
2022

470 J. ZHANG AND Y. YANG

practical application of tensor computations [8]. Successful block coordinate descent type
algorithms for tensor CPD problems include such as the ALS [3, 6] and RALS [12].

The ALS was initially introduced by Carol and Chang [3], and Harshman [6]. Taking
the detachable structure of the original nonconvex least squares problem, the ALS solves
the problem in the Gauss-Seidel fashion. Among various methods for solving CPD, the ALS
remains a “workhorse” algorithm [8], and has been regarded as one of the most efficient
methods for solving CPD [17]. Despite the advantage of the ALS, it has some drawbacks
[4, 14]. The Hessian of the least-squares subproblem may not be positive definite since the
subproblem might not be strongly convex, which results in the non-uniqueness of the solution
within inner iterations, making it challenging to analyze the convergence of the ALS. In fact,
[16] pointed out that understanding the convergence of the ALS is nontrivial. Moreover, the
ALS may require a high number of iterations to converge when swamp occurs [10], where
the swamp phenomenon means that the algorithm gets trapped in a small region for a large
amount of iterations. The RALS algorithm was proposed [10] to avoid the non-uniqueness
by introducing a proximal term into every subproblem and gives better convergence behavior
with its global convergence given in [19]. While in the case that the swamp does not occur,
the original ALS usually performs better, compared to the RALS with a fixed regularization
parameter [19].

Due to the limitations of the above techniques, accelerating these algorithms has become
the focus of several works in recent years. An acceleration version of the RALS algorithm has
been proposed [19] using Aitken-Stefensen formula while no convergence result was provided
for that algorithm. A trust-region algorithm based the ALS was proposed [7] to alleviate
the occurrence of the swamp; however, the global convergence needs an assumption that the
generated sequence is a Cauchy sequence. A self-adaptive RALS was proposed [11] to accel-
erate the origin RALS algorithm by using self-adaptive step-size. Another class of studies
recognizes (1.1) as a nonlinear least-squares problem, and develops second-order algorithms
to solve this problem, such as Gauss-Newton, Levenberg-Marquardt and inexact NLS algo-
rithm; see [16] for an overview of the methods; Whereas, these algorithms either have no
theoretical convergence guarantee, or require additional assumptions for the convergence.

The aforementioned deficiency or limitations motivate us to explore modified versions of
the ALS and RALS. Extra-gradient method (EGM) was initially proposed by Korpelevich
[9] for solving convex variational inequality problems. Different from gradient descent, EGM
adds an extra correction step, which admits a prediction-correction fashion. Recently, EGM
was extended [13] to tackle nonsmooth nonconvex optimization problems within a suitable
step-size range. In this paper, by combining EGM with Newton’s method, we develope two
hybrid alternating extra-gradient and Newton’s methods. Specifically, at each subproblem,
unlike EGM, our algorithms utilize the Newton step in the correction step of the extra-
gradient method. Furthermore, the step-size is self-adaptive to a certain extent. If the
step-size of the prediction step is chosen close to its upper bound, then the step-size of the
correction step can be chosen in a large range. This might give flexibility to the proposed
algorithms. Considering that the Hessian of each subproblem may be singular, we use the
Moore-Penrose pseudoinverse [2] or add a proximal term to make it feasible to access the
Newton step. Under certain assumptions, the global convergence of the proposed algorithms
are established. Actually, the ALS can be regarded as a block Newton method, see Sect.
3 for details of the scheme. Taking advantage of the extra-gradient method and Newton’s
method, and choosing the suitable step-size, we can achieve the acceleration of the standard
ALS and RALS algorithms. Preliminary numerical examples illustrate the effectiveness of
the proposed algorithms.

This paper is organized as follows. In Sect. 2, we introduce some notations and termi-

HYBRID METHODS FOR TENSOR DECOMPOSITION 471

nologies for tensor approximation. In Sect. 3 we proposed our hybrid alternating method.
We discuss two descent inequalities of our algorithms in Sect. 4, which contribute to the
global convergence analysis in Sect. 5. Numerical experiments are presented in Sect. 6.
Finally, Sect. 7 summarizes conclusions.

2 Preliminary

We use boldface lowercase letters a, b, . . . to denote vectors, italic capital A,B, . . . for matri-
ces, bold capital letters X,Y , . . . for matrix sets defined below (2.2), and bold calligraphic
letters X ,Y , . . . for tensors. I denotes an identity matrix, whose size is clear from the con-
text. The (i1, . . . , id)-th component of a d-way tensor X is denoted as xi1,...,id . For X ,Y ∈
Rn1×···×nd , their inner product is defined as 〈X ,Y 〉 =

∑n1

i1=1 · · ·
∑nd

id=1 xi1···id · yi1···id . The

Frobenius norm of X is defined as ‖X ‖F =
√
〈X ,X 〉. For a real symmetric matrix A,

A � 0 means that A is a positive definite. (·)> indicates the matrix transposition and
(·)† denotes the Moore-Penrose pseudoinverse. λmax(·) and λmin(·) denote the max (min)
eigenvalue of a matrix, respectively.

Kronecker product. The kronecker product of matrices A ∈ Rm×n and B ∈ Rp×q is a
mp× nq matrix, given by

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
Khatri-Rao product. The Khatri-Rao product of two matrices A = [a1, . . . ,an] ∈ Rm×n

and B = [b1, . . . , bn] ∈ Rp×n is a mp× n matrix given by

A�B := [a1 ⊗ b1, . . . ,an ⊗ bn].

Outer product. The outer product of vectors a and b is the rank-one matrix given by
a ◦ b := ab>. Similarly, the outer product x1 ◦ · · · ◦ xd of d vectors xi ∈ Rni , i = 1, . . . , d is
a rank-one tensor X .

CP decomposition. Given a tensor A ∈ Rn1×···×nd , CPD decomposes A into the sum of
several rank-one tensors [8]

A =
∑R

s=1
x1,s ◦ · · · ◦ xd,s := JX1, . . . , XdK, (2.1)

where xi,s ∈ Rni , and Xi := (xi,1, . . . ,xi,R) ∈ Rni×R, 1 ≤ i ≤ d are called the factor
matrices.

Unfolding. The mode-i unfolding of a tensor A ∈ Rn1×···×nd is a matrix A(i) ∈
Rni×

∏d
j 6=i nj , where the entries are arranged in a certain order. For example, CPD of A

in (2.1) can be represented as

A(i) = Xi (Xd � · · · �Xi+1 �Xi−1 � · · · �X1)
>
.

Model description. (2.1) is rarely exact. Thus the optimization problem (1.1) of tensor
CPD can be rewritten as (1.1):

min
X

F (X) =
1

2
‖A −

∑R

s=1
x1,s ◦ · · · ◦ xd,s‖2F =

1

2
‖A − JX1, . . . , XdK‖2F , (2.2)

472 J. ZHANG AND Y. YANG

where we denote the tuple of the factor matrices (X1, . . . , Xd) as X, i.e.,

X := (X1, . . . , Xd).

To simplify the notations, in the sequel, we also denote X(k) := (X
(k)
1 , . . . , X

(k)
d), and

(X
(k+1)
<i , X

(k)
≥i) := (X

(k+1)
1 , . . . , X

(k+1)
i−1 , X

(k)
i , . . . , X

(k)
d) (1 ≤ i ≤ d)

as the intermediate iterates.
Let X∗ = (X∗1 , . . . , X

∗
d) be a critical point of (2.2) and (2.3). Then first order optimal

condition yields that

∇F (X∗) = 0⇔ X∗iM
∗>
−iM

∗
−i = A(i)M

∗
−i, 1 ≤ i ≤ d.

Combining Khatri-Rao product with unfolding, (2.2) with respect to each Xi but with
other factors held fixed reduces to a least squares subproblem, which can be written as:

min
Xi

F (X) =
1

2
‖A(i) −Xi (Xd � · · · �Xi+1 �Xi−1 � · · · �X1)

> ‖2F

:=
1

2
‖A(i) −XiM

>
−i‖2F , 1 ≤ i ≤ d,

(2.3)

where we denote M−i := Xd � · · · �Xi+1 �Xi−1 � · · · �X1.

3 The Proposed Methods

We first recall the ALS and extra-gradient method (EGM).
The ALS solves (2.2) in the following manner:

X
(k+1)
i ∈ arg min

Xi

F (X
(k+1)
1 , . . . , X

(k+1)
i−1 , Xi, X

(k)
i+1, . . . , X

(k)
d)

= arg min
Xi

F (X
(k+1)
<i , Xi, X

(k)
>i), 1 ≤ i ≤ d.

Using our notations (2.3), each subproblem of the ALS can be written as (for k = 1, 2, . . .)

