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From the statistics point of view, there are various methods which can be used to recon-
struct multivariate series, including the traditional methods: vector auto-regression method
and copula method [2, 16]. We also refer to monographs [17, 21] for more details of those tra-
ditional methods. Most of the above approaches deal with pattern data, i.e., N1 = · · · = Nn.
To deal with unpatterned multivariate series, there are some approaches, for example, multi-
stage maximum likelihood estimation and multivariate singular spectrum analysis [1, 3].

For univariate time series, besides the above traditional methods, the low-rank Hankel
matrix optimization has become the main approaches recently. Singular Spectrum Analysis
(SSA) is one of such methods which is based on the structure of Hankel matrix. SSA has
been extensively and effectively applied to many areas such as signal processing, economics,
image processing, earth science, and so on [6, 9, 10, 18]. The advantage of SSA is that
it is a non-parametric method, meaning that there are no previous assumptions (such as
whether the series is stationary). However, SSA suffers some drawbacks mainly in the
Hankel-type weights. Excellent work has been done on improving SSA [8, 15, 26]. In
particular, [8] propose a sequential majorization method (SMM-Cadzow), which deals with
more reasonable weights in low-rank Hankel matrix model. SMM-Cadzow is demonstrated
to be computationally efficient in denoising time series.

Based on the above analysis, a natural question is whether the SMM-Cadzow method
can be adapted to deal with multivariate time series with different patterns. This motivates
the work in this paper. We proposed a multivariate noise reduction method, referred to as
the multivariate sequential majorization method (MSMM). The contribution of this paper
are in three folds. Firstly, MSMM is proposed based on the idea of multivariate analysis.
Secondly, we address how to choose the window length and the rank of the Hankel matrix,
both of which are key parameters in MSMM. Thirdly, for weak signal extraction, which is an
important yet difficult scenario, we propose two variants of MSMM, i.e., the recycling MSMM
method and variate accumulation MSMM method. Numerical experiments are conducted
to verify the efficiency of the proposed MSMM, especially in denoising weak signals.

The rest of this paper is organized as follows. In Section 2, we introduce some prelimi-
naries, mainly focusing on SMM for the univariate time series. In Section 3, we propose our
MSMM for multivariate time series with different patterns. In Section 4, we discuss how
to choose the two important parameters: the window length and the rank of the Hankel
matrix. In Section 5, we propose two variants: the recycling MSMM method and variate ac-
cumulation MSMM to deal with the weak signal extraction. Numerical results are reported
in Section 6 including the performance of MSMM for unpatterned multivariate time series
as well as two variants of MSMM for weak signal extraction. Final conclusions are given in
Section 7.

Notations. We use small letter to represent column vectors and capital letter to represent
matrices. The i -th element in x is denoted as xi. The inner product of matrix A and B of
the same size is defined as 〈A,B〉 := Tr(ATB). Let ◦ denote the Hadamard product. Let
‖ · ‖F denote the Frobenius norm for matrices and l2 norm for vectors. Let Diag(x) denote
the diagonal matrix with x as the diagonal entries. We use 1L to denote the column vector
of length L with all elements one.

2 Preliminaries

In this section, we introduce the mathematical problem for extracting univariate time series,
which is mainly summarized from [24]. Then we briefly review the main idea of SMM-Cadzow
[8] for univariate noise reduction.
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2.1 Hankel Matrix Optimization of Noise Reduction for Univariate Case

Let x = (x1, . . . , xN ) ∈ RN be a time series of length N , and L > 0 (1 < L < N) is a given
integer called window length. Letting K = N −L+ 1, we can define the following L-lagged
vectors:

xT
i = (xi, . . . , xi+L−1), i = 1, . . . ,K.

Define the L-lagged matrix as below

X = T (x) := (x1, . . . ,xK) ∈ RL×K ,

which is usually referred to as the trajectory matrix. It is obvious that X is a Hankel matrix.
Let H be the set of Hankel matrix of size L × K. The mapping T : RN 7→ H maps time
series of length N into a Hankel matrix of size L×K. It is easy to notice that T is an one
to one projection, and the inverse of it: T −1, exists and maps a Hankel matrix of size L×K
to time series of length N .

Let XN
r to represent series whose length is N and the rank of corresponding trajectory

matrix X is no larger than r, that is,

XN
r := {x ∈ RN |rank(T (x)) ≤ r}.

To denoise the noise corrupted time series y ∈ RN , we can extract the true signal by
looking for the nearest approximation to y from XN

r . Particularly, we minimize the following
weighted norm to denoise the time series y ∈ RN :

min
x∈XN

r

fw(x) = ‖x− y‖2w :=

N∑
i=1

wi(xi − yi)
2. (2.1)

The underlying reason to set a low-rank constraint x ∈ XN
r is that the signal we wish

to extract corresponds to a low-rank matrix under the mapping T [8, Section 1]. In fact, it
has a close link to time series that are governed by a linear recurrence relation. We refer the
interested reader to [15, 24, 25, 26]. Problem (2.1) is a popular method to extract univariate
signals, and it was investigated in many papers such as [15, 26, 25].

