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where f : Rp → (−∞,+∞] and g : Rq → (−∞,+∞] are extended real-valued closed proper
convex functions, h : Rq → R is convex and differentiable with L-Lipschitz continuous
gradient, i.e.,

∥∇h(x)−∇h(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rq,

and K : Rq → Rp is a linear operator with induced norm ∥K∥ = supx{∥Kx∥ : ∥x∥ ≤ 1}.
Though we have restricted ourselves in Rp and Rq, our algorithm and convergence results
can be generalized to any finite dimensional real Euclidean space.

Problem (1.1) arises from various applications, including signal and image processing,
machine learning, statistics, mechanics and economics, just to name a few, see, e.g., [18, 19,
10] for some ill-posed inverse problems and elastic net regularization problems. The Fenchel
dual problem of (1.1) is given by

max
y∈Rp

−f∗(y)− (g + h)∗(−K⊤y), (1.2)

where f∗(y) = supu∈Rp{⟨y, u⟩ − f(u)}, y ∈ Rp, is the Legendre conjugate of f , and K⊤

denotes the adjoint operator of K. Furthermore, the saddle-point or primal-dual problem
corresponding to (1.1) and (1.2) is given by

min
x∈Rq

max
y∈Rp

h(x) + g(x) + ⟨Kx, y⟩ − f∗(y). (1.3)

On the other hand, by introducing an auxiliary variable w ∈ Rp, one can reformulate problem
(1.1) equivalently as

min
x∈Rq,w∈Rp

{
Φ(x,w) := h(x) + g(x) + f(w) | Kx− w = 0

}
. (1.4)

Problems (1.1)-(1.4) are closely related. In fact, the equivalence between (1.1) and (1.4) is
apparent. Moreover, under regularity conditions (see Assumption 1.1), the dual solution ȳ
can be induced from a solution x̄ to the primal problem via ȳ ∈ argmaxy∈Rp⟨Kx̄, y⟩−f∗(y).
Contrarily, the primal solution x̄ can be induced from a solution ȳ to the dual problem via
x̄ ∈ argminx∈Rq h(x)+g(x)+⟨Kx, ȳ⟩. Furthermore, any primal solution x̄ and dual solution
ȳ forms a primal-dual solution (x̄, ȳ) to the primal-dual problem (1.3).

Let r : Rn → (−∞,+∞] be an extended real-valued closed, proper convex function. The
proximity operator of r is defined by

Proxr(x) := arg min
y∈Rn

{
r(y) +

1

2
∥y − x∥2

}
, x ∈ Rn.

Our proposed algorithm relies heavily on the proximity operators of f and g, which are
uniquely well-defined everywhere since f and g are closed proper and convex. In this paper,
we make the following blanket assumption.

Assumption 1.1. Assume that (i) the proximity operators of f and g either have closed
formulas or can be evaluated efficiently, and (ii) there exists x̂ ∈ ri(dom(g)) such that
Kx̂ ∈ ri(dom(f)).

Here ri(·) and dom(·) represent, respectively, the relative interior of a set and the effective
domain of a function. In many applications, the component functions enforce data fitting
and/or regularization and usually preserve simple structures so that item (i) of Assumption
1.1 is fulfilled. Examples of such functions are abundant, see, e.g., [1, Chapter 6]. On the
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other hand, item (ii) of Assumption 1.1 ensures that problems (1.1)-(1.4) have nonempty
solution sets.

The literature about numerical algorithms for solving (1.1)-(1.4) under various settings
are tremendously vast. In particular, primal-dual algorithms solve these primal, dual and
primal-dual problems simultaneously, the smooth function h is processed via its gradient,
the nonsmooth functions f and g by their proximity operators, and furthermore, within each
iteration there is no need to solve any subproblems or linear system of equations iteratively.
This type of algorithms are commonly referred as full-splitting, see, e.g., [5]. We next recall
briefly some primal-dual full-splitting algorithms closely related to this work, most of which
focus on the special case h ≡ 0, i.e., without the smooth term, and can in principle be
extended to the case h ̸= 0. However, primal-dual algorithms for solving (1.1)-(1.4) with
h ̸= 0 and meanwhile have the full-splitting characteristics are much fewer.

1.1 Related algorithms

A popular primal-dual approach for solving (1.4), and thus (1.1)-(1.3), with h ≡ 0, is the
alternating direction method of multipliers (ADMM, [7, 8]), a variant of the classical method
of multipliers. However, when applied to (1.4), ADMM is not full-splitting as it needs to
solve a subproblem of the form minx∈Rq

1
2∥Kx − bn∥2 + g(x), which may not be easily

solved unless K is the identity operator. The most classical and heuristically simple primal-
dual algorithm (PDA) for solving (1.3) is the Arrow-Hurwicz method [20], which starts at
(x0, y0) ∈ Rq × Rp and iterates for n ≥ 1 as{

xn = Proxτg(xn−1 − τK⊤yn−1),
yn = Proxσf∗(yn−1 + σKxn).

(1.5)

Here τ, σ > 0 are step size parameters. This method is also widely known as primal-dual
hybrid gradient method in image processing community, see [25, 6]. However, the Arrow-
Hurwicz method converges under restrictive conditions [6, 2, 13] and does not converge in
general, see [9] for a divergent example. In 2011, Chambolle and Pock [2, 15] modified (1.5)
by adopting an extrapolation step, resulting the following iterative scheme xn = Proxτg(xn−1 − τK⊤yn−1),

zn = xn + δ(xn − xn−1),
yn = Proxσf∗(yn−1 + σKzn),

(1.6)

where δ ∈ (0, 1]. For δ = 1, (1.6) reduces to the split inexact Uzawa method studied in
[6]. Furthermore, it was shown that (1.6) is a linearized ADMM and a weighted proximal
point algorithm applied to the optimality conditions of (1.3), see [2, 9, 17]. Convergence and
ergodic convergence rate results of (1.6) with δ = 1 are established in [2] under the condition
τσ∥K∥2 < 1, while convergence for the case δ ∈ (0, 1) remains unclear. Recently, by using a
convex combination firstly introduced by Malitsky [11] to tackle mixed variational inequality
problem, Chang and Yang [3] proposed a golden ratio primal-dual algorithm (GRPDA)

zn = ψ−1
ψ xn−1 +

1
ψ zn−1,

xn = Proxτg(zn − τK⊤yn−1),
yn = Proxσf∗(yn−1 + σKxn).

(1.7)

Convergence and sublinear convergence rate results are established in [3] under the condition

τσ∥K∥2 < ψ with ψ ∈ (1,
√
5+1
2 ]. Compared with the PDA of Chambolle and Pock, here
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the convergence condition is significantly relaxed. The numerical results reported in [3]
demonstrated the benefits gained by this relaxed step size condition.