ALS

For i = 1, . . . , d, X
(k+1)
i ∈ arg min

X

1

2
‖A(i) −XM

(k+1)>
−i ‖2F , (3.1)

where

M
(k+1)
−i := X

(k)
d � · · · �X(k)

i+1 �X
(k+1)
i−1 � · · · �X(k+1)

1 . (3.2)

Throughout this paper, we denote

∇iF (X
(k+1)
<i , X

(k)
≥i) := X

(k)
i M

(k+1)>
−i M

(k+1)
−i −A(i)M

(k+1)
−i ,

∇2
iiF (X

(k+1)
<i , X̄

(k)
i , X

(k)
>i) := M

(k+1)>
−i M

(k+1)
−i = ∇2

iiF (X
(k+1)
<i , X

(k)
≥i),

(3.3)

as the partial gradient and the partial Hessian of F (·) with respect to Xi, respectively.

HYBRID METHODS FOR TENSOR DECOMPOSITION 473

Indeed, (3.1) can be regarded as a Newton step with unit step-size if the Hessian is
invertible: By (3.3), we can reformulate the ALS as follows:

X
(k+1)
i = A(i)M

(k+1)
−i (M

(k+1)>
−i M

(k+1)
−i)−1

= X
(k)
i − (X

(k)
i M

(k+1)>
−i M

(k+1)
−i −A(i)M

(k+1)
−i)(M

(k+1)>
−i M

(k+1)
−i)−1

= X
(k)
i −∇iF (X

(k+1)
<i , X

(k)
≥i)

(
∇2
iiF (X

(k+1)
<i , X

(k)
≥i)

)−1
.

EGM has been extended to tackle a nonsmooth nonconvex optimization problem
minx∈Rn{f(x) + g(x)} [13], where f(x) is a smooth nonconvex function and g(x) a simple
nonsmooth convex function. For k ≥ 1, EGM can be written as following prediction-
correction recursion (for k = 1, 2, . . .)

EGM

yk = proxskg(xk − sk∇f(xk)),

xk+1 = proxαkg
(xk − αk∇f(yk)),

where proxtg(x) := arg miny∈Rn g(y) + 1
2t‖y − x‖2, and 0 < sk ≤ αk ≤ 1

L and L is the
Lipschitz constant of ∇f(x).

In what follows, we denote

∇iF (X
(k+1)
<i , X̄

(k)
i , X

(k)
>i) := X̄

(k)
i M

(k+1)>
−i M

(k+1)
−i −A(i)M

(k+1)
−i .

Motivated by the ALS and EGM, we proposed our hybrid alternating extra-gradient and
Newton’s method (HAEN) by replacing the correction step of EGM with the Newton step,
which is given as follows (for k = 1, 2, . . .)

HAEN

For i = 1, . . . , d,

X̄
(k)
i = X

(k)
i − β(k)

i ∇iF (X
(k+1)
<i , X

(k)
≥i),

X
(k+1)
i = X

(k)
i − ω(k)

i ∇iF (X
(k+1)
<i , X̄

(k)
i , X

(k)
>i)

(
∇2
iiF (X

(k+1)
<i , X̄

(k)
i , X

(k)
>i)

)†
,

(3.4)

To see more clear HAEN, consider minx f(x). Then one step of HAEN is

x̄ = x− β∇f(x), x+ = x− ω∇f(x̄)
(
∇2f(x̄)

)†
.

In HAEN, β
(k)
i > 0 is the extra-gradient step-size and ω

(k)
i > 0 is the Newton step-size.

β
(k)
i depends on M

(k+1)
−i and ω

(k)
i depends on M

(k+1)
−i and β

(k)
i . Clearly when β

(k)
i = 0 and

ω
(k)
i = 1, (3.4) reduces exactly to ALS. In particular, unlike the step-sizes of EGM that have

to be constrained in (0, 1
L], ω

(k)
i here can be possibly larger. The choice of β

(k)
i and ω

(k)
i in

(3.4) will be specified in the next section.
On the other hand, to overcome the possible singularity of the partial Hessian of each

subproblem, we use the Moore-Penrose pseudoinverse ∇2
iiF (X

(k+1)
<i , X̄

(k)
i , X

(k)
>i)† instead of

the inverse of ∇2
iiF (X

(k+1)
<i , X̄

(k)
i , X

(k)
>i) in the Newton step. As pointed our in [8], such

474 J. ZHANG AND Y. YANG

a pseudoinverse has a special form as the partial Hessian is constructed by the Khatri-
Rao product of certain matrices. In particular, note that the size of the partial Hessian is
R × R, which is independent of the dimension of the problem. Therefore, computing the
pseudoinverse of the partial Hessian is practical when R is small; this is the case in practice

usually. If R is large, one can solve a system of linear equations instead to obtain X
(k+1)
i .

We remark that very recently, [20] proposed a stochastic extra-step quasi-Newton method
for nonsmooth nonconvex problems, where for the non-stochastic and smooth setting, it
reduces to

x̄ = x− βW∇f(x), x+ = x− αW∇f(x)− λ∇f(x̄),

where W is a matrix to capture the higher-order information. Clearly, even if W = ∇2f(x)†,
our scheme is different from this algorithm. On the other hand, HAEN is executed in an
alternating fashion, and the range of the step-sizes and the convergence results, which will
be presented later, are also different.

The RALS was proposed to improve the convergence property of the ALS by introducing
a proximal term into every subproblem, which is defined as [10] (for k = 1, 2, . . .)

RALS

For i = 1, . . . , d, X
(k+1)
i ∈ arg min

X

1

2
‖A(i) −XM

(k+1)>
−i ‖2F +

α

2
‖X −X(k)

i ‖
2
F ,

where α > 0. By combining the RALS with HAEN, we propose the hybrid regularized
alternating extra-gradient and Newton’s method (HRAEN). Likewise, we first remake the
notations referring to HRAEN as follows:

F̂ (X
(k+1)
<i , X,X

(k)
≥i) :=

1

2
‖A(i) −XM

(k+1)>
−i ‖2F +

α

2
‖X −X(k)

i ‖
2
F ,

∇iF̂ (X
(k+1)
<i , X

(k)
≥i) := X

(k)
i M

(k+1)>
−i M

(k+1)
−i −A(i)M

(k+1)
−i ,

∇iF̂ (X
(k+1)
<i , X̄

(k)
i , X

(k)
>i) := X̄

(k)
i (M

(k+1)>
−i M

(k+1)
−i + αI)−A(i)M

(k+1)
−i − αX(k)

i ,

∇2
iiF̂ (X

(k+1)
<i , X̄

(k)
i , X

(k)
>i) := M

(k+1)>
−i M

(k+1)
−i + αI.

Then, HRAEN is given by the following recursion (for k = 1, 2, . . .)

HRAEN

For i = 1, . . . , d,

X̄
(k)
i = X

(k)
i − β(k)

i ∇iF̂ (X
(k+1)
<i , X

(k)
≥i),

X
(k+1)
i = X

(k)
i − ω(k)

i ∇iF̂ (X
(k+1)
<i , X̄

(k)
i , X

(k)
>i)

(
∇2
iiF̂ (X

(k+1)
<i , X̄

(k)
i , X

(k)
>i)

)−1
.

(3.5)

Similarly, the parameters of (3.5) resemble (3.4) close and will be specified in the next
section.

4 One-Step Descent Property

We introduce in this section two technical properties of our algorithms, which study the
one-step sufficient decrease of HAEN and HRAEN. For simplicity of presentation, we drop

HYBRID METHODS FOR TENSOR DECOMPOSITION 475

the subscripts and the superscripts and remark that (for i = 1, . . . , d and k = 1, 2, . . .)

A = A(i) ∈ Rni×
∏d

j 6=i nj , M> = M
(k+1)>
−i ∈ RR×

∏d
j 6=i nj , X = X

(k)
i ∈ Rni×R,

X+ = X
(k+1)
i ∈ Rni×R, X̄ = X̄

(k)
i ∈ Rni×R, β = β

(k)
i , ω = ω

(k)
i .

(4.1)

In addition, we give some notations about the compact SVD of the following matrices used
in the sequel:

H = M>M = UΛU>, H† = UΛ−1U>,

M = V Λ
1
2U>,

Ĥ = M>M + αI = Û Λ̂Û> � 0,

(4.2)

where α > 0, H, Ĥ ∈ RR×R are symmetric, U ∈ RR×r, V ∈ R
∏d

j 6=i nj×r(r ≤ R and r is the
rank of H), Û ∈ RR×R are column-orthogonal matrices, and Λ ∈ Rr×r, Λ̂ ∈ RR×R are two
diagonal matrices. Note that Λ and Λ̂ are invertible.

We begin with a technical lemma.

Lemma 4.1. Let f(Y) := 1
2‖A − YM

>‖2F where A and M are defined in (4.1). Then for
any Y , there holds

∇f(Y)UU> = ∇f(Y). (4.3)

Proof. With the remark claimed above, (4.3) can be expanded as

∇f(Y)UU> = (YM>M −AM)UU>

= YM>MUU> −AMUU>

(by (4.2)) = Y UΛU>UU> −AV Λ
1
2U>UU>

= Y UΛU> −AV Λ
1
2U>

= YM>M −AM
= ∇f(Y).

