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applications and also acceptable to find a global approximate solution with a predefined
quality due to the high cost of seeking a global solution. The αBB method is a well-known
convex relaxation approach to explore approximate global solutions for non-convex MOPs,
see [9, 11, 18, 22]. One of the key characteristics of this method is that the maximum
distance between the original non-convex function and its respective convex relaxation goes
to zero as the size of the rectangle domains approaches zero. Therefore, a idea of piecewise
convexification, that is, convex relaxation on each subinterval, is naturally proposed to
handle non-convex MOPs with box constraints, see [9, 18]. Most of these literatures focus
on algorithm design, rather than analyzing the piecewise convexification method.

The main work of this paper is to analyze this piecewise convexification method, which
consists of a series of convex relaxation sub-problems of the original non-convex MOPs on
different sub-interval. Combining the αBB method with the interval division, we obtain a
series of convex relaxation sub-multiobjective problem to piecewise approximate the original
multi-objective problem on the whole interval, which can be called the piecewise convex-
ification problem(PCP). Then, the (approximate, weakly) efficient solution set of PCP is
constructed by using the partial order relationship to compare all optimal solutions of the
convex relaxation sub-multiobjective problems on each sub-interval. We prove that the
(approximate, weakly) efficient solution set of PCP can be used to approximate the global
approximate (weakly) efficient solutions set of non-convex optimization problems. These
theoretical results are well-structured. In the numerical experiments, the defined solution
set of PCP is slightly adjusted according to the solving method, and it is proved that the
algorithm can find the globally approximate optimal solution by calculating finite sub-sets
of the multi-objectives sub-problems.

This paper is organized as follows. Section 2 summarizes some key notions and properties
for MOPs. In addition, we recall the αBB method and the interval division. In Section 3,
a piecewise convexification method is discussed for non-convex MOPs with box constraints.
And we establish its convergence of (approximate) efficient solution set. Furthermore, we
design a new algorithm that generates approximate (weakly) efficient solutions and present
its convergence in Section 4. Finally, we apply the algorithm to several test instances in
Section 5.

2 Preliminaries

In this paper, we set [p] := {1, . . . , p}. Let y1, y2 ∈ Rp, we shall use the notation y1 ≺ y2

to indicate y1i < y2i for all i ∈ [p]. Moreover, y1 ⪯ y2 indicates y1i ≤ y2i for all i ∈ [p] and
y1 ̸= y2, whereas y1 ≦ y2 shows y1i ≤ y2i for all i ∈ [p]. Let Rp

++ = {y ∈ Rp : y ≻ 0}, and
Rp

+ = {y ∈ Rp : y ≧ 0}.

2.1 Basic Definitions and Properties

In this article, we consider the following multi-objective optimization problem:

(MOP) min f(x) = (f1(x), . . . , fp(x))

s.t. x ∈ X,

where fi : Rm → R is twice continuously differentiable function for any i ∈ [p], which is non-
convex on X in generally and X := [a, b] :=

∏m
i=1[ai, bi] satisfied a ≺ b with a = (a1, . . . , am)

and b = (b1, . . . , bm). Thus x ∈ X implies that xi ∈ [ai, bi] for any i. Then we give the
following concept of the (weakly) efficient solution with respect to (MOP).
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Definition 2.1 ([7]). A point x̂ ∈ X is called (weakly) efficient solution for (MOP), if there
is no other x ∈ X such that (f(x) ≺ f(x̂)) f(x) ⪯ f(x̂).

The set of all (weakly) efficient solutions for (MOP) is denoted by

XE := {x ∈ X : ∄ y ∈ X s.t. f(y) ⪯ f(x)} ,
XwE := {x ∈ X : ∄ y ∈ X s.t. f(y) ≺ f(x)} .

If x̂ is an (weakly) efficient solution, then f(x̂) is called (weakly) nondominated point.
Next, we recall the definition of convex multi-objective optimization problem and its a basic
property.

Definition 2.2 ([21]). If X is convex, and fi is convex function for any i ∈ [p], then (MOP)
is called convex multi-objective optimization problem.

We will summarize some basic results for weighted sum method, which are needed in
next sections.

