20, I2 = 10, I3 = 30 with a variety of low Tucker ranks ((r1, r2, r3) =
(1, 1, 2), (2, 1, 3), (2, 2, 2)) and signal strengths (b = 1, 2, 5). For each scenario, our simulated
data consist of a training set of 1000 samples and an independent testing set of 100 samples.
Hyperparameters (λ, α) in NNTH estimation will be determined via 5-fold cross validation on
the training set over a grid of (λ, α)’s with varying λ ∈ {10−2, 5×10−2, 10−1, · · · , 5×102, 103}
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and α ∈ {0.5, 1.345, 2, 3.45, 5} (The choice of α = 1.345 was observed to gain promising per-
formance in [19]). Parameters with the minimum mean square error (MSE) on the verifica-

tion set will be chosen. Here MSE of a given estimator B̂ is defined by MSE =
∥B̂−B∗∥2

F

I1×I2×I3
. The

parameter λ in all comparing approaches in the sequel will be chosen in the same fashion.
Comparisons to other approaches including the nuclear norm regularized tensor least

squares regression (NNTLS) [37], Lasso [40] and Elastic Net(ENet) [46] are carried out. Each
simulation is based on 50 independent replications, and the average results are depicted
in Tables 2, 3 and 4, with the best results highlighted in bold and the second-best ones
underlined.

With normal errors which are symmetric and light-tailed, Table 2 indicates that, the
NNTLS estimator reasonably gains the best performance due to the low-rank promoting
term by tensor nuclear norm regularization, and the least squares loss tailored for normal
errors. NNTH reaches very competitive performances to NNTLS, and outperform Lasso and
ENet with efforts on entrywise sparsity.

With asymmetric and heavy-tailed errors, e.g., the Weibull and LogNormal errors, Tables
3 and 4 illustrate the significant superiority of NNTH in terms of MSE for all the testing
instances. In particular, Table 4 shows that NNTH estimator has the greatest advantage
in dealing with LogNormal distribution error models, e.g., the estimation errors of NNTH
are nearly 1/10000 or even 1/100000 of those generated by NNTLS. In both cases, NNTLS,
Lasso, ENet and Ridge estimators do not perform well owing to the sensitivity of secondary
loss to outliers. This illustrates the merit of our proposed tensor Huber regression model.
It is noteworthy that the accuracy of NNTH estimators for all testing cases are around
decreases with the increase of the signal strength or the Tucker rank complexity

∑M
d=1

√
rd.

Such a phenomenon can be explained by Theorem 3.9.
As for all testing instances shown in Tables 2, 3 and 4, NNTH estimator achieves the

MSE mostly of order 10−3, which reflects a promisingly robust behavior comparing to other
approaches in the simulation studies.

Table 2: The performance of methods for normal error model.

r=(1,1,2) r=(2,1,3) r=(2,2,2)

NNTH NNTLS Lasso ENet NNTH NNTLS Lasso ENet NNTH NNTLS Lasso ENet

b=1 1.49e-3 1.48e-3 1.98e-3 1.69e-3 2.14e-3 2.12e-3 2.23e-3 2.18e-3 2.18e-3 2.17e-3 2.28e-3 2.27e-3
b=2 2.87e-3 2.85e-3 3.01e-3 2.97e-3 3.84e-3 3.82e-3 4.16e-3 3.94e-3 4.55e-3 4.51e-3 4.79e-3 4.67e-3
b=5 8.16e-3 8.10e-3 8.66e-3 8.55e-3 7.78e-3 7.73e-3 8.11e-3 7.94e-3 1.15e-2 1.14e-2 1.19e-2 1.18e-2

Table 3: The performance of methods for Weibull error model.

Table 4: The performance of methods for LogNormal error model.
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5.2 Analysis of CIFAR-10 Dataset

In this subsection, we apply our model to classify the CIFAR-10 dataset [24], whose 3D data
size is 32 × 32× 3 (of total 3, 072 voxels). We randomly select five class pairs to do binary
classification. Without overlap, 100 samples are randomly selected from each class set for
model training and testing.

