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Abstract: In this paper, we consider a class of parametric set optimization problems, where both objective
functions and constraint functions are perturbed by different parameters. Firstly, upper and lower set
orderings with respect to improvement sets are introduced and used to define solution mappings. Then,
some assumptions including strong domination properties are proposed to study the Holder continuity of
solution mappings and corresponding optimal value mappings. Our results generalize the upper Holder
continuity of efficient solution mappings for parametric vector optimization problems.
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Introduction

Set optimization problems are a class of generalized problems analogous to vector optimiza-
tion problems. When the objective functions or/and constraint functions of set optimization
problems are perturbed, the study of stability and sensitivity of solution sets are significant.
For relevant research, we refer to [10, 18, 2, 12, 6, 19] and the references therein. As far
as we know, there are two ways to define solution sets for set optimization problems. One
is the vector approach based on Pareto orderings, the other is the set approach based on
upper and lower set orderings. The former might not be appropriate for applications, some
examples are given in [6]. So, researchers turn their attention to the set approach. Up to
now, works on stability of solution mappings defined by set orderings for parametric set
optimization problems (PSOPs for short) primarily focuses on the semicontinuity, see, for
example, [18, 14, 19].

Holder continuity of solution mappings for PSOPs reflects the perturbation of solution
sets accurately than the semicontinuity. There has been some works on Holder continuity of
solution mappings for parametric vector optimization or multivalued equilibrium problems
under appropriate assumptions, and these assumptions have also been continuously improved
to make them easier to satisfy, see [8, 9, 7, 3, 4, 5, 15, 13, 17, 16] for more details. Up to
now, limited work has been done on Hélder continuity for PSOPs, although Anh et.al [1]
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have made some contribution to this subject with respect to approximate solution mappings,
recently. The main reason is that under different orderings, solution mappings of PSOPs are
different, namely, when the solution mapping under Pareto orderings is Holder continuous,
the solution mapping under upper or lower set orderings may not be Holder continuous.
So, we need to introduce new assumptions different from those under Pareto orderings to
characterize Holder continuity under upper and lower set orderings.

Motivated by literatures [11, 12, 6, 13, 16], we consider a class of parametric set opti-
mization problems, where the objective function and constraint function are perturbed by
different parameters. Firstly, since improvement sets are helpful to unify various approxi-
mate solution sets, we define the solution mappings by upper and lower set orderings with
respect to improvement sets. This class of solution mappings coincide with the effective
solution mappings under Pareto orderings when set optimization problems reduce to vector
optimization problems. Then, we propose new strong domination properties and some other
assumptions to study the Holder continuity of solution mappings and corresponding optimal
value mappings.

The rest of the paper is organized as follows. In Section 2, we recall some notations
for PSOPs. In Section 3, we discuss the Holder continuity of solution mappings and corre-
sponding optimal value mappings defined by the lower set ordering, and then we apply this
method to that defined by the upper set ordering. Finally, we give conclusions in Section 4.

Notation and Preliminaries

Let X, Y, Z, II;, I, be norm topological vector spaces, A C II; and € C Il be nonempty
sets, C' C Y be a pointed, closed and convex cone with nonempty interior. When there is
no fear of confusion, we always denote by || - || and U(-) the norm and the neighborhood
of a point in different spaces, respectively. We specify d(z,y) := ||z — gy for any z,y € X.
The distance of two points in other spaces is also defined in this way. For a nonempty set
A C X, int A denotes the topological interior of A. For a set-valued mapping F': X = Y,
the domain, graph, and image set of F' are given by, respectively,

domF:={x € X | F(z) # 0}, gt F:= {(x,y) e X xY |y € F(2)}, F(X) = | J F(a).
zeX
Now, we consider the following parametric set optimization problem (PSOP for short):

(PSOP) min F(z,\) st. xz € P(u),

where A € A, u € Q are parameters and F': X xA =Y, @ : Q = X are set-valued mappings.
To avoid the triviality, we always assume that F'(-,\) is nonempty-valued for each A € A.

Definition 2.1 ([12]). A nonempty set E' C Y is said to be an improvement set with respect
to C'if 0 ¢ FE and E is free disposal, i.e. E+C = E.

In the sequel, we always assume that int F # (). Here, we recall some useful definitions.
For a set A and an improvement set F, a € A is called an E-minimal element of A if
(a— E)NA=10. As we know, the E-minimal solution mapping S : A x Q = X for (PSOP)
can be defined as

S\ p) ={ze€®p) |3z F(z,\) st (z—E)NF(y,\) =0,Vy € ®(u)}.

