
2022



460 Y. XU AND S. LI

have made some contribution to this subject with respect to approximate solution mappings,
recently. The main reason is that under different orderings, solution mappings of PSOPs are
different, namely, when the solution mapping under Pareto orderings is Hölder continuous,
the solution mapping under upper or lower set orderings may not be Hölder continuous.
So, we need to introduce new assumptions different from those under Pareto orderings to
characterize Hölder continuity under upper and lower set orderings.

Motivated by literatures [11, 12, 6, 13, 16], we consider a class of parametric set opti-
mization problems, where the objective function and constraint function are perturbed by
different parameters. Firstly, since improvement sets are helpful to unify various approxi-
mate solution sets, we define the solution mappings by upper and lower set orderings with
respect to improvement sets. This class of solution mappings coincide with the effective
solution mappings under Pareto orderings when set optimization problems reduce to vector
optimization problems. Then, we propose new strong domination properties and some other
assumptions to study the Hölder continuity of solution mappings and corresponding optimal
value mappings.

The rest of the paper is organized as follows. In Section 2, we recall some notations
for PSOPs. In Section 3, we discuss the Hölder continuity of solution mappings and corre-
sponding optimal value mappings defined by the lower set ordering, and then we apply this
method to that defined by the upper set ordering. Finally, we give conclusions in Section 4.

2 Notation and Preliminaries

Let X, Y , Z, Π1, Π2 be norm topological vector spaces, Λ ⊂ Π1 and Ω ⊂ Π2 be nonempty
sets, C ⊂ Y be a pointed, closed and convex cone with nonempty interior. When there is
no fear of confusion, we always denote by ∥ · ∥ and U(·) the norm and the neighborhood
of a point in different spaces, respectively. We specify d(x, y) := ∥x − y∥ for any x, y ∈ X.
The distance of two points in other spaces is also defined in this way. For a nonempty set
A ⊂ X, intA denotes the topological interior of A. For a set-valued mapping F : X ⇒ Y ,
the domain, graph, and image set of F are given by, respectively,

domF :=
{
x ∈ X | F (x) ̸= ∅

}
, grF :=

{
(x, y) ∈ X × Y | y ∈ F (x)

}
, F (X) :=

∪
x∈X

F (x).

Now, we consider the following parametric set optimization problem (PSOP for short):

(PSOP) min F (x, λ) s.t. x ∈ Φ(µ),

where λ ∈ Λ, µ ∈ Ω are parameters and F : X×Λ ⇒ Y , Φ : Ω ⇒ X are set-valued mappings.
To avoid the triviality, we always assume that F (·, λ) is nonempty-valued for each λ ∈ Λ.

Definition 2.1 ([12]). A nonempty set E ⊂ Y is said to be an improvement set with respect
to C if 0 /∈ E and E is free disposal, i.e. E + C = E.

In the sequel, we always assume that intE ̸= ∅. Here, we recall some useful definitions.
For a set A and an improvement set E, a ∈ A is called an E-minimal element of A if
(a−E)∩A = ∅. As we know, the E-minimal solution mapping S : Λ×Ω ⇒ X for (PSOP)
can be defined as

S(λ, µ) :=
{
x ∈ Φ(µ) | ∃z ∈ F (x, λ) s.t. (z − E) ∩ F (y, λ) = ∅, ∀y ∈ Φ(µ)

}
.

However, the solution sets of set optimization problems defined by Pareto orderings may
not be appropriate for some applications. In this case, researchers tend to choose upper and
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lower set orderings to define solutions sets. Dhingra and Lalitha [12] extended upper and
lower set orderings to the following E-upper and E-lower set orderings via an improvement
set E, respectively:

A ≤u
E B ⇔ A ⊂ B − E, A ≤l

E B ⇔ B ⊂ A+ E.

Based on this, the E-l-minimal solution mapping and E-u-minimal solution mapping for
(PSOP) are defined by Sl : Λ× Ω ⇒ X and Su : Λ× Ω ⇒ X, respectively,

Sl(λ, µ) :=
{
x ∈ Φ(µ) | F (y, λ) ≤l

E F (x, λ) ⇒ F (x, λ) ≤l
E F (y, λ), ∀y ∈ Φ(µ)

}
,

Su(λ, µ) :=
{
x ∈ Φ(µ) | F (y, λ) ≤u

E F (x, λ) ⇒ F (x, λ) ≤u
E F (y, λ), ∀y ∈ Φ(µ)

}
.