Lemma 2.3 ([7]). Suppose that x̂ is an optimal solution of the weighted sum optimization
problem:

min
x∈X

p∑
k=1

λkfk(x),

with λ ∈ Rp
+ \ {0}, then x̂ ∈ XwE. Furthermore, if λ ∈ Rp

++, then x̂ ∈ XE.

The above lemma shows that any optimal solution of the weighted sum optimization
problem is the (weakly) efficient solution of (MOP) without any assumption. However, the
reverse is not necessarily true without some convexity assumption, see the following lemma.

Lemma 2.4 ([7]). For convex MOPs, any weakly efficient solution x̄, there exists λ̄ ∈
Rp

+ \ {0} such that x̄ is the optimal solution of the weighted sum optimization problem∑p
k=1 λ̄kfk(x).

Lemmas 2.3 and 2.4 indicate that under convexity assumption, every weakly efficient
solution is obtained by solving a weighted sum problem. Moreover, we establish a cru-
cial property of (weakly) efficient solution, which will be applied to develop convergence
properties of our piecewise convexification method.

Lemma 2.5. Let X = [a, b] ⊂ Rm and f(x) be a continuous function, then
(i) For any x /∈ XE there is yx ∈ XE such that f(yx) ⪯ f(x);
(ii) For any x /∈ XwE, there exists yx ∈ XwE such that f(yx) ≺ f(x).

Proof. The proof is easy by Theorem 2.21 in [7] and Proposition 4.10 in [15].

In the following, we give a brief overview of some ideas of the αBB method and the
interval division.

2.2 The αBB Method

The αBB method is a branch and bound method for solving non-convex problems in global
optimization [1, 2, 3], which constructs a convex lower estimation function.
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For X = [a, b] =
∏m

i=1[ai, bi] with a ≺ b. Let f : X → R be a real-valued twice
continuously differentiable function. A relaxation function F : X → R of f by the idea of
the αBB method is defined in [3] as follows:

F (x) = f(x) +
α

2

m∑
i=1

(ai − xi)(bi − xi),

where α is a parameter and xi ∈ [ai, bi] for any i. α
2

∑m
i=1(ai − xi)(bi − xi) can be regarded

as the error term between the relaxation function F and f , which is completely determined
by the interval where the variable is located. In particular, it is easy to verify that F is
convex on X from [2] when taking

α ≥ max{0,−min
x∈X

λmin(x)}, (2.1)

where λmin(x) is the minimum eigenvalue of Hessian matrix to f on x, which can be calcu-
lated by the interval arithmetic method [10, 13].

2.3 Interval Division

From the form of the αBB method, dividing the interval can better approximate the original
function. Analogously to [8], we also use the longest edge of the interval to subdivide it,
that is, for a given box X = [a, b] =

∏m
i=1[ai, bi], the longest edge of X is defined by

l = min

{
i ∈ [m] : i ∈ arg max

j∈[m]
(bj − aj)

}
,

and according to l to subdivide X, two subsets of X have the following form:

Y 1 =

m∏
i=1,i ̸=l

[ai, bi]×
[
al,

al + bl
2

]
, Y 2 =

m∏
i=1,i ̸=l

[ai, bi]×
[
al + bl

2
, bl

]
.

Clearly, Y i ⊂ X(i = 1, 2) and X = Y 1 ∪ Y 2. As shown in [8], the interval division operator
ID : X × N0 → 2X is recursively defined by

ID(X, 0) := {X}, ID(X, 1) := {Y 1, Y 2},
ID(X, t) := ID(Y 1, t− 1) ∪ ID(Y 2, t− 1),

where t is the interval division times of X. Apparently for any t ∈ N0 it holds that
|ID(X, t)| = 2t. Thus, for simplicity of presentation, let

Yt := ID(X, t) = {Y 1, Y 2, . . . , Y 2t},

where Y kt ⊂ X (kt ∈ [2t]) and
⋃2t

kt=1 Y
kt = X.

