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matrix A of the dataset. The geometric interpretation of PCA can be reformulated as the
finding of an alternative basis for the space of the data set such that the data points under
the new basis can be best expressed. While it is possible that all data points are drawn
from the same subspace, which is exactly the assumption in PCA, there are cases when the
sample points may be collected from several different subspaces. In this situation, the PCA
may be invalid. The generalized PCA, or briefly, GPCA, is such an extended PCA where
multiple subspaces are allowed.

Throughout the paper we denote R, C resp. for the field of real numbers and complex
numbers and write [n] for the set {1, 2, . . . , n} for any given positive integer n. A tensor
A = (Aσ) of size I := I1 × I2 × · · · × Im is defined as an m-array or a multiway matrix
(Ai1i2...im := Aσ when σ := (i1, . . . , im) ∈ I). A (column) vector corresponds to m = 1 and
a matrix corresponds to m = 2. An m-order tensor A = (Aσ) is said to be indexed by I if
σ = (i1, i2, . . . , im) ∈ I. A indexed by I is called an m-order n-dimensional real tensor or
an m× n tensor provided that I1 = I2 = · · · = Im = [n]. Denote the set of all the m-order
tensors indexed by I by T (I) and the set of all m-order n-dimensional real tensors by Tm;n.
An m-tuple σ ∈ I is sometimes identified with an m-multiset or an m-permutation chosen
from [n] with displacement allowed. Denote by Tm the set of all m-order tensors. An m×n
tensor A is called a symmetric tensor if each entry Aσ is invariant under any permutation
on its indices. Note that the degree of freedom (dof) of a symmetric m×n tensor is

(
n+m−1

m

)
while the dof of a general m × n tensor is nm. An m-order n-dimensional real tensor A is
associated with an m-order homogeneous polynomial fA(x) := Axm, or more specifically

fA(x) :=
∑

i1,i2,...,im

Ai1i2...imxi1xi2 . . . xim . (1.1)

A is called positive definite or pd (positive semidefinite or psd) if

fA(x) := Axm > 0(≥ 0), ∀x ∈ Rn\ {0} (∀x ∈ Rn). (1.2)

A polynomial fA(x) is uniquely determined by the coefficient matrix A when A is symmetric.
Given N data points x1,x2, . . . ,xN ∈ Rd. It is assumed in the generalized PCA (GPCA)

that all data points fall into some subspaces say

S1, S2, . . . , Sn ⊂ Rd,

where the number n of the subspaces shall be estimated before the determination of the
subspaces S1, S2, . . . , Sn. Note that the problem of GPCA is reduced to PCA when n = 1.
In the next section we mainly discuss the issue under the restriction n ≤ 2. The problem
in this case is transformed into the decomposition of a polynomial with the symmetrization
of its coefficient tensor. In the third section, we take care of a more general case where the
decomposition of its coefficient tensor is much more complicated.

2 GPCA with Two Subspaces

Let α1, α2, . . . , αn ∈ Rd. Denote X = {α1, α2, . . . , αn}. Then n ≤ d if X is linearly
independent. However, n cannot be upper bounded if X is pairwise linearly independent.

Lemma 2.1. Let n, d > 1 be positive integers. Then there exist n vectors α1, α2, . . . , αn ∈
Rd such that αi, αj are linearly independent for any distinct pair i, j ∈ [n].

Proof. We may choose u,v ∈ Rd such that u,v are linearly independent. Now we choose n
distinct real numbers say λ1, λ2, . . . , λn, and let αj = u+ λjv for all j ∈ [n]. Then for any
pair i, j ∈ [n], i ̸= j, αi, αj are linearly independent.
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We now introduce the homogeneous coordinate before we go to the concept of affine space.
Homogeneous coordinates are generally found in designing and construction applications as
well as in computer vision. It is used to combine the geometric transformations such as the
translation and the rotation into a single transformation. In homogeneous coordinate system,
a 2-dimensional coordinate position (x, y) is represented by a triple-coordinate (X,Y, Z)
where x = X/Z, y = Y/Z when Z ̸= 0 and (X,Y, 0) refers to the point at infinity along
the direction of the ray originated from (0, 0) to point (X,Y ). An affine set (space) F
in vector space Rd is the set consisting of all possible affine combinations of some points
x1,x2, . . . ,xk ∈ Rd, i.e., x =

∑k
j=1 θjxj with all θj ∈ R satisfying θ1 + θ2 + · · · + θk = 1.

