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search techniques. Different selections for βk lead to generate different CG methods. Among
them there exist the Dai–Yuan method [11], the Fletcher–Reeves (FR) method [16], the
Hestenes–Stiefel method [21], the Polak–Ribière–Polyak (PRP) method [32, 33] as well as
their various generalizations see for example [2, 3, 6, 15, 20].

The step length αk is the solution of the one–dimensional minimization problem known as
the line search. Exact line search is the most common type of line search which is expressed
as

f(xk + αkdk) = min
α≥0

f(xk + αdk).

This technique is computationally expensive because of the need to calculate the accurate
value of the step length. So, we usually utilize the inexact line search. The strong Wolfe
line search is one of the most famous inexact line searches, in which αk satisfies

f(xk + αkdk)− f(xk) ≤ δαk ▽ f(xk)
T dk, (1.4)

| ▽ f(xk + αkdk)
T dk| ≤ −σ ▽ f(xk)

T dk, (1.5)

while in the Wolfe line search requires αk to satisfy (1.4) and

▽f(xk + αkdk)
T dk ≥ σ ▽ f(xk)

T dk, (1.6)

where 0 < δ < σ < 1.

The method introduced by Fletcher and Reeves [16] with the conjugate parameter

βFR
k =

∥gk+1∥2

∥gk∥2
, (1.7)

in which ∥.∥ denotes the Euclidean norm, is considered as one of the most well–known classi-
cal CG methods. This method has good characteristics such as the termination property of
the algorithm for finite quadratic functions and the global convergence feature. Hence, the
global convergence analysis of the FR method has been extensively studied. As a cursory
glance, Zoutendijk [39] first created the convergence results for the FR method with the
exact line search. Afterwards, Al–Baali [1] proved the global convergence of this method for
general objective functions using the strong Wolfe conditions (1.4) and (1.5) with σ < 1

2 .
Later, Liu et al. [28] developed the convergence results presented by Al–Baali for σ = 1

2 .
Gilbert and Nocedal presented a comprehensive study on the global convergence of the FR
method in [17].

In spite of the theoretical merits and the strong convergence features of the FR method,
the numerical performance of this method is fundamentally influenced by jamming phe-
nomenon [17, 34]. So, the improvement of the FR method from computationally aspect has
attracted special attentions. For instance, based on the spectral gradient method presented
by Barzilai and Borwein [8], Zhang et al. [37] suggested a modification of the classical FR
method called the spectral FR conjugate gradient method with the search direction

d0 = −g0, dk+1 = −θkgk+1 + βkdk, k ≥ 0, (1.8)

where βk = βFR
k and θk is known as the spectral parameter and calculated by

θk =
dTk yk
∥gk∥2

, (1.9)
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in which yk = gk+1 − gk. An important and appealing property of this method is that at
each iteration, the produced search direction independent of any line search fulfills in the
sufficient descent condition, namely

gTk dk ≤ −τ∥gk∥2, ∀k ≥ 0, (1.10)

with constant τ > 0. It is obvious that if the line search is exact, then the method becomes
the classical FR conjugate gradient method. Recently, Liu et al. [26] introduced a family of
spectral CG methods with the spectral parameter

θk = − gTk dk
∥gk∥2

+ βk

gTk+1dk

∥gk+1∥2
, (1.11)

where its search direction always satisfies in the sufficient descent condition (1.10). They
also proved that their proposed method is globally convergent with the Wolfe line search
when |βk| ≤ βFR

k . It is worth noting that some other well-known conjugate parameters with
the property |βk| ≤ βFR

k have been introduced, see for example [17, 22, 35]. Lately, Li and
Cao [24] suggested another conjugate parameter with limitation |βk| ≤ βFR

k as

βDPRP
k =

gTk+1yk

ηk∥gk∥2
, (1.12)

in which

ηk = 1 + µ
|gTk+1gk|
∥gk+1∥2

,

and µ ≥ 1 is a constant.