For h ̸= 0, the above mentioned methods can conceptually be applied by replacing g
with h+ g. However, it is apparent that the proximity operator of the sum h+ g could be
much more difficult to evaluate than that of g. Instead, a popular and efficient modification
is to replace h by its linear approximation. For example, Condat [5] extended (1.6) to
the case h ̸= 0 and established convergence results under the condition 1

τ − σ∥K∥
2 > L

2 .
A similar splitting algorithm was proposed in [21] in the setting of monotone operator
inclusion problems. See also [4, 22] for primal-dual full-splitting algorithm studied from the
perspective of fixed point iteration. This work can be viewed as an extension of GRPDA (1.7)
to solve (1.1)-(1.4), which includes an extra smooth term h with Lipschitzian gradient. Our
convergence rate results will be established based on the conventional optimality measures,
i.e., function value residual and feasibility violation, rather than the primal-dual gap function
as used in, e.g., [2, 12]. As pointed out in [2], a major flaw of the primal-dual gap function is
that it could vanish at nonstationary points. Our analysis is motivated by the recent work
of Sabach and Teboulle [16], which proposed some principles for analyzing Lagrangian type
methods.

1.2 Notation and preliminaries

As used in (1.4), we let Φ(x,w) := h(x) + g(x) + f(w) for x ∈ Rq and w ∈ Rp. The
Lagrangian function L : Rp × Rq → (−∞,+∞] associated with (1.4) is defined by

L(x,w, y) := Φ(x,w) + ⟨y,Kx− w⟩, (1.8)

where y ∈ Rp is the Lagrange multiplier associated with the linear constraint Kx = w. The
augmented Lagrangian function is defined by

Lσ(x,w, y) := L(x,w, y) +
σ

2
∥Kx− w∥2,

where σ > 0 is a penalty parameter. Denote the set of saddle points of (1.4) by

S = {(x̄, w̄, ȳ) ∈ Rq × Rp × Rp : 0 ∈ K⊤ȳ +∇h(x̄) + ∂g(x̄), Kx̄ = w̄, ȳ ∈ ∂f(w̄)}, (1.9)

which is nonempty under (ii) of Assumption 1.1. The identity matrix of appropriate order
is denoted by I. Denote the set of n-by-n symmetric positive semidefinite (resp., positive
definite) matrices by Sn+ (resp., Sn++). For P ∈ Sn+, we let ∥u∥P :=

√
⟨u, Pu⟩ be the semi-

norm of u ∈ Rn. For any u, v, w ∈ Rn, we denote ∆P (u, v, w) :=
1
2 (∥u − v∥

2
P − ∥u − w∥2P ).

Specially, when P = I, we let ∆(u, v, w) := ∆I(u, v, w) = 1
2 (∥u − v∥2 − ∥u − w∥2) for

simplicity, where ∥ · ∥, as used above, denotes the Euclidean norm. The subdifferential
of a closed proper convex function r : Rn → (−∞,∞] at a given x ∈ Rn is denoted by
∂r(x) := {v ∈ Rn : r(y) ≥ r(x) + ⟨v, y − x⟩ for all y ∈ Rn}. For a nonempty set C ⊂ Rn,
we let ιC be the indicator function of C, i.e., ιC(x) = 0 if x ∈ C and∞ if otherwise. Finally,

throughout this paper, we denote the golden ratio by ϕ, i.e., ϕ =
√
5+1
2 .

We next present some useful identities and fact. Given any matrix P ∈ Sn+, for any
u, v, w ∈ Rn, the Pythagoras three-points identity has the form

2⟨u− w,P (w − v)⟩ = ∥u− v∥2P − ∥u− w∥2P − ∥v − w∥2P . (1.10)

Moreover, for any u, v ∈ Rn and α ∈ R, we have the following identity

∥αu+ (1− α)v∥2 = α∥u∥2 + (1− α)∥v∥2 − α(1− α)∥u− v∥2. (1.11)
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The following lemma, whose proof is elementary and is thus omitted, is very useful and will
be used repeatedly in our analysis.

Lemma 1.1. Let r : Rn → (−∞,+∞] be an extended real-valued closed proper and γ-
strongly convex function with modulus γ ≥ 0. Then, for any τ > 0 and x ∈ Rn, it holds that
z = Proxτr(x) if and only if r(y) ≥ r(z) + 1

τ ⟨x− z, y − z⟩+
γ
2 ∥y − z∥

2 for all y ∈ Rn.

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we present our algorithm in the
general convex case and compare it with some existing primal-dual full-splitting algorithms.
Sublinear O(1/N) convergence rate results measured by function value residual and feasibil-
ity violation are established in Section 3. An accelerated method is proposed when either g
or h is strongly convex in Section 4. The accelerated method achieves faster O(1/N2) con-
vergence rate measured by the same criteria as for the convex case. Some numerical results
are given in Section 5 to demonstrate the efficiency of the proposed algorithms. Finally, we
give some concluding remarks in Section 6.

2 Extended GRPDA

The algorithm to be proposed in this section is an extension of (1.7). We therefore refer to
it as extended GRPDA or E-GRPDA. Let τ, σ > 0, ψ ∈ (1, ϕ], z0 = x0 ∈ Rq and y0 ∈ Rp.
Our proposed E-GRPDA iterates for n ≥ 0 as follows

zn+1 = ψ−1
ψ xn + 1

ψ zn,

xn+1 = Proxτg(zn+1 − τK⊤yn − τ∇h(xn)),
yn+1 = Proxσf∗(yn + σKxn+1).

(2.1)

By using the famous Moreau decomposition theorem, i.e., y = Prox 1
σ f

(y) + 1
σProxσf∗(σy)

for any y ∈ Rq, the scheme (2.1) can be rewritten as
zn+1 = ψ−1

ψ xn + 1
ψ zn,

xn+1 = Proxτg(zn+1 − τK⊤yn−τ∇h(xn)),
wn+1 = Prox 1

σ f
( 1σyn +Kxn+1),

yn+1 = yn + σ(Kxn+1 − wn+1).

(2.2)

We will show in Section 3 that sublinear convergence rate of E-GRPDA (2.1) or (2.2) is
guaranteed under the condition τ( σ

1−µ∥K∥
2 + 2L) ≤ ψ ∈ (1, ϕ] for any µ ∈ (0, 1). For

clear comparison between E-GRPDA and some existing full-splitting algorithms, we next
present the iterative formulas as well as convergence conditions of Condat and Vu [5, 21],
primal-dual fixed point algorithm [4] and the primal-dual three operator splitting algorithm
[22] for solving (1.1).

Condat-Vu [5, 21]: The Condat-Vu’s algorithm is a generalization of the Chambolle-
Pock’s PDA (1.6) with δ = 1 and iterates as follows xn+1 = Proxτg(xn − τK⊤yn − τ∇h(xn)),

zn+1 = 2xn+1 − xn,
yn+1 = Proxσf∗(yn + σKzn+1),

whose global convergence was established under the stepsize condition τ(σ∥K∥2 +
L/2) < 1.
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PDFP [4]: The primal-dual fixed point algorithm iterates as xn+1 = Proxτg(xn − τK⊤yn − τ∇h(xn)),
zn+1 = Proxτg(xn+1 − τK⊤yn − τ∇h(xn+1)),
yn+1 = Proxσf∗(yn + σKzn+1),

whose convergence was established under the condition τσ∥K∥2 < 1 and τL < 2.

PD3O [22]: The primal-dual three operator splitting algorithm is also a generalization
of Chambolle-Pock’s PDA (1.6) with δ = 1, and the convergence condition is the same
as that of PDFP, i.e., τσ∥K∥2 < 1 and τL < 2. The iterative scheme of PD3O is given
by  xn+1 = Proxτg(xn − τK⊤yn − τ∇h(xn)),

zn+1 = 2xn+1 − xn + τ∇h(xn)− τ∇h(xn+1),
yn+1 = Proxσf∗(yn + σKzn+1).