In this paper, Yt is called a subdivision of X. For simplicity, we may abbreviate the
subinterval Y kt of X as Y kt = [akt , bkt ] =

∏m
i=1[a

kt
i , bkt

i ] and define the length of the subdi-
vision Yt of X by

|T (Yt)| = max
kt∈[2t]

{
∥akt − bkt∥22

}
= max

kt∈[2t]

{
m∑
i=1

(bkt
i − akt

i )2

}
.
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Obviously, |T (Yt1)| ≤ |T (Yt2)| when t1 > t2. Combining with the αBB method, the
smaller length of the subdivision Yt, the smaller error term, that is, F is closer to the
original function f . Since t uniquely determines the subdivision Yt of X, thus for simplicity
|T (Yt)| can be abbreviated as |T (t)|. Moreover, it follows from Lemma 5 in [8] that |T (t)| ≤
∥b− a∥22 ·

(
1− 3

4m

)t
, which implies that |T (t)| → 0 as t → ∞.

3 Piecewise Convexification of (MOP)

In this section, combining the αBB method and the interval division, a piecewise convexifi-
cation problem for (MOP) is obtained. Then we design its (approximate, weakly) efficient
solution sets, which is our key tools to approximate the approximate (weakly) efficient so-
lution set of (MOP).

3.1 Piecewise Convex Relaxation for (MOP)

In this subsection, we state with an overview of the convex relaxation for (MOP) on each
sub-interval according to the αBB method, and then discuss some properties of parameters
for this relaxation problem. Finally, the relationship between the sets of solutions for this
problem is proposed.

For any given t ∈ N0 it uniquely determines a subdivision Yt of X. Similar to [18], the
αBB convex relaxation for (MOP) on subset Y kt ∈ Yt for any kt ∈ {1, . . . , 2t} is constructed
as follows

(CMOP)kt min fkt(x) = (fkt
1 (x), . . . , fkt

p (x))

s.t. x ∈ Y kt ,

where

fkt
j (x) = fi(x) +

αkt
j

2

m∑
i=1

(akt
i − xi)(b

kt
i − xi), j = [p], (3.1)

αkt
j = max{0,−minx∈Y kt λ

j
min(x)} and αj = max{0,−minx∈X λj

min(x)}. Here λj
min(x)

indicates the minimum eigenvalue of ∇2fj(x), j ∈ [p]. The definition of αkt
j indicates that

fkt
j is convex on Y kt . Thus, (CMOP)kt is regarded as the local convex relaxation sub-

multiobjective optimization problem of (MOP) on Y kt ⊂ X. All local convex relaxation sub-
multiobjective optimization problems for the subdivision Yt are constructed the piecewise
convexification problem of (MOP) on the whole set X.

From the definitions of αkt
j and αj , it follows that α

kt
j ≤ αj for any j ∈ [p] and kt ∈ [2t].

This indicates that a relaxation function of piecewise convexification is closer to the original
function than that direct convexification on the whole interval by using the αBB method,
which can be illustrated in Figure 1. Note that Figure 1 (a) shows the convexification result
in blue on the whole interval. However, Figure 1 (b) demonstrates the piecewise convexi-
fication results for the different subdivisions and also suggests that the number of interval
subdivisions affects the results of convexification, i.e., the number of divisions directly affects
the effect of the approximation.

In this paper, let α = max {α1, . . . , αp}. Incorporating with these definitions, this implies
that

α ≥ αj ≥ αkt
j , ∀j ∈ [p]; kt ∈ [2t], t ∈ N0. (3.2)

From the above analysis, one can obtain the difference between fkt
i and fi.
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Figure 1: The process of convexification relaxation for y = −x3 in [−1, 1].

Proposition 3.1 ([3]). For any given subdivision Yt of X and any subinterval Y kt ∈ Yt,
one has

(i) fkt
j (x) is a local lower bound function of fj(x) on Y kt , that is,

fkt
j (x) ≤ fj(x), ∀x ∈ Y kt , j ∈ [p].

(ii) For any x ∈ Y kt , we have
∑m

i=1(a
kt
i − xi)(b

kt
i − xi) ≥ −

∥∥∥ bkt−akt

2

∥∥∥2
2
.