Guaranteeing the sufficient descent condition for the classical CG methods is difficult
because of the low number of parameters. Hence, the modification of them to produce
methods with more parameters and efficiency has been extensively studied. Among these
modifications, the three–term CGmethod, first introduced by Beale [9] in 1972, has attracted
the attention of many researchers. Three–term CG methods are another important class of
CG methods designed to increment the efficiency of classical CG methods. Numerical results
illustrate that three–term CG algorithms are more efficient, robust and reliable compared to
classical CG algorithms [4, 38]. Interested readers can refer to more resources on three–term
CG methods [5, 7, 14, 23, 25, 27, 29].

The theoretical and numerical merits of the three–term CG methods encourage us to offer
another family of three–term CG methods for solving large–scale optimization problems. In
this regard, motivated by argument provided in [26], we try to calculate the value of the
coefficient of the third term in such a way that the sufficient descent condition holds for its
search direction independent of the convexity of the objective function. Moreover, in order
to ensure the global convergence of the proposed method using the strong Wolfe line search,
we consider the conjugate parameter such that the relation |βk| ≤ βFR

k holds.

The remainder of this manuscript is arranged as follows. In Section 2, we suggest a spe-
cific class of three–term CG methods that possesses sufficient descent property. The global
convergence analysis of our proposed method under some mild conditions is presented in Sec-
tion 3, and the results of our numerical experiments on a set of unconstrained optimization
test problems are made in Section 4. Eventually, in Section 5 we provide the conclusion.
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2 A Family of Three–Term Conjugate Gradient Methods

In this paper, based on the approach of [26], we suggest a family of three–term CG methods
to solve problem (1.1), which the structure of its search direction is as follows:

d0 = −g0, dk+1 = −gk+1 + βkdk − νkyk, k ≥ 0. (2.1)

Multiplying both sides of the above equation by gTk+1, we obtain

gTk+1dk+1 = −∥gk+1∥2 + βkg
T
k+1dk − νkg

T
k+1yk

= ∥gk+1∥2
gTk dk
∥gk∥2

(
−∥gk∥2

gTk dk
+ βk

∥gk∥2

gTk dk

gTk+1dk

∥gk+1∥2
− νk

∥gk∥2

gTk dk

gTk+1yk

∥gk+1∥2

)
,

which by definition

δk+1 = −∥gk∥2

gTk dk
+ βk

∥gk∥2

gTk dk

gTk+1dk

∥gk+1∥2
− νk

∥gk∥2

gTk dk

gTk+1yk

∥gk+1∥2
,

it follows that
gTk+1dk+1

∥gk+1∥2
=

gTk dk
∥gk∥2

δk+1. (2.2)

It is clear that if δk+1 ≡ 1 holds for each k ≥ 0, then relations (2.1) and (2.2) imply

gTk+1dk+1

∥gk+1∥2
=

gTk dk
∥gk∥2

= · · · = gT0 d0
∥g0∥2

= −1,

Hence, we have
gTk+1dk+1 = −∥gk+1∥2, ∀k ≥ 0.

This means that if we can determine νk such that δk+1 satisfies δk+1 ≡ 1, then the sufficient
descent condition always holds for the search direction dk+1 independent of any line search.

According to the above analysis and after some algebraic manipulations, we can express
νk as

νk = βk

gTk+1dk

gTk+1yk
, k ≥ 0.

To ensure the convergence of our suggested method, we modify the parameter νk as follows:

νk =


βk

gT
k+1dk

gT
k+1yk

, gTk+1gk ≤ 0,

0, otherwise.

(2.3)

Now, we present the algorithm of the proposed method as follows:

Algorithm 2.1. (TTCG method)

Step 0. Choose the initial point x0 ∈ Rn, and the scalars ε > 0 and 0 < δ < σ < 1
2 .

Calculate f0 = f(x0)
and g0 = ∇f(x0). Set d0 = −g0 and k := 0.