However, the solution sets of set optimization problems defined by Pareto orderings may
not be appropriate for some applications. In this case, researchers tend to choose upper and
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lower set orderings to define solutions sets. Dhingra and Lalitha [12] extended upper and
lower set orderings to the following E-upper and E-lower set orderings via an improvement
set F, respectively:

A<Y\Bo ACB-E, A<, B&BCA+E.

Based on this, the F-l-minimal solution mapping and E-u-minimal solution mapping for
(PSOP) are defined by S;: A x Q@ = X and S, : A x Q = X, respectively,

Si\ p) = {x € ®(n) | Fy, ) <k Fla, ) = F(z,\) <i F(y,\),¥y € (n)},

Su(\p) = {z € () | F(y,\) < F(z,\) = F(2,)) <g F(y,\),¥y € ®(n)}.

The corresponding E-I optimal value mapping and FE-u optimal value mapping for (PSOP)
are defined by V;: Ax Q=Y and V,, : A x Q =2 Y, respectively,

Vi) = F(Sium, ) = | Fla ),
z€S1( A1)

Vu()‘uu) = F(Su(/\’u)v/\) = U F(l‘,)\)

€Sy (A, pt)

Lemma 2.2. Let E C C\{0}. Suppose that F(x,\) is compact-valued for any A € A and
x € X. Then, the following statements are true.

(i) x € Si(\, ) if and only if there is no y € ®(u) such that F(y,\) <t F(z,)),
(il) = € Su(A, p) if and only if there is no y € ®(u) such that F(y,\) <% F(z, ).

Proof. The proof is similar to Proposition 3.3 of [12] and we omit it here. O

We conclude this section by recalling the definitions of Holder continuity for set-valued
mappings. Let [,11,ls > 0, a, a1, as > 0 be constants and By be an unit ball of Y.

Definition 2.3 ([8]). A set-valued mapping F : X =2 Y is said to be l.a-Hélder continuous
at zo € dom F if there exists U(zp) such that F(x1) C F(x3) + ld“(x1,22)By for all
xr1,T2 € U(Z‘o)

Definition 2.4 ([8]). A set-valued mapping F': X x Y = Z is said to be, respectively,

(i) (lh.a1,lz.00)-Holder continuous at (zo,yo) € dom F' if there exist U(zg) and U(yo)
such that F(z1,y1) C {z € Z | 3w € F(w2,y2),d(z,w) < 11d™ (z1,32) + 12d**(y1,92) }
for all x1,xs € U(xg) and y1,y2 € U(yo)-

(ii) (l1.a1,l2.a0)-pseudo-Holder continuous at (zg,yo,20) € grF if there exist U(xg),
U(yo) and zero neighborhood U such that F(zy,y1) N (20 +U) C {z € Z | Fw €
F(z2,y2),d(z,w) < 11d** (x1,32) + 12d*2 (y1,y2) } for all z1,25 € U(zg) and yy1,y2 €
U(yo)-

For (PSOP), the following example shows that the E-minimal solution mapping is Hélder
continuous, while the E-u-minimal solution mapping is not. In some degree, it inspires us
to study Holder continuity of solution mappings defined by set orderings.
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Example 2.5. Based on Example 2.2 of [19], suppose that X = Z =R, Y =R?>, A=Q =
[0,1], C =RZ and E =R3\{0}. Let ®(u) = [0,1] and

0,1+2] x[0,1+2], A=0,
Py = {01 <01

{A} x [0,1], A # 0.
For any p € ), it is easy to get that

o {0}7 /\ZO,
Suld i) = {[0, 1, Ae(0,1],

and S(A\, 1) = [0,1] for any A € [0,1]. Let Iy = lp = g = a0 = 3, Ao = po = 3,
U(Xo) = U(uo) = [0,1], we observe that S is (I1.a1,lz.a2)-Holder continuous at (Ao, fo)-
However, if we take A\y = 1, Ay =0, p; = %, Ho = %, there exists 1 = 1 € Sy (A1, p1)

1
such that d(1,0) = 1 > 4 .13 + 1. (1)2. This shows that S, is not (I;.a1, ls.cz)-Holder
continuous at (Ao, fo)-

Holder Continuity of S;(S,) and Vi(V,)

Let (Ao, o) € A x Q be given, (A, u) € U(Ag) x U(up) be any given, S;(A, p) and S, (A, p) be
nonempty for all (A, u) € U(No) X U(uo), € >0, 8>1,1>0, a > 0 be constants. Firstly,
we introduce the following assumptions for (PSOP) for further study.