Hence (4.3) follows.

Proposition 4.2. Consider the least squares problem minY f(Y) = 1
2‖A − YM>‖2F , if

β ∈ (0, 1
λmax(H)), ω ∈ (0, 2

1−βλmax(H)), where H is defined in (4.2), then

f(X)− f(X+) ≥ λmin(L)‖X −X+‖2F ,

where X+ := X −ω∇f(X̄)
(
∇2f(X̄)

)†
, X̄ := X −β∇f(X), and L := H((I−βH)−1−ωI)

ω + H
2 .

Proof. We begin this proof by performing the Taylor expansion of f(X) at X+

f(X) = f(X+) + 〈∇f(X+), X −X+〉+
1

2
〈(X −X+)∇2f(X+), X −X+〉

= f(X+) + 〈∇f(X+), X −X+〉+
1

2
〈(X −X+)M>M,X −X+〉

(by (4.2)) = f(X+) + 〈∇f(X+), X −X+〉+
1

2
〈(X −X+)H,X −X+〉

= f(X+) + 〈∇f(X+), X −X+〉+
1

2
‖X −X+‖2H .

(4.4)

476 J. ZHANG AND Y. YANG

Proceeding as the proof of Lemma 4.1, ∇f(X+) can be written as follows:

∇f(X+) = X+M>M −AM
(by (4.2)) = X+H −AM

= (X − ω∇f(X̄)(∇2f(X̄))†)H −AM
(H = ∇2f(X̄)) = (X − ω∇f(X̄)H†)H −AM

= XH −AM − ω∇f(X̄)H†H

= ∇f(X)− ω∇f(X̄)UΛ−1U>UΛU>

= ∇f(X)− ω∇f(X̄)UΛ−1ΛU>

= ∇f(X)− ω∇f(X̄)UU>

(by (4.3)) = ∇f(X)− ω∇f(X̄).

(4.5)

Note that X̄ := X − β∇f(X), ∇f(X̄) can be reformulated as

∇f(X̄) = X̄H −AM
= (X − β∇f(X))H −AM
= XH −AM − β∇f(X)H

= ∇f(X)− β∇f(X)H

= ∇f(X)(I − βH).

(4.6)

It follows from β ∈ (0, 1
λmax(H)) that I − βH is invertible, and so

∇f(X) = ∇f(X̄)(I − βH)−1. (4.7)

Substituting (4.7) into (4.5), ∇f(X+) can be rewritten as

∇f(X+) = ∇f(X̄)(I − βH)−1 − ω∇f(X̄). (4.8)

Taking two successive operations of X+ := X − ω∇f(X̄)H† gives

ω−1(X −X+)H = ∇f(X̄)H†H

= ∇f(X̄)UΛ−1U>UΛU>

= ∇f(X̄)UU>

(by (4.3)) = ∇f(X̄).

(4.9)

(4.8) in connection with (4.9) yields

∇f(X+) = ω−1(X −X+)H(I − βH)−1 − ωω−1(X −X+)H

= ω−1(X −X+)H(I − βH)−1 − (X −X+)H

= (X −X+)H
(
ω−1(I − βH)−1 − I

)
= (X −X+)Hω−1

(
(I − βH)−1 − ωI

)
.

(4.10)

Combining (4.10) with (4.4) gives

f(X)− f(X+) = 〈(X −X+)Hω−1
(
(I − βH)−1 − ωI

)
, X −X+〉

+
1

2
〈(X −X+)H,X −X+〉

= ‖X −X+‖2L,

(4.11)

HYBRID METHODS FOR TENSOR DECOMPOSITION 477

where

L =
H
(
(I − βH)−1 − ωI

)
ω

+
H

2
.

Noticing the compact SVD of H, L can be written as

L = U

(
Λ
(
(I − βΛ)−1 − ωI

)
ω

+
Λ

2

)
U>

= U

(
2Λ(I − βΛ)−1 − ωΛ

2ω

)
U>

= U

(
Λ
(
2(I − βΛ)−1 − ωI

)
2ω

)
U>

= U · diag

(
. . . , λj

(
2− (1− βλj)ω

2ω(1− βλj)

)
, . . .

)
· U>,

where λj > 0 (1 ≤ j ≤ r) is the j-th diagonal entry of Λ.
It is easily seen that if β ∈ (0, 1

λmax(H)), ω ∈ (0, 2
1−βλmax(H)), L � 0 and (4.11) yields

f(X)− f(X+) ≥ λmin(L)‖X −X+‖2F .

The proof has been completed.

Similarly we have:

Proposition 4.3. Consider minY f̂(Y) = f(Y) + α
2 ‖Y − X‖

2
F , where α > 0 and f(Y) =

1
2‖A−YM

>‖2F . Let Y + := Y −ω∇f̂(Ȳ)(∇2f̂(Ȳ))−1 and Ȳ := Y −β∇f̂(Y), ∀Y . Then for
X,X+ defined as those in Proposition 4.2, if β ∈ (0, 1

λmax(Ĥ)
) and ω ∈ (0, 2

1−βλmax(Ĥ)
), then

f(X)− f(X+) ≥ (λmin(L̂) +
α

2
)‖X −X+‖2F ,

where L̂ = Ĥ((I−βĤ)−1−ωI)
ω + Ĥ

2 .

Proof. Similar to those in the proof of Proposition 4.2, Taylor expansion of f̂(Y) at Y +

yields

f̂(Y) = f̂(Y +) + 〈∇f̂(Y +), Y − Y +〉+
1

2
〈(Y − Y +)∇2f̂(Y +), Y − Y +〉

= f̂(Y +) + 〈∇f̂(Y +), Y − Y +〉+
1

2
〈(Y − Y +)(M>M + αI), Y − Y +〉

(by (4.2)) = f̂(Y +) + 〈∇f̂(Y +), Y − Y +〉+
1

2
〈(Y − Y +)Ĥ, Y − Y +〉

= f̂(Y +) + 〈∇f̂(Y +), Y − Y +〉+
1

2
‖Y − Y +‖2

Ĥ
.

(4.12)

It is clear that Ĥ � 0 as α > 0. The remainder of the argument is analogous to that in
Proposition 4.2. Similar to (4.5) we have

∇f̂(Y +) = Y +(M>M + αI)−AM − αX

(by (4.2)) = (Y − ω∇f̂(Ȳ)(∇2f̂(Ȳ))−1)Ĥ −AM − αX

(Ĥ = ∇2f̂(Ȳ)) = Y Ĥ −AM − αX − ω∇f̂(Ȳ)Ĥ−1Ĥ

= ∇f̂(Y)− ω∇f̂(Ȳ).

(4.13)

478 J. ZHANG AND Y. YANG

Combining Ȳ := Y − β∇f̂(Y) with ∇f̂(Ȳ) gives

∇f̂(Ȳ) = Ȳ Ĥ −AM − αX

= (Y − β∇f̂(Y))Ĥ −AM − αX

= Y Ĥ −AM − αX − β∇f̂(Y)Ĥ

= ∇f̂(Y)− β∇f̂(Y)Ĥ

= ∇f̂(Y)(I − βĤ),

(4.14)

where (I − βĤ)−1 exists if β ∈ (0, 1
λmax(Ĥ)

). Reformulating (4.14) gives

∇f̂(Y) = ∇f̂(Ȳ)(I − βĤ)−1. (4.15)

Inserting (4.15) into (4.13) yields

∇f̂(Y +) = ∇f̂(Ȳ)(I − βĤ)−1 − ω∇f̂(Ȳ). (4.16)

Rearranging Y + := Y − ω∇f̂(Ȳ)(∇2f̂(Ȳ))−1 leads to

∇f̂(Ȳ) = ω−1(Y − Y +)Ĥ. (4.17)

Substituting (4.17) into (4.16), we have

∇f̂(Y +) = (Y − Y +)Ĥω−1
(

(I − βĤ)−1 − ωI
)
. (4.18)

Plugging (4.18) back into (4.12) yields

f̂(Y)− f̂(Y +) = 〈(Y − Y +)Ĥω−1
(

(I − βĤ)−1 − ωI
)
, Y − Y +〉

+
1

2
〈(Y − Y +)Ĥ, Y − Y +〉

= ‖Y − Y +‖2
L̂
,

where

L̂ =
Ĥ
(

(I − βĤ)−1 − ωI
)

ω
+
Ĥ

2
.

Employing the compact SVD of Ĥ in (4.2), we have

L̂ = Û

 Λ̂ ·
(

(I − βΛ̂)−1 − ωI
)

ω
+

Λ̂

2

 Û>

= Û · diag

(
. . . , λ̂j

(
2− (1− βλ̂j)ω

2ω(1− βλ̂j)

)
, . . .

)
· Û>,

where λ̂j (1 ≤ j ≤ R) is the j-th diagonal entry of Λ̂.