Figure 1: The sets of feasible parameters of Condat-Vu (with the blue line as boundary) and
E-GRPDA (with the red line as boundary). The three plots from left to right corresponds

to ∥K∥ =
√
2 and L = 1, 10, 0.5, respectively, with µ = 0 and ψ =

√
5+1
2 .

It is easy to show that the parameter conditions guaranteeing global convergence of the
above methods do not have simple inclusion relations. Roughly speaking, if L is large, the
region of parameters allowed by Condat-Vu, PDFP and PD3O is wider than that of E-
GRPDA. On the other hand, if L is small, i.e., when h is approximately linear, E-GRPDA
has a wider parameter region guaranteeing global convergence. To show this clearly, we have
plotted for several scenarios the boundaries of the sets of feasible parameters of Condat-Vu
and E-GRPDA in Figure 1.

It can be seen from Figure 1 that when ∥K∥ is fixed, the region guaranteeing convergence
of E-GRPDA is narrower than that of Condat-Vu in the case of L = 10 (the plot in the
middle), while the opposite is true in the case of L = 0.5 (the plot on the right-hand-side).
For L = 1, the convergence regions of the two algorithms do not have simple inclusion
relation (the plot on the left-hand-side).

3 Analysis of E-GRPDA

The E-GRPDA (2.1) has been proposed and analyzed in [24] in the general convex case,
where global iterate convergence of {(xn, yn) : n ≥ 1} to a primal-dual optimal solution
of (1.3) has been established under the condition ψ

τ − σ∥K∥2 > 2L, where ψ ∈ (1, ϕ].
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Furthermore, it has been shown in [24] that the primal-dual gap function converges at the
O(1/N) sublinear rate. As pointed above, see also [2], a major flaw of the primal-dual
gap function is that it could vanish at nonstationary points, in which case the sublinear
convergence rate is less informative. In this section, we focus on the general convex case and
establish O(1/N) convergence rate results for E-GRPDA with fixed step sizes. Instead of
the primal-dual gap function, we adopt conventional optimality measures for the constrained
optimization problem (1.4), i.e., function value residual and feasibility violation.

In the rest of this section, we let tn = n + 1 for n ≥ −1. In particular, t−1 = 0.
Our analysis is motivated by the recent work of Sabach and Teboulle [16], which proposed
some principles for analyzing Lagrangian type methods. To take advantage of the analytic
techniques proposed in [16], we need to represent the algorithm E-GRPDA. To begin with,
we need the following lemma.

Lemma 3.1. Choose x0 ∈ Rq, w0 ∈ Rp and y0 ∈ Rp, and set (x̃0, w̃0, ỹ0) = (x0, w0, y0) and

ỹn+1 = ỹn + µσ(Kxn+1 − wn+1), (3.1)(
x̃n+1

w̃n+1

)
= (1− t−1

n )

(
x̃n
w̃n

)
+ t−1

n

(
xn+1

wn+1

)
, (3.2)

for n ≥ 0. Then, we have yn = ỹn + (1− µ)σtn−1(Kx̃n − w̃n) for all n ≥ 0.

Proof. Let n ≥ 0 be arbitrarily fixed. From (2.2) and (3.1), we obtain

yn+1 = yn + ỹn+1 − ỹn + (1− µ)σ(Kxn+1 − wn+1). (3.3)

Noting tn − tn−1 = 1 and the linearity of K, we deduce from (3.2) that

(Kxn+1 − wn+1) = tn(Kx̃n+1 − w̃n+1)− tn−1(Kx̃n − w̃n).

This together with (3.3) implies for all n ≥ 0 that

yn+1 − ỹn+1 − (1− µ)σtn(Kx̃n+1 − w̃n+1) = yn − ỹn − (1− µ)σtn−1(Kx̃n − w̃n).

Since ỹ0 = y0 and t−1 = 0, the right hand side is 0 for n = 0. This completes the proof.

We emphasize that the auxiliary sequences {(x̃n, w̃n, ỹn) : n ≥ 0} are used only in
the convergence rate analysis and need not to be computed in practice. Apparently, their
computations only involve some scalar-vector multiplications and vector additions, which
are negligible compared to the dominant computations of the algorithm. By using Lemma
3.1, we can represent E-GRPDA (2.1) or (2.2) formally as follows.

Algorithm 3.2 (E-GRPDA).

Step 0. Let τ, σ > 0, µ ∈ (0, 1) and ψ ∈ (1, ϕ] with τ(2L + σ∥K∥2/(1 − µ)) ≤ ψ. Choose
(x0, y0) ∈ Rq × Rp and w̃0 ∈ Rp. Set (x̃0, ỹ0) = (x0, y0), z0 = x0, t0 = 1 and n = 0.
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Step 1. Compute

zn+1 =
(
1− 1

ψ

)
xn +

1

ψ
zn, (3.4a)

xn+1 = Proxτg
(
zn+1 − τK⊤yn−τ∇h(xn)

)
, (3.4b)

wn+1 = Prox 1
σ f

(yn/σ +Kxn+1), (3.4c)

ỹn+1 = ỹn + µσ(Kxn+1 − wn+1), (3.4d)(
x̃n+1

w̃n+1

)
= (1− t−1

n )

(
x̃n
w̃n

)
+ t−1

n

(
xn+1

wn+1

)
, (3.4e)

yn+1 = ỹn+1 + (1− µ)σtn(Kx̃n+1 − w̃n+1). (3.4f)

Step 2. Update tn+1 = tn + 1. Set n← n+ 1 and return to Step 1.

We next establish some lemmas, which are useful in our convergence rate analysis.

Lemma 3.3. Let {(zn, xn, yn, wn, x̃n, ỹn, w̃n)} be the sequence generated by Algorithm 3.2.
Then, for any (x̄, w̄, ȳ) ∈ S and n ≥ 1, we have

Lσ(xn, wn, yn−1)− Lσ(x̄, w̄, yn−1) ≤
1

τ
⟨xn+1 − zn+1, x̄− xn+1⟩

+
ψ

τ
⟨xn − zn+1, xn+1 − xn⟩

+ σ⟨Kxn − wn, wn −Kxn+1⟩

+
σ

2
∥Kxn − wn∥2

+ ⟨∇h(xn)−∇h(xn−1), xn − xn+1⟩.