(A1) For each x € ®(u) and z € F(z, A), there exist & € Sj(A, p) and 2 € F(Z,\) (2 # 2)
that satisfy 2z — Z + ed’(z,%)By C E.

(A2) There exists a neighborhood U(zg) of 2o € X such that for each x € ®(u) N U(zo)
and z € F(x,\), there exist & € Si(A\, ) NU(xo) and Z € F(Z,\) (£ # z) that satisfy
z—2+ed?(z,7)By C E.

As) Replace the Si(A, p) in (A;) with S, (A, w).
A4) Replace the S;(A, ) in (Ag) with Sy (A, p).
As) E C C\{0}, F(x,\) is compact-valued for every = € X.

Ag
A;

(

(

(

(Ag) @ is l.a-Holder continuous at po € dom P.

( ® is l.a-pseudo-Holder continuous at (g, zg) € gr .
(

)
) There exist constants m,~ > 0 such that

sup sup  d(z1,22) < md"(x1,x2), Yr1,22 € ®(U(10)), YA € U(Ao),
zleF(a:l,)\) ZQEF(IQ,)\)

and there exist constants n,d > 0 such that

sup sup  d(wg,ws) < ndé()\1,)\2)7 VA1, A2 € U(XN),Vz € (), 1 € U(ug).
w1 €F (z,A1) w2 €F (z,A2)

Remark 3.1. Assumptions (A;) and (As) generalize Definition 2.3 of [13], which are called
strong domination properties of S; and S, respectively. Here, it is reasonable to suppose
that z # 2. Indeed, if z = %, we have ed®(x,Z)By C E, which implies that 0 € E. This is a
contradiction with that F is an improvement set. Moreover, we denote ||y||+ := d(y, Y \E)
for every y € Y. Then, z — % + ed?(z,7)By C E becomes ed’(z,7) < ||z — 2|+



HOLDER CONTINUITY RESULTS FOR PSOPS VIA IMPROVEMENT SETS 463

Theorem 3.2. If (A1), (As), (Ag) and (A7) are satisfied, then S; is (I1.aq,ls.an)-Hélder
continuous at (Mg, o) € dom Sy, where Iy = (2?”)7‘, = %, Iy = (%)7s +1, ap =

min{a, %} if d(pr,pe) <1 orag = max{a, O"%} if d(p1, p2) > 1.

Proof. Let A1, Ay € U(XNo) and py, po € U(po) be arbitrary. For any x(\1, 1) € Si(A1, p1),
in view of x(A1, 11) € ®(u1) and (Asg), there exists z(ua) € ®(uz2) such that

d(@(A, pa), 2 (p2)) < 1d* (i, p2). (3.1)

By (A1), for x(us2) € ®(u2) and each z(p2) € F(x(us2), A2), there exist z(Aa, u2) € Si(Ag, 2)
and z(Ag, u2) € F(x(Ae, p2), A2) with 2(Aa, u2) # 2z(u2) such that

2(p2) — 2(Aa, p2) + ed” (2 (a), #( A2, p2) By C E. (3:2)

If 2(p2) = (A, p2), from (3.1), we get that d(x(A1, p1), x(A2, u2)) < 1d*(p1, p2) and S
is (0.aq,l.«)-Holder continuous at (Mg, o). Without loss of generality, we assume that
x(p2) # x(A2, p2). For x(Ag, p2) € ®(us), using (Ag) again, there exists z(u1) € ®(p1) such
that

d(@(A2, p2), x(p1)) < 1d* (pr, p2). (3.3)

For any z(A,u1) € F(x(A1,p1), 1), there exist z(u1) € F(x(u1), A1), 2" (Ao, p2) €
F(z(Ag, p2), A1) and 2/ (p2) € F(z(p2), A1) such that

2(p1) — 2(A1, p1) = 2(A2, p2) — 2(p2) + 9, (3.4)

where ¥ = z(p1) — 2" (A2, p2) + 2" (A2, p2) — 2(A2, p2) + 2(p2) — 2" (p2) + 2" (p2) — 2(A1, pa). It
follows from (A7) that

19| < md (x(p1), (A2, p2)) + 2nd° (A1, A2) +md? (x(p2), ¢(A1, 1))

5 (3.5)
< 2ml7d* (g, p2) + 2nd° (A1, A2).