Step 1. If ∥gk∥∞ < ε, then stop.
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Step 2. Compute the step length αk by the strong Wolfe line search conditions (1.4) and
(1.5).

Step 3. Define βk and calculate νk satisfying (2.3). Then compute the next search direction
dk+1 by (2.1).

Step 4. Generate the next iterate by xk+1 = xk + αkdk.

Step 5. Set k := k + 1, and goto Step 1.

3 Global Convergence Property

In this section, we illustrate that if the conjugate parameter βk is suitably bounded in
magnitude, then the Algorithm 2.1 is globally convergent. So throughout this section, we
assume that βk is any scalar such that

| βk |≤ βFR
k , ∀k ≥ 0. (3.1)

The following standard assumptions are also required in our analysis.

Assumption 3.1. The level set L0 = {x ∈ Rn|f(x) ≤ f(x0)} is bounded.

Assumption 3.2. In the neighborhood N of L0, the objective function f is continuously
differentiable, and its gradient is Lipschitz continuous; that is, there exists a constant L > 0
such that

∥g(x)− g(y)∥ ≤ L∥x− y∥, ∀x, y ∈ N . (3.2)

Under the above Assumptions, there exist positive constants B and γ such that

∥x− y∥ ≤ B, ∀x, y ∈ L0,

and
∥g(x)∥ ≤ γ, ∀x ∈ L0. (3.3)

The following lemma shows that the proposed method satisfies the condition (1.10).

Lemma 3.3. Suppose that Assumptions 3.1 and 3.2 hold. The search direction defined by
(2.1), in which νk is computed by (2.3) under the strong Wolfe line search conditions (1.4)
and (1.5) with σ ∈ (0, 1

2 ), fulfills the sufficient descent condition (1.10) with τ = 1−2σ
1−σ .

Proof. Based on the search direction defined by (2.1) with νk calculated by (2.3), we must
consider the following two cases:

Case (i): gTk+1gk ≤ 0. From the discussion presented in the previous section, we know
that

gTk+1dk+1 = −∥gk+1∥2, ∀k ≥ 0,

hence, we have
gTk+1dk+1 ≤ −τ∥gk+1∥2, ∀k ≥ 0.

Case (ii): gTk+1gk > 0. In this situation, following carefully the proof of Lemma 3.1 of
[17], we first prove by induction that the search direction satisfies

− 1

1− σ
≤

gTk+1dk+1

∥gk+1∥2
≤ 2σ − 1

1− σ
. (3.4)
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For this purpose, it is clear that the above relation holds for k = 0, since the value of the
intermediate expression is equal to −1. Now we suppose that (3.4) is true for k ≥ 0, which
implies gTk dk < 0, because

2σ − 1

1− σ
< 0.

On the other hand, we have

gTk+1dk+1

∥gk+1∥2
= −1 + βk

gTk+1dk

∥gk+1∥2
= −1 +

βk

βFR
k

gTk+1dk

∥gk∥2
. (3.5)

It also follows from the strong Wolfe line search condition (1.5) that

|βkg
T
k+1dk| ≤ −σ|βk|gTk dk.

Combining this with (3.5), we obtain

−1 + σ
|βk|
βFR
k

gTk dk
∥gk∥2

≤
gTk+1dk+1

∥gk+1∥2
≤ −1− σ

|βk|
βFR
k

gTk dk
∥gk∥2

,

which using the left side relation of the induction hypothesis we have

−1− |βk|
βFR
k

σ

1− σ
≤

gTk+1dk+1

∥gk+1∥2
≤ −1 +

|βk|
βFR
k

σ

1− σ
.

From |βk| ≤ βFR
k , we conclude that (3.4) holds for k + 1. Now with the definition

τ =
1− 2σ

1− σ
,

we get
gTk+1dk+1 ≤ −τ∥gk+1∥2.

The following lemma has an useful conclusion called the Zoutendijk condition, which is
frequently used to prove the global convergence of CG methods.