When β ∈ (0, 1
λmax(Ĥ)

), ω ∈ (0, 2
1−βλmax(Ĥ)

), L̂ � 0 and then

f̂(Y)− f̂(Y +) ≥ λmin(L̂)‖Y − Y +‖2F . (4.19)

HYBRID METHODS FOR TENSOR DECOMPOSITION 479

By the definition of f̂(·) and (4.19), let X = Y , X+ = Y +, and so

f(X)− f(X+)− α

2
‖X+ −X‖2F = f̂(X)− f̂(X+) ≥ λmin(L̂)‖X −X+‖2F ,

which yields

f(X)− f(X+) ≥ (λmin(L̂) +
α

2
)‖X −X+‖2F .

The proof is completed.

Remark 4.4. In the above two propositions, we can observe that if β is close to λmax(H),
then β may take a large range. In any case, we see that the choice of ω can be larger than
2. This gives more flexibility to the algorithms.

5 Convergence Analysis

In this section, we adopt the KL-inequality techinique to analysis the global convergence of
the sequence {X(k)} generated by HAEN (3.4) and HRAEN (3.5) under some assumptions.
We divide the proof of our convergence result in several steps. First, we need to state the
 Lojasiewicz gradient inequality in Lemma 5.1. Next, we establish the sufficiently decreasing
inequality in Lemma 5.2 and the relative error inequality in Lemma 5.4, Lemma 5.5 and
Lemma 5.6. With the above lemmas, we show that any accumulation point of the sequence
generated by our algorithms is a stationary point of (2.3) in Theorem 5.7. Finally, to
summarize what we have proved, we achieve the global convergence of our algorithms in
Theorem 5.8.

The Lojasiewicz gradient inequality is stated as follows:

Lemma 5.1 (Lemma 2.1 of [1]). Let ϕ be a real analytic function on a neighborhood of
x∗ ∈ Rn. Then there exist constant c > 0 and µ ∈ [0, 1) such that

‖∇ϕ(x)‖ ≥ c|ϕ(x)− ϕ(x∗)|µ

in some neighborhood U of x∗.

Then, the following lemma is exploited to show the sufficiently decreasing inequality by
the one-step descent property studied in the preceding Section.

Lemma 5.2. Let {X(k)} be a sequence generated by the HAEN (3.4). If β
(k)
i ∈[

ε1,
1

λmax(H
(k)
i)
−ε1

]
, ω

(k)
i ∈

[
ε1,

2

1−β(k)
i λmax(H

(k)
i)
−ε1

]
, where H

(k)
i :=∇2

iiF (X
(k+1)
<i , X̄

(k)
i , X

(k)
>i),

and ε1 > 0 is a small enough but fixed constant, then there exists a universal constant ε0 > 0,
such that

F (X(k))− F (X(k+1)) ≥ ε0‖X(k) −X(k+1)‖2F . and lim
k→∞

F (X(k)) = F ∗ ≥ 0.

Remark 5.3. Similar result holds for the sequence {X(k)} generated by HRAEN (3.5), and
we do not restate it again.

Proof. From Proposition 4.2 and noticing the range of β
(k)
i and ω

(k)
i , there is a universal

constant ε0 > 0 such that

F (X
(k+1)
<i , X

(k)
≥i)− F (X

(k+1)
≤i , X

(k)
>i) ≥ ε0‖X(k+1)

i −X(k)
i ‖

2
F , 1 ≤ i ≤ d,

480 J. ZHANG AND Y. YANG

where we recall that (X
(k+1)
≤i , X

(k)
>i) := (X

(k+1)
1 , . . . , X

(k+1)
i , X

(k)
i+1, . . . , X

(k)
d), Summing up

which yields

F (X(k))− F (X(k+1)) =

d∑
i=1

F (X
(k+1)
<i , X

(k)
≥i)− F (X

(k+1)
≤i , X

(k)
>i) ≥ ε0‖X(k) −X(k+1)‖2F .

Since F (·) is lower bounded and F (X(k)) is decreasing, F (X(k)) has a limit and
limk→∞ F (X(k)) = F ∗ ≥ 0. The proof is completed.

After that, we turn to show our relative error inequality below.

Lemma 5.4. Let {X(k)} be a sequence generated by HAEN (3.4) and assume that it is

bounded. If β
(k)
i ∈ (0, 1

λmax(H
(k)
i)

) and ω
(k)
i ∈ (0, 2

1−β(k)
i λmax(H

(k)
i)

) (1 ≤ i ≤ d), where

H
(k)
i := ∇2

iiF (X
(k+1)
<i , X̄

(k)
i , X

(k)
>i), then there exists a constant b1 > 0, such that

‖∇F (X(k))‖F ≤ b1‖X(k) −X(k+1)‖F . (5.1)

Proof. If X and Y are bounded, then for any 1 ≤ i ≤ d, there exists a constant b̂ > 0, such
that

‖∇iF (X)−∇iF (Y)‖F ≤ ‖∇F (X)−∇F (Y)‖F ≤ b̂‖X − Y ‖F . (5.2)

Since {X(k)} is bounded, it is clear that M
(k+1)
−i (recall its definition in (3.2)), A(i),

∇iF (X
(k+1)
<i , X

(k)
≥i) and ∇2

iiF (X
(k+1)
<i , X

(k)
≥i) are bounded, respectively. Recalling (4.7) gives

∇iF (X
(k+1)
<i , X̄

(k)
i , X

(k)
>i) = ∇iF (X

(k+1)
<i , X

(k)
≥i)(I − β(k)

i M
(k+1)>
−i M

(k+1)
−i). (5.3)

Then substituting (5.3) into the Newton step in (3.4) yields

X
(k+1)
i = X

(k)
i − ω(k)

i ∇iF (X
(k+1)
<i , X̄

(k)
i , X

(k)
>i)

(
∇2
iiF (X

(k+1)
<i , X̄

(k)
i , X

(k)
>i)

)†
= X

(k)
i − ω(k)

i ∇iF (X
(k+1)
<i , X

(k)
≥i)(I − β(k)

i M
(k+1)>
−i M

(k+1)
−i)

(
∇2
iiF (X

(k+1)
<i , X̄

(k)
i , X

(k)
>i)

)†
= X

(k)
i − ω(k)

i ∇iF (X
(k+1)
<i , X

(k)
≥i)(I − β(k)

i M
(k+1)>
−i M

(k+1)
−i)(M

(k+1)>
−i M

(k+1)
−i)†

= X
(k)
i − ω(k)

i ∇iF (X
(k+1)
<i , X

(k)
≥i)

(
(M

(k+1)>
−i M

(k+1)
−i)†

−β(k)
i (M

(k+1)>
−i M

(k+1)
−i)(M

(k+1)>
−i M

(k+1)
−i)†

)
.

Adopting the compact SVD representation of H, we have

(M
(k+1)>
−i M

(k+1)
−i)† − β(k)

i (M
(k+1)>
−i M

(k+1)
−i)(M

(k+1)>
−i M

(k+1)
−i)†

(by (4.2)) = H† − β(k)
i HH†

= UΛ−1U> − β(k)
i UΛU>UΛ−1U>

= UΛ−1U> − Uβ(k)
i IU>

= U(Λ−1 − β(k)
i I)U>

= U · diag(. . . , λ−1j − β
(k)
i , . . .) · U>,

where H,U,Λ and λj were defined in Proposition 4.2.

HYBRID METHODS FOR TENSOR DECOMPOSITION 481

Since β
(k)
i ∈ (0, 1

λmax(H)) and ω
(k)
i ∈ (0, 2

1−β(k)
i λmax(H)

), it is straightforward to show that

(ω
(k)
i)−1

(
(M

(k+1)>
−i M

(k+1)
−i)† − β(k)

i (M
(k+1)>
−i M

(k+1)
−i)(M

(k+1)>
−i M

(k+1)
−i)†

)−1
exists and so

(ω
(k)
i)−1(X

(k)
i −X(k+1)

i)(
(M

(k+1)>
−i M

(k+1)
−i)† − β(k)

i (M
(k+1)>
−i M

(k+1)
−i)(M

(k+1)>
−i M

(k+1)
−i)†

)−1
= ∇iF (X

(k+1)
<i , X

(k)
≥i).

Consequently, we infer that there exists a constant b̄ > 0 , such that

‖∇iF (X
(k+1)
<i , X

(k)
≥i)‖F ≤ b̄‖X(k)

i −X
(k+1)
i ‖F ≤ b̄‖(X(k+1)

<i , X
(k)
≥i)− (X

(k+1)
≤i , X

(k)
>i)‖F . (5.4)

Taking the above argument into consideration, we now turn to prove (5.1).