To derive the equivalent Hankel matrix optimization formulation of (2.1), let M be the
set of matrices of size L × K and Mr ⊂ M be the set of matrix whose rank is no larger
than r. Let wT := (w1, . . . , wN ), wi ≥ 0 and v ∈ RN (suppose L ≤ K) be given by:

vi :=


1
i when i=1,. . . ,L-1;
1
L when i=L,. . . ,K;

1
N−i+1 when i=K+1,. . . ,N,

(2.2)

Let
√
w ∈ RN denote the component-wise square root vector and define

M := T (
√
v ◦

√
w). (2.3)

The equivalent Hankel matrix optimization model of (2.1) is given by

min
X∈Mr∩H

f(X) :=
1

2
‖M ◦ (X − Y )‖2F . (2.4)

However, solving (2.4) is computationally difficult unless w has some properties [15]. Even
for w = (1, . . . , 1)T ∈ RN , (2.4) is still a tricky problem. Below we briefly review the
sequential majorization method (SMM) proposed by [8], which solves (2.4) efficiently.
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2.2 SMM

SMM-Cadzow aims to solve (2.1) which is indeed a Hankel low-rank approximation problem
with arbitrary weights. First, we need to transform (2.1) to the corresponding Hankel
matrix form problem (2.4). In order to tackle the computational difficulty in (2.4), we need
to approximate the object function of (2.4) with a function which is easier to solve, and
SMM-Cadzow method uses the following majorization function to approximate f(X) at a
given point Z [8]:

fm(X,Z) := f(Z) + 〈∇f(Z), X − Z〉+ 1

2
‖(√p

√
q
T
) ◦ (X − Z)‖2F , ∀ X ∈ M, (2.5)

where p ∈ RL and q ∈ RK are two positive vectors which possess the follow properties:

‖M ◦X‖F ≤ ‖(√p
√
q
T
) ◦X‖F , ∀X ∈ M. (2.6)

Both sides of (2.6) could be seen as the weighted norm of X, and the weight matrix on the
right side is actually a rank-one matrix. Solving (2.5) could benefit us in computing. As a
matter of fact, (2.5) could be regarded as an approximation of (2.4) at a given point Z ∈ M.
Moreover, (2.5) is solved by using the following alternating projections.

Let Π
(P,Q)
H (Y ) represent the optimal solution of the following optimization problem:

min
X∈H

‖P (X − Y )Q‖F . (2.7)

Vectors p and q are positive vector in RL and RK respectively, and P = diag(p), Q =

diag(q). The solution of (2.7), denoted as Ŷ = Π
(P,Q)
H (Y ), takes the following form [26]:

ŷij =

∑
l,k:l+k=i+j plqkylk∑
l,k:l+k=i+j plqk

. (2.8)

Now we let Π
(P,Q)
Mr

(Y) to be the optimal solution of the following optimization problem:

min
X∈Mr

‖P (X − Y )Q‖F . (2.9)

The solution of (2.9), denoted as Ŷ = Π
(P,Q)
Mr

(Y ), is as follows [15]:

Π
(P,Q)
Mr

(Y ) = P−1ΠMr
(PY Q)Q−1. (2.10)

3 Multivariate Sequential Majorization Method (MSMM)

In this section, we will develop MSMM for the noise reduction of multivariate time series
with different patterns. We will first establish the Hankel matrix optimization model, then
propose MSMM for solving the optimization model. Finally, we will discuss the properties
of MSMM.

3.1 The Hankel Matrix Optimization Model

Recall that our aim is to denoise the multivariate time series y(i) ∈ RNi , i = 1, . . . , n, as
defined in (1.1). Similar to the case of univariate time series, a natural way to recover the
multivariate time series is to directly solve the weighted least squares minimization model:

min
X(i)∈XNi

r , i=1,...,n

n∑
i=1

‖x(i) − y(i)‖2w(i) , (3.1)
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where w(i) ∈ RNi , i = 1, . . . , n are the given corresponding non-negative weighted vectors.
Clearly, (3.1) is separable and thus could be solved sequentially by using SMM. However,
the underlying structure and features of the multivariate signals might be ignored since one
treats them as several univariate time series. The main purpose of our paper is to propose a
model which can perform noise reduction simultaneously. The reason is that simultaneously
analysis allows us to observe the relations and extract common structures among several
time series.

To modify (3.1) as the Hankel matrix optimization model, which enables us to perform
noise reduction simultaneously, the main challenge is how to construct the trajectory matrix.
Usually there are two ways to construct the trajectory matrix for multivariate series [11,
4]. The only difference between the two ways is how they stack the final block Hankel
matrix after each trajectory is formed for each univariate series y(i) by T . One is to stack
horizontally and the other is vertically. Given the fact that the multivariate series have
different patterns, we use the horizontal way to construct the trajectory matrix in our
paper. After connecting each trajectory matrix horizontally, we obtain the final trajectory
matrix for multivariate series. Furthermore, we obtain the column space of the trajectory
matrix, referred to as the trajectory space, which is a space spanned by all the L-lagged
vectors of the n series. The above analysis leads to the following mathematical statement
before which an assumption is needed.