Lemma 3.4. [12] Suppose that x0 is a starting point for which Assumptions 3.1 and 3.2
hold. Consider the itreative method (1.2), where dk is a descent direction and αk satisfies
(1.4) and (1.6). Then we have that

∞∑
k=0

(
gTk dk

)2
∥dk∥2

< ∞. (3.6)

Lemma 3.5. [10] Suppose that Assumptions 3.1 and 3.2 hold. Consider any conjugate
gradient method in the form (1.2) and (1.3), where dk is a descent direction and αk is
obtained by the strong Wolfe line search. If

∞∑
k=0

1

∥dk∥2
= ∞, (3.7)

we have that
lim inf
k→∞

∥gk∥ = 0. (3.8)
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Now, we demonstrate that our proposed method for general functions is globally conver-
gent.

Theorem 3.6. If Assumptions 3.1 and 3.2 hold, then Algorithm 2.1, under strong Wolfe
conditons (1.4) and (1.5) with σ ∈ (0, 1

2 ), converges in the sense that (3.8) holds.

Proof. Assume by contradiction that conclusion (3.8) is incorrect. Then there is a constant
ε > 0, such that

∥gk∥ ≥ ε, ∀k ≥ 0. (3.9)

According to the structure of the search direction calculated by (2.1) with νk determined
by (2.3), we have to consider the following two situations:

Case (i): gTk+1gk ≤ 0. In this case, from (2.1) we have

dk+1 = −gk+1 + βkdk − βk

gTk+1dk

gTk+1yk
yk

= −gk+1 + βk

(
I −

ykg
T
k+1

gTk+1yk

)
dk.

Taking into account Lemma 1.1 of [30], the relations (3.1), (3.2), (3.3) and (3.9),we get

∥dk+1∥ ≤ ∥gk+1∥+ |βk|

∥∥∥∥∥I − ykg
T
k+1

gTk+1yk

∥∥∥∥∥ ∥dk∥
≤ ∥gk+1∥+

∥gk+1∥2

∥gk∥2
∥yk∥∥gk+1∥
|gTk+1yk|

∥dk∥

= ∥gk+1∥+
∥gk+1∥2

∥gk∥2
∥yk∥∥gk+1∥∣∣∥gk+1∥2 − gTk+1gk

∣∣∥dk∥
≤ ∥gk+1∥+

∥gk+1∥2

∥gk∥2
∥yk∥∥gk+1∥
∥gk+1∥2

∥dk∥

≤ γ +
γLαk∥dk∥

ε2
∥dk∥,

where similar to the proof of Lemma 3.1 of [36], since αkdk → 0 as k → ∞, there exist a
constant ζ ∈ (0, 1) and an integer k0, such that the following inequality holds for all k ≥ k0:

γL

ε2
αk∥dk∥ ≤ ζ.

Hence, for each k > k0, we have

∥dk+1∥ ≤ γ + ζ∥dk∥ ≤ γ + ζ
(
γ + ζ∥dk−1∥

)
≤ γ

(
1 + ζ + ζ2 + · · ·+ ζk−k0

)
+ ζk−k0+1∥dk0∥

≤ γ

1− ζ
+ ∥dk0∥.

By setting

C = max

{
∥d0∥, ∥d1∥, · · · , ∥dk0

∥, γ

1− ζ
+ ∥dk0

∥
}
,
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we get ∥dk∥ ≤ C for all k ≥ 0, and consequently

∞∑
k=0

1

∥dk∥2
≥

∞∑
k=0

1

C2
= ∞,

where from Lemma 3.5 follows
lim inf
k→∞

∥gk∥ = 0,

while it contradicts (3.9). Hence, the proof is complete.
Case (ii): gTk+1gk > 0. In this situation, by rewriting equation (1.3) as

βkdk = dk+1 + gk+1,

and squaring its sides, we get

β2
k ∥dk∥2 = ∥dk+1∥2 + ∥gk+1∥2 + 2dTk+1gk+1,

where using Lemma 3.3, we have

β2
k ∥dk∥2 ≤ ∥dk+1∥2 + ∥gk+1∥2 − 2τ∥gk+1∥2

≤ ∥dk+1∥2 + ∥gk+1∥2.