‖∇F (X(k))‖F = (

d∑
i=1

‖∇iF (X(k))‖2F)
1
2

≤
d∑
i=1

‖∇iF (X(k))‖F

≤
d∑
i=1

‖∇iF (X
(k+1)
<i , X

(k)
≥i)‖F +

d∑
i=1

‖∇iF (X(k))−∇iF (X
(k+1)
<i , X

(k)
≥i)‖F

≤ b̄
d∑
i=1

‖(X(k+1)
<i , X

(k)
≥i)− (X

(k+1)
≤i , X

(k)
>i)‖F + b̂

d∑
i=1

‖X(k) − (X
(k+1)
<i , X

(k)
≥i)‖F

= b̄

d∑
i=1

‖(X(k+1)
1 −X(k+1)

1 , . . . , X
(k+1)
i−1 −X(k+1)

i−1 , X
(k)
i −X(k+1)

i , X
(k)
i+1

−X(k)
i+1, . . . , X

(k)
d −X(k)

d)‖F + b̂

d∑
i=1

‖(X(k)
1 −X(k+1)

1 , . . . , X
(k)
i−1

−X(k+1)
i−1 , X

(k)
i −X(k)

i , . . . , X
(k)
d −X(k)

d)‖F

= b̄

d∑
i=1

‖(0, . . . , 0, X(k)
i −X(k+1)

i , 0, . . . , 0)‖F + b̂

d∑
i=1

‖(X(k)
1 −X(k+1)

1 , . . . ,

X
(k)
i−1 −X

(k+1)
i−1 , 0, . . . , 0)‖F

≤ b̄d‖X(k) −X(k+1)‖F + b̂d‖X(k) −X(k+1)‖F
= (b̄+ b̂)d‖X(k) −X(k+1)‖F ,

where the third inequality holds by (5.2) and (5.4).

(5.1) follows by setting b1 := (b̄+ b̂)d.

Lemma 5.5. Under the boundedness assumption of {X(k)}, let {X(k)} be a sequence gener-

ated by HRAEN (3.5). If β
(k)
i ∈ (0, 1

λmax(Ĥ
(k)
i)

) and ω
(k)
i ∈ (0, 2

1−β(k)
i λmax(Ĥ

(k)
i)

) (1 ≤ i ≤ d),

482 J. ZHANG AND Y. YANG

where Ĥ
(k)
i := ∇2

iiF̂ (X
(k+1)
<i , X̄

(k)
i , X

(k)
>i), then there exists a constant b2 > 0, such that

‖∇F (X(k))‖F ≤ b2‖X(k) −X(k+1)‖F . (5.5)

Proof. In the case of HRAEN, the proofs are almost identical. Similar to the previous lemma,

we can obtain the boundedness of ∇iF̂ (X
(k+1)
<i , X

(k)
≥i) and ∇2

iiF̂ (X
(k+1)
<i , X

(k)
≥i). Combining

the Newton step in (3.5) with (4.14), we have

X
(k+1)
i = X

(k)
i − ω(k)

i ∇iF̂ (X
(k+1)
<i , X̄

(k)
i , X

(k)
>i)

(
∇2
iiF̂ (X

(k+1)
<i , X̄

(k)
i , X

(k)
>i)

)−1
= X

(k)
i − ω(k)

i ∇iF̂ (X
(k+1)
<i , X

(k)
≥i)

(
I − β(k)

i (M
(k+1)>
−i M

(k+1)
−i + αI)

)
· (M (k+1)>

−i M
(k+1)
−i + αI)−1

= X
(k)
i − ω(k)

i ∇iF̂ (X
(k+1)
<i , X

(k)
≥i)

(
(M

(k+1)>
−i M

(k+1)
−i + αI)−1 − β(k)

i I
)
.

Using the compact SVD representation of Ĥ, we have

(M
(k+1)>
−i M

(k+1)
−i + αI)−1 − β(k)

i I

(by (4.2)) = Ĥ−1 − β(k)
i I

= Û(Λ̂−1 − β(k)
i I)Û>

= Û · diag(. . . , λ̂−1j − β
(k)
i , . . .) · Û>,

where Ĥ, Û , Λ̂ and λ̂j were defined in Proposition 4.3. Since β
(k)
i ∈ (0, 1

λmax(Ĥ)
) and ω

(k)
i ∈

(0, 2

1−β(k)
i λmax(Ĥ)

), we have

∇iF̂ (X
(k+1)
<i , X

(k)
≥i) = (ω

(k)
i)−1(X

(k)
i −X(k+1)

i)
(

(M
(k+1)>
−i M

(k+1)
−i + αI)−1 − β(k)

i I
)−1

.

Thus, proceeding in a similar manner as Lemma 5.4, there exists a constant b2 > 0, such
that

‖∇F̂ (X(k))‖F = (

d∑
i=1

‖∇iF̂ (X(k))‖2F)
1
2 ≤ b2‖X(k) −X(k+1)‖F .

Note that

∇iF̂ (X(k)) = X
(k)
i (M

(k+1)>
−i M

(k+1)
−i + αI)−A(i)M

(k+1)
−i − αX(k)

i = ∇iF (X(k)),

which implies (5.5). The proof is completed.

We summarize the previous two lemmas together.

Lemma 5.6. Under the boundedness assumption of {X(k)}, let {X(k)} be a sequence gen-

erated by HAEN (3.4) or HRAEN (3.5). If β
(k)
i ∈ (0, 1

λ∗) and ω
(k)
i ∈ (0, 2

1−β(k)
i λ∗∗

), then

there exists a constant b > 0, such that

‖∇F (X(k))‖F ≤ b‖X(k) −X(k+1)‖F .

where b = max{b1, b2}, λ∗ = max{λmax(H
(k)
i), λmax(Ĥ

(k)
i)}, λ∗∗ = min{λmax(H

(k)
i),

λmax(Ĥ
(k)
i)}, where H

(k)
i := ∇2

iiF (X
(k+1)
<i , X̄

(k)
i , X

(k)
>i) and Ĥ

(k)
i := ∇2

iiF̂ (X
(k+1)
<i , X̄

(k)
i , X

(k)
>i).

HYBRID METHODS FOR TENSOR DECOMPOSITION 483

Based on Lemma 5.2 and 5.6, we can derive the following results, that any accumulation
point of {X(k)} is a stationary point of (2.3).

Theorem 5.7. Let {X(k)} be a bounded sequence generated by HAEN (3.4) or HRAEN

(3.5). If β
(k)
i ∈

[
ε1,

1
λ∗ − ε1

]
, ω

(k)
i ∈

[
ε1,

2

1−β(k)
i λ∗∗

− ε1
]

, where λ∗, λ∗∗ are defined in Lemma

5.6 and ε1 > 0 is a small enough but fixed constant, then any accumulation point of {X(k)}
is a stationary point of (2.3).

Proof. By the boundedness assumption of {X(k)}, the set of accumulation points of X∗ is
nonempty. Thus, for any accumulation point X∗, it follows that there exists a convergent
subsequence {X(kl)} of {X(k)} such that liml→∞X(kl) = X∗. By Lemma 5.2 and 5.6, we
have

F (X(kl))− F (X(kl+1)) ≥ ε0
b2
‖∇F (X(kl))‖2F ≥

ε0
b2
‖∇iF (X(kl))‖2F , 1 ≤ i ≤ d.

Since F (·) and ∇iF (·) are continuous, letting l→∞ into both sides of the above inequality
yields

∇iF (X∗) = 0, 1 ≤ i ≤ d,

i.e., X∗ is a stationary point of (2.3). The proof has been completed.

Finally, with the help of the preceding lemmas, we can now prove the global convergence
of HAEN (3.4) and HRAEN (3.5).

Theorem 5.8 (Global convergence of HAEN and HRAEN). Under the setting of Theorem
5.7, the whole sequence converges to X∗ which is a stationary point, i.e.,

lim
k→∞

X(k) = X∗.

Proof. Since the sequence {X(k)} is bounded, then there exists a subsequence {X(kl)} of
{X(k)} converging to X∗, i.e., liml→∞X(kl) = X∗, where X∗ is an accumulation point of
{X(k)}. We first establish the assumption that F (X(k)) > F (X(k+1)) > F (X∗) for all k.
Note that Lemma 5.2 implies that the sequence F (X(k)) is nonincreasing. We assume that
X(k) 6= X(k+1) for all k, otherwise the iteration stops, which leads to F (X(k)) > F (X(k+1))
for all k. Moreover, since the function F (·) is continuous and Lemma 5.2, it is straightforward
to derive that liml→∞ F (X(kl)) = F (X∗) which implies that limk→∞ F (X(k)) = F (X∗).
Next, we can reasonably assume that F (X(k)) > F (X∗) for all k. If not, there would exist
integer k0 > 0 such that F (X(k0)) = F (X∗); by Lemma 5.2

ε0‖X(k0) −X(k0+1)‖2F ≤ F (X(k0))− F (X(k0+1)) ≤ F (X(k0))− F (X∗) = 0,

and we can get that X(k0) = X(k0+1). Using X(k0+1) in place of X(k0) and repeating
the argument, we get X(k0) = X(k0+1) = · · · = X∗, which means iteration terminates.
Therefore, in the following we assume that F (X(k)) > F (X(k+1)) > F (X∗) for all k.