Proof. It follows from (3.4b) and Lemma 1.1 with γ = 0 that

g(xn+1)− g(x̄) ≤ 1

τ
⟨xn+1 − zn+1 + τK⊤yn+τ∇h(xn), x̄− xn+1⟩

=
1

τ
⟨xn+1 − zn+1, x̄− xn+1⟩+ ⟨yn−1 + σ(Kxn − wn), Kx̄−Kxn+1⟩

+⟨∇h(xn), x̄− xn+1⟩, (3.5)

g(xn)− g(xn+1) ≤ 1

τ
⟨xn − zn + τK⊤yn−1+τ∇h(xn−1), xn+1 − xn⟩

= ⟨ψ
τ
(xn − zn+1) +K⊤yn−1+∇h(xn−1), xn+1 − xn⟩, (3.6)

where the equality in (3.6) follows from xn − zn = ψ(xn − zn+1). Similarly, it holds that

f(wn)− f(w̄) ≤ −
〈
yn−1 + σ(Kxn − wn), w̄ − wn

〉
. (3.7)

Moreover, from the convexity of h it is clear that

h(xn)− h(x̄) ≤ ⟨∇h(xn), xn − x̄⟩. (3.8)



A NEW PRIMAL-DUAL ALGORITHM FOR STRUCTURED CONVEX OPTIMIZATION 505

By combining (3.5), (3.6), (3.7) as well as (3.8), and noting that Kx̄− w̄ = 0, we derive

Lσ(xn, wn, yn−1)− Lσ(x̄, w̄, yn−1)

= g(xn) + f(wn)+h(xn) + ⟨yn−1,Kxn − wn⟩+
σ

2
∥Kxn − wn∥2 − (g(x̄) + f(w̄)+h(x̄))

≤ 1

τ
⟨xn+1 − zn+1, x̄− xn+1⟩+

ψ

τ
⟨xn − zn+1, xn+1 − xn⟩

+⟨yn−1, (Kx̄−Kxn+1)− (w̄ − wn) + (Kxn+1 −Kxn) + (Kxn − wn)⟩

+σ⟨Kxn − wn, (Kx̄−Kxn+1)− (w̄ − wn)⟩+
σ

2
∥Kxn − wn∥2

+⟨∇h(xn)−∇h(xn−1), xn − xn+1⟩

=
1

τ
⟨xn+1 − zn+1, x̄− xn+1⟩+

ψ

τ
⟨xn − zn+1, xn+1 − xn⟩

+σ⟨Kxn − wn, wn −Kxn+1⟩

+
σ

2
∥Kxn − wn∥2 + ⟨∇h(xn)−∇h(xn−1), xn − xn+1⟩,

which completes the proof.

Lemma 3.4. Let {(zn, xn, yn, wn, x̃n, ỹn, w̃n)} be the sequence generated by Algorithm 3.2.
Then, for any (x̄, w̄, ȳ) ∈ S, y ∈ Rp and n ≥ 1, we have

Lσ(xn, wn, y)− Lσ(x̄, w̄, y) ≤ 1

τ
∆P (x̄, zn+1, zn+2) +

1

µσ
∆(y, ỹn−1, ỹn)

−(1− µ)σtn−2⟨Kx̃n−1 − w̃n−1,Kxn − wn⟩

−1

2

(
ψ

τ
− σ

1− µ
∥K∥2 − L

)
∥xn+1 − xn∥2

+
L

2
∥xn − xn−1∥2,

where P = ψ
ψ−1I.

Proof. By using the Cauchy-Schwarz inequality, we obtain

⟨Kxn − wn, wn −Kxn+1⟩ = −∥Kxn − wn∥2 + ⟨Kxn − wn,Kxn −Kxn+1⟩
≤ −∥Kxn − wn∥2

+
1

2(1− µ)
∥xn+1 − xn∥2K⊤K +

1− µ
2
∥Kxn − wn∥2

=
1

2(1− µ)
∥xn+1 − xn∥2K⊤K −

1 + µ

2
∥Kxn − wn∥2. (3.9)

Combining the result in Lemma 3.3, Pythagoras three-points identity (1.10) and (3.9), we
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have

Lσ(xn, wn, yn−1)−Lσ(x̄, w̄, yn−1) ≤
1

2τ

(
∥zn+1 − x̄∥2 − ∥xn+1 − zn+1∥2 − ∥xn+1 − x̄∥2

)
+
ψ

2τ

(
∥zn+1 − xn+1∥2 − ∥zn+1 − xn∥2 − ∥xn+1 − xn∥2

)
+

σ

2(1− µ)
∥xn+1 − xn∥2K⊤K −

µσ

2
∥Kxn − wn∥2

+⟨∇h(xn)−∇h(xn−1), xn − xn+1⟩

=
1

2τ

(
∥zn+1 − x̄∥2 − ∥xn+1 − zn+1∥2

)
− 1

2τ
∥xn+1 − x̄∥2

+
ψ

2τ

(
∥zn+1 − xn+1∥2 − ∥zn+1 − xn∥2

)
− µσ

2
∥Kxn − wn∥2

− 1

2τ
∥xn+1 − xn∥2ψI− στ

1−µK
⊤K+⟨∇h(xn)−∇h(xn−1), xn − xn+1⟩.

(3.10)

Since xn+1 = ψ
ψ−1zn+2 − 1

ψ−1zn+1, it follows from (1.11) that

∥xn+1 − x̄∥2 =
ψ

ψ − 1
∥zn+2 − x̄∥2 −

1

ψ − 1
∥zn+1 − x̄∥2 +

ψ

(ψ − 1)2
∥zn+2 − zn+1∥2

=
ψ

ψ − 1
∥zn+2 − x̄∥2 −

1

ψ − 1
∥zn+1 − x̄∥2 +

1

ψ
∥xn+1 − zn+1∥2, (3.11)

where the second equality is due to zn+2 − zn+1 = ψ−1
ψ (xn+1 − zn+1). By plugging (3.11)

into (3.10) and omitting the term ∥zn+1 − xn∥2, we obtain

Lσ(xn, wn, yn−1) − Lσ(x̄, w̄, yn−1) ≤
ψ

2τ(ψ − 1)

(
∥zn+1 − x̄∥2 − ∥zn+2 − x̄∥2

)
−µσ

2
∥Kxn − wn∥2−

1

2τ

( 1

ψ
− ψ + 1

)
∥zn+1 − xn+1∥2

− 1

2τ
∥xn+1 − xn∥2ψI− στ

1−µK
⊤K+L∥xn − xn−1∥∥xn − xn+1∥

≤ 1

τ
∆P (x̄, zn+1, zn+2)−

µσ

2
∥Kxn − wn∥2

− 1

2τ
∥xn+1 − xn∥2ψI− στ

1−µK
⊤K+

L

2
∥xn − xn−1∥2 +

L

2
∥xn − xn+1∥2

≤ 1

τ
∆P (x̄, zn+1, zn+2)−

µσ

2
∥Kxn − wn∥2

−1

2

(
ψ

τ
− σ

1− µ
∥K∥2 − L

)
∥xn+1 − xn∥2+

L

2
∥xn − xn−1∥2,

where the second inequality follows from 1
ψ − ψ + 1 ≥ 0 as ψ ≤ ϕ. Using Lemma 3.1, the

notation ∆ and (1.10), we obtain

⟨y − ỹn−1,Kxn − wn⟩ =
1

µσ
⟨y − ỹn−1, ỹn − ỹn−1⟩

=
1

µσ
∆(y, ỹn−1, ỹn) +

µσ

2
∥Kxn − wn∥2. (3.12)
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Now considering yn−1 = ỹn−1 + (1− µ)σtn−2(Kx̃n−1 − w̃n−1), we deduce from (3.12) that

⟨y − yn−1,Kxn − wn⟩ = ⟨y − ỹn−1,Kxn − wn⟩ − (1− µ)σtn−2⟨Kx̃n−1 − w̃n−1,Kxn − wn⟩

=
1

µσ
∆(y, ỹn−1, ỹn) +

µσ

2
∥Kxn − wn∥2 − (1− µ)σtn−2⟨Kx̃n−1 − w̃n−1,Kxn − wn⟩.