We randomly divide the two class datasets into training set (Xtraining, ytraining)
with 180 samples and test set (Xtest, ytest) with 20 samples. Firstly, the training set
(Xtraining, ytraining) is used to fit the model, and the estimator B̂training is obtained. Then
we use it to predict and classify on the test set. The classification accuracy (ACC) will be
adopted to measure the performance of our method and other comparing methods including
NNTLS [37], RBF-Linear algorithm [8], Lasso [40], ENet [46], and Ridge [16]. In order to
reduce the impact of data set segmentation as much as possible, we randomly segment the
data for 10 times and use 10-fold cross validation. We use the mean and variance of these 10
numerical results to reflect the effectiveness and robustness of all the methods. Performances
are summarized in Table 5 and Figure 2.

Table 5 shows the classification accuracy of all methods, with the best results highlighted
in bold and the second-best ones underlined. Among these six approaches, NNTH gives the
best classification accuracy in most cases, and the average accuracy of NNTH estimator
(77.70%) is 3.10% higher than the second-best NNTLS estimator (74.60%), both of which
outperform vector-based approaches including Lasso (69.60%), ENet (70.80%) and Ridge
(73.20%). Figure 2 shows boxplots of ACC for all methods, which indicates the robustness
and high accuracy of NNTH in handling 3D data classification. Some selected instances in
the test sets by NNTH is presented in Figure 3 where misclassified images are marked in
red boxes.

Table 5: Numerical results on the CIFAR-10 dataset.

Class pair NNTH NNTLS RBF-Linear Lasso ENet Ridge

‘airplane’, ‘automobile’
Avg(ACC) 86.50 83.00 54.60 80.50 83.50 81.00

Std(ACC) 0.0530 0.1085 0.0685 0.0832 0.0709 0.0810

‘cat’, ‘horse’
Avg(ACC) 66.50 65.00 54.00 58.00 63.50 59.50

Std(ACC) 0.1132 0.1269 0.0658 0.1418 0.1081 0.1066

‘airplane’, ‘truck’
Avg(ACC) 85.50 82.00 68.50 78.00 81.00 85.00

Std(ACC) 0.0497 0.0856 0.1226 0.0632 0.0568 0.0577

‘automobile’, ‘cat’
Avg(ACC) 72.50 71.50 73.50 71.50 69.00 72.00

Std(ACC) 0.0755 0.1029 0.0973 0.0474 0.1174 0.0753

‘cat’, ‘deer’
Avg(ACC) 77.50 71.50 64.00 60.00 57.00 68.50

Std(ACC) 0.0920 0.1055 0.0775 0.0972 0.1059 0.1510

Avg(ACC) 77.70 74.60 62.92 69.60 70.80 73.20

To summarize, the real data analysis confirms the applicability of Huber loss function,
and also shows that the tensor nuclear norm regularizer has a good ability of low-rank
structure modeling in 3D real data.
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Figure 2: The boxplots of ACC for the CIFAR-10 dataset.

Figure 3: Examples of image classification results by NNTH.
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6 Conclusions

In this paper, we have considered the nuclear norm regularized tensor Huber regression
(NNTH) method, which can effectively handle the tensor data with low-rank structure and
outliers/heavy-tailed errors. By virtue of decomposability of nuclear norm and restricted
strong convexity of Huber loss function, the upper bound of estimation error has been
established in the sense of Frobenius norm. An ADMM algorithm has been designed and
the numerical results have verified the effectiveness of the proposed NNTH method. Besides
the nuclear norm regularization for the tensor low-rankness, it would be of significance for
future research to develop the robust low-rank Huber tensor regression methods based on
tensor decomposition, such as Tucker decomposition [45, 27] and CANDECOMP/PARAFAC
(CP) decomposition [15, 39], for further dimension reduction.

References
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[5] P. Bühlmann and S. van de Geer, Statistics for High-Dimensional Data, Springer, New
York, 2011.