Let δ > 0 be such that B(X∗, δ) = {X|‖X −X∗‖F ≤ δ} ⊂ U , where U is the neighbor-
hood such that the Lojasiewicz inequality (Lemma 5.1) holds around the cluster point X∗.
Then there must be an integer k1 > 0, such that

X(k1) ∈ B(X∗,
δ

2
) ⊂ U and c1(F (X(k1))− F (X∗))1−µ ≤ δ

2
, (5.6)

where µ ∈ (0, 1] and c1 = b
cε0(1−µ) . Such k1 exists due to limk→∞ F (X(k)) = F (X∗).

484 J. ZHANG AND Y. YANG

The key idea of proving the theorem is to establish the following claim: for all k ≥ k1,
there holds

X(k) ∈ B(X∗, δ) (5.7)

and then

‖X(k) −X(k+1)‖F ≤ c1
(

(F (X(k))− F (X∗))1−µ − (F (X(k+1))− F (X∗))1−µ
)
, (5.8)

based on which we can prove the limit of {X(k)} is X∗. We will show this claim by induction
method.

When k = k1, by Lemma 5.2, we obtain

‖X(k1) −X(k1+1)‖F ≤
F (X(k1))− F (X(k1+1))

ε0‖X(k1) −X(k1+1)‖F
,

which together with Lemma 5.6 yields

‖X(k1) −X(k1+1)‖F ≤
b(F (X(k1))− F (X(k1+1)))

ε0‖∇F (X(k1))‖F
. (5.9)

Combining the above inequality (5.9) with Lemma 5.1 gives

‖X(k1) −X(k1+1)‖F ≤
b

cε0

F (X(k1))− F (X(k1+1))

(F (X(k1))− F (X∗))µ
. (5.10)

Consider the concave function f(t) = t1−µ (t ≥ 0), which implies

f(t1)− f(t2) ≥ f ′(t1)(t1 − t2), ∀t1, t2 ≥ 0,

and so

(F (X(k1))− F (X∗))1−µ − (F (X(k1+1))− F (X∗))1−µ ≥ (1− µ)
F (X(k1))− F (X(k1+1))

(F (X(k1))− F (X∗))µ
.

(5.11)
Direct combination of the two above inequalities (5.10) and (5.11) yields

‖X(k1)−X(k1+1)‖F ≤ c1
(

(F (X(k1))− F (X∗))1−µ − (F (X(k1+1))− F (X∗))1−µ
)
, (5.12)

where c1 = b
cε0(1−µ) .

Suppose that for k = k1 + 1, k1 + 2, . . . , k2, (5.7) and (5.8) holds. Now we focus on
k = k2 + 1. By the method analogous to that used above, for k = k2 + 1, (5.8) holds. Using
the triangle inequality and (5.6), we have

‖X(k2+1) −X∗‖F ≤ ‖X(k2+1) −X(k1)‖F + ‖X(k1) −X∗‖F

≤
k2∑
k=k1

‖X(k+1) −X(k)‖F +
δ

2

(by (5.12)) ≤ c1
k2∑
k=k1

(
(F (X(k))− F (X∗))1−µ − (F (X(k+1))− F (X∗))1−µ

)
+
δ

2

≤ c1
(

(F (X(k1))− F (X∗))1−µ − (F (X(k2+1))− F (X∗))1−µ
)

+
δ

2

≤ c1(F (X(k1))− F (X∗))1−µ +
δ

2
< δ,

HYBRID METHODS FOR TENSOR DECOMPOSITION 485

i.e., X(k2+1) ∈ B(X∗, δ). As a consequence, the induction method shows that (5.7) holds
for all k ≥ k1, i.e., given δ sufficiently small, there exists k1 such that ‖X−X∗‖F ≤ δ. Since
δ > 0 is arbitrary (subject to B(X∗, δ) ⊂ U), which means that the whole X(k) converges to
X∗, i.e., limk→∞X(k) = X∗. Finally, by Theorem 5.7, we conclude that X∗ is a stationary
point of (2.3). The proof is completed.

6 Preliminary Numerical Experiments

In this section, we compare the HAEN and HRAEN with standard and regularized version of
ALS algorithm in tensor CPD. The experiments were done with Matlab R2020a, Tensorlab
[18] and implemented on a desktop computer with i7 CPU 3.0GHz CPU and 16 GB of RAM.
In the experiments, we conduct a preliminary comparison of the four algorithms on CPD
with different various tensor dimensions and noise level. Consider the input data tensor
A ∈ Rn1×···×nd , given as

A :=
C

‖C ‖F
+ σ

N

‖N ‖F
,

where C admits a CPD, i.e., C = JC1. . . . , CdK, where Ci ∈ Rni×R (i = 1, . . . , d) denote the
factor matrices and R is the parameter of tensor CP-rank; N denotes the noise term, and
σ controls the noise level. The entries of C1, . . . , Cd and N are drawn from a zero-mean
unit-variance Gaussian distribution. All of these algorithms stop either the iterations exceed
1× 105 or a tolerance relative error of 1× 10−5 is met the update

‖X(k+1) −X(k)‖F
‖X(k+1)‖F

between two subsequent iterates. The initial guess X(0) is also drawn form a zero-mean
unit-variance Gaussian distribution, and we set the column size of each factor to be R.
We use the built-in function normest in Matlab to estimate λmax(·) in the experiments.

Accounting for the constraint of β
(k)
i and ω

(k)
i (1 ≤ i ≤ d) is updated in each iterate, we

adopt the fraction structure and introduce the parameters h and o to indirectly control

β
(k)
i and ω

(k)
i respectively. Take HAEN for example, β

(k)
i = (normest(H

(k)
i)h)−1, ω

(k)
i =

2((1− β(k)
i normest(H

(k)
i))o)−1, where H

(k)
i := ∇2

iiF (X
(k+1)
<i , X̄

(k)
i , X

(k)
>i). Empirically, in

each experiment, we set h = 14, o = 1.5 for HAEN and h = 1.8, o = 3.5, α = 0.01 for
HRAEN. For RALS, the regularization parameter α is fixed to 0.01.

At first, we give six examples of 3-way tensor CPD with no noise in Fig.1 to illustrate the
resistance of the swamp phenomenon, the accuracy of the decomposition, and the diminu-
tion of iterations of our algorithms compared with classic methods in various scale tensor
approximation. The first two examples are given as follows and the details of others are pre-
sented in the appendix. In Fig.1, the x-axes denotes the iterations range from 1 to 100000,
and the y-axes denotes the Error ‖A − JA0, B0, C0K‖F . The figures shows our algorithms
take advantage in iterations-cost or accuracy compared with classic methods, and both ef-
fectively alleviate the swamp, while it seems that HAEN performs better. In addition, it can
be seen from the figures that ALS is affected by the swamp mostly , while HAEN overcomes
the swamp better than the other algorithms.

Example 6.1 (2× 2× 2). Let the matrices

A =

[
−0.1441 0.9117
−0.2607 2.3062

]
, B =

[
0.8476 0.0047
0.6427 0.1298

]
, C =

[
0.5814 −1.4926
−0.553 0.4291

]

486 J. ZHANG AND Y. YANG

Figure 1: Six examples for CPD with swamp occurring

HYBRID METHODS FOR TENSOR DECOMPOSITION 487

be the three factor matrices of aim tensor A =
∑2
i=1 ai ◦ bi ◦ ci, where the vectors ai, bi

and ci are the ith columns of A, B and C respectively. CPD is calculated with the following
initial matrices:

A0 =

[
0.4905 0.2301
0.1438 2.3655

]
, B0 =

[
−0.7813 −0.6737
−0.1589 0.714

]
, C0 =

[
0.2552 0.7421
−0.3273 −1.0057

]
Example 6.2 (3× 3× 3). Let the matrices

A =

 −1.853 1.3504
0.3656 0.0522
−0.9224 0.2292

 , B =

 −0.7874 0.2162
0.523 −0.3203

0.0649 0.6434

 , C =

 −2.4392 −0.1907
0.1657 0.5781
1.0482 −0.5955


be the three factor matrices of aim tensor A =

∑2
i=1 ai ◦ bi ◦ ci, where the vectors ai, bi

and ci are the ith columns of A, B and C respectively. CPD is calculated with the following
initial matrices:

A0 =

 0.4625 −1.8335
−2.0939 0.1853
−0.15 0.765

,

 B0 =

 1.1796 0.7754
0.753 −0.0567

0.4841 −0.0385

 , C0 =

 1.0204 −1.7973
1.0873 −2.2953
−0.4708 −1.6226


Secondly, we report the four algorithms for CPD with various size and noise level in Table

1 and Table 2 (each case is averaged over 50 instances), where Err. = ‖A − JX1, . . . , XdK‖F
represents the accuracy, and “Iter.” denotes the iterations.

Table 1: HAEN, ALS, HRAEN (α = 0.01) and RALS (α = 0.01) for solving CPD with
different size and noise level σ. Each case is averaged over 50 instances. Err. = ‖A −
JX1, . . . , XdK‖F represents the accuracy, and “Iter.” denotes the iterations.