We are now in the position to define the (weakly) efficient solution set of this piecewise
convexification problem. Our analysis heavily relies on this definition way, which will help us
to approximate the globally approximate (weakly) efficient solution set of non-convex MOPs.
Let X

wE
kt
ap

and X
E

kt
ap

be weakly efficient set and efficient set of (CMOP)kt , respectively. The

set of (weakly) efficient solutions of the piecewise convexification problem with respect to
the subdivision Yt of X is defined by

XwEap(Y
t) =

x ∈
2t⋃

kt=1

X
wE

kt
ap

: ∄ y ∈
2t⋃

kt=1

X
wE

kt
ap

s.t. f(y) ≺ f(x)

 , (3.3)

XEap(Y
t) =

x ∈
2t⋃

kt=1

X
E

kt
ap

: ∄ y ∈
2t⋃

kt=1

X
E

kt
ap

s.t. f(y) ⪯ f(x)

 . (3.4)

These indicate that we need to check every (weakly) efficient solution for each (CMOP)kt

through the partial order relation of the original problem. Since t uniquely determines the
subdivision Y t of X, thus XwEap

(Yt) and XEap
(Yt) can be abbreviated as XwEap

(t) and
XEap

(t), respectively. It can easily be verified that solution set XwEap
(t) is not empty for

any t ∈ N . So far we have not proved that XEap
(t) is a non-empty set, or given a counter-

example to show XEap
(t) = ∅. However, from the following algorithm, only finite solutions

are found for each X
E

kt
ap
, that is, X

E
kt
ap

is a compact set, then the set XEap(t) is non-empty

in the actual calculation. Thus, in this paper we always assume that XEap(t) ̸= ∅ for any
t ∈ N .

Remark 3.2. From the definition of XwEap(t), it is easy to see that

(i) If x̂ /∈ XwEap
(t), then there exists kt ∈ {1, . . . , 2t} such that x̂ /∈ X

wE
kt
ap
, or x̂ ∈ X

wE
kt
ap

satisfying f(ŷ) ≺ f(x̂) for some ŷ ∈
⋃2t

kt=1 XwE
kt
ap
.
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(ii) If x̂ ∈ XwEap
(t), then there must exist kt satisfying x̂ ∈ X

wE
kt
ap
.

This remark also holds for XEap(t).

3.2 Convergence of the Solution Set for the Piecewise Convexification Problem

In this subsection, we develop the convergence of the solution set for the piecewise con-
vexification problem. More precisely, we investigate some relationships between the set of
approximate (weakly) efficient solutions of the original problem and the set of (weakly)
efficient solutions of the convexification problem.

Let e = (1, . . . , 1) ∈ Rp be all-ones vector. For ε > 0, let X ε
wE and X ε

E denote the set of
all ε-weakly efficient solutions and of all ε-efficient solutions for (MOP), respectively, i.e.,

X ε
wE = {x ∈ X : ∄ y ∈ X s.t. f(y) + εe ≺ f(x)} ,

X ε
E = {x ∈ X : ∄ y ∈ X s.t. f(y) + εe ⪯ f(x)} .

If x̂ ∈ X is a ε-(weakly) efficient solution, then f(x̂) is a ε-(weakly) non-dominated point
in image space. From the above definitions, we discuss the relation between XwEap

(t) and
X ε

wE which plays a vital role in determining convergence of set of (weakly) efficient solutions
for the piecewise convexification problem.

Theorem 3.3. For any ε > 0, there exists tε ∈ N0 such that

XwEap
(t) ⊆ X ε

wE , ∀ t > tε,

where XwEap(t) is the weakly efficient solution set of the piecewise convexification problem
with respect to the subdivision Yt of X.

Proof. From the fact that |T (t)| → 0 as t → 0 and the definition of α, it follows that for any
ε > 0 there exists tε ∈ N satisfying

max
kt∈[2t]

α

2

∥∥∥∥bkt − akt

2

∥∥∥∥2 < ε, ∀t > tε. (3.5)

Next, we prove XwEap
(t) ⊆ X ε

wE for any t > tε. By contradiction, we assume that there exists
t0 > tε satisfying XwEap

(t0) ⊈ X ε
wE , that is, one can find x̂ ∈ X satisfying x̂ ∈ XwEap

(t0)
and x̂ /∈ X ε

wE . Here, XwEap
(t0) is a solution set w.r.t. the subdivision Yt0 of X where

Yt0 = {Y 1, . . . , Y 2t0 }. Thus x̂ /∈ X ε
wE implies that there exists ŷ ∈ Y jt0 ⊆ X for some

jt0 ∈ {1, . . . , 2t0} such that

f(ŷ) + εe ≺ f(x̂). (3.6)