Assumption 3.1. Assume the trajectory matrix of the noise series is of full rank.

Let HB := H1 ×H2 × · · · × Hn be the set of block Hankel matrices, where Hi denotes
the Hankel matrices of size L×Ki, and Ki = Ni−L+1, i = 1, . . . , n. Let MB be the set of
matrices of size L×KT , where KT = K1+· · ·+Kn. Define TM : RN1×RN2×. . .RNn 7→ HB

by
Y = TM (y(1), . . . ,y(n)) := [T (y(1)), T (y(2)), . . . , T (y(n))] ∈ HB . (3.2)

Similar to the property of T , TM is also a one-to-one mapping and the inverse of TM , denoted
by T −1

M , transferring block Hankel matrices back to multivariate series. That is,

T −1
M (Y ) := (T −1(Y (1)), . . . , T −1(Y (n))), (3.3)

where Y (i) ∈ Hi and T −1(Y (i)) ∈ RNi . Similar as in (2.2) and (2.3), define v(j) ∈ RNj as
in (2.2) with N := Nj and let

M (j) = T (
√
v(j) ◦

√
w(j)), M := [M (1), . . . ,M (n)]. (3.4)

Consequently, we reach the following Hankel matrix optimization model to denoise the
multivariate time series y(i) ∈ RNi , i = 1, . . . , n:

min
X∈MB

r ∩HB
f(X) :=

1

2
‖M ◦ (X − Y )‖F , (3.5)

where MB
r denotes the sets of matrices of size L×KT , whose rank is no larger than r.

Remark 1. Notice that although the set HB is the set of block Hankel matrices, the set
MB

r requires that the matrix X must have the rank no larger than r, which is a restriction
from the matrix point of view rather than regarding X as some horizontally block matrices.
Consequently, one of the constraints X ∈ MB

r actually tackles the univariate time series
uniformly, whereas, the constraint X ∈ HB deals with the unpatternness of each time series,
by allowing each block Hankel matrix to admit different sizes.
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3.2 MSMM for (3.5)

To solve (3.5), similar to SMM in [8], we first give the following majorization function of f
at a given point Z:

fm(X,Z) := f(Z) + 〈∇f(Z), X − Z〉+ 1

2
‖(
√
u
√
v
T
) ◦ (X − Z)‖2F , ∀ X ∈ MB

r , (3.6)

where u ∈ RL and v ∈ RKT are two positive vectors share the following properties:

‖M ◦X‖F ≤
∥∥∥(√u

√
v
T
)
◦X

∥∥∥
F

∀ X ∈ MB
r . (3.7)

The majorization function fm(·, ·) satisfies the following conditions:

fm(X,X) = f(X) ∀ X ∈ MB
r , and, f(X) ≤ fm(X,Z) ∀ Z,X ∈ MB

r .

Consequently, given X
k
, one can minimize the majorization function fm(X,X

k
) over

the feasible set MB
r ∩ HB , to get the next iterate Xk+1. The details of MSMM is given in

Algorithm 1.

Algorithm 1: MSMM-Cadzow algorithm

1 Give the multivariate series: y(1), . . . ,y(n), and the corresponding weight vectors

w(1), . . . ,w(n), choose the window length L, the rank r. Compute

Y = TM (y(1), . . . ,y(n)) and M as in (3.4). Let X
0
= Y , k := 0;

2 Compute the u and v that satisfy (3.7);

3 Get X
k+1

by solving the following subproblem approximately:

min
X∈MB

r ∩HB
fm(X,X

k
) = min

X∈MB
r ∩HB

1

2
‖U(X −4k)V ‖F , (3.8)

where U = diag(u), V = diag(v) and 4k is defined as

4k := X
k − P

−2
(M ◦M ◦ (Xk − Y ))Q

−2
;

4 If the stopping criteria is satisfied, output T −1
M (X

k+1
); otherwise, k = k + 1, go to

Step 3;

Similar to the convergence of SMM-cadzow in [8], it is easy to derive the following
convergence result.

Theorem 3.1. Let X
k
be generated by MSMM. If X

k
satisfies the following condition

fm(X
k+1

, X
k
) ≤ fm(X

k
, X

k
), (3.9)

the object function sequence f(X
k
) is non-decreasing and converges.

The above theorem implies that to achieve the convergence result for the object function,
it is not necessary to get the exact solution of (3.8) which is very demanding due to the
non-convexity of the problem. Instead, we only need to get an inexact solution which fulfills
(3.9). It would render our computation relatively easy.
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Remark 2. Theorem 3.1 is a convergence result in terms of f(X
k
). As pointed in [8], such

convergence result for the object function f(X
k
) would be good enough for our model to

work. Due to the non-convexity of the problem (3.5), it is very difficult to analyze whether

the limit points of {Xk} is the critical point of the problem (3.5). We will leave it as a
further topic to study in the future.