The corresponding E-l optimal value mapping and E-u optimal value mapping for (PSOP)
are defined by Vl : Λ× Ω ⇒ Y and Vu : Λ× Ω ⇒ Y , respectively,

Vl(λ, µ) := F (Sl(λ, µ), λ) =
∪

x∈Sl(λ,µ)

F (x, λ),

Vu(λ, µ) := F (Su(λ, µ), λ) =
∪

x∈Su(λ,µ)

F (x, λ).

Lemma 2.2. Let E ⊂ C\{0}. Suppose that F (x, λ) is compact-valued for any λ ∈ Λ and
x ∈ X. Then, the following statements are true.

(i) x ∈ Sl(λ, µ) if and only if there is no y ∈ Φ(µ) such that F (y, λ) ≤l
E F (x, λ),

(ii) x ∈ Su(λ, µ) if and only if there is no y ∈ Φ(µ) such that F (y, λ) ≤u
E F (x, λ).

Proof. The proof is similar to Proposition 3.3 of [12] and we omit it here.

We conclude this section by recalling the definitions of Hölder continuity for set-valued
mappings. Let l, l1, l2 ≥ 0, α, α1, α2 > 0 be constants and BY be an unit ball of Y .

Definition 2.3 ([8]). A set-valued mapping F : X ⇒ Y is said to be l.α-Hölder continuous
at x0 ∈ domF if there exists U(x0) such that F (x1) ⊂ F (x2) + ldα(x1, x2)BY for all
x1, x2 ∈ U(x0).

Definition 2.4 ([8]). A set-valued mapping F : X × Y ⇒ Z is said to be, respectively,

(i) (l1.α1, l2.α2)-Hölder continuous at (x0, y0) ∈ domF if there exist U(x0) and U(y0)
such that F (x1, y1) ⊂

{
z ∈ Z | ∃w ∈ F (x2, y2), d(z, w) ≤ l1d

α1(x1, x2) + l2d
α2(y1, y2)

}
for all x1, x2 ∈ U(x0) and y1, y2 ∈ U(y0).

(ii) (l1.α1, l2.α2)-pseudo-Hölder continuous at (x0, y0, z0) ∈ grF if there exist U(x0),
U(y0) and zero neighborhood U such that F (x1, y1) ∩ (z0 + U) ⊂

{
z ∈ Z | ∃w ∈

F (x2, y2), d(z, w) ≤ l1d
α1(x1, x2) + l2d

α2(y1, y2)
}
for all x1, x2 ∈ U(x0) and y1, y2 ∈

U(y0).

For (PSOP), the following example shows that the E-minimal solution mapping is Hölder
continuous, while the E-u-minimal solution mapping is not. In some degree, it inspires us
to study Hölder continuity of solution mappings defined by set orderings.
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Example 2.5. Based on Example 2.2 of [19], suppose that X = Z = R, Y = R2, Λ = Ω =
[0, 1], C = R2

+ and E = R2
+\{0}. Let Φ(µ) = [0, 1] and

F (x, λ) =

{
[0, 1 + x]× [0, 1 + x], λ = 0,

{λ} × [0, 1], λ ̸= 0.

For any µ ∈ Ω, it is easy to get that

Su(λ, µ) =

{
{0}, λ = 0,

[0, 1], λ ∈ (0, 1],

and S(λ, µ) = [0, 1] for any λ ∈ [0, 1]. Let l1 = l2 = α1 = α2 = 1
2 , λ0 = µ0 = 1

2 ,
U(λ0) = U(µ0) = [0, 1], we observe that S is (l1.α1, l2.α2)-Hölder continuous at (λ0, µ0).
However, if we take λ1 = 1, λ2 = 0, µ1 = 1

2 , µ2 = 1
3 , there exists x1 = 1 ∈ Su(λ1, µ1)

such that d(1, 0) = 1 > 1
2 · 1 1

2 + 1
2 ·

(
1
6

) 1
2 . This shows that Su is not (l1.α1, l2.α2)-Hölder

continuous at (λ0, µ0).