Note that Lσ(x̄, w̄, yn−1) = Lσ(x̄, w̄, y). The proof of Lemma 3.4 is completed by adding
the above equality to (3.12).

Lemma 3.5. Let {(zn, xn, yn, wn, x̃n, ỹn, w̃n)} be the sequence generated by Algorithm 3.2.
If

ψ

τ
− σ

1− µ
∥K∥2 ≥ 2L with µ ∈ (0, 1), (3.13)

then, for any (x̄, w̄, ȳ) ∈ S, y ∈ Rp and n ≥ 1, we have

tn−1S
n
(1−µ)σtn−1

− tn−2S
n−1
(1−µ)σtn−2

≤ 1

τ
∆P (x̄, zn+1, zn+2) +

1

µσ
∆(y, ỹn−1, ỹn)(3.14)

−L
2
∥xn+1 − xn∥2+

L

2
∥xn − xn−1∥2,

where P = ψ
ψ−1I and Snβ is defined as

Snβ := Lβ(x̃n, w̃n, y)− Lβ(x̄, w̄, y) = L(x̃n, w̃n, y)− L(x̄, w̄, y) +
β

2
∥Kx̃n − w̃n∥2. (3.15)

Proof. Let y ∈ Rp be arbitrarily fixed. Then, it is clear from (3.4e), the linearity of K and
the convexity of Φ(·, ·) that

⟨y,Kx̃n − w̃n⟩ = (1− t−1
n−1)⟨y,Kx̃n−1 − w̃n−1⟩+ t−1

n−1⟨y,Kxn − wn⟩,
Φ(x̃n, w̃n) ≤ (1− t−1

n−1)Φ(x̃n−1, w̃n−1) + t−1
n−1Φ(xn, wn).

Multiplying both sides of the above relations by tn−1 and recalling that tn−1− 1 = tn−2, we
obtain

tn−1⟨y,Kx̃n − w̃n⟩ − tn−2⟨y,Kx̃n−1 − w̃n−1⟩ = ⟨y,Kxn − wn⟩,
tn−1

(
Φ(x̃n, w̃n)− Φ(x̄, w̄)

)
− tn−2

(
Φ(x̃n−1, w̃n−1)− Φ(x̄, w̄)

)
≤ Φ(xn, wn)− Φ(x̄, w̄).

Adding the above two relations and using the definition of L(·) in (1.8), we arrive at

tn−1

(
L(x̃n, w̃n, y)− L(x̄, w̄, y)

)
− tn−2

(
L(x̃n−1, w̃n−1, y)− L(x̄, w̄, y)

)
≤ L(xn, wn, y)− L(x̄, w̄, y). (3.16)

In addition, taking into account (3.4e) and (1.11), we derive

∥Kx̃n − w̃n∥2 = (1− t−1
n−1)

2∥Kx̃n−1 − w̃n−1∥2 + t−2
n−1∥Kxn − wn∥2

+2t−1
n−1(1− t

−1
n−1)⟨Kx̃n−1 − w̃n−1,Kxn − wn⟩.

Multiplying both sides of the above equality by σt2n−1/2 and recalling tn−1− tn−2 = 1 yield

σt2n−1/2∥Kx̃n − w̃n∥2−σt2n−2/2∥Kx̃n−1 − w̃n−1∥2

=σ/2∥Kxn − wn∥2 + σtn−2⟨Kx̃n−1 − w̃n−1,Kxn − wn⟩. (3.17)
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Therefore, by adding (3.16) to (3.17) and using the definition of Snβ in (3.15), we deduce

tn−1S
n
σtn−1

− tn−2S
n−1
σtn−2

≤ (Lσ(xn, wn, y)− Lσ(x̄, w̄, y)) + σtn−2⟨Kx̃n−1 − w̃n−1,Kxn − wn⟩.

Finally, multiplying both sides of the above inequality by (1 − µ) to obtain

(1− µ)(tn−1S
n
σtn−1

− tn−2S
n−1
σtn−2

)

≤ (1− µ)(Lσ(xn, wn, y)− Lσ(x̄, w̄, y)) + (1− µ)σtn−2⟨Kx̃n−1 − w̃n−1,Kxn − wn⟩

≤ −µ(Lσ(xn, wn, y)− Lσ(x̄, w̄, y)) +
1

τ
∆P (x̄, zn+1, zn+2) +

1

µσ
∆(y, ỹn−1, ỹn)

−L
2
∥xn+1 − xn∥2+

L

2
∥xn − xn−1∥2, (3.18)

where the second inequality follows from Lemma 3.4 and (3.13). Furthermore, it follows
from (3.16) and the definitions of Lσ and L that

Lσ(xn, wn, y)− Lσ(x̄, w̄, y) = L(xn, wn, y)− L(x̄, w̄, y) +
σ

2
∥Kxn − wn∥2

≥tn−1

(
L(x̃n, w̃n, y)− L(x̄, w̄, y)

)
− tn−2

(
L(x̃n−1, w̃n−1, y)− L(x̄, w̄, y)

)
.

(3.19)

Combining (3.18) and (3.19), we obtain

(1− µ)(tn−1S
n
σtn−1

− tn−2S
n−1
σtn−2

)

≤ −µtn−1

(
L(x̃n, w̃n, y)− L(x̄, w̄, y)

)
+ µtn−2

(
L(x̃n−1, w̃n−1, y)− L(x̄, w̄, y)

)
+
1

τ
∆P (x̄, zn+1, zn+2) +

1

µσ
∆(y, ỹn−1, ỹn)−

L

2
∥xn+1 − xn∥2+

L

2
∥xn − xn−1∥2.

Finally, (3.14) follows from the above inequality and the definition of Snβ in (3.15).

Now, we are ready to establish the convergence rate of E-GRPDA.

Theorem 3.6. Let {(zn, xn, yn, wn, x̃n, ỹn, w̃n)} be the sequence generated by Algorithm
3.2, (x̄, w̄, ȳ) be any saddle point, i.e., an element in S, and ν > 0 be a constant such that
ν ≥ 2∥ȳ∥. Then, there exists constant C > 0 such that for any N ≥ 1 there hold

|Φ(x̃N−1, w̃N−1)− Φ(x̄, w̄)| ≤ C

N
and ∥Kx̃N−1 − w̃N−1∥ ≤

2C

νN
. (3.20)

Proof. Recall that ∆P (u, v, w) :=
1
2 (∥u−v∥

2
P−∥u−w∥2P ), ∆(u, v, w) = 1

2 (∥u−v∥
2−∥u−w∥2)

and t−1 = 0. The sum of (3.14) for n = 1, . . . , N yields

tN−1(Φ(x̃N−1, w̃N−1)− Φ(x̄, w̄) + ⟨y,Kx̃N−1 − w̃N−1⟩) ≤ C(y),

where C(y) := 1
2τ ∥x̄ − z2∥

2
P + 1

2µσ∥y − ỹ0∥
2 + L

2 ∥x1 − x0∥
2, and we have dropped on the

left-hand-side the quadratic term in SN(1−µ)σtN−1
. By taking the maximum of both sides over

∥y∥ ≤ ν and noting tN−1 = N , we obtain

Φ(x̃N−1, w̃N−1)− Φ(x̄, w̄) + ν∥Kx̃N−1 − w̃N−1∥ ≤
C

N
, (3.21)
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where C = 1
2τ ∥x̄ − z2∥

2
P + 1

2µσ

(
ν + ∥ỹ0∥)2 + L

2 ∥x0 − x1∥
2 is an upper bound of C(y) over

∥y∥ ≤ ν. Then, it is clear that Φ(x̃N−1, w̃N−1)− Φ(x̄, w̄) ≤ C
N . Besides, since (x̄, w̄, ȳ) is a

saddle point of L(x,w, y), then by L(x̄, w̄, ȳ) ≤ L(x̃N−1, w̃N−1, ȳ) and ∥ȳ∥ ≤ ν/2 we have

Φ(x̄, w̄)− Φ(x̃N−1, w̃N−1) ≤ ⟨ȳ, Kx̃N−1 − w̃N−1⟩ ≤
ν

2
∥Kx̃N−1 − w̃N−1∥. (3.22)

Finally, the conclusion (3.20) follows from the combination of (3.21) and (3.22).