An affine set is a lift of a linear space V , i.e., F = α + V where α ∈ F is a vector
in F . The dimension of an affine space F is defined as the dimension of V , denoted by
dim(F ) = dim(V ). Under the homogeneous coordinate system, each hyperplane H in Rd

can be expressed as the set
{
x̄ ∈ Rd+1 : ᾱ⊤x̄ = 0

}
where ᾱ⊤ = (α, 1) and α is the normal

vector of H.
Now we assume that the data points x1,x2, . . . ,xN ∈ Rd be on affine subspaces S1,

S2, . . . , Sn of Rd where n << N (n is usually very small ) and dim(Si) < d for each i. A
simple case is when all Si’s are of the same dimension, say k, with k ∈ [d− 1], i.e.,

1 ≤ dim(S1) = dim(S2) = · · · = dim(Sn) = k < d.

When k = d− 1, each Si is an affine subspace of Rd which can be characterized by a normal
vector wi ∈ Rd, i.e.,

Si =
{
x ∈ Rd : x⊤wi = ci

}
, i ∈ [n],

with each ci ∈ R being a real number. The homogeneous representation of Si is given by

Si =
{
y ∈ Rd+1 : y⊤ui = 0

}
, i ∈ [n]. (2.1)

where ui = (w⊤
i , ci)

⊤, i ∈ [n] ∈ Rd+1 and y is the homogeneous representation of x which
corresponds to point x = (y1/yd+1, y2/yd+1, . . . , yd/yd+1)

⊤ ∈ Rd for nonzero yd+1 (y corre-
sponds to a point at infinity if yd+1 = 0). The assumption of the distinction of S1, S2, . . . , Sn

is equivalent to pairwise linear independency of u1,u2, . . . ,un in Rd+1. Now we form the
data matrix

X = [y1,y2, . . . ,yN ] ∈ R(d+1)×N (2.2)

in terms of the given points x1,x2, . . . ,xN ∈ Rd and denote

W = [w1,w2, . . . ,wn] ∈ R(d+1)×n (2.3)

(we may assume that n << N) and let

f(x) =

n∏
i=1

(y⊤ui) (2.4)

For case n = 1, all the observations must lie in an affine plane, which corresponds to a
linear form f . The optimal rank-1 approximation X ≈ λuv⊤ can be achieved by choosing
λ = σ1, i.e., the largest singular value of X, and u,v being respectively the normalized left
and right singular eigenvector corresponding to σ1.

In order to investigate the case n = 2, we present some basic terminology and some
lemmas. Given a matrix A = (aij) ∈ Cn×n and let As := 1

2 (A + A⊤). Then As is the
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symmetrical part of A. Now we let A = (Ai1i2...im) be any m-order n-dimensional real
tensor . The symmetrization of A, also denoted by As = (ai1i2...im), is defined by

ai1i2...im :=
1

m!

∑
σ∈Sm

Aiσ(1)iσ(2)...iσ(m)
,

where the summation is taken over all elements in the permutation group Sm imposed on
set [m]. Obviously that As is a symmetric tensor by definition. More specifically an m-order
n-dimensional real tensor A can be written as

A = α1 × α2 × · · · × αm (2.5)

if and only if A is a rank-1 tensor ( 0 ̸= αj ∈ Cn for each j ∈ [m]). We say A is separable if
αj ’s are mutually independent. A separable rank-1 tensor in form (2.5) can be symmetrized
in the following way:

As =
1

m!