3 Hölder Continuity of Sl(Su) and Vl(Vu)

Let (λ0, µ0) ∈ Λ×Ω be given, (λ, µ) ∈ U(λ0)×U(µ0) be any given, Sl(λ, µ) and Su(λ, µ) be
nonempty for all (λ, µ) ∈ U(λ0) × U(µ0), ε > 0, β ≥ 1, l ≥ 0, α > 0 be constants. Firstly,
we introduce the following assumptions for (PSOP) for further study.

(A1) For each x ∈ Φ(µ) and z ∈ F (x, λ), there exist x̃ ∈ Sl(λ, µ) and z̃ ∈ F (x̃, λ) (z̃ ̸= z)
that satisfy z − z̃ + εdβ(x, x̃)BY ⊂ E.

(A2) There exists a neighborhood U(x0) of x0 ∈ X such that for each x ∈ Φ(µ) ∩ U(x0)
and z ∈ F (x, λ), there exist x̃ ∈ Sl(λ, µ) ∩ U(x0) and z̃ ∈ F (x̃, λ) (z̃ ̸= z) that satisfy
z − z̃ + εdβ(x, x̃)BY ⊂ E.

(A3) Replace the Sl(λ, µ) in (A1) with Su(λ, µ).

(A4) Replace the Sl(λ, µ) in (A2) with Su(λ, µ).

(A5) E ⊂ C\{0}, F (x, λ) is compact-valued for every x ∈ X.

(A6) Φ is l.α-Hölder continuous at µ0 ∈ domΦ.

(A′
6) Φ is l.α-pseudo-Hölder continuous at (µ0, x0) ∈ grΦ.

(A7) There exist constants m, γ > 0 such that

sup
z1∈F (x1,λ)

sup
z2∈F (x2,λ)

d(z1, z2) ≤ mdγ(x1, x2), ∀x1, x2 ∈ Φ(U(µ0)), ∀λ ∈ U(λ0),

and there exist constants n, δ > 0 such that

sup
w1∈F (x,λ1)

sup
w2∈F (x,λ2)

d(w1, w2) ≤ ndδ(λ1, λ2), ∀λ1, λ2 ∈ U(λ0), ∀x ∈ Φ(µ), µ ∈ U(µ0).

Remark 3.1. Assumptions (A1) and (A3) generalize Definition 2.3 of [13], which are called
strong domination properties of Sl and Su, respectively. Here, it is reasonable to suppose
that z ̸= z̃. Indeed, if z = z̃, we have εdβ(x, x̃)BY ⊂ E, which implies that 0 ∈ E. This is a
contradiction with that E is an improvement set. Moreover, we denote ∥y∥+ := d(y, Y \E)
for every y ∈ Y . Then, z − z̃ + εdβ(x, x̃)BY ⊂ E becomes εdβ(x, x̃) ≤ ∥z − z̃∥+.
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Theorem 3.2. If (A1), (A5), (A6) and (A7) are satisfied, then Sl is (l1.α1, l2.α2)-Hölder

continuous at (λ0, µ0) ∈ domSl, where l1 =
(
2n
ε

) 1
β , α1 = δ

β , l2 =
(
2mlγ

ε

) 1
β + l, α2 =

min
{
α, αγ

β

}
if d(µ1, µ2) ≤ 1 or α2 = max

{
α, αγ

β

}
if d(µ1, µ2) > 1.

Proof. Let λ1, λ2 ∈ U(λ0) and µ1, µ2 ∈ U(µ0) be arbitrary. For any x(λ1, µ1) ∈ Sl(λ1, µ1),
in view of x(λ1, µ1) ∈ Φ(µ1) and (A6), there exists x(µ2) ∈ Φ(µ2) such that

d(x(λ1, µ1), x(µ2)) ≤ ldα(µ1, µ2). (3.1)

By (A1), for x(µ2) ∈ Φ(µ2) and each z(µ2) ∈ F (x(µ2), λ2), there exist x(λ2, µ2) ∈ Sl(λ2, µ2)
and z(λ2, µ2) ∈ F (x(λ2, µ2), λ2) with z(λ2, µ2) ̸= z(µ2) such that

z(µ2)− z(λ2, µ2) + εdβ(x(µ2), x(λ2, µ2))BY ⊂ E. (3.2)