Recall that P = ψ
ψ−1I and thus ∥ · ∥P , which is used repeatedly on the above, is not a

generic weighted norm. We keep using the notation ∥ · ∥P and ∆P (·) because this way the
coefficient ψ

ψ−1 can be absorbed, resulting to simpler formulas, and the recent work [16],
which motivated this work, adopted this same notation.

4 Analysis of an accelerated E-GRPDA

As shown in the literature [2, 14, 3], faster O(1/N2) convergence rate can be achieved if
one of the component functions in (1.3) is strongly convex. In this section, we show that
Algorithm 3.2 can be modified so that when g or h is strongly convex the modified algorithm
achieves the same accelerated convergence rate measured by the same criteria, i.e., function
value residual and feasibility violation. We shall only treat the case when g is strongly
convex, while the case when h is strongly convex is completely analogues, simply, for h,
due to the definition of strongly convex, the same extra added term −γ2 ∥x̄− xn+1∥2 can be
obtained in Lemma 4.3 compared with Lemma 3.3, and then satisfies all the consequences
thereafter.

Assumption 4.1. Assume that g is γ-strongly convex, which means

g(y) ≥ g(x) + ⟨u, y − x⟩+ γ

2
∥y − x∥2, ∀u ∈ ∂g(x).

For this case, we propose the following accelerated variant of Algorithm 3.2.

Algorithm 4.1 (Accelerated E-GRPDA).

Step 0. Let ρ > 0, σ0 = ρ, µ ∈ (0, 1), ψ ∈ (1, ϕ] and τ0 = ψ/
(L(ψ+1)

2 + σ0∥K∥2

1−µ
)
. Choose

(x0, y0) ∈ Rq × Rp and w̃0 ∈ Rp. Set (x̃0, ỹ0) = (x0, y0), z0 = x0, t0 = 1 and n = 0.

Step 1. Compute

zn+1 =
(
1− 1

ψ

)
xn +

1

ψ
zn,

xn+1 = Proxτng(zn+1 − τnK⊤yn−τn∇h(xn)),
wn+1 = Proxf/σn

(yn/σn +Kxn+1),

ỹn+1 = ỹn + µσn(Kxn+1 − wn+1),(
x̃n+1

w̃n+1

)
= (1− t−1

n )

(
x̃n
w̃n

)
+ t−1

n

(
xn+1

wn+1

)
,

yn+1 = ỹn+1 + (1− µ)ρt2n(Kx̃n+1 − w̃n+1).
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Step 2. Update the parameters

tn+1 =
1 +

√
1 + 4t2n
2

, σn+1 = ρtn+1, τn+1 = ψ/
(L(ψ + 1)

2
+
σn∥K∥2

1− µ

)
.

Step 3. Set n← n+ 1 and return to Step 1.

We emphasize that Step 1 of Algorithm 4.1 is a representation of the three-line scheme
(2.1) with τ = τn and σ = σn by using a result similar to Lemma 3.1. Again, this represen-
tation is only convenient for analysis and is not necessary in implementation.

We first present some useful properties of the sequence {tn : n ≥ 0} defined in Algorithm
4.1. Since these properties are easy to verify, we omit their proofs.

Lemma 4.2. Let t0 = 1 and tn+1 =
(
1 +

√
1 + 4t2n

)
/2 for n ≥ 0. We have

(i) tn is monotonically increasing, specially, tn ≥ tn−1 +
1
2 ≥

n+2
2 ;

(ii) t2n = tn + t2n−1 and t2n ≤ 2tn−1 + t2n−1;

(iii) tn
tn−1

∈ (1, ϕ] and tn − tn−1 are monotonically decreasing;

(iv) for any κ > 1, if n ≥ ⌊2κ⌋, where ⌊a⌋ denotes the largest integer no greater than a,

then tn−1 > κ and tn
tn−1

< 1+
√
1+4κ2

2κ .

We next present some useful results in Lemmas 4.3, 4.4 and 4.5, which are completely
analogues to Lemmas 3.3, 3.4 and 3.5, respectively. The key difference is that some relevant
inequalities can be enhanced using the γ-strong convexity of g, as presented in Lemma 1.1
with γ > 0. Due to the high similarity of their respective proofs, we omit the details for
simplicity.

Lemma 4.3. Let {(zn, xn, yn, wn, x̃n, ỹn, w̃n)} be the sequence generated by Algorithm 4.1.
Then, for any (x̄, w̄, ȳ) ∈ S and n ≥ 1, we have

Lσn−1
(xn, wn, yn−1)−Lσn−1

(x̄, w̄, yn−1) ≤
1

τn
⟨xn+1 − zn+1, x̄− xn+1⟩

+
ψ

τn−1
⟨xn − zn+1, xn+1 − xn⟩+ σn−1⟨Kxn − wn, wn −Kxn+1⟩

+
σn−1

2
∥Kxn − wn∥2+⟨∇h(xn)−∇h(xn−1), xn − xn+1⟩

− γ

2
∥x̄− xn+1∥2.

Lemma 4.4. Let {(zn, xn, yn, wn, x̃n, ỹn, w̃n)} be the sequence generated by Algorithm 4.1.
Then, for any (x̄, w̄, ȳ) ∈ S, y ∈ Rp and n ≥ 1, we have

Lσn−1
(xn, wn, y)−Lσn−1

(x̄, w̄, y) ≤ 1

τn
∆Pn

(x̄, zn+1, zn+2)

+
1

µσn−1
∆(y, ỹn−1, ỹn)− (1− µ)ρt2n−2⟨Kx̃n−1 − w̃n−1,Kxn − wn⟩

−ψL
2
∥xn+1 − xn∥2+

L

2
∥xn − xn−1∥2 −

γ

2
∥x̄− zn+2∥2,

where

Pn =
ψ

ψ − 1

(
1 +

γτn
ψ

)
I. (4.2)
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Lemma 4.5. Let {(zn, xn, yn, wn, x̃n, ỹn, w̃n)} be the sequence generated by Algorithm 4.1.
Then, for any (x̄, w̄, ȳ) ∈ S, y ∈ Rp and n ≥ 1, we have

t2n−1S
n
(1−µ)ρt2n−1

−t2n−2S
n−1
(1−µ)ρt2n−2

≤ tn−1

τn
∆Pn

(x̄, zn+1, zn+2) +
1

µρ
∆(y, ỹn−1, ỹn)

+
tn−1L

2

(
∥xn − xn−1∥2 − ψ∥xn − xn+1∥2

)
− γtn−1

2
∥x̄− zn+2∥2,

where Pn is defined in (4.2) and Snβ in (3.15).