∑
j1,j2,...,jm

αj1 × αj2 × · · · × αjm , (2.6)

where the summation is taken through all the permutations on [m] and αj ∈ Cn. By
definition, a separable tensor is a real symmetric tensor generated by the symmetrization of
a rank-1 (possibly complex) tensor, and A and As are associated with the same polynomial,
i.e., fAs

(x) is identical to fA(x).
There are infinitely many coefficient tensors A which can be associated with a polynomial

f(x) defined by (1.1). But this correspondence becomes unique when the coefficient tensor
is required to be symmetric, and fA(x) = fAs(x). Now conversely we assume that we are
given a symmetric tensor A ∈ Tm,n. We want to know whether it is possible to be regarded
as a symmetrization of a separable rank-1 tensor. There is no easy answer to this question.
Let us first consider the matrix case, that is,

Problem 2.2. Given a symmetric matrix A = (aij) ∈ Rn×n. Is that possible to find two
linearly independent vectors α, β ∈ Cn such that

A =
1

2
(α× β + β × α). (2.7)

Problem (2.2) can be reformulated as

Problem 2.3. Given a quadratic form f(x) of n-variate. Is that possible to factorize f into
the product of two different linear forms, i.e.,

f(x) = l1(x)l2(x), (2.8)

where x = (x1, x2, . . . , xn)
⊤ ∈ Rn is the vector of variables and li(x) =

n∑
j=1

bijxj , and

bi = (bi1, . . . , bin)
⊤ are linearly independent.

Note that when l1(x) ≡ l2(x) in (2.8), f(x) = l21(x) which corresponds to the case
n = 1. To present the necessary and sufficient condition for a symmetric matrix to be
separable, we recall that the inertia of a real symmetric matrix A, denoted inert(A), is
a triple (p, q, s) , representing respectively the number of the positive eigenvalues, negative
eigenvalues and the eigenvalues equal to zero. It is commonly known that a real symmetric
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matrix A ∈ Rn×n is positive semidefinite (psd) if and only if inert(A) = (r, 0, n− r) where
r = rank(A). Furthermore, A is positive definite (pd) if and only if inert(A) = (n, 0, 0).
From the knowledge of linear algebra, A preserves the inertia under the transformation of the
congruence, i.e., for any invertible matrix U ∈ Rn×n, we have inert(UAU⊤) = inert(A).

Now we state the following result.

Theorem 2.4. Given a nonzero symmetric matrix A = (aij) ∈ Rn×n. Then A is separable
if and only if inert(A) = (1, 1, n− 2).

Proof. To prove the necessity, we suppose that A is separable and let

A =
1

2
(α× β + β × α) (2.9)

with α, β ∈ Rn linearly independent. Then rank(A) ≤ 2. We denote U = [α1, α2, . . . , αn] ∈
Rn×n where α1 = α, α2 = β, and α3, . . . , αn are the extension of α1, α2 such that
{α1, α2, . . . , αn} forms a basis of Rn. Then by (2.9) we have A = UDU⊤ where D =

diag(D1, 0) ∈ Rn×n with D1 =

(
0 1/2

1/2 0

)
. Then we have inert(A) = inert(D) =

(1,−1, n− 2).
To prove the sufficiency, we suppose that A is a symmetric matrix with inert(A) =

(1, 1, n − 2). Then there exists an invertible matrix U ∈ Rn×n such that A = UDU⊤ with
D = diag(1,−1, 0, . . . , 0). Denote U = [u1, u2, . . . , un] where uj ∈ Rn is the jth column
vector of U for j ∈ [n]. Thus

A = u1u
⊤
1 − u2u

⊤
2 , (2.10)

Now we denote α = u1 + u2, β = u1 − u2. Then α, β ∈ Rn are linearly independent due to
the independency of u1, u2, and by (2.10) we obtain

A =
1

2
(α× β + β × α) =

1

2
(αβ⊤ + βα⊤).

The proof is completed.