Therefore, we can write
∥dk+1∥2 ≥ β2

k ∥dk∥2 − ∥gk+1∥2. (3.10)

On the other hand, by multiplying the equation (1.3) by gTk+1, we obtain

∥gk+1∥2 = βk gTk+1dk − gTk+1dk+1

≤ |βk||gTk+1dk|+ |gTk+1dk+1|. (3.11)

Since the step length αk satisfies the strong Wolfe conditions, it follows that

|gTk+1dk| ≤ σ|gTk dk|. (3.12)

Hence, the inequalities (3.11) and (3.12) imply that

∥gk+1∥2 ≤ σ|βk||gTk dk|+ |gTk+1dk+1|. (3.13)

Using general inequality

(a1b1 + a2b2 + · · ·+ anbn)
2 ≤

(
a21 + a22 + · · ·+ a2n

) (
b21 + b22 + · · ·+ b2n

)
,

where
a1 = σ , a2 = 1 , b1 = |βk||gTk dk| , b2 = |gTk+1dk+1| ,

the inequality (3.13) becomes

∥gk+1∥4 ≤
(
σ|βk||gTk dk|+ |gTk+1dk+1|

)2
≤
(
σ2 + 1

) (
β2
k(g

T
k dk)

2 + (gTk+1dk+1)
2
)
.

Now, according to positiveness of c = 1
1+σ2 , we can write

c∥gk+1∥4 ≤ β2
k(g

T
k dk)

2 + (gTk+1dk+1)
2. (3.14)
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Dividing the sides of the inequality (3.10) by ∥dk∥2, we obtain

∥dk+1∥2

∥dk∥2
− β2

k ≥ −∥gk+1∥2

∥dk∥2
. (3.15)

On the other hand, we know

(gTk+1dk+1)
2

∥dk+1∥2
+

(gTk dk)
2

∥dk∥2
=

1

∥dk+1∥2

(
(gTk+1dk+1)

2 +
∥dk+1∥2

∥dk∥2
(gTk dk)

2

)
. (3.16)

Now, adding and subtracting the sentence β2
k

(
gTk dk

)2
to the right-hand side of the relation

(3.16) leads to

(gTk+1dk+1)
2

∥dk+1∥2
+

(gTk dk)
2

∥dk∥2

=
1

∥dk+1∥2

(
(gTk+1dk+1)

2 + β2
k(g

T
k dk)

2 +
∥dk+1∥2

∥dk∥2
(gTk dk)

2 − β2
k(g

T
k dk)

2

)
(3.17)

=
1

∥dk+1∥2

(
(gTk+1dk+1)

2 + β2
k(g

T
k dk)

2 +

(
∥dk+1∥2

∥dk∥2
− β2

k

)
(gTk dk)

2

)
. (3.18)

By substituting (3.14) and (3.15) in the equation (3.17), we get

(gTk+1dk+1)
2

∥dk+1∥2
+

(gTk dk)
2

∥dk∥2
≥ 1

∥dk+1∥2

(
c∥gk+1∥4 −

∥gk+1∥2

∥dk∥2
(gTk dk)

2

)
.

Therefore, we can write

(gTk+1dk+1)
2

∥dk+1∥2
+

(gTk dk)
2

∥dk∥2
≥ ∥gk+1∥4

∥dk+1∥2

(
c− (gTk dk)

2

∥dk∥2∥gk+1∥2

)
.

Taking into account the Zoutendijk condition (3.6) and the relation (3.9), we have

limk→∞
(gT

k dk)
2

∥dk∥2 = 0, which yields for large enough k

(gTk+1dk+1)
2

∥dk+1∥2
+

(gTk dk)
2

∥dk∥2
≥ ∥gk+1∥4

∥dk+1∥2

(
1

1 + σ2

)
.