Now, based on the results of Lemmas 4.3, 4.4 and 4.5, we are ready to establish the
accelerated convergence results of Algorithm 4.1 when g is γ-strongly convex. Note that the
strong convexity module γ > 0 is only used in the analysis but not in the algorithm itself.

Theorem 4.6. Let {(zn, xn, yn, wn, x̃n, ỹn, w̃n)} be the sequence generated by Algorithm 4.1.
Define

n0 = ⌊2a/(a2 − 1)⌋+ 1 with a =
L(ψ + 1) + ψγ

L(ψ + 1) + γ
, (4.3)

π(n) =
(tn+1 − tn−1)tn
ψtn−1 − tn

and q(n) =
tn − tn−1

ψtn−1 − tn
. (4.4)

Let ρ ∈ (0, γ(1−µ)
2∥K∥2π(n0)

], (x̄, w̄, ȳ) ∈ S be a saddle point,and ν > 0 be a constant such that

ν ≥ 2∥ȳ∥. Then, there exist constants C1, C2 > 0 such that for any N ≥ 1 we have

|Φ(x̃N−1, w̃N−1)− Φ(x̄, w̄)| ≤ C1

(N + 1)2
, ∥Kx̃N−1 − w̃N−1∥ ≤

2C1

ν(N + 1)2
, (4.5)

as well as ∥x̄− zN+2∥ ≤
√
2C1/C2/(N + 2).

Proof. Recall that Pn is defined in (4.2). Then, it is elementary to verify that

1

τn
∆Pn

(x̄, zn+1, zn+2)−
γ

2
∥x̄− zn+2∥2 = an∥x̄− zn+1∥2 − an+1bn∥x̄− zn+2∥2,

where

an :=
1

2τn

ψ + γτn
ψ − 1

and bn :=
ψ + ψγτn
ψ + γτn+1

τn+1

τn
=

L(ψ+1)
2 + ρtn

1−µ∥K∥
2 + γψ

L(ψ+1)
2 + ρtn+1

1−µ ∥K∥2 + γ
.

It follows from Lemma 4.2 and the definitions of π(n) and q(n) in (4.4) that π(n) is non-
increasing and q(n) decreases monotonically with q(n)→ 0 as n→∞. Moreover, it follows

from (iv) of Lemma 4.2 and (4.3) that tn/tn−1 <
L(ψ+1)+ψγ
L(ψ+1)+γ < ψ. Since ρ ∈ (0, γ(1−µ)

2∥K∥2π(n0)
],

we obtain

ρ∥K∥2

1− µ
π(n) +

L(ψ + 1)

2
q(n) ≤ γ

2
+
γ

2
≤ γ, ∀n ≥ n0,

which implies bn ≥ tn
tn−1

for any n ≥ n0. Then it follows from Lemma 4.5 that

t2n−1S
n
(1−µ)ρt2n−1

−t2n−2S
n−1
(1−µ)ρt2n−2

≤ tn−1an∥x̄− zn+1∥2 − tnan+1∥x̄− zn+2∥2

+
1

2µρ
(∥y − ỹn−1∥2 − ∥y − ỹn∥2)

+
L

2
(tn−1∥xn − xn−1∥2 − tn∥xn+1 − xn∥2).
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Sum this inequality for n = n0, . . . , N and drop the quadratic term in SN
(1−µ)ρt2N−1

, we deduce

t2N−1(Φ(x̃N−1, w̃N−1)− Φ(x̄, w̄) + ⟨y,Kx̃N−1 − w̃N−1⟩)

≤ C ′ − tNaN+1∥x̄− zn+2∥2 +
1

2µρ
∥y − ỹn0−1∥2 + t2n0−2S

n0−1
(1−µ)ρt2n0−2

≤ C ′ +
1

2µρ
∥y − ỹn0−1∥2 + t2n0−2S

n0−1
(1−µ)ρt2n0−2

, (4.6)

where C ′ := tn0−1an0
∥x̄− zn0+1∥2 +

Ltn0−1

2 ∥xn0
− xn0−1∥2. Note that Sn0−1

(1−µ)ρt2n0−2
depends

on y and is given by Sn0−1
(1−µ)ρt2n0−2

= C ′′ + ⟨y,Kx̃n0−1 − w̃n0−1⟩, where

C ′′ := Φ(x̃n0−1, w̃n0−1)− Φ(x̄, w̄) +
(1− µ)ρt2n0−2

2
∥Kx̃n0−1 − w̃n0−1∥2.

By taking the maximum of both sides of (4.6) over ∥y∥ ≤ ν with the fact t2N−1 > (N+1)2/4,
we deduce

Φ(x̃N−1, w̃N−1)− Φ(x̄, w̄) + ν∥Kx̃N−1 − w̃N−1∥ ≤
C1

(N + 1)2
,

where C1 := 4C ′ + 2
µρ (ν

2 + ∥ỹn0−1∥2) + 2t2n0−2

(
|C ′′|+ ν∥Kx̃N−1 − w̃N−1∥

)
. Then, similar

to Theorem 3.6, it is easy to derive (4.5). Furthermore, it is easy to verify that

2tNaN+1 =
tN
τN+1

ψ + γτN+1

ψ − 1
≥ tN
τN+1

ψ

ψ − 1
≥ C2tN+1tN ≥

C2(N + 2)2

4
, (4.7)

where C2 := ρ∥K∥2

(ψ−1)(1−µ) . Finally, setting y = ȳ in (4.6) and considering (3.22), we obtain

tNaN+1∥x̄− zN+2∥2 ≤ C1/4,

which together with (4.7) implies that ∥x̄− zN+2∥ ≤
√
2C1/C2/(N + 2).

5 Numerical Experiments

In this section, we conduct preliminary numerical experiments on computed tomography
(CT) image reconstruction problem and elastic net regularization problem to validate the
performances of the proposed algorithm (E-GRPDA). Based on our preliminary computa-
tional experience, under the choices of the same set of parameters, PDFP [4] and PD3O
[22] perform very closely to Condat-Vu’s algorithm [5, 21] in the following examples. For
simplicity, we only present comparison results between E-GRPDA and Condat-Vu’s PDA.
Since the per-iteration cost of E-GRPDA is approximately identical to that of Condat-Vu’s
PDA, we do not present the comparison results of CPU time. Instead, we demonstrate how
the (relative or absolute) errors measured by function value residual and deviation from
the optimal solution are decreased as the algorithms proceed with iterations. Note that
we actually implemented (2.1) with ψ = 1.618, which is equivalent to Algorithm 3.2. The
algorithms were implemented within MATLAB R2018a on a desktop with Intel 64 Model
61 Stepping 4 Genuine Intel 1801 MHz and 8GB memory. We next describe the two tested
problems.
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Problem 5.1 (CT image reconstruction problem). Consider CT image reconstruction prob-
lem of the following form

min
x∈Rq

1

2
∥Ax− b∥22 + ιC(x) + µ∥Kx∥1,

where A ∈ Rp×q is a Radon transform matrix with size 9250 × 16384, K ∈ R2q×q contains
the global (horizontal and vertical) finite difference operators (with periodic boundary con-
ditions) so that ∥Kx∥1 represents the anisotropic total variation regularization, C is the
nonnegative orthant Rq+, and b ∈ Rp is the measurement vector contaminated by inde-
pendent and normally distributed noise with mean 0 and variance 1. Note that the Radon
transform matrix A maps an input image to the sinogram data. The data set we used here is
the same as that in [23], where the true image is the 128×128 Shepp-Logan phantom image
and the sinogram data is measured from 50 uniformly oriented projections. Moreover, the
regularization parameter µ is set to be 0.05. For this example, we have h(x) = 1

2∥Ax− b∥
2
2,

g(x) = ιC(x) and f(w) = µ∥w∥1. The experimental results are given in Figures 2 and 3.