Remark 3. Here we would like to further highlight three reasons that we use the horizontal
way to construct the trajectory matrix in deriving (3.2). Firstly, it enables us to maintain
the structure of the trajectory space as it is in the unitary case. In construct, if we choose the
vertical way, the structure of the resulting block trajectory matrix will change dramatically.
Secondly, the horizontal way allows us to deal with the case of unpatterned multivariate time
series, where each time series may have different lengths. One can allow different length of
y(i), i = 1, . . . , n, without worrying about the disturbance it may bring to the dimension of
the trajectory space. Last but not the least, it can save the computational time and memory
when running the algorithm MSMM. The main computational cost of MSMM lies in the
spectral value decomposition in (3.8). Constructing the trajectory matrix horizontally will
lead to similar size of matrices which then save the computational time and memory.

We end up this section by discussing some implementation issues.

3.3 Implementations of MSMM

In this part, we mainly discuss the choices of (u,v) and how to solve the sub-problem (3.8)
inexactly.

Recall that (u,v) has to satisfy the condition in (3.7). A good choice of them will narrow
the difference of the right hand side and the left hand side in (3.7) as much as possible so
that the approximation fm in (3.6) can be more accurate. For the univariate case, the choice
of (u,v) is fully discussed in [8]. For the multivariate case, recall that u ∈ RL, v ∈ RKT .
To generate (u,v), let us first define (u(i),v(i)) to be the corresponding parameters for the
univariate time series y(i) ∈ RNi with u(i) ∈ RL and v(i) ∈ RKi , i = 1, . . . , n, specified
later. (u,v) can be generated by:

ul := max{u(i)
l |i = 1, . . . , n}, l = 1, . . . , L, v = [v(1); . . . ;v(n)], (3.10)

where for the l-th element in u ∈ RL we choose the largest one among all the l-th element
of u(i) ∈ RL, i = 1, . . . , n, and for v ∈ RKT , we simply connect v(i) ∈ RKi , i = 1, . . . , n.
We need the following property of (u(i),v(i)).

Proposition 3.2. Let (u(i), v(i)) ∈ RL ×RKi satisfy

‖M (i) ◦X(i)‖F ≤ ‖(
√
u(i)

√
v(i)

T

) ◦X(i)‖F , i = 1, . . . , n.

Then (u, v) ∈ RL ×RKT defined by (3.10) satisfies (3.7).

The proof can be done easily by using the definitions of Hadamard product and Frobenius
norm.

By Proposition 3.2, the choice of (u,v) is connected with the choices of (u(i),v(i)), i =
1, . . . , n. Consequently, one can use different schemes to generate (u(i),v(i)) following the
univariate case in [8, Section 4]. To be self contained, below we briefly describe two ways:
simple way and a more complicated way to generate (u(i),v(i)). More details can be found
in [8, Section 4].
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A simple way to calculate [8, Section 4] is based on M
(i)
, which is given by (recall that

Ki = Ni − L+ 1):

u
(i)
l := max{M (i)

lk |k = 1, . . . ,KT }, l = 1, . . . , L,

v
(i)
k := max{M (i)

lk |l = 1, . . . , L}, k = 1, . . . ,Ki.
(3.11)

A more complicated way to generate (u(i),v(i)) is to solve a linear programming prob-
lem, which will leads to a more accurate estimation and therefore narrow the gap between

‖(
√
u(i)

√
v(i)

T
) ◦X(i)‖ and ‖M (i) ◦X(i)‖ for any X(i). Such scheme is given below, which

comes from Algorithm 4.1 in [8].

Algorithm 2: Generation of (u(i),v(i))

1 Initialization: (a,b) ∈ RL ×RKi , weight vector w(i), window length L,
Ki = Ni − L+ 1;

2 Solve the following linear programming problem to get (s, t) ∈ RL ×RKi :

max
s∈RL,t∈RKi

αγ + βγ = (1T
Ls)(1

T
Ki

b(i)) + (1T
La

(i))(1T
Ki

t)

s.t.
∑

l+k=j+1

(altk + bksl) ≤
∑

l+k=j+1

albk − w
(i)
j , j = 1, . . . , Ni,

0 ≤ s ≤ ρa, 0 ≤ t ≤ ρb

(3.12)

with prescribed ρ;

3 Output: u(i) = a− s, v(i) = b− t.

Remark 4. The parameter ρ in Algorithm 2 is used to adjust (s, t) to avoid too large
(s, t). The initial input (s, t) for each i = 1, . . . , n can be chosen as the (u(i),v(i)) defined
in the simple way (3.11).

Remark 5. Both of the simple way (3.11) and the complicated way in Algorithm 2 have
their own advantages. The simple way will lead to small computational cost in generating
(u,v). In contrast, Algorithm 2 takes some computational cost, however, it will lead to a
more accurate approximation for the majorization of function f .