So, by Lemma 3.4 and convergence criterion of series, we get

∞∑
k=0

∥gk+1∥4

∥dk+1∥2
< ∞,

and consequently
∞∑
k=0

1

∥dk+1∥2
≤ 1

ε4

∞∑
k=0

∥gk+1∥4

∥dk+1∥2
< ∞,

which is inconsistent with (3.7) and completes the proof.
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Figure 1: Total number of function and gradient evaluations performance profiles

4 Numerical Experiments

In this section, the computational efficiency of the TTCG method with βk defined by (1.12)
is evaluated. Here we set µ = 3.5 in (1.12), due to the booming numerical results obtained
between the various values of µ ∈ {0.5k}20k=2.

The TTCG method is compared with the following three CG methods, with the search
direction calculated by (1.8) in which βk and θk are respectively computed by:

FR: (1.7) and θk = 1;

SFR: (1.7) and (1.9);

SCG: (1.12) and (1.11).

All algorithms have been tested on 81 functions of the CUTEr collection [18] with the
minimum dimension being equal to 50, as given in Table 1, applying MATLAB 7.7.0.471
(R2008b) installed on a computer Intel(R) Core(TM) i5-8250U CPU @ 1.80 GHz with
8.00 GB RAM and the Centos 6.2 server Linux operation system. The algorithms were
terminated by achieving a maximum of 10000 iterations or reaching a solution with ∥gk∥∞ <
10−6 (1 + |f(xk)|).

In addition, efficiency comparisons were drawn using the Dolan–Moré performance profile
[13], on the running time (CPUT) and the total number of function and gradient evaluations
(TNFGE) being equal to Nf + 3Ng, where Nf and Ng respectively signify the number of
function and gradient evaluations [19]. The performance profile gives, for every ω ≥ 1,
the proportion p(ω) of the test problems whereas each considered algorithmic variant has
performance within a factor of ω of the best.

All calculated algorithms are performed by the Wolfe line search conditions (1.4) and
(1.6) with δ = 0.0001 and σ = 0.3 base on Algorithm 3.5 of [31].

Figures 1 and 2 exhibit the comparison results of the above methods. As can be seen,
the TTCG method is superior to other methods in terms of the total number of function
and gradient evaluations, and the CPU time. So, the above numerical experiments illustrate
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Table 1: Outputs
TTCG SCG SFR FR