If ŷ ∈ X
wE

jt0
ap

⊂ Y jt0 , then f(ŷ) ≺ f(x̂) from ε > 0 and (3.6). It is a contradiction to

x̂ ∈ XwEap
(t0). Otherwise, if ŷ ∈ Y jt0 \ X

wE
jt0
ap

, then combining with Lemma 2.5 (ii), there

exists ν ∈ X
wE

jt0
ap

such that f jt0 (ν) ≺ f jt0 (ŷ). From (3.6) and definition of f
jt0
i , it is easy

to verify that
f jt0 (ν) ≺ f jt0 (ŷ) ≦ f(ŷ) ≺ f(x̂)− εe.

By the definition of f jt0 , we have

f(ν) + τ + εe ≺ f(x̂), (3.7)
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where τ = (τ1, . . . , τp) and τi =
α

jt0
i

2 ⟨ajt0 − ν, bjt0 − ν⟩ for any i ∈ [p]. According to (3.2)
and (3.5), it concludes that

α
jt0
i

2

∥∥∥∥bjt0 − ajt0

2

∥∥∥∥2 <
α

2

∥∥∥∥bjt0 − ajt0

2

∥∥∥∥2 < ε, ∀i = 1, . . . , p.

It follows from Proposition 3.1 (ii) that τi + ε > 0, i = [p]. It conducts f(ν) ≺ f(x̂) by (3.7),
which implies a contradiction to x̂ ∈ XwEap

(t0). Thus we have derived that XwEap
(t) ⊆ X ε

wE

for any t > tε.

Similarly, one can build the same relation between XEap(t) and X ε
E .

Theorem 3.4. For any ε > 0, there exists tε ∈ N0 such that XEap
(t) ⊆ X ε

E for any t > tε,
where XEap(t) denotes the efficient solution set of the piecewise convexification problem w.r.t.
the subdivision Yt of X.

Proof. Using the same argument as in the proof of Theorem 3.3, we can easily carry out
that for any ε there exists tε ∈ N satisfying (3.5). As we have assumed in the previous
section, XEap

(t) ̸= ∅ for any t ∈ N . Therefore, we assume that there exists x̂ ∈ X such
that x̂ ∈ XEap

(t0) and x̂ /∈ X ε
E for some t0 > tε. Then, it follows from the assumption

x̂ /∈ X ε
E that there is ŷ ∈ X satisfying f(ŷ) + εe ⪯ f(x̂). Combining Lemma 2.5 (i) with

(3.5), the remainder of the argument is analogous to that in Theorem 3.3, which is contrary
to x̂ ∈ XEap(t0). Therefore, XEap(t) ⊆ X ε

E for any t > tε.

Theorems 3.3 and 3.4 show that the solution set of this piecewise convexification problem
is a lower bound set of the approximate (weakly) efficient solution set of (MOP). In order
to get a closer approximation, we need also to be concerned about the upper bound set
of the approximate (weakly) efficient solution set of (MOP). In what follows, we study the
approximate solution set of the piecewise convexification problem, which is an upper bound
set of approximation (weakly) efficient solution set of (MOP).

3.3 Convergence of the Approximate Solution Set for the Piecewise Convexi-
fication Problem

In this subsection, we consider the sets of the approximate (weakly) efficient solutions of the
piecewise convexification problem and establish the convergence results of the approximate
solution set.

For any given subdivision Yt of X. Let X ε

wE
kt
ap

and X ε

E
kt
ap

be denoted the set of all

ε-weakly efficient solutions and of all ε-efficient solutions of (CMOP)kt on Y kt ∈ Yt, re-
spectively. Then, we define the approximate weakly efficient solution set and approximate
efficient solution set of the piecewise convexification problem w.r.t. the subdivision Yt of
X, respectively, i.e.,

X ε
wEap

(Yt) =

x ∈
2t⋃

kt=1

X ε

wE
kt
ap

: ∄ y ∈
2t⋃

kt=1

X ε

wE
kt
ap
, s.t. f(y) + εe ≺ f(x)

 , (3.8)

X ε
Eap

(Yt) =

x ∈
2t⋃

kt=1

X ε

E
kt
ap

: ∄ y ∈
2t⋃

kt=1

X ε

E
kt
ap
, s.t. f(y) + εe ⪯ f(x)

 . (3.9)
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For simplicity, X ε
wEap

(Yt) and X ε
Eap

(Yt) can be abbreviated as X ε
wEap

(t) and X ε
Eap

(t), re-

spectively. It is easy to show that X ε
wEap

(t) ̸= ∅ for any number of subdivision t. Moreover,

according to Lemma 4.12 in [6] one can conclude that X ε
Eap

(t) ̸= ∅. With the help of the

preceding concepts, we can now present some vital characters of X ε
wEap

(t) and XwEap
(t).