Figure 2: Evolution of the relative errors ∥xn − x∗∥2/∥x∗∥2 and (En − E∗)/E∗ for CT
image reconstruction problem with different σ and τ , where τi = (5− i)/5L for i = 1, 2, 3, 4,
σ1 = 0.09L

4∥K∥2 , σ2 = 2.09L
3∥K∥2 , σ3 = 4.09L

2∥K∥2 , σ4 = 6.09L
∥K∥2 , σ5 = 2.00L

∥K∥2 and σ6 = 4.50L
∥K∥2 . Here

xn denotes the n-th iterate, En represents the objective value at xn, x
∗ and E∗ denote,

respectively, the true solution and the minimum function value, which can be computed
approximately in advance by running, e.g., E-GRPDA, with sufficiently many iterations.
Problem 5.2 (Elastic net regularization). The elastic net regularization combines ℓ1 and ℓ2
penalties of the lasso and ridge regressions linearly, which helps to overcome the limitations
of each individual penalty and has been widely applied in, e.g., supported vector machine,
metric learning, portfolio optimization and so on. The problem we consider here has the
following form

min
x
µ1∥x∥22 + µ2∥x∥1 + l(Kx, b)

where l represents a loss function and can be chosen as zero-one loss, mean squared error,
mean absolute error and so on. We set l(Kx, b) = ∥Kx − b∥2 to be the (mean) squared
error function. The (i, j)-th element Kij of K is randomly generated from N (0, 0.01),
x∗ ∼ N (0, 1) and b = Kx∗ + ϵ with ϵ ∼ N (0, 0.04I). We tested p = 1000, q = 300,
µ1 = 0.005 and µ2 = 0.01. For this example, we have h(x) = µ1∥x∥22, g(x) = µ2∥x∥1 and
f(w) = ∥w − b∥2. The experimental results are given in Figure 4.
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Figure 3: Left: original input image (size 128× 128); Right: reconstructed using E-GRPDA
with τ1 and σ1.

Figure 4: Evolution of the absolute error ∥xn − x∗∥2 and the relative error (En − E∗)/E∗

for the elastic net regularization problem with different σ and τ , where τi = (4 − i)/5L for
i = 1, 2, 3, σ1 = 2.09L

3∥K∥2 , σ2 = 4.09L
2∥K∥2 , σ3 = 6.09L

∥K∥2 , σ4 = 3.50L
3∥K∥2 , σ5 = 2.00L

∥K∥2 and σ6 = 4.50L
∥K∥2 .

Here xn, x
∗, En and E∗ have the same meaning as noted in Figure 2.

Note that for the CT image reconstruction problem, evaluating the proximity operator
of g + h is equivalent to solving a nonnegativity constrained generic least-squares problem,
which apparently does not have closed form solution. In this case, the proposed full-splitting
algorithm E-GRPDA, as well as PDFP [4], PD3O [22] and Condat-Vu [5, 21], is quite useful.
On the other hand, for the elastic net regularization problem, g + h is equal to a weighted
sum of the ℓ1-norm and the ℓ2-norm squared, thus the proximity operator of g + h indeed
has closed form solution given by the so-called soft-thresholding operator. In this case, the
problem can be solved by the original non-extended PDAs such as [2] and [3]. Nonetheless,
our purpose here is to demonstrate the viability of the proposed algorithm.

It can be seen from Figure 2 that both E-GRPDA and Condat-Vu’s PDA improve the
quality of iterates steadily as the algorithms proceed and E-GRPDA can be competitive
with Condat-Vu’s PDA if the parameters are properly chosen. In particular, Condat-Vu’s
PDA with τ = τ3 and σ = σ5 performs the best, followed by E-GRPDA with τ = τ1
and σ = σ1, which is only slightly slower. A plausible explanation of the slightly inferior
performance of E-GRPDA compared to Condat-Vu’s PDA might be that in this example
L = ∥A⊤A∥ is quite large, which results in a relatively narrower convergence region and
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thus more restrictive choice of parameters, as shown in the middle plot in Figure 1. On
the other hand, for the elastic net regularization problem, as shown in Figure 4, E-GRPDA
with appropriate choice of step size parameters can be much more efficient than Condat-
Vu’s PDA. In this example, we have h(x) = µ1∥x∥22 and thus L = supx ∥∇2h(x)∥ = µ1,
which is set to be 0.005 in this test. For small L, E-GRPDA allows more relaxed choice
of parameters as shown in the right-hand-side plot in Figure 1. The reason for the above
inconsistent relative performance remains unclear. We have also compared E-GRPDA, as
well as Condat-Vu’s PDA, with a version of the ADMM [7, 8]. Since ADMM needs to solve
a linear system of equations at each iteration, it usually consumed more CPU time than
E-GRPDA and Condat-Vu’s PDA, which are full-splitting. For this reason, we have not
included the comparison results with ADMM. Nonetheless, our experimental results given
above definitely demonstrate the feasibility and the competitive performance of the proposed
E-GRPDA.

6 Conclusions

In this paper, we have proposed and analyzed an extended golden ratio primal-dual algorithm
for solving minx h(x)+ g(x)+ f(Kx). The proposed algorithm is an extension of the golden
ratio primal-dual algorithm recently proposed by Chang and Yang [3] by introducing an extra
smooth term h whose gradient is Lipschitz continuous. In [3, 24], sublinear convergence rate
results are established, which adopted the so-called primal-dual gap function as a measure
of optimality. A major flaw of the primal-dual gap function is that it could vanish at
nonstationary points, see, e.g., [2]. Thereby, convergence results based on the primal-dual
gap function are not quite informative. In this paper, motivated by the recent work [16], we
have carried out an analysis for the equivalent reformulated problem (1.4). In particular,
we have shown in the general convex case that E-GRPDA converges at a sublinear rate
O(1/N), where the optimality is measured by the function value residual and feasibility
violation. If g or h is strongly convex, we have shown that E-GRPDA can be accelerated
to achieve faster O(1/N2) convergence rate. These results extend and complement those
derived in [3, 24]. Our numerical results on CT image reconstruction problem and elastic
net regularization problem also demonstrate the competitive performance of E-GRPDA. In
particular, E-GRPDA performs favorably when compared to Condat-Vu’s PDA.

Our proposed algorithm requires the spectral norm of K and the Lipschitz constant L,
which could be difficult to evaluate or estimate in practice. In this case, E-GRPDA is hard
to implement. A possible remedy is to incorporate certain adaptive technology, e.g., line
search, into the algorithmic framework so that ∥K∥ and L can be avoided and the whole
algorithm can be largely accelerated. We leave this as future work.
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