The condition inert(A) = (1, 1, n − 2) in Theorem 2.4 implies that rank(A) = 2. An
interesting phenomenon is that A is separable in the field of complex numbers but not in the
field of real numbers when the condition inert(A) = (1, 1, n− 2) is relaxed to rank(A) = 2,
as the following corollary shows:

Corollary 2.5. Let A = (aij) ∈ Rn×n be a nonzero symmetric matrix. Then A is separable
in C if and only if rank(A) = 2.

Proof. Let A = (aij) ∈ Rn×n be a symmetric matrix. By Theorem 2.4, we need only to
show the sufficiency, that is, if rank(A) = 2, then there are two linear independent vectors
α, β ∈ Cn such that (2.9) holds. By rank(A) = 2 and the symmetry of A, there are two two
linear independent vectors x,y ∈ Rn such that A = λ1uu

⊤ + λ2vv
⊤ where λ1, λ2 ∈ R are

the first largest eigenvalues of A, i.e., |λ1| = max {|λ| : λ ∈ σ(A)} where σ(A) denotes the
spectrum of A. Now we denote

α =
√
λ1u+ ı

√
λ2v, β =

√
λ1u− ı

√
λ2v.

Then α, β ∈ Cn. An easy computation shows that

α× β + β × α = 2(λ1uu
⊤ + λ2vv

⊤) = 2A.

Hence (2.9) holds.
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Corollary 2.5 presents an easy-to-check condition for a symmetric matrix to be separable
in case n = 2. It can also be justified by the fundamental algebraic theorem, i..e, a real
polynomial of order n always have n roots in the field of complex numbers.

Recall that an (p, q)− commutation matrix Kp,q is an p × q block matrix [Kij ] where
each block Kij is an q × p matrix with its unique nonzero entry taking value 1 at position
(j, i). This concept is extended to the commutation tensor Kp,q [16] which is a (0,1) tensor
of size p× q× q× p whose entry Kijkl = 1 only if j = k, i = l. The commutation tensor Kp,q

transforms a matrix into its transpose as in the following manner [16]:

Lemma 2.6. Kq,p ×X = X⊤ for any matrix X ∈ Rp×q.

Here A × X is defined as a matrix B = (bij) where bij =
∑

l,k AijklXkl where A ∈
Rq×p×p×q, X ∈ Rp×q .

Given a rank-1 m-order n-dimensional real tensor is A := α1 × α2 × · · · × αm with
αk ∈ Rn and a permutation τ ∈ symm where symm denotes the pemutation group on the set
{1, 2, . . . ,m}. We define an m-order n-dimensional real tensor Aτ := (Aτ

i1i2...im
) ∈ Tm;n as

Aτ
i1i2...im = Aiτ(1)iτ(2)...iτ(m)

.

The symmetrization of a rank-1 tensor A := α1×α2×· · ·×αm is just the average of all Aτ s
by (2.6). The symmetrization of a rank-1 tensor will be used in the following to establish
the method to tackle the problem of GPCA.

3 GPCA in General Case

Given N data points x1,x2, . . . ,xN ∈ Rd which are supposed to lie on some subspaces
S1, S2, . . . , Sn of Rd. In this paper we only consider the simple case when all Si’s are with
the same dimension, say dim(Si) = k ∈ [d] for all i. For d = 3, k = 2, each subspaces Si in
Rd is uniquely determined by its normal vector say ui. The Generalized Principal Compo-
nent Analysis (GPCA) is an algebraic-geometric approach proposed by Vidal in 2003 [15]
to model mixtures of subspaces with a unique global solution to the clustering of the given
points based on polynomial decomposition. By the homogeneous coordinate expression, the
approach takes the mixture of subspaces as a projective algebraic variety which is estimated
from sample data points as a particular case of NLPCA to derive the embedding of the
data analytically. The subspaces in GPCA is estimated by using segmentation independent
constraints satisfied by all data points, regardless of the subspace to which they belong.