If x(µ2) = x(λ2, µ2), from (3.1), we get that d(x(λ1, µ1), x(λ2, µ2)) ≤ ldα(µ1, µ2) and Sl

is (0.α1, l.α)-Hölder continuous at (λ0, µ0). Without loss of generality, we assume that
x(µ2) ̸= x(λ2, µ2). For x(λ2, µ2) ∈ Φ(µ2), using (A6) again, there exists x(µ1) ∈ Φ(µ1) such
that

d(x(λ2, µ2), x(µ1)) ≤ ldα(µ1, µ2). (3.3)

For any z(λ1, µ1) ∈ F (x(λ1, µ1), λ1), there exist z(µ1) ∈ F (x(µ1), λ1), z′(λ2, µ2) ∈
F (x(λ2, µ2), λ1) and z′(µ2) ∈ F (x(µ2), λ1) such that

z(µ1)− z(λ1, µ1) = z(λ2, µ2)− z(µ2) + ϑ, (3.4)

where ϑ = z(µ1)− z′(λ2, µ2)+ z′(λ2, µ2)− z(λ2, µ2)+ z(µ2)− z′(µ2)+ z′(µ2)− z(λ1, µ1). It
follows from (A7) that

∥ϑ∥ ≤ mdγ(x(µ1), x(λ2, µ2)) + 2ndδ(λ1, λ2) +mdγ(x(µ2), x(λ1, µ1))

≤ 2mlγdαγ(µ1, µ2) + 2ndδ(λ1, λ2).
(3.5)

The second inequality of (3.5) is due to (3.1) and (3.3). Here, we prove that ∥z(µ2) −
z(λ2, µ2)∥+ ≤ ∥ϑ∥. Suppose that ∥z(µ2)− z(λ2, µ2)∥+ > ∥ϑ∥, then

z(µ2)− z(λ2, µ2) + ∥ϑ∥BY ⊂ intE. (3.6)

If ∥ϑ∥ = 0, we have z(λ1, µ1) − z(µ1) ∈ intE by (3.4) and (3.6). Considering the ar-
bitrariness of z(λ1, µ1) ∈ F (x(λ1, µ1), λ1) and the existence of z(µ1) ∈ F (x(µ1), λ1), we
know for x(µ1) ∈ Φ(µ1) that F (x(λ1, µ1), λ1) ⊂ F (x(µ1), λ1) +E, namely, F (x(µ1), λ1) ≤l

E

F (x(λ1, µ1), λ1). This contradicts with x(λ1, µ1) ∈ Sl(λ1, µ1) by virtue of (A5) and Lemma
2.2. If ∥ϑ∥ > 0, take − ϑ

∥ϑ∥ ∈ BY , we have z(µ2) − z(λ2, µ2) + ∥ϑ∥
(
− ϑ

∥ϑ∥
)
∈ intE and

z(λ1, µ1) − z(µ1) ∈ intE, which leads to a contradiction, similarly. Therefore, it follows
from (3.2) and Remark 3.1 that

εdβ(x(µ2), x(λ2, µ2)) ≤ ∥z(µ2)− z(λ2, µ2)∥+ ≤ ∥ϑ∥ ≤ 2mlγdαγ(µ1, µ2) + 2ndδ(λ1, λ2).

In view of β ≥ 1, we get

d(x(µ2), x(λ2, µ2)) ≤
(
2mlγ

ε

) 1
β

d
αγ
β (µ1, µ2) +

(
2n

ε

) 1
β

d
δ
β (λ1, λ2).
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Further, there holds

d(x(λ1, µ1), x(λ2, µ2)) ≤ d(x(λ1, µ1), x(µ2)) + d(x(µ2), x(λ2, µ2))

≤ ldα(µ1, µ2) +

(
2mlγ

ε

) 1
β

d
αγ
β (µ1, µ2) +

(
2n

ε

) 1
β

d
δ
β (λ1, λ2).

Take l1 =
(
2n
ε

) 1
β , α1 = δ

β , l2 =
(
2mlγ

ε

) 1
β + l, α2 = min

{
α, αγ

β

}
if d(µ1, µ2) ≤ 1,

α2 = max
{
α, αγ

β

}
if d(µ1, µ2) > 1. In a word, for arbitrary x(λ1, µ1) ∈ Sl(λ1, µ1), there

exists x(λ2, µ2) ∈ Sl(λ2, µ2) such that d(x(λ1, µ1), x(λ2, µ2)) ≤ l1d
α1(λ1, λ2)+ l2d

α2(µ1, µ2).
That is, Sl is (l1.α1, l2.α2)-Hölder continuous at (λ0, µ0).