No. function n TNFGE CPUT TNFGE CPUT TNFGE CPUT TNFGE CPUT

1. ARGLINA 200 12 0.1490 12 0.0543 12 0.0554 12 0.0545

2. BDEXP 5000 16 0.0641 16 0.0475 16 0.0461 16 0.0544

3. BIGGSB1 5000 32526 3.1800 60769 6.0069 40018 4.8102 40363 4.7317

4. BQPGABIM 50 306 0.0249 313 0.0261 374 0.0269 511 0.0313

5. BQPGASIM 50 306 0.0220 313 0.0215 374 0.0269 511 0.0318

6. BROWNAL 200 89 0.0498 89 0.0442 147 0.0474 793 0.0983

7. BRYBND 5000 224 0.1280 237 0.1272 429 0.1763 390 0.1656

8. CHNROSNB 50 6525 0.2310 7146 0.2487 40030 1.3783 44116 1.4246

9. CLPLATEB 5041 60270 14.6000 60117 14.8550 40098 10.2030 43119 10.7720

10. COSINE 10000 167 0.1770 693 0.4886 315 0.2578 109 0.1318

11. CRAGGLVY 5000 431 0.3010 1339 0.8209 526 0.3588 697 0.4652

12. CURLY10 10000 907 0.3470 921 0.3465 40089 11.9720 43707 13.1770

13. CURLY20 10000 1888 0.9470 3604 1.6981 40087 18.8840 19535 8.9403

14. CURLY30 10000 4635 2.7100 6286 3.6225 40098 25.2030 43097 25.4590

15. DECONVU 63 49934 1.7300 61132 2.0852 7686 0.2863 51686 1.7143

16. DIXMAANA 3000 36 0.0453 36 0.0364 51 0.0391 56 0.0404

17. DIXMAANB 3000 32 0.0417 32 0.0382 37 0.0383 37 0.0392

18. DIXMAANC 3000 37 0.0440 37 0.0367 37 0.0398 37 0.0424

19. DIXMAAND 3000 42 0.0434 42 0.0374 42 0.0361 42 0.0358

20. DIXMAANE 3000 3032 0.3860 2897 0.3641 1697 0.2383 3854 0.4776

21. DIXMAANF 3000 2164 0.2930 3979 0.4913 1624 0.2304 2958 0.3779

22. DIXMAANG 3000 1660 0.2270 2402 0.3093 1441 0.2076 3773 0.4752

23. DIXMAANH 3000 1964 0.2710 2029 0.2725 1248 0.1878 4550 0.5615

24. DIXMAANI 3000 15034 1.8400 24276 5.1125 19573 2.4071 40485 4.8116

25. DIXMAANJ 3000 1368 0.1990 3566 0.4417 2249 0.3061 4499 0.5544

26. DIXMAANK 3000 3116 0.3930 2099 0.2751 1697 0.2377 3109 0.3930

27. DIXMAANL 3000 1676 0.2270 1650 0.2210 1516 0.2171 2741 0.3501

28. DIXON3DQ 10000 41085 6.4600 60950 9.8790 40010 7.0644 40030 6.7440

29. DMN15103 99 81661 187.0000 80987 188.9600 40576 104.1400 54827 133.2100

30. DMN37142 66 60068 118.0000 60334 120.3200 46970 96.5750 46702 95.4930

31. DMN37143 99 74605 172.0000 75672 172.5200 42865 107.4000 54929 133.3700

32. DQDRTIC 5000 617 0.1640 765 0.1847 446 0.1308 1083 0.2334

33. DQRTIC 5000 4 0.0325 4 0.0321 4 0.0257 4 0.0332

34. DRCAV1LQ 4489 4 0.0608 4 0.0656 4 0.0660 4 0.0662

35. DRCAV2LQ 4489 4 0.0605 4 0.0651 4 0.0638 4 0.0652

36. DRCAV3LQ 4489 4 0.0600 4 0.0636 4 0.0648 4 0.0650

37. EDENSCH 2000 127 0.0509 137 0.0464 218 0.0566 170 0.0497

38. EG2 1000 23 0.0204 23 0.0216 23 0.0301 23 0.0193

39. EIGENALS 2550 60176 86.6000 60678 89.7420 40049 62.1010 48259 70.9810

40. EIGENBLS 2550 59146 87.4000 59342 89.1190 40049 64.8150 43470 70.2470

41. EIGENCLS 2652 59754 94.8000 59875 94.3630 40050 65.3340 44949 71.3020

42. ENGVAL1 5000 80 0.0711 80 0.0686 145 0.0803 199 0.0909

43. EXTROSNB 1000 60894 3.3400 60380 3.1626 16381 0.8985 51447 2.5904

44. FLETCBV2 5000 4 0.0636 4 0.0568 4 0.0611 4 0.0618

45. FLETCHBV 5000 148 0.1260 148 0.1190 148 0.1176 148 0.1177

46. FLETCHCR 1000 5175 0.3410 6889 0.4420 4266 0.2968 5927 0.3797

47. FMINSRF2 5625 3924 0.8510 4660 1.0055 40022 8.9954 41942 9.1008