[6] J. Cai, E. J. Candès and Z. Shen, A singular value thresholding algorithm for matrix
completion, SIAM J. Optim. 20 (2010) 1956–1982.

[7] B. Chen, W. Zhai and Z. Huang, Low-rank elastic-net regularized multivariate Huber
regression model, Appl. Math. Model. 87 (2020) 571–583.

[8] C. Chen, K. Batselier, W. Yu and N. Wong, Kernelized support tensor train machines,
arXiv preprint arXiv:2001.00360v1, 2020.

[9] A. Elsener and S. van de Geer, Robust low-rank matrix estimation, Ann. Statist. 46
(2018) 3481–3509.

[10] J. Fan, Q. Li and Y. Wang, Estimation of high dimensional mean regression in the
absence of symmetry and light tail assumptions, J. R. Stat. Soc. Ser. B Stata. Methodol.
79 (2017) 247–265.

[11] X. Fang, K. Paynabar and N. Gebraeel, Image-based prognostics using penalized tensor
regression, IEEE Trans. Pattern Anal. Mach. Intell. 61 (2017) 369–384.

[12] M. Fazel, T. Pong, D. Sun and P. Tseng, Hankel matrix rank minimization with appli-
cations to system identification and realization, SIAM J. Matrix Anal. Appl. 34 (2013)
946–977.



456 Y. WEI, ZI. LUO AND Y. CHEN

[13] S. Foss, D. Korshunov and S. Zachary, An Introduction to Heavy-Tailed and Subexpo-
nential Distributions, New York: Springer, 2011.

[14] F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw and W.A. Stahel, Robust Statistics: The
Approach Based on Influence Functions, Wiley, New York, 1986.

[15] B. Hao, A. Zhang and G. Cheng, Sparse and low-rank tensor estimation via cubic
sketchings, IEEE Trans. Inf. Theory 66 (2020) 5927–5964.

[16] A.E. Hoerl and R.W. Kennard, Ridge regression: Biased estimation for nonorthogonal
problems, Technometrics 12 (2012) 55–67.

[17] M. Hou and B. Chaib-draa, Hierarchical Tucker tensor regression: Application to brain
imaging data analysis, in: IEEE International Conference on Image Processing (ICIP),
2015.

[18] P.J. Huber, Robust estimation of a location parameter, Ann. Math. Statist. 35 (1964)
73–101.

[19] P.J. Huber, Robust Statistics, Wiley, New York, 1981.

[20] C.M. Hurvich and C.-L. Tsai, Model selection for least absolute deviations regression
in small samples, Statist. Probabil. Lett. 9 (2008) 259–265.

[21] R.W. Koenker and G. Bassett, Regression quantile, Econometrica 46 (1978) 33–50.

[22] T.G. Kolda and B.W. Bader, Tensor decompositions and applications, SIAM Rev. 51
(2009) 455–500.

[23] D. Kong, B. An, J. Zhang and H. Zhu, L2RM: Low-rank linear regression models for
high-dimensional matrix responses, J. Amer. Statist. Assoc. 115 (2020) 403–424.

[24] A. Krizhevsky and G. Hinton, Learning multiple layers of features from tiny images,
Citeseer, Technical Report, 2009.

[25] S. Lambert-Lacroix and L. Zwald, Robust regression through the Huber’s criterion and
adaptive lasso penalty, Electron. J. Statist. 5 (2011) 1015–1053.

[26] X. Li, A. Wang, J. Lu and Z. Tang, Statistical performance of convex low-rank and
sparse tensor recovery, in: IAPR Asian Conference on Pattern Recognition, volume 1,
2017 pp. 524–529.

[27] X. Li, D. Xu, H. Zhou and L. Li, Tucker tensor regression and neuroimaging analysis,
Statist. Biosci. 10 (2018) 520–545.

[28] H. Lian, Learning rate for convex support tensor machines, IEEE Trans. Neur. Net.
Lear. Systems 32 (2021) 3755–3760.