The estimation of the n subspaces can be transformed into that of the algebraic variety
defined by a set of polynomials. Moreover, the problem of identifying a collection of hy-
perplanes, i.e., dim(Si) = d − 1 for each i ∈ [n], boils down to the the estimation and the
factorization of pn(x). The polynomial pn(x) can be retrieved from the data points though
we have no knowledge about the clustering of the points. pn(x) can be determined from the
solution of a set of linear equations if n is known. On the other hand, the estimation of the
hyperplanes is essentially equivalent to factoring pn(x) into a product of n linear factors.

Let S ∈ RN×N be the similarity matrix generated by the data matrix X =
[x1,x2, . . . ,xN ] ∈ Rd×N and u = (u1, u2, . . . , uN )⊤ be the eigenvector of S correspond-
ing to the largest eigenvalue of S whose entries take value in π := {µ1, µ2, . . . , µn} where it
is assumed µi’s are labeled in increasing order. Denote x[m] := (xm

1 , xm
2 , . . . , xm

N )⊤ and write

Lk(x) := [x[0],x[1],x[2], . . . ,x[k]] ∈ Rd×(k+1),
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where x[0] ∈ RN is the all-ones vector, x[1] = x. It is not difficult to see that the number n
of the distinct entries of x can be determined by the following result:

Lemma 3.1.
n = argmin {k : rank(Lk(x)) = k} . (3.1)

Denote Lk := Lk(x) when there is no risk of confusion. Note that Lk+1 = [Lk,x
[k+1]],

we can computer n iteratively from k = 1. Since S is a positive symmetric (and thus
irreducible), the x ∈ RN be the normalized largest positive vector with unit length. Denote

mk := E[xk] = 1
N

∑N
j=1 x

k
j , that is, the k-moment of x. Write A = (aij) ∈ Rn×n where

aij = mi+j−2 and βk,n := (mk,mk+1, . . . ,mk+n−1) ∈ Rn. Then A is a Hankel matrix
associated with β0,2n−2. It is shown by [15] that

Lemma 3.2. Let X = [x1,x2, . . . , xN ] ∈ Rd×N whose coulmns are data points and let
n : 1 < n << N be a positive integer which is much smaller than N . Then there are n
subspaces S1, S2, . . . , Sn with the same dimensions in Rd such that all xj’s lie on the union
of these subspaces if and only if

Ax = βk,n. (3.2)

Suppose there exist unknown n vectors vi ∈ Rd+1 each standing for a normal vector of
subspace Si for i ∈ [n]. Then a data point x ∈ Rd+1 in homogenuous system lies on Si if
and only if x⊤vi = 0. Thus the N data points lying on exactly n hyperspaces of Rd if and
only if each data point satisfies

n∏
i=1

(x⊤vi) = 0. (3.3)

Now we denote Y be an (n+ 1)-order tensor with size

n︷ ︸︸ ︷
d× d× · · · × d×N where

Y (:, :, . . . , :, j) :=

n︷ ︸︸ ︷
xj × xj × · · · × xj , ∀j ∈ [N ],

and write V = sym(v1 × v2 × · · · × vn). Then we have the result:

Theorem 3.3. Let X = [x1,x2, . . . , xN ] ∈ Rd×N be the matrix whose coulmns are the given
data points. Then these data points lie on some n different hypergraphs of Rd if and only if
there exists a symmetrization of a rank-1 n-order d-dimensional tensor V satisfying

Y ×[n] V = 0, (3.4)

where Y ×[ n]V denotes the tensor multiplication of Y with V along the first n modes, i.e.,
(Y ×[ n]V)j is the inner product of Y (:, :, . . . , :, j) with V.

Proof. It is easy to see that (3.4) is equivalent to (3.3) if V = α1 × α2 × · · · × αn for some
pairwise linearly independent vectors αj ’s since for any given j ∈ [N ] we have

0 = (Y ×[n] V)j = Y (:, :, . . . , :, j)× V
= (xj × xj × · · · × xj)× (α1 × α2 × · · · × αn)

=

n∏
i=1

(x⊤
j αi)

which implies that xj satisfies condition (3.3). For the general case we can also show that
(3.4) is equivalent to (3.3) by the symmetrization of a rank-1 tensor.
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