Remark 3.3. In [13], the authors studied a class of perturbed vector optimization problems.
They defined the efficient solution mapping under Pareto orderings and obtained its upper
Hölder continuity. By contrast, we consider set optimization problems and characterize the
Hölder continuity of the E-l-minimal solution mapping. Since E-l-minimal solution sets for
set optimization problems can be collapsed to efficient solution sets for vector problems and
Hölder continuity implies upper Hölder continuity, our results are more generalized. Next,
we give an example to illustrate Theorem 3.2.

Example 3.4. Suppose that X = Z = R, Y = R2, Λ = Ω = [0, 1], C =
{
(y1, y2) ∈ R2 |

2y1 + y2 ≥ 0, 1
2y1 + y2 ≥ 0

}
and E = C\{0}. Let Φ(µ) = [0, 1] and F (x, λ) =

{
(y1, y2) ∈

R2 | (y1 + x)2 + (y2 + x)2 ≤ λ2
}
. Take λ0 = µ0 = 1

2 , U(λ0) = U(µ0) = [0, 1]. One easily see
that Sl(λ, µ) = {1} for all (λ, µ) ∈ U(λ0)× U(µ0). The conditions in Theorem 3.2 are also
satisfied. In fact, Sl is indeed Hölder continuous at (λ0, µ0).

Theorem 3.5. If (A2), (A5), (A
′
6) and (A7) are satisfied, then Sl is (l1.α1, l2.α2)-pseudo-

Hölder continuous at (λ0, µ0, x0) ∈ grSl, where l1, α1, l2, α2 are same as Theorem 3.2.

Proof. Let tΛ, tΩ > 0, BΛ and BΩ be closed unit balls in Λ and Ω, respectively. For a zero
neighborhood Q, suppose that U is an arbitrary zero neighborhood satisfying U+2αltαΩBX ⊂
Q. Take λ1, λ2 ∈ λ0 + tΛBΛ and µ1, µ2 ∈ µ0 + tΩBΩ. For x(λ1, µ1) ∈ Sl(λ1, µ1) ∩ (x0 + U),
by (A′

6), there exists x(µ2) ∈ Φ(µ2) such that

d(x(λ1, µ1), x(µ2)) ≤ ldα(µ1, µ2) ≤ l
(
d(µ1, µ0) + d(µ0, µ2)

)α ≤ 2αltαΩ.

Since x(µ2) − x0 = x(µ2) − x(λ1, µ1) + x(λ1, µ1) − x0 ∈ 2αltαΩBX + U ⊂ Q, we have
x(µ2) ∈ Φ(µ2) ∩ (x0 + Q). By (A2), for each z(µ2) ∈ F (x(µ2), λ2), there exist x(λ2, µ2) ∈
Sl(λ2, µ2) ∩ (x0 +Q) and z(λ2, µ2) ∈ F (x(λ2, µ2), λ2) with z(λ2, µ2) ̸= z(µ2) such that

z(µ2)− z(λ2, µ2) + εdβ(x(µ2), x(λ2, µ2))BY ⊂ E.

Without loss of generality, we assume that x(µ2) ̸= x(λ2, µ2). To use (A′
6) again, for

x(λ2, µ2) ∈ Φ(µ2), there exists x(µ1) ∈ Φ(µ1) such that

d(x(λ2, µ2), x(µ1)) ≤ ldα(µ1, µ2).

In the sequel, we adopt the same discussion in the proof of Theorem 3.2 to obtain that Sl

is (l1.α1, l2.α2)-pseudo-Hölder continuous at (λ0, µ0, x0).

Remark 3.6. We use mild conditions (A2) and (A′
6) to obtain the pseudo-Hölder continuity

of Sl, although it also be got under the assumptions of Theorem 3.2.
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Next, we turn to the Hölder continuity of optimal value mappings corresponding to
E-l-minimal solution mappings.

Theorem 3.7. Suppose that (A1), (A5), (A6) and (A7) are satisfied, and 1 ≤ γ ≤ β in (A7).

Then Vl is (l1.α1, l2.α2)-Hölder continuous at (λ0, µ0) ∈ domVl, where l1 = n+
(

2m
β
γ n
ε

) γ
β

,

l2 = mlγ +
(

2m
β
γ

+1
lγ

ε

) γ
β

, α1 = δγ
β if d(λ1, λ2) ≤ 1 or α1 = δ if d(λ1, λ2) > 1, α2 = αγ2

β if

d(µ1, µ2) ≤ 1 or α2 = αγ if d(µ1, µ2) > 1.