From Table 1, it can be seen that HAEN and HRAEN require less iterations to converge
and keep the less time-cost in most cases versus RALS (α = 0.01). When compared with
ALS, it is easily seen that HAEN requires less or the same level iterations and time-cost
in most cases. In the case that the order d = 4, HAEN and HRAEN still more efficient
versus RALS from Table 2. Notably, HAEN performs better and needs less iterations and
time-cost for solving 4-way tensor CPD.

488 J. ZHANG AND Y. YANG

Table 2: HAEN, ALS, HRAEN (α = 0.01) and RALS (α = 0.01) for solving CPD with
different size and noise level σ. Each case is averaged over 50 instances. Err. = ‖A −
JX1, . . . , XdK‖F represents the accuracy, and “Iter.” denotes the iterations.

The above experiments show that, compared with the standard and the regularized
version of the ALS algorithm respectively, HAEN and HRAEN can not only alleviate the
occurrence of swamp better, but also reduce the time-cost and iterations in most cases.

7 Concluding Remarks

We proposed hybrid alternating extra-gradient and Newton’s methods, namely HAEN and
HRAEN, for tensor decomposition. Specifically, for each subproblem, the correction step
of the extra-gradient is replaced by a Newton step. If the partial Hessian is singular, its
pseudoinverse is used to replace the inverse. As discussed in Remark 4.4, the choice of
the step-size ω related to the correction step can be possibly chosen large, giving more
flexibility to the algorithms. Under mild assumptions, HAEN and HRAEN achieve global
convergence. As shown in the experiments, our algorithms are more efficient, and more resist
to the swamp, compared to the standard and the regularized version of the ALS algorithm.
A potential execution that would reduce the efficiency of the proposed algorithms is the
computation of the largest eigenvalue of the partial Hessian when choosing the step-sizes.
Although we use the Matlab built-in function normest to accelerate the computation, if R
is large, this might still not be efficient. A possible alternative is to use line search instead.

References

[1] P.A. Absil, R. Mahony and B. Andrews, Convergence of the iterates of descent methods
for analytic cost functions, SIAM J. Optim. 16 (2005) pp. 531–547.

[2] J.C.A. Barata and M.S. Hussein, The Moore-Penrose pseudoinverse: A tutorial review
of the theory, Braz. J. Phys. 42 (2012) 146–165.

[3] J.D. Carroll and J.J. Chang, Analysis of individual differences in multidimensional
scaling via an N-way generalization of “Eckart-Young” decomposition, Psychometrika
35 (1970) 283–319.

HYBRID METHODS FOR TENSOR DECOMPOSITION 489

[4] P. Comon, X. Luciani and A.L. De Almeida, Tensor decompositions, alternating least
squares and other tales, J. Chemometr. 23 (2009) 393–405.

[5] W. Hackbusch, Tensor spaces and numerical tensor calculus, Springer Science & Busi-
ness Media 42 (2012) 3–20.

[6] R.A. Harshman, Foundations of the PARAFAC procedure: models and conditions for
an “explanatory” multimodal factor analysis, UCLA working papers in phonetics 16
(1970) 1–84.

[7] F. Jiang, D. Han and X. Zhang, A trust-region-based alternating least-squares algorithm
for tensor decompositions, J. Comput. Math. 36 (2018) 351–373.

[8] T.G. Kolda and B.W. Bader, Tensor decompositions and applications, SIAM Rev. 51
(2009) 455–500.

[9] G.M. Korpelevich, The extragradient method for finding saddle points and other prob-
lems, Matecon 12 (1976) 747–756.

[10] N. Li, S. Kindermann and C. Navasca, Some convergence results on the regularized
alternating least-squares method for tensor decomposition, Linear Algebra Appl. 438
(2013) 796–812.

[11] X. Mao, G. Yuan and Y. Yang, A self-adaptive regularized alternating least squares
method for tensor decomposition problems, Anal. Appl. 18 (2020) 129–147.

[12] C. Navasca, L. De Lathauwer and S. Kindermann, Swamp reducing technique for tensor
decomposition, in: 2008 16th European Signal Processing Conference, IEEE, 2008, pp.
1–5.

[13] T.P. Nguyen, E. Pauwels, E. Richard and B. W. Suter, Do, Extragradient method in
optimization: convergence and complexity, J. Optim. Theory Appl. 176 (2018) 137–162.

[14] P. Paatero, A weighted non-negative least squares algorithm for three-way ‘parafac’
factor analysis, Chemom. Intell. Lab. Syst. 38 (1997) 223–242.

[15] J.D. Sidiropoulos, R. Bro and G. B. Giannakis, Parallel factor analysis in sensor array
processing, IEEE Trans. Signal Process. 48 (2000) 2377–2388.

[16] N.D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E.E. Papalexakis and C. Falout-
sos, Tensor decomposition for signal processing and machine learning, IEEE Trans.
Signal Process. 65 (2017) 3551–3582.

[17] G. Tomasi and R. Bro, A comparison of algorithms for fitting the parafac model, Com-
put. Stat. Data Anal. 50 (2006), 1700–1734.

[18] N. Vervliet, O. Debals and L. De Lathauwer, Tensorlab 3.0–numerical optimization
strategies for large-scale constrained and coupled matrix/tensor factorization, in: 2016
50th Asilomar Conference on Signals, Systems and Computers, IEEE, 2016, pp. 1733–
1738.

[19] X. Wang, C. Navasca and S. Kindermann, On accelerating the regularized alternating
least-squares algorithm for tensors, Electron. Trans. Numer. Anal. 48 (2018) 1–14.

490 J. ZHANG AND Y. YANG

[20] M. Yang, A. Milzarek, Z. Wen and T. Zhang, A stochastic extra-step quasi-
newton method for nonsmooth nonconvex optimization, Math. Program. (2021),
https://doi.org/10.1007/s10107-021-01629-y.

Manuscript received 27 June 2021
revised 24 August 2021

accepted for publication 8 October 2021

Junwei Zhang
College of Mathematics and Information Science
Guangxi University, Nanning, 530004, China
E-mail address: JW2hang@outlook.com

Yuning Yang
College of Mathematics and Information Science
Guangxi University, Nanning, 530004, China
E-mail address: yyang@gxu.edu.cn

HYBRID METHODS FOR TENSOR DECOMPOSITION 491

A More Examples

Example A.1 (4× 4× 4). Let the matrices

A =


−1.3077 2.7694 −0.0631
−0.4336 −1.3499 0.7147

0.3426 3.0349 −0.205
3.5784 0.7254 −0.1241

 ,

B =


1.4897 −1.2075 1.0347
1.409 0.7172 0.7269

1.4172 1.6302 −0.3034
0.6715 0.4889 0.2939

 ,

C =


−0.7873 −0.8095 −0.7549

0.8884 −2.9443 1.3703
−1.1471 1.4384 −1.7115
−1.0689 0.3252 −0.1022



be the three factor matrices of aim tensor A =
∑3
i=1 ai ◦ bi ◦ ci, where the vectors ai, bi

and ci are the ith columns of A, B and C respectively. CPD is calculated with the following
initial matrices:

A0 =


−0.6003 −0.1941 −1.0722

0.49 −2.1384 0.961
0.7394 −0.8396 0.124
1.7119 1.3546 1.4367

 ,

B0 =


−1.9609 0.8252 −0.2725
−0.1977 1.379 1.0984
−1.2078 −1.0582 −0.2779

2.908 −0.4686 0.7015

 ,

C0 =


−2.0518 0.508 1.1275
−0.3538 0.282 0.3502
−0.8236 0.0335 −0.2991
−1.5771 −1.3337 0.0229

 .

492 J. ZHANG AND Y. YANG

Example A.2 (4× 5× 6). Let the matrices

A =


0.3464 −0.887 0.5039 −0.6132 −1.1153
−0.2611 0.7414 −0.8225 −0.659 0.6672
−0.1847 1.3922 0.201 −0.8332 0.7953
−0.1017 2.4739 −1.0071 0.3782 1.0375

 ,

B =


−0.0204 1.7725 −0.5603 0.567 −1.2874

0.6190 −2.5088 −1.2265 −0.0014 0.2181
1.8031 −0.4566 0.793 0.6239 −1.5666
0.0530 2.4304 −2.1099 0.1264 0.7833
−0.1779 −0.4715 −0.7994 0.6809 −0.3106

 ,

C =


0.6553 −1.8324 −1.5868 −0.5771 0.043
−0.5375 0.8486 −1.0191 −0.8364 −0.9489

0.3286 0.4052 −1.3852 0.853 0.5416
1.0541 −0.7025 0.9549 0.4773 −0.8211
−1.9797 1.499 −0.6011 0.3023 −1.0719
−1.8674 0.1378 −1.1719 0.4158 −1.0741



be the three factor matrices of aim tensor A =
∑5
i=1 ai ◦ bi ◦ ci, where the vectors ai, bi

and ci are the ith columns of A, B and C respectively. CPD is calculated with the following
initial matrices:

A0 =


−0.3904 −1.3157 −1.8269 0.3176 1.0395
−0.6901 0.6271 0.5359 0.1628 −0.1168
−0.4482 −1.3313 0.6929 1.1591 −0.6483

0.7144 −0.1308 −0.6875 0.1284 −0.038

 ,

B0 =


−0.1993 1.1886 −0.3627 0.3189 1.0571

0.8817 −0.4149 −0.7388 −1.4565 −0.5876
−0.0561 −0.6586 −1.4798 1.3218 0.3022
−0.8412 0.984 0.1534 0.4872 0.2195
−0.1548 0.1012 −0.317 −1.5666 −0.8782

 ,

C0 =


−2.8614 0.6712 −0.8926 −0.2359 0.4998

0.5356 0.1509 −0.8953 0.6528 −0.4841
−0.342 −0.9913 0.3133 1.9645 0.2384
−0.5979 0.8368 0.667 0.8846 0.7782

0.4189 0.4745 0.8281 0.0845 0.9243
−0.6897 1.2522 0.0065 −0.5745 0.5881

 .