Proposition 3.5. For any ε > 0 there exists tε ∈ N0 such that

XwEap
(t) ⊆ X ε

wEap
(t), ∀ t > tε.

Proof. For any ε > 0 there exists tε ∈ N0 such that (3.5) holds and X ε
wEap

(t) ̸= ∅ for

any t. Next, we assume that XwEap
(t0) ⊈ X ε

wEap
(t0) for some t0 > tε, then there exists

x̂ ∈ X such that x̂ ∈ XwEap
(t0) and x̂ /∈ X ε

wEap
(t0). The assumption x̂ ∈ XwEap

(t0)

indicates that x̂ ∈
⋃2t0

kt=1 XwE
kt
ap
. In fact, X

wE
kt
ap

⊆ X ε

wE
kt
ap

holds for any ε > 0 and kt. Then

x̂ ∈
⋃2t0

kt=1 X ε

wE
kt
ap

. By Remark 3.2 (i), the assumption x̂ /∈ X ε
wEap

(t0) implies that there

exists ŷ ∈ X ε

wE
jt0
ap

⊂
⋃2t0

kt=1 X ε

wE
kt
ap

for some jt0 ∈ [2t0 ] such that

f(ŷ) + εe ≺ f(x̂). (3.10)

It is easy to show that if ŷ ∈ X
wE

jt0
ap

⊂ X ε

wE
jt0
ap

, then it concludes x̂ /∈ XwEap(t0) since

f(ŷ) ≺ f(x̂) from (3.10). Otherwise, if ŷ ∈ X ε

wE
jt0
ap

\ X
wE

jt0
ap

, then as Lemma 2.5 (ii) there

exists ν ∈ X
wE

jt0
ap

⊂
⋃2t0

kn=1 XwE
kt
ap

such that f jt0 (ν) ≺ f jt0 (ŷ). From the definition of f
jt0
i

and (3.10), it can be rewritten as

f(ν) + τ + εe ≺ f(x̂), (3.11)

where τ = (τ1, . . . , τp) and τi =
α

jt0
i

2 ⟨ajt0 − ν, bjt0 − ν⟩. Moreover, one can yield that
τi + ε > 0 for any i by (3.5). Hence, (3.11) conducts f(ν) ≺ f(x̂). It implies x̂ /∈ XwEap

(t0)

for ν ∈ X
wE

jt0
ap

⊆
⋃2t0

kn=1 XwE
kt
ap
. Apparently, this is a contradiction to the assumption

x̂ ∈ XwEap
(t0), thus the theorem holds.

Proposition 3.6. For any ε > 0 there exists tε ∈ N0 such that

XEap
(t) ⊆ X ε

Eap
(t), ∀ t > tε.

Proof. We shall adopt the same procedure as in the proof of Proposition 3.5.

In what follows, we show a vital fact that the approximate weakly efficient solutions
set of the piecewise convexification problem is an upper bound set of the weakly efficient
solution set of the original multi-objective optimization problem.

Theorem 3.7. For any ε > 0 there exists tε ∈ N0 such that XwE ⊂ X ε
wEap

(t) for any t > tε,

where X ε
wEap

(t) represents the ε-weakly efficient solution set of the piecewise convexification

problem with respect to the subdivision Yt of X.

Proof. For any ε > 0, we can also take tε as in (3.5). In the following, we suppose that there
exist t0 > tε and x̂ ∈ X such that x̂ ∈ XwE and x̂ /∈ X ε

wEap
(t0).