Proof. Let λ1, λ2 ∈ U(λ0) and µ1, µ2 ∈ U(µ0) be arbitrary. Take any z(λ1, µ1) ∈ Vl(λ1, µ1),
that is, take z(λ1, µ1) ∈ F (x(λ1, µ1), λ1) for x(λ1, µ1) ∈ Sl(λ1, µ1). By (A6), for x(λ1, µ1) ∈
Φ(µ1), there exists x(µ2) ∈ Φ(µ2) such that

d(x(λ1, µ1), x(µ2)) ≤ ldα(µ1, µ2). (3.7)

By (A1), for x(µ2) ∈ Φ(µ2) and each z(µ2) ∈ F (x(µ2), λ2), there exist x(λ2, µ2) ∈ Sl(λ2, µ2)
and z(λ2, µ2) ∈ F (x(λ2, µ2), λ2) with z(λ2, µ2) ̸= z(µ2) such that

z(µ2)− z(λ2, µ2) + εdβ(x(µ2), x(λ2, µ2))BY ⊂ E. (3.8)

Moreover, it follows from (A7) that d(z(µ2), z(λ2, µ2)) ≤ mdγ(x(µ2), x(λ2, µ2)), which im-
plies that

εm− β
γ d

β
γ (z(µ2), z(λ2, µ2)) ≤ εdβ(x(µ2), x(λ2, µ2)).

Together with (3.8), we have

z(µ2)− z(λ2, µ2) + εm− β
γ d

β
γ (z(µ2), z(λ2, µ2))BY ⊂ E. (3.9)

Without loss of generality, we assume that x(µ2) ̸= x(λ2, µ2). To use (A6) again, for
x(λ2, µ2) ∈ Φ(µ2), there exists x(µ1) ∈ Φ(µ1) such that

d(x(λ2, µ2), x(µ1)) ≤ ldα(µ1, µ2). (3.10)

We observe that there exist z(µ1) ∈ F (x(µ1), λ1), z′(λ2, µ2) ∈ F (x(λ2, µ2), λ1) and
z′(µ2) ∈ F (x(µ2), λ1) such that

z(µ1)− z(λ1, µ1) = z(λ2, µ2)− z(µ2) + ϑ,

where ϑ = z(µ1) − z′(λ2, µ2) + z′(λ2, µ2) − z(λ2, µ2) + z(µ2) − z′(µ2) + z′(µ2) − z(λ1, µ1).
By (A7), (3.7) and (3.10), we get

∥ϑ∥ ≤ 2mlγdαγ(µ1, µ2) + 2ndδ(λ1, λ2). (3.11)

Here, ∥z(µ2)− z(λ2, µ2)∥+ ≤ ∥ϑ∥ is also true according to the proof of Theorem 3.2. More-
over, it follows from Remark 3.1, (3.9) and (3.11) that

εm− β
γ d

β
γ (z(µ2), z(λ2, µ2)) ≤ 2mlγdαγ(µ1, µ2) + 2ndδ(λ1, λ2).

Since β ≥ γ, one has

d(z(µ2), z(λ2, µ2)) ≤
(
2m

β
γ +1lγ

ε

) γ
β

d
αγ2

β (µ1, µ2) +

(
2m

β
γ n

ε

) γ
β

d
δγ
β (λ1, λ2).
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Hence, in terms of (A7) and (3.7), there holds

d(z(λ1, µ1), z(λ2, µ2)) ≤ d(z(λ1, µ1), z
′(µ2)) + d(z′(µ2), z(µ2)) + d(z(µ2), z(λ2, µ2))

≤mdγ(x(λ1, µ1), x(µ2)) + ndδ(λ1, λ2) +

(
2m

β
γ +1lγ

ε

) γ
β

d
αγ2

β (µ1, µ2) +

(
2m

β
γ n

ε

) γ
β

d
δγ
β (λ1, λ2)

≤mlγdαγ(µ1, µ2) + ndδ(λ1, λ2) +

(
2m

β
γ +1lγ

ε

) γ
β

d
αγ2

β (µ1, µ2) +

(
2m

β
γ n

ε

) γ
β

d
δγ
β (λ1, λ2).