The second inequality of (3.5) is due to (3.1) and (3.3). Here, we prove that ||z(u2) —
2(Az, p2) [+ < [0 Suppose that [[2(u2) = 2(A2, p2) [+ > |9, then

z(p2) — 2(A2, p2) + [|9||By C int E. (3.6)

If |9]] = 0, we have z(A1,p1) — 2(pt1) € int E by (3.4) and (3.6). Considering the ar-
bitrariness of z(A1, 1) € F(x(A1, 1), A1) and the existence of z(p1) € F(x(p1), A1), we
know for x(u1) € ®(u1) that F(x(A1, 1), M) C F(z(u1), A1) + E, namely, F(z(u1), M) <
F(x(M1, p1), A1). This contradicts with x(Ay, pu1) € Si(A1, p1) by virtue of (As) and Lemma
2.2, If ||9]| > 0, take —ﬁ € By, we have z(p2) — z(Aa, p2) + |9 ( — H%\I) € int £ and
z(A1,p1) — 2(p1) € int E, which leads to a contradiction, similarly. Therefore, it follows
from (3.2) and Remark 3.1 that

ed” (x(p2), 22, p2)) < |l2(n2) = 2(Aa, pi2) |+ < [9I] < 2ml7d™Y (ua, piz) + 2nd” (A, Az).-

In view of § > 1, we get

1 1
2mIT\ P oy 2n\ % s
d(z(p2), (A2, p2)) < < e ) A5 (u1, pa) + <€> d? (A1, A2).
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Further, there holds

d(x(A1, p1), (A2, p2)) < d(@(A1, pr), 2(p2)) + d(w(p2), 2(A2, p2))

1

1
2mi7\ P ay 2n\7? s
< 1d* (1, p2) + < 5 > d7 (pr, p2) + (€> d7 (A, M)

=

Take I; = (2?") , o = %, Iy = (%)% + 1, ap = min{a, &2} if d(pr,p2) < 1,
a9 = max {a, %} if d(p1,p2) > 1. In a word, for arbitrary z(A1, 1) € S;(A1, 1), there
exists (Mg, 12) € Si(A2, p2) such that d(x(A1, u1), x (A2, u2)) < lid* (A1, A2) +12d®2 (p, p2).

That is, S; is (I1.a1,lz.an)-Holder continuous at (Mg, o). O

Remark 3.3. In [13], the authors studied a class of perturbed vector optimization problems.
They defined the efficient solution mapping under Pareto orderings and obtained its upper
Hoélder continuity. By contrast, we consider set optimization problems and characterize the
Holder continuity of the E-I-minimal solution mapping. Since E-I-minimal solution sets for
set optimization problems can be collapsed to efficient solution sets for vector problems and
Holder continuity implies upper Holder continuity, our results are more generalized. Next,
we give an example to illustrate Theorem 3.2.

Example 3.4. Suppose that X = Z =R, Y =R?, A = Q =[0,1], C = {(y1,92) € R? |
2y1 + 132 > 0, %y1 + Yo > 0} and F = C\{0}. Let ®(u) = [0,1] and F(z,\) = {(yl,yg) €
R? | (y1 +2)* + (y2 + ) < X2}, Take Ao = po = 3, U(Xo) = U(po) = [0, 1]. One easily see
that S;(A, u) = {1} for all (A, ) € U(Xo) X U(po). The conditions in Theorem 3.2 are also
satisfied. In fact, S; is indeed Holder continuous at (Ag, o).

Theorem 3.5. If (Ag), (As), (Af) and (A7) are satisfied, then S; is (l1.0q,l3.a2)-pseudo-
Hélder continuous at (Mo, to, o) € gr.S;, where I, aq,le, as are same as Theorem 3.2.