The other implementation issue is how to solve sub-problem (3.8) in Step 3 of Algo-
rithm 1. We use the idea of alternating projection to get an approximate solution of (3.8).
Specifically, we can generate the iteration X̌i in the following way when solving (3.8):

X̌i+1 = Π
(u,v)

HB

(
Π

(u,v)

MB
r
(X̌i)

)
, X̌0 = 4k, i = 0, 1, . . . . (3.13)

Here the Π
(u,v)

HB (X) is the projection of each block X(j) in X onto its corresponding Hankel
matrix space Hj . That is,

Π
(u,v)

HB (X) = [Π
(u,v(1))

H1 (X(1)), . . . ,Π
(u,v(n))

Hn (X(n))],

where v(i) is the sub-vector of v consisting the (K1 + · · · + K(i−1) + 1)-th to the Ki-th
elements.
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We stop the alternating projection if the following conditions hold

|f(X̌i+1)− f(X̌i)|
max{1, f(X̌i)}

≤ tol1, or
‖X̌i+1 − X̌i‖F

‖X̌i‖F
≤ tol2.

We end this section by the following remark.

Remark 6. One needs to normalize or standardize each series y(i) before applying MSMM.
This is because different scales will make effect in the analysis of the result. Furthermore,
the series with large scales would have more effect on the noise reduction and therefore will
render the noise reduction effect of other series with smaller scales.

4 Choosing Two Parameters: the Window Length L and the Rank
of Hankel Matrix r

In this section, we will show how to choose two parameters in both SMM and MSMM: the
window length L and the rank of the Hankel matrix.

4.1 The Window Length L

In both SMM and MSMM, a crucial step is to conduct singular value decomposition for the
trajectory matrix. As a result, we want such decomposition to take less computational time.
This can be achieved by choosing an L that makes the trajectory matrix more squared-like
by full-rank assumption in Assumption 1. Below we present the optimal L for SMM and
MSMM.

For the univariate case, the optimal window length with regard to recovering the true
signal is achieved when L = b(N + 1)/2c, where bac denotes the largest integer that is no
larger than a [23, Chapter 2].

For multivariate case, the proper window length varies dramatically due to different
research purpose. Mathematically speaking, in our multivariate series y(1), . . . ,y(n), the
window length can be chosen between 2 and min

i=1,...,n
(Ni − 1). If all time series y(i), i =

1, . . . , n are the same length, i.e., N1 = · · · = Nn = N , we have the following result which
comes from Section 4.1 of [11]. To save space, we omit the proof here.

Theorem 4.1 ([11]). The optimal value of window length L for multivariate case with each
series has the same length N is:

L =
n

n+ 1
(N + 1).

In practical situation, it is pointed out that the choice of L ≈ N/2 is still applicable for
most situations [23, Chapter 4].

Based on above analysis, we conclude that for multivariate series with same patterns,
we can choose L = n(N + 1)/(n+ 1) as suggested by Theorem 4.1, wheres for unpatterned
multivariate case, we can still use L ≈ N/2 as the window length.

4.2 The Upper Bound for Low-Rank Matrices

In this part, we discuss how to choose the upper bound r for low-rank matrices.
In both SMM and MSMM, we require the trajectory matrix to be a low-rank matrix. The

underlying reason is that the signal we wish to extract corresponds to a low-rank matrix,
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in other words, such series is a finite rank series. The definition of finite-rank series is given
below.

Definition 4.2 ([23]). For time series s of arbitrary length, we call it finite-rank series if
and only if the rank of its trajectory matrix does not change with the variation of series
length or window length.

Definition 4.2 implies that the rank of the trajectory matrix for a finite-rank series is
finite and fixed.

The importance of choosing a proper upper of the rank r in our noise reduction method
is as follows. If the upper bound is smaller than the true rank, then significant information
might be lost. If it is much larger than the true rank, the one may include some noises,
which will not make the noise reduction method work well.

For univariate case, the rank of trajectory matrix could be estimated by several ways,
such as singular values, scatter diagram of eigenvectors or weighted correlation and so on
[24]. To analyze the multivariate case, we further need the property of linear recurrence
relationship (LRR), which is defined as follows.

Definition 4.3 ([13]). We call s ∈ RN is of LRR if and only if there are a1, . . . , at, which
satisfies:

sk+t =

t∑
i=1

aisk+t−i, 1 ≤ k ≤ N − 1. (4.1)

Moreover, we refer t as the order of this LRR and a1, . . . , at are the coefficients. If there
is a minimal t, denoted as r, that makes LRR hold, we call this LRR the minimum linear
recurrence relationship.

Another important fact is that, for infinite series, LRR is equivalent to finite-rank series
[24, Chapter 5], which is stated below.

Proposition 4.4. For infinite time series with finite rank d, it satisfies minimal LRR with
order d as well.