[29] J. Liu, P. Musialski, P. Wonka and J. Ye, Tensor Completion for Estimating Missing
Values in Visual Data, IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013) 208–220.

[30] Y. Liu, P. Zeng and L. Lin, Degrees of freedom for regularized regression with Huber loss
and linear constraints, Statist. Pap., 2020. https://doi.org/10.1007/s00362-020-01192-2.

[31] H. Lu, K.N. Plataniotis and A.N. Venetsanopoulos. MPCA: Multilinear principal com-
ponent analysis of tensor objects, IEEE Trans. Neur. Net. 19 (2008) 18–39.



LOW-RANK TENSOR HUBER REGRESSION 457

[32] S.N. Negahban, P. Ravikumar, M.J. Wainwright and B. Yu, A unified framework for
high-dimensional analysis of M-estimators with decomposable regularizers, Statist. Sci.
27 (2010) 538–557.

[33] S.N. Negahban and M.J. Wainwright, Estimation of (near) low-rank matrices with noise
and high-dimensional scaling, Ann. Statist. 39 (2011) 1069–1097.

[34] A. Novikov, D. Podoprikhin, A. Osokin and D. Vetrov, Tensorizing neural networks,
in: International Conference on Neural Information Processing Systems (NIPS), 2015
pp. 442–450.

[35] L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, t SIAM Press,
2017.

[36] G. Raskutti, M. Yuan and H. Chen, Convex regularization for high-dimensional mul-
tiresponse tensor regression, Ann. Statist. 47 (2019) 1554–1584.

[37] X. Song and H. Lu, Multilinear regression for embedded feature selection with applica-
tion to fMRI analysis, in: AAAI Conference on Artificial Intelligence, volume 17, 2017
pp. 2562–2568.

[38] Q. Sun, Wen. Zhou and J. Fan, Adaptive Huber regression, J. Amer. Statist. Assoc.
115 (2020) 254–265.

[39] W.W. Sun and L. Li, STORE: Sparse tensor response regression and neuroimaging
analysis, J. Mach. Lear. Res. 18 (2017) 1–37.

[40] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B
Stata. Methodol. 73(1996) 273–282.

[41] R. Tomioka, K. Hayashi and H. Kashima, Estimation of low-rank tensors via convex
optimization, arXiv preprint arXiv:1010.0789, 2010.

[42] R. Tomioka, T. Suzuki, K. Hayashi and H. Kashima, Statistical performance of convex
tensor decomposition, in: Advances in Neural Information Processing Systems (NIPS),
2011 pp. 972–980.

[43] R. Vershynin, High-Dimensional Probability: An Introduction with Applications in
Data Science, Cambridge University Press, volume 47, 2018.

[44] S. Yan, D. Xu, Q. Yang and L. Zhang, Multilinear discriminant analysis for face recog-
nition, IEEE Trans. Image Process. 16 (2007) 212–220.

[45] A. Zhang, Y. Luo, G. Raskutti and M. Yuan, ISLET: Fast and optimal low-rank tensor
regression via importance sketching, SIAM J. Math. Data Sci. 2 (2020) 444–479.

[46] H. Zou and T. Hastie, Regularization and variable selection via the elastic net, J. R.
Stat. Soc. Ser. B Stata. Methodol. 67 (2005) 301–320.

Manuscript received 22 May 2021
revised 11 August 2021

accepted for publication 27 September 2021



458 Y. WEI, ZI. LUO AND Y. CHEN

Yangxin Wei
Department of Mathematics
Beijing Jiaotong University
Beijing, 100044, China
E-mail address: 19121637@bjtu.edu.cn

Ziyan Luo
Department of Mathematics
Beijing Jiaotong University
Beijing, 100044, China
E-mail address: zyluo@bjtu.edu.cn

Yang Chen
Department of Mathematics
Beijing Jiaotong University
Beijing, 100044, China
E-mail address: 17121619@bjtu.edu.cn