Proof. Let ty,tq > 0, By and B be closed unit balls in A and €, respectively. For a zero
neighborhood @, suppose that U is an arbitrary zero neighborhood satisfying U +2“lt3Bx C
Q. Take A1, Ao € Ao+ taABA and pq, ua € o + taBq. For x(Ar, pu1) € Si(A, p1) N (zo + U),
by (Af), there exists z(u2) € ®(u2) such that

d(z( M\, ), 2 (i) < 1d* (p, p2) < Ud(pa, po) + dlpo, p2))” < 27185,

Since z(u2) — 0 = x(p2) — x(A1,p1) + (A1, p1) — o € 2°U2Bx + U C Q, we have
x(p2) € ®(u2) N (x0 + Q). By (Aa), for each z(u2) € F(x(u2), A2), there exist x(Az, p2) €
Si(Aa, o) N (xg + Q) and z(Aa, o) € F(x (A2, 2), Aa) with z(Ag, o) # z(ue2) such that

2(n2) = 2(A2, o) + ed” (2(p2), x(Aa, p12))By C E.

Without loss of generality, we assume that z(u2) # x(A2,pu2). To use (Ag) again, for
x(Ag, o) € ®(u2), there exists z(u1) € (1) such that

d(@(Az, p2), #(p1)) < 1d*(pa, p2)-

In the sequel, we adopt the same discussion in the proof of Theorem 3.2 to obtain that .S5;
is (I1.a1, l2.ap)-pseudo-Holder continuous at (Ag, o, o). O

Remark 3.6. We use mild conditions (A3) and (A§) to obtain the pseudo-Hélder continuity
of S, although it also be got under the assumptions of Theorem 3.2.
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Next, we turn to the Holder continuity of optimal value mappings corresponding to
FE-l-minimal solution mappings.
Theorem 3.7. Suppose that (A1), (As), (As) and (A7) are satisfied, and 1 < v < 8 in (A7).
B X
Then V is (I1.a1,ls.0)-Hélder continuous at (Ao, po) € domV,, where Iy = n + (2”””> ? ,
2

S
~

B 1o\ F
Iy = mi + (M)ﬁ a1 =% ifd(\, Xe) < 1oray =0 if d(Ar,N) > 1, ag = *F- if
d(p1, p2) <1 or ag = ay if d(pr, p2) > 1.

Proof. Let A1, A2 € U(Ng) and p1, pa € U(up) be arbitrary. Take any z(\1, 1) € Vi(A1, p1),
that is, take z(A1, 1) € F(z(A1, p1), A1) for x(A1, p1) € Si(A1, p1). By (Ag), for x(A1, p1) €
®(p1), there exists z(uz2) € ®(uz2) such that

d(@(A1, ), @(p2)) < 1d*(pa, p2)- (3.7)

By (A1), for z(us2) € ®(u2) and each z(p2) € F(x(us2), A2), there exist z(Aa, u2) € Si(Ag, o)
and z(Ag, u2) € F(x(Ae, pu2), A2) with 2(Aa, u2) # 2z(p2) such that

2(u2) = 2(Aa, p2) + ed” (w(p2), ©(Na, ) ) By C E. (3-8)
Moreover, it follows from (A7) that d(z(uz2),z(Ae, p2)) < md? (x(pz2), z(A2, p2)), which im-
plies that

_B B

em”vd¥ (Z(M2)7Z(A27/’[’2)) < €d5($(ug),$(A27/},2)).
Together with (3.8), we have
_8 B
z(u2) — z(Aa, po) +em™ v d7 (2(p2), 2(A2, p2))By C E. (3.9)

Without loss of generality, we assume that z(u2) # z(A2,pu2). To use (Ag) again, for
x(Ag, 2) € P(p2), there exists x(u1) € (1) such that

d( (A2, p2), (1)) < 1d*(pa, p2). (3.10)

We observe that there exist z(u1) € F(x(u1), A1), 2" (A2, p2) € F(ax(A2,p2), A1) and
2'(pu2) € F(x(p2), A1) such that

2(p1) — 2(A1, 1) = 2(A2, pa) — 2(p2) + 9,

where ¥ = z(p1) — 2'(A2; p2) + 2" (A2, p2) — 2(A2, p2) + 2(p2) — 2'(p2) + 2" (p2) — 2(A1, ).
By (A7), (3.7) and (3.10), we get

9] < 2mlYd®Y (py, o) + 2nd® (A1, A2). (3.11)

Here, ||z(u2) — 2(A2, p2) ||+ < |9 is also true according to the proof of Theorem 3.2. More-
over, it follows from Remark 3.1, (3.9) and (3.11) that

88
em™ 7 d" (2(p2), 2( A2, p2)) < 2ml7d* (pa, p2) + 2nd’ (A1, Ag).