Some notations related to LRR include the polynomial Pt(µ) = µt −
∑t

i=1 aiµ
t−i, which

is called the characteristic polynomial function of the LRR (4.1), and the roots of it, which
are called the characteristic roots [13]. In addition, the roots of the characteristic polynomial
corresponding to the minimum LRR is referred to as signal roots [23]. Since the time series
that our paper works on is the finite-rank series, which is series governed by LRR, we can
check the similarity among the trajectory space of our series collection {s(1), . . . , s(n)} by
using some characteristics of LRR. Below we demonstrate the relation between the trajectory
space and characteristics of LRR for finite-rank series. Let s be the time series governed by
LRR and Ω be the trajectory space of s. We denote the dimension of Ω by r which is the
rank of the trajectory matrix S. We write the minimal LRR of s as follows:

sk+r =

r∑
i=1

aisk+r−i,

where the coefficients ar 6= 0. The corresponding characteristic polynomial is: Pr(µ) =
µr −

∑r
i=1 aiµ

r−i, and the roots of the characteristic polynomial is called signal roots. Let
p be the number of different roots of the polynomial Pr(µ), µi be the i-th root of Pr(µ) and
ki be the multiplicity of the root µi. Then using the theory of finite rank time series [24],
there is:

k1 + · · ·+ kp = r,
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which means the sum of the multiplicity of different signal roots equals to the rank of the
trajectory matrix of s. In fact, the structure of each series could be characterized by its
signal roots, which is reflected in its own trajectory space. As a result, we can determine
the structure of multivariate series by checking the signal roots and its multiplicity of each
series in s(1), . . . , s(n). Such observation leads to the following approach to determine the
rank of trajectory matrix for multivariate signals.

To determine the rank of the trajectory matrix for multivariate time series {s(1), . . . , s(n)}.
Denote S = [S(1), . . . , S(n)] as the trajectory matrix for {s(1), . . . , s(n)}, where S(i) ∈ RL×Ki

is the trajectory matrix for s(i). Let Ωi = span{ξ(i)1 , . . . , ξ
(i)
li

} be the trajectory space of time

series s(i), with dimension li, i = 1, . . . , n. Here ξ
(i)
1 , . . . , ξ

(i)
li

are linearly independent vector
which spans Ωi.

In fact, Ωi is the column space of the trajectory matrix S(i) of s(i). Let Ω be the
trajectory space of the multivariate series {s(1), . . . , s(n)}. There is

Ω = span{ξ(1)1 , . . . , ξ
(1)
l1

, ξ
(2)
1 , . . . , ξ

(2)
l2

, . . . , ξ
(n)
1 , . . . , ξ

(n)
ln

}.

The dimension of Ω is exactly the rank of the trajectory matrix S.

We need the following assumption.

Assumption 4.1. Each time series s(i), i = 1, . . . , n satisfies its own LRR.

Let ri be the rank of s(i), i = 1, . . . , n. There is, ri = rank(S(i)) = dim(Ωi) = li, i =

1 . . . , n. Let P
(i)
ri be the characteristic polynomial function of minimum LRR of s(i). Let

µ1, . . . , µt be the distinct signal roots of all characteristic polynomial function P
(1)
r1 , . . . , P

(n)
rn ,

and the corresponding largest multiplicity of the signal roots are k1, . . . , kt. In other words,
ki is the largest multiplicity of µi among all characteristic polynomial functions. Then the
rank of {s(1), . . . , s(n)} is given by (see [22] for more details):

r =

l∑
i=1

ki. (4.2)

In other words, r is the sum of the maximum multiplicity of each signal root.

We summarize the above process in the following algorithm.

Algorithm 3: The upper bound r of low-rank matrices for multivariate series

1 Initialization s(1), . . . , s(n);

2 Calculate the distinct signal roots of P
(i)
ri , i = 1, . . . , n, denoted as µ1, . . . , µt;

3 Calculate the largest multiplicity of each µi, denoted as ki, i = 1, . . . , t;
4 Let r be given by (4.2). Output r.

Algorithm 3 shows how to determine the rank of the trajectory matrix for true signals
s(1), . . . , s(n). When dealing with noised signals y(1), . . . ,y(n), we need to give an estimation
of r of the underlying true signals s(1), . . . , s(n). In this case, we can first find the corre-
sponding rank of each series y(i), and estimate the signal roots by ESPRIT method and
Algorithm 3.2 in [23]. Then use (4.2) to obtain the upper bond of the rank of the trajectory
matrix of s(1), . . . , s(n).
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5 Two Variants of MSMM

In this part, we will propose two variants of MSMM, which can be used for weak signal
extraction.

Weak signal means that the true signal is inundated by the noise. In other words, it
means the signal noise ratio (SNR) is low. Weak signal arises in many situations: radar,
sonar, earthquake detection as so on [14, 29, 12]. To extract weak signals, many special
models and numerical algorithms are proposed [28, 7, 20]. In this paper, we will discuss how
to extend our proposed MSMM for weak signal extraction.

Assume the noised univariate weak signal is y ∈ RN , which has low SNR.

To denoise the weak signals of MSMM, the main idea is to use the historical denoised
series as the additional time series, and combine them with the noisy signal to obtain a
multivariate series, then we can apply MSMM on the resulting multivariate series. The
reason we try to make use of the historical denoised series is that MSMM has the ability to
extract similar structure among series, and the historical denoised series can provide more
accurate information about the true signals.