Without loss of generality, we assume that x̂ ∈ Y kt0 for some kt0 . From Remark 3.2(i),
x̂ /∈ X ε

wEap
(t0) has two cases. The first of which is that x̂ ∈ X ε

wE
kt0
ap

and there is ŷ ∈
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⋃2t0

kn=1 X ε

wE
kt
ap

satisfying f(ŷ) + εe ≺ f(x̂). Obviously, this case is a contradiction to the

assumption x̂ ∈ XwE . The other case is x̂ /∈ X ε

wE
kt0
ap

, which shows that there exists ŷ ∈ Y kt0

satisfying fkt0 (ŷ)+ εe ≺ fkt0 (x̂). Similarly, incorporating (3.7) with Proposition 3.1 (ii), we
can get f(ŷ) ≺ f(x̂), which is a contradiction to the assumption x̂ ∈ XwE since ŷ ∈ Y kt0 .
Hence, this statement is proved.

Remark 3.8. It is not difficult to verify that the above statement also holds for efficient
solutions, i.e., XE ⊆ X ε

Eap
(t) under the same assumptions.

Furthermore, we consider the relationship between two sets of the approximate solutions,
that is, the relationship between X δ

wE and X ε
wEap

(t).

Theorem 3.9. For any ε, δ with 0 < δ < ε there exists tε,δ ∈ N0 such that X δ
wE ⊆

X ε
wEap

(t) for any t > tε,δ, where X δ
wE is the δ-weakly efficient solution set of (MOP) and

X ε
wEap

(t) is the ε-weakly efficient solution set of the piecewise convexification problem w.r.t.

the subdivision Yt of X, respectively.

Proof. Employing the definition of α and |T (t)| → 0 as t → 0, one can easily conclude that
for any ε > 0 and 0 < δ < ε, there exists tε,δ ∈ N0 such that

max
kt∈[2t]

α

2

∥∥∥∥bkt − akt

2

∥∥∥∥2 < (ε− δ), ∀t > tε,δ. (3.12)

Our task now is to proof X δ
wE ⊆ X ε

wEap
(t) for any t > tε,δ. Obviously, the remainder of the

argument is analogous to that in Theorem 3.7.

Remark 3.10. In the same way, we infer that for any ε, δ with 0 < δ < ε there exists
tε,δ ∈ N0 such that X δ

E ⊆ X ε
Eap

(t) for any t > tε,δ.

We now turn to develop the convergence of X δ
Eap

(t) and X δ
wEap

(t) and point out that
these results are more useful in the actual calculation.

Theorem 3.11. For any ε, δ with 0 < δ < ε there exists tε,δ ∈ N0 such that X δ
wEap

(t) ⊆ X ε
wE

for any t > tε,δ, where X ε
wE is the ε-weakly efficient solution set of (MOP) and X δ

wEap
(t) is

the δ-weakly efficient solution set of the piecewise convexification problem w.r.t. the subdi-
vision Yt of X, respectively.

Proof. Similarly, we can carry out (3.12). If the statement was false, then there exist t0 > tε,δ
and x̂ ∈ X satisfying x̂ ∈ X δ

wEap
(t0) and x̂ /∈ X ε

wE . Then x̂ ∈ X δ
wEap

(t0) implies that

x̂ ∈ X δ

wE
kt0
ap

⊆
⋃2t0

kt=1 X δ

wE
kt
ap

for some kt0 and there does not exist y ∈
⋃t0

kn=1 X δ
wEkn

ap
satisfying

f(y) + δe ≺ f(x̂). However, since x̂ /∈ X ε
wE , one can take ŷ ∈ X satisfying

f(ŷ) + εe ≺ f(x̂). (3.13)

In the same way, there exists jt0 such that ŷ ∈ Y jt0 ⊂ Yt, which only has two cases. The first
case is ŷ ∈ X δ

wE
jt0
ap

⊂ Y jt0 . According to 0 < δ < ε, (3.13) indicates that f(ŷ) + δe ≺ f(x̂),

which shows that x̂ /∈ X δ
wEap

(t0). This is a contradiction to the assumption x̂ ∈ X δ
wEap

(t0).
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However, the second case is ŷ ∈ Y jt0 \ X δ

wE
jt0
ap

. From Lemma 2.5 (ii) there exists ν ∈

X
wE

jt0
ap

⊂ X δ

wE
jt0
ap

such that f jt0 (ν) ≺ f jt0 (ŷ). From the definition of fkn
i and (3.13), it is

equivalent to

f(ν) + δe+ τ ≺ f(x̂), (3.14)

where τ = (τ1, . . . , τp) and τi =
α

jt0
i

2 ⟨ajt0 − ν, bjt0 − ν⟩+ ε− δ. And since t0 > tε and (3.12)
we can see that τi > 0 for any i = 1, . . . , p. Thus (3.14) shows that f(ν) + δe ≺ f(x̂), and
then it follows that x̂ /∈ X δ

wEap
(t0) by ν ∈ X δ

wE
jt0
ap

. It is a confliction to the assumption and

completes the proof.