Take l1 = n +
(

2m
β
γ n
ε

) γ
β

, l2 = mlγ +
(

2m
β
γ

+1
lγ

ε

) γ
β

, α1 = δγ
β if d(λ1, λ2) ≤ 1 or α1 = δ if

d(λ1, λ2) > 1, α2 = αγ2

β if d(µ1, µ2) ≤ 1 or α2 = αγ if d(µ1, µ2) > 1. In a word, we obtain

that Vl is (l1.α1, l2.α2)-Hölder continuous at (λ0, µ0).

The Hölder continuity of solution mappings and optimal value mappings defined by
E-upper set orderings can be similarly characterized.

Theorem 3.8. If (A3), (A5), (A6) and (A7) are satisfied, then Su is (l1.α1, l2.α2)-Hölder
continuous at (λ0, µ0) ∈ domSu, where l1, α1, l2, α2 are same as Theorem 3.2.

Proof. The proof is similar to Theorem 3.2, we just reprove some different parts. Here,
we need to take arbitrary z(µ1) ∈ F (x(µ1), λ1). One can see there also exist z(λ1, µ1) ∈
F (x(λ1, µ1), λ1), z

′(λ2, µ2) ∈ F (x(λ2, µ2), λ1), z
′(µ2) ∈ F (x(µ2), λ1) such that (3.4) holds. If

∥ϑ∥ = 0, similarly, we have z(λ1, µ1)−z(µ1) ∈ intE. Considering the arbitrariness of z(µ1) ∈
F (x(µ1), λ1), we know there exists x(µ1) such that F (x(µ1), λ1) ⊂ F (x(λ1, µ1), λ1)−E. This
contradicts with x(λ1, µ1) ∈ Su(λ1, µ1). We omit the rest of proof.

Example 3.9. Based on Example 2.3 of [19], suppose that X = Z = R, Y = R2, Λ = Ω =
[0, 1], C = R2

+ and E = R2
+\{0}. Let Φ(µ) = [0, 1] and

F (x, λ) =

{
[0, 1 + x]× [0, 1 + x], λ = 0

[0, 1 + λ]× [x, 1 + x], λ ̸= 0.

Through a simply calculation, we obtain that Su(λ, µ) = {0} for any λ, µ ∈ [0, 1]. Take
λ0 = µ0 = 1

2 , U(λ0) = U(µ0) = [0, 1]. The assumptions in Theorem 3.8 are satisfied. In
fact, Su is indeed Hölder continuous at (λ0, µ0).

Theorem 3.10. If (A4), (A5), (A
′
6) and (A7) are satisfied, then Su is (l1.α1, l2.α2)-pseudo-

Hölder continuous at (λ0, µ0, x0) ∈ grSu, where l1, α1, l2, α2 are same as Theorem 3.2.

Proof. The proof is similar to Theorem 3.5, so we omit it here.

Theorem 3.11. Suppose that (A3), (A5), (A6) and (A7) are satisfied, and 1 ≤ γ ≤ β in
(A7). Then Vu is (l1.α1, l2.α2)-Hölder continuous at (λ0, µ0), where l1, α1, l2, α2 are same
as Theorem 3.7.

Proof. Combining the proofs of Theorems 3.7 and 3.8, the result is obtained immediately.

Remark 3.12. It is worth mentioning that if Sl(λ, µ) and Su(λ, µ) are directly defined by

Sl(λ, µ) :=
{
x ∈ Φ(µ) | there is no y ∈ Φ(µ) such that F (y, λ) ≤l

E F (x, λ)
}
,

Su(λ, µ) :=
{
x ∈ Φ(µ) | there is no y ∈ Φ(µ) such that F (y, λ) ≤u

E F (x, λ)
}
,

respectively, then all results in this section still hold without using assumption (A5).
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4 Conclusion

In this article, we proposed some assumptions for (PSOP) and obtained the Hölder con-
tinuity of the E-l(E-u)-minimal solution mappings Sl(Su) and the corresponding optimal
value mappings Vl(Vu). Moreover, we used mild conditions to establish the pseudo-Hölder
continuity of Sl and Su.
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[15] S.J. Li and X.B. Li, Hölder continuity of solutions to parametric weak generalized Ky
Fan inequality, J. Optim. Theory Appl. 149 (2011) 540–553
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