Since 8 > +, one has

B

B ol X
2my TN oy 2min\ 7 sy
atetpn) 0 ) < (2 )0 )+ (22) % 0o,




466 Y. XU AND S. LI

Hence, in terms of (A7) and (3.7), there holds
d(2(A1, 1), 2(A2, p2)) < d(2(Ar, p), 2 (p2)) + d(2' (n2), 2(n2)) + d(2(p2), 2(A2, p2))

oy

2mv+1l7 3 72 2mvn
Smdw(x()‘lvﬂl)ax(pﬂ))+nd6()‘1a)\2)+< > 5 (1, ph2) ( . >dﬁ (A1, A2)

72

ImITUINF omIn\? s
<l d® (1, o) + nd® (A1, A2) + <m€> 4 (m,uz)+( "Z ”) 4% (A1, Aa).

B ol

e 1.\ %
Takell_nJr( mn )‘3 12:ml‘YJr(w)B,al:‘hifd()\l,/\Q)gloralzéif

2

d(A,A2) > 1, ag = T if d(pa, p2) <1 or ay = ay if d(p1, pe) > 1. In a word, we obtain
that V; is (I;.a1, ls.cie)-Holder continuous at (A, po)- O

The Holder continuity of solution mappings and optimal value mappings defined by
FE-upper set orderings can be similarly characterized.

Theorem 3.8. If (A3z), (As), (Ag) and (A7) are satisfied, then Sy is (I.a1,ls.c0)-Hélder
continuous at (Ao, po) € dom Sy, where Iy, aq,ls, ay are same as Theorem 3.2.

Proof. The proof is similar to Theorem 3.2, we just reprove some different parts. Here,
we need to take arbitrary z(p1) € F(z(u1),A1). One can see there also exist z(A1, 1) €
F(x(A1,p1), M), 2/ (A2, p2) € F(xz(A2, pi2), A1), 2" (p2) € F(x(u2), A1) such that (3.4) holds. If
|9l = 0, similarly, we have z(A1, 1) —2(u1) € int E. Considering the arbitrariness of z(u1) €
F(x(p1), A1), we know there exists z (1) such that F(x(u1), A1) C F(x(A1, u1), A\1)—E. This
contradicts with x(Aq, p1) € Su(A1, p1). We omit the rest of proof. O

Example 3.9. Based on Example 2.3 of [19], suppose that X = Z =R, Y =R?>, A=Q =
[0,1], C =RZ and E =R3\{0}. Let ®(u) = [0, 1] and
0,14+ x| x (0,1 , A=0
poay [0l X 0142
0,14+ A x [z,14+2], A#O0.

Through a simply calculation, we obtain that S, (A, pu) = {0} for any A\, € [0,1]. Take
Ao = pio = %, U(Xo) = U(po) = [0,1]. The assumptions in Theorem 3.8 are satisfied. In
fact, S, is indeed Holder continuous at (Ao, po)-

Theorem 3.10. If (Ay), (As), (A§) and (A7) are satisfied, then S, is (I1.aq,ly.c0)-pseudo-
Hélder continuous at (Ao, po, o) € gr Sy, where ly, ay,la, as are same as Theorem 3.2.

Proof. The proof is similar to Theorem 3.5, so we omit it here. O

Theorem 3.11. Suppose that (A3), (As), (Ag) and (A7) are satisfied, and 1 < v < 8 in
(A7). Then V, is (I1.aq1,la.c0)-Hélder continuous at (Mo, po), where Iy, aq,la, ao are same
as Theorem 3.7.

Proof. Combining the proofs of Theorems 3.7 and 3.8, the result is obtained immediately. [
Remark 3.12. It is worth mentioning that if S;(A, x) and S, (A, u) are directly defined by
Sy(\, p) := {& € ®(p) | there is no y € ®(p) such that F(y, \) <y F(z,\)},
Su(A, ) := {x € ®(u) | there is no y € ®(u) such that F(y,\) <% F(z,\)},

respectively, then all results in this section still hold without using assumption (Aj).
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Conclusion

In this article, we proposed some assumptions for (PSOP) and obtained the Holder con-
tinuity of the E-I(E-u)-minimal solution mappings S;(S,) and the corresponding optimal
value mappings V;(V,,). Moreover, we used mild conditions to establish the pseudo-Hélder
continuity of S; and S,,.
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