Specifically, let d(k) be the denoised data provided by the current iteration. To make
use of the information of current iteration, we can construct a multivariate series (y,d(k)) ∈
RN ×RN , and apply the proposed MSMM to do further noise reduction. This will lead the
first variant of MSMM: recycling MSMM. In other words, we do not drop the information
d(k), but recycle it to make further use of it. The resulting algorithm is demonstrated in
Algorithm 4.

The other way is to make use of all the previous information to construct a mul-
tiplicity series. That is, at k-th iteration, we already have the previous denoise series
d(k),d(k−1), . . . ,d(1), and we construct a multivariate series (y,d(k),d(k−1), . . . ,d(1)) ∈
RN × RN × RN × . . .RN . Then we apply MSMM to the (k + 1) dimension series. It
leads to the second variant: the variate accumulation MSMM, which is demonstrated in
Algorithm 5.

Algorithm 4: recycling MSMM algorithm

1 Initialization: y ∈ RN to be denoised; window length L, rank r;

2 Apply SMM to y, and let the returned signal be d(0) ∈ RN , k := 0;

3 Apply MSMM to (y,d(k)), to get the denoised univariate signal d(k+1) ∈ RN ;

4 If the stopping criterion is satisfied, stop, output d(k+1); otherwise, k := k+ 1, go to
Step 2;

Algorithm 5: variate accumulation MSMM algorithm

1 Initialization: y ∈ RN to be denoised; window length L, rank r;

2 Apply SMM to y, and let the returned signal be d(0) ∈ RN , k := 0;

3 Combine the noisy signal y and all the previous denoised signals d(0), . . . ,d(k) to

make a multivariate series (y,d(0), . . . ,d(k)). Apply MSMM to the above

multivariate time series. Let the returned signal be d(k+1);

4 If the stopping criterion is satisfied, stop, output d(k+1); otherwise, k := k+ 1, go to
2;
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We end this section by some remarks.

Remark 7. As for the stopping criteria, we compare the difference of two consecutive
denoised signals:

‖d(k) − d(k−1)‖F
max{1, ‖d(k)‖F }

≤ tol,

where tol is specified by users.

Remark 8. In step 2 of Algorithm 4 and Algorithm 5, one can use any method for univari-
ate noise reduction, such as SMM. Other univariate noise reduction can also be used such as
Wavelet denoising and random phase noise reduction and so on [5, 19, 20, 27, 30, 31, 32, 33].

6 Numerical Results

In this part, we will conduct numerical experiments to see the performance of the proposed
methods. It is divided into two parts. In the first part, we test MSMM method and compare
with other existing methods [22]. In the second part, we test recycling MSMM and variate
accumulation MSMM. All the experiments in this section is conducted in Matlab R2018b
on a MacBook Air with a Intel Core i5 CPU at 1.6 GHz and 8GB of RAM.

6.1 Performance of MSMM

In this part, we compare MSMM with three methods: SSA (Singular Spectrum Analysis)
[25], SMM [8] and MSSA (Multivariate Singular Spectrum Analysis) [11]. The multivariate
series y(i) is constructed as in (1.1). In our test, we set N1 = N2 = 71, n = 2, r(1) and r(2)

are the realization of two independent Gaussian white noise with variance σ2 = 25. s(1) and
s(2) are two harmonic signals generated in the following ways.
E1: The two signals have the same period, different amplitude, and the difference between
the two phases is not π

2 :

s
(1)
k = 30cos(2πk/12), s

(2)
k = 30cos(2πk/12 + π/4), k = 1, . . . , N.

E2: The two signals have the same period and amplitude, and the difference between phases
is π

2 :

s
(1)
k = 30cos(2πk/12), s

(2)
k = 30cos(2πk/12 + π/2), k = 1, . . . , N.

E3: The two signals have different period:

s
(1)
k = 30cos(2πk/12), s

(2)
k = 30cos(2πk/8 + π/2), k = 1, . . . , N.

The dimension of the trajectory space of each univariate signal in the above tests is 2,
implying that the dimension of trajectory matrix is 2 for each univariate signals. However,
the trajectory spaces of (s(1), s(2)) are different. Table 1 shows the rank of the trajectory
matrix in different methods.

We use RMSE (root mean square error) to represent the error between the estimated

signals ŝ(i) and the true signals s(i), which is given by RMSE(i) =

√∑N
j=1(ŝ

(i)
j − s

(i)
j )2 i =

1, 2. RMSE = 1
2RMSE(1) + 1

2RMSE(1).
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Table 1: the dimension of signal trajectory space
E1 E2 E3

SSA 2 2 2
SMM 2 2 2
MSSA 2 2 4
MSMM 2 2 4

We randomly generated 1000 realizations of (y(1),y(2)) for each test and report the
averaged results in Table 2, where the best noise reduction for each method over different
window lengths is marked in bold. The best result among different methods and window
lengths for each fixed experiment is underlined. We also report the cputime in second for

Table 2: RMSE for E1-E3

each method.
From Table 2, we have the following observations.