48. FMINSURF 5625 4828 1.0900 5599 1.2565 40022 9.1349 42201 9.3909

49. FREUROTH 5000 342 0.1570 316 0.1370 241 0.1221 454 0.1714

50. GENHUMPS 5000 4 0.0447 4 0.0398 4 0.0410 4 0.0410

51. GENHUMPS 5000 4 0.0321 4 0.0369 4 0.0446 4 0.0327

52. GENROSE 500 15815 0.7650 16014 0.7645 40033 1.9336 43471 1.9934

53. LIARWHD 5000 1839 0.3450 2285 0.4122 1106 0.2256 1318 0.2594

54. MANCINO 100 100 0.1690 100 0.1669 100 0.1636 95 0.1590

55. MOREBV 5000 700 0.1480 629 0.1365 1631 0.2889 2211 0.3670

56. MSQRTALS 1024 39083 11.7000 60322 18.4660 22787 7.4139 41123 13.2610

57. MSQRTBLS 1024 37562 11.9000 60239 19.1650 15808 5.3120 41199 13.4510

58. NCB20 5010 485 0.3940 487 0.3993 40211 24.7180 45665 27.2410

59. NCB20B 5000 401 0.3470 443 0.3584 398 0.3313 483 0.3801

60. NONCVXU2 5000 4 0.0294 4 0.0364 4 0.0288 4 0.0306

61. NONDIA 5000 2218 0.3590 4054 0.6225 495 0.1095 637 0.1297

62. PENALTY1 1000 1151 0.0759 792 0.0576 4091 0.2355 3586 0.1959

63. PENALTY2 200 4 0.0028 4 0.0150 4 0.0042 4 0.0109

64. POWER 10000 7101 0.9300 9705 1.3748 2296 0.3644 2632 0.3934

65. QUARTC 5000 4 0.0315 4 0.0305 4 0.0295 4 0.0255

66. SCHMVETT 5000 97 0.1350 80 0.1179 162 0.1888 198 0.2202

67. SENSORS 100 150 0.2990 106 0.2210 4934 8.1966 1745 2.9258

68. SINQUAD 5000 776 0.4830 973 0.5450 41463 16.7800 369 0.2861

69. SPARSINE 5000 60433 24.4000 60576 24.0140 40028 16.2610 40727 16.4190

70. SPARSQUR 10000 166 0.1540 231 0.1715 318 0.2117 327 0.2114

71. SPMSRTLS 4999 2220 0.5690 2555 0.6490 3048 0.7678 4458 1.0506

72. SROSENBR 5000 274 0.0660 925 0.1284 557 0.0903 367 0.0709

73. TESTQUAD 5000 61039 6.4400 60824 6.7074 40087 4.0486 44598 4.1488

74. TOINTGOR 50 713 0.0410 804 0.0416 595 0.0356 1146 0.0541

75. TOINTGSS 5000 71 0.0756 66 0.0701 127 0.0994 370 0.2177

76. TOINTPSP 50 951 0.0415 887 0.0431 1842 0.0699 1190 0.0497

77. TOINTQOR 50 172 0.0195 168 0.0198 281 0.0253 416 0.0242

78. TRIDIA 5000 22149 2.1500 51919 4.9870 20382 2.1518 42256 4.2726

79. VARDIM 200 8 0.0020 8 0.0103 8 0.0015 8 0.0083

80. VAREIGVL 50 140 0.0206 148 0.0206 412 0.0314 573 0.0314

81. WOODS 4000 1983 0.2580 2877 0.3548 1676 0.2231 658 0.1094
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Figure 2: CPU time performance profiles

that the suggested method is promising. Our experiments showed that averagely in 81.54%

of the iterations of TTCG method we had νk = βk
gT
k+1dk

gT
k+1yk

.

5 Conclusion

In this paper, following the successful approach presented by Liu et al. [26], we introduced
a family of three–term conjugate gradient methods in such a way that the sufficient descent
condition holds. Convergence analysis for general functions has been provided by the strong
Wolfe line search under proper conditions when |βk| ≤ βFR

k . Moreover, our suggested
method has been numerically compared with some existing effective methods on a set of 81
unconstrained optimization test problems of the CUTEr library. The results illustrated that
our method is promising and efficient based on the Dolan–Moré performance profile.
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