HYBRID METHODS FOR TENSOR DECOMPOSITION 493

Example A.3 (7× 7× 7). Let the matrices

A =



−0.7929 −0.2036 1.676 0.1909 −1.9683
0.9308 0.0179 −0.3251 −0.7348 −1.6861
−1.3504 0.1004 0.1011 0.7884 −0.0869

0.7998 0.8764 −0.5767 −1.9654 0.3074
0.5996 0.7007 −0.0615 −1.9555 0.3375
1.1004 0.652 0.7256 1.6243 1.067
−1.4197 0.1785 −1.2273 −0.1494 0.3329


,

B =



−0.0735 −1.4831 0.9551 0.7039 −1.0478
1.0478 −0.1065 −0.1308 −0.7526 −0.7354
2.0589 0.2453 0.6494 −0.0169 −1.3566
0.0267 0.1458 0.5985 −0.4417 0.7286
−0.2405 −1.1181 −0.1925 1.7013 0.6072

1.0385 −0.5969 −1.9808 −0.0306 −0.8283
−0.5072 −0.6795 0.3629 0.2039 2.8876


,

C =



0.9191 −1.0383 −0.7637 0.505 0.0866
0.4058 0.5294 0.5495 0.0405 1.5126
1.9162 −2.2171 −0.3746 −0.2547 1.7933
−2.4557 0.1074 −1.6592 −0.5477 1.1026
−0.0911 0.4389 −0.3102 1.6766 −0.3258
−0.0247 −0.041 −0.6199 1.173 −0.5828

0.1999 0.3643 −1.0246 −0.1891 0.7516


be the three factor matrices of aim tensor A =

∑5
i=1 ai ◦ bi ◦ ci, where the vectors ai, bi

and ci are the ith columns of A, B and C respectively. CPD is calculated with the following
initial matrices:

A0 =



0.8322 0.4448 0.1098 1.8829 −0.3927
0.9481 1.1409 −1.6547 0.0555 −0.622
−1.9737 0.4477 1.1107 −0.6139 −1.1905
−0.3919 0.3154 −2.1079 0.587 −1.8785
−0.6767 0.9456 −0.5498 −1.2067 −0.424
−0.016 0.4287 0.0943 0.5453 0.7772
0.5152 −1.3246 −0.0382 0.2509 −0.7139


,

B0 =



1.5846 −0.7576 −0.06 1.5607 1.7421
−0.8883 0.7386 1.3857 1.5862 −2.0015

2.1408 −1.1144 1.2178 0.8563 0.8355
−0.6922 −1.7059 −1.4951 −1.4245 −0.3428

0.0993 0.6612 0.0373 0.0397 −0.478
1.435 −1.7296 0.8029 −1.3799 −0.8891

1.2334 −2.1381 0.9739 1.2331 1.2634


,

C0 =



0.3832 1.5857 −0.5491 0.9986 0.0531
−0.1189 1.2502 0.2837 −0.7573 −0.237

0.4172 −0.1156 0.2128 0.5961 −0.0627
1.0132 −1.3318 −2.2028 2.1232 1.2711
−0.8695 −2.3428 1.2511 1.3117 0.2211
−0.7947 −0.9266 2.0247 −0.6999 1.664

0.6885 1.1296 −0.0389 −1.0196 −0.043


.

494 J. ZHANG AND Y. YANG

Example A.4 (10× 10× 10). Let the matrices

A =



1.3779 −0.6862 −0.2128 0.5963 −0.2002
1.8512 −0.8133 −0.044 −0.1135 0.9404
−1.8977 0.7934 0.4582 0.807 0.3492
−1.7787 −0.3819 −0.4414 −0.0898 1.8593
−0.9226 −1.3712 −1.0549 −0.0063 0.9271
−1.9979 0.0103 −0.1556 −0.0919 −1.227
−0.3571 0.2041 0.1291 −0.9212 −0.3272
−0.3364 −0.411 0.5094 −0.927 0.8916

0.2504 0.6636 −0.0301 −0.9612 0.2882
0.2862 0.2258 −0.4574 1.7848 2.2652


,

B =



−0.0479 −0.1031 −0.6543 0.4805 0.1769
−1.5519 −2.799 1.2449 −0.3868 3.4663

0.4441 0.3933 −1.2923 0.4216 −0.2146
−0.9118 0.9902 −0.6144 1.0877 0.4863

0.0494 −1.2976 0.2417 −2.2493 0.3309
1.0780 −1.522 0.5493 1.8045 1.2679
0.3082 0.621 0.4676 −0.6321 1.0905
0.2996 −1.5075 0.1915 1.3165 −0.9465
−0.1972 −1.6794 −0.2298 1.5516 −0.4385
−0.1464 0.789 −0.5792 −1.4689 0.3432


,

C =



−0.0584 0.8960 1.2951 −0.2298 −1.0618
2.535 −1.8135 2.7681 −1.4617 0.4505

0.4386 1.5667 −0.4953 −2.8823 −0.2728
0.4375 0.8465 0.4688 −0.0475 −0.1015
−0.8377 0.1102 −0.6573 −0.4625 −1.4291
−1.3075 −1.1611 −1.717 −0.5766 −0.7644

0.7941 −0.3975 1.4705 −0.846 0.4101
−0.1973 0.2543 0.6941 −1.8172 −0.7899

0.6492 1.2078 −0.5107 −0.5217 0.1616
−0.8315 −1.0335 0.1134 0.1614 1.9779



be the three factor matrices of aim tensor A =
∑5
i=1 ai ◦ bi ◦ ci, where the vectors ai, bi

and ci are the ith columns of A, B and C respectively. CPD is calculated with the following

HYBRID METHODS FOR TENSOR DECOMPOSITION 495

initial matrices:

A0 =



0.5661 −1.0402 −0.1138 0.8761 0.5523
0.3759 0.9973 1.9371 −0.8765 1.8201
−0.277 −0.0261 −0.1708 −1.2174 0.3426
0.3501 −0.657 0.3012 −1.6148 0.1796
−0.2913 0.6777 0.326 1.8401 −1.0193

0.1861 −0.5108 0.9248 −0.8189 0.0376
0.5766 0.446 0.2153 0.9921 0.1371
0.3397 1.5166 0.3662 0.5338 −1.5211
−0.6728 0.9378 0.3222 −1.5267 −0.0189
−0.537 −0.1602 2.689 2.0229 0.1632


,

B0 =



−0.7212 0.6000 −0.5644 2.4516 0.0574
0.4106 0.5714 1.0433 −1.4626 1.0658
−1.2126 0.6851 0.846 −0.6355 1.6207
−0.5737 1.0094 −0.4955 −0.3855 0.1219

0.1054 0.9909 −0.2068 −0.9423 −1.238
−0.6051 0.0337 −0.1558 −0.6738 0.2441

0.4218 −0.4503 −0.2754 −1.9242 1.3983
−0.3628 −0.1107 −2.4432 −0.1124 −0.0955
−0.8741 1.2379 −0.4273 −0.5185 0.3876

0.9316 −1.1979 0.3091 0.535 −0.9663


,

C0 =



1.5092 0.0837 0.2021 1.0382 −0.5708
0.4038 0.3746 0.8763 0.3305 1.3047
−0.4221 2.6532 0.8079 0.4758 −0.0426
−1.674 0.3327 −1.6033 −2.0905 0.8955
−0.6876 0.1408 −2.3621 −0.174 2.2849
−1.0272 1.5778 −0.7017 0.0192 0.0668
−0.4926 0.0895 1.6519 −0.86 1.4946

0.3468 −0.673 0.2351 −0.0229 −1.0725
0.8294 0.9319 −0.1518 −0.6023 1.8233
0.1556 −0.3579 −0.1559 0.8699 −1.2084


.