1. One can observe that for univariate methods: SSA and SMM, the window length L
and N − L + 1 have the same noise reduction effect in terms of RMSE. However,
for multivariate methods MSSA and MSMM, the RMSEs are different when choosing
different window lengths. Moreover, we can see that the noise reduction result is better
when window length L is larger than N/2. In particular, for multivariate methods,
the best RMSE is obtained when L = 48, which is 2N/3.

2. Comparing SMM with SSA, it seems that SMM leads to smaller RMSE than the
traditional method SSA. Same conclusions are also valid for multivariate methods,
meaning that MSMM performs better than MSSA.

3. In terms of different examples, in E1 and E2, the two series s(1) and s(2) have the
same data structure, meaning that the trajectory spaces of s(1) and s(2) coincide with
each other. Comparing the results in Table 2 for E1 and E2, the multivariate methods
have better noise reduction than the univariate methods. In particularly, MSMM has
the best performance in denoising. Based on such observation, we can see that when
there are some similarities among series in multivariate time series, our MSMM will
produce better denoising effect and is more efficient.
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4. For E3, the structures of s(1) and s(2) are completely different. In this case, SMM is
the best.

5. In terms of cputime, MSMM takes a bit longer time than other methods since it deals
with multivariate series which involves a larger matrix than other methods.

We are also interested in how MSMM performs with unpatterned series. In order to
compare how well the MSMM works with unpatterned series, we use the series in E4 and
E5 as shown below with N1 = 72 and N2 = 60.

E4: (Unpatterned case of E1). The two signals have the same period, different amplitude,
and the difference between the two phases is not π

2 :

s
(1)
k = 30cos(2πk/12), k = 1, . . . , N1, s

(2)
k = 30cos(2πk/12 + π/4), k = 1, . . . , N2.

E5: (Unpatterned case of E2). The two signals have the same period and amplitude,
and the difference between phases is π

2 :

s
(1)
k = 30cos(2πk/12), k = 1, . . . , N1, s

(2)
k = 30cos(2πk/12 + π/2), k = 1, . . . , N2.

We randomly generated 1000 realizations of (y(1),y(2)) for each test and report the averaged
results in Table 1.

Table 3: RMSE for E4 and E5

From Table 3, we observe that MSMM still outperforms SMM even with the unpatterned
series. Comparing the result in Table 3 and the corresponding MSMM result in Table 2
from our manuscript, we find that the unpatterned ones performs slightly worse than the
patterned ones, and this is reasonable since when working with unpatterned series there are
more challenges in the sense that it is very difficult to choose the optimal window length.
However, MSMM still works well on the unpatterned series (the differences between the
RMSE result for unpatterned and patterned ones are at most 0.01).

6.2 Weak signal extraction

In this part, we test the recycling MSMM (MSMM-C1) and variate accumulation MSMM
(MSMM-C2) on weak signal extraction.

We generate super-positional sine signals with amplitude 0.1 and frequency 5 and 10
respectively. The noise is the Gaussian noise with mean 0 and variance 0.5. We sample
the signal in 20 seconds with interval 0.01s, resulting in a length of N = 2000 time series.
The SNR is -32.188dB in this case. Figure 1 displays the real signal s and noisy signal y
respectively.

We apply SMM, MSMM-C1 and MSMM-C2 to the signal y. The results are reported in
Figure 2 and Table 4. It can be seen that MSMM-C1 and MSMM-C2 show an significant
improvement over SMM. In particular, MSMM-C2 achieves an RMSE 0.0211. The denoised
results are further shown in Figure 2, where one can see that the signal returned by MSMM
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Figure 1: The original signal and the noisy signal

is close to that true signal. The reason that MSMM-C2 outperforms MSMM-C1 is that
MSMM-C2 makes use of all previous denoised information, which enable us to better extract
the structure of the true signal. However, MSMM-C2 maybe time-consuming for large series.
In such situation, one need a tradeoff between MSMM-C1 and MSMM-C2.

Figure 2: The noise reduction results for three methods

In some situations of weak signal recovery, one may want to recover the frequency from
the weak siganls. Figure 4 demonstrates the frequency of recovered signals, where one can
see that both MSMM-C1 and MSMM-C2 can return a good estimation of frequency.
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Figure 3: The noise reduction result from 0 to 0.2s

Figure 4: The frequency of noise series and denoised signal
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Table 4: RMSE of noise reduction
SMM-C MSMM-C1 MSMM-C2

RMSE 0.0536 0.0267 0.0211

7 Conclusions

In this paper, we proposed MSMM to denoise multivariate signals. Based on MSMM, we
designed two new denosing schemes: recycling MSMM and variate accumulation MSMM,
which are particularly suitable for weak signal extraction. We also provide how to choose
the window length and the upper bound for the rank of the trajectory matrices in MSMM.
Numerical results revealed that MSMM outperforms the traditional denoising methods, and
the two variants have impressive performance in recovering weak signals.
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