Remark 3.12. (i) Combining Theorem 3.3 with Theorem 3.9, it shows that XwEap
(t) ⊂

X δ
wE ⊂ X ε

wEap
(t) for any ε, δ satisfying 0 < δ < ε under some assumptions. Hence, we

can apply two sets, i.e., XwEap
(t) and X ε

wEap
(t), to approximate the set X δ

wE . The form of

this containment relation is similar to one of the squeeze theorem. (ii) Theorems 3.9 and

3.11 indicate that for given ε and any η with 0 < η < ε, one can yield to X (ε−η)
wEap

(t) ⊂
X ε

wE ⊂ X (ε+η)
wEap

(t) under some assumptions. Obviously, the result of bilateral inclusion we
established more intuitively reflects the relationship of approximation.

As mentioned in the previous section, Lemmas 2.3 and 2.4 show that when all possible
weight vectors are taken, the set X

E
kt
ap
(kt ∈ [2t]) can be obtained by solving the weighted

sum optimization problem for a convex multi-objective optimization problem. Obviously, it
is impossible to find all the weight vectors in numerical experiments, thus (3.4) and (3.9)
cannot be calculated numerically, namely, Theorems 3.4 and 3.7, or Theorems 3.3 and 3.9 are
only well-structured theoretical results. In order to calculate numerically, we add another
constraint condition about the width of box in the design of the algorithm and prove that
this algorithm can generate ε-efficient solutions.

4 Algorithm and Convergence

In this section, we propose a piecewise convexification algorithm for finding approximate
efficient solutions of (MOP) and develop its convergence. Before proceeding further, let us
consider the following subproblem which need to be solved in our piecewise convexification
algorithm:

min
x∈Y kt

p∑
i=1

λif
kt
i (x), (4.1)

where λ = (λ1, . . . , λp) ∈ Rp
++ is a weight vector with

∑p
j=1 λj = 1. This subproblem

(4.1) is referred to as the weighted sum optimization problem of the convex relaxation sub-
multiobjective optimization problem ((CMOP)kt) on Y kt ∈ Yt for the subdivision Yt of X.
Moreover, the width of a box Y kt = [akt , bkt ] is defined by ω(Y kt) := ∥bkt − akt∥. Now, we
turn to discuss this piecewise convexification algorithm.

Let us describe the settings of Algorithm 1 for details. (1) In fact, the width of a box

tends to 0 as the number of subdivisions increases, that is, the condition ω(Y kt) ≤ L̃kt must
be satisfied. Thus, the While-loop is finite and Algorithm 1 terminates. (2) In line 2, the
minimum number of subdivisions tε is estimated such that the width of all boxes satisfy



576 Q. ZHU, L.P. TANG AND X.M. YANG

Algorithm 1 The Piecewise Convexification Algorithm of (MOP).

Input: X =
∏m

i=1[ai, bi], f ∈ C2(Rn,R), ε > 0, λ ∈ Rp
++, L1 = ∅ and A = ∅.

Output: X̃Eap
(t0) and L1.

1: Compute α0 := {α0
1, . . . , α

0
p} by (2.1) on X0 and let α̃ = max{α0}+ 0.01.

2: Estimate the minimum number of divisions tε satisfying

max
kt∈{1,...,2tε}

α̃

8
ω(Y kt)2 ≤ ε

8
. (4.2)

3: Let t0 ≥ tε and obtain the subdivision Yt0 of X0. Let L := Yt0 .
4: while L ̸= ∅ do
5: Select a box Y kt from L and delete it from L.
6: Construct (CMOP)kt according to (3.1).

7: For any j ∈ [p], let Lkt
j > 0 be chosen such that Lkt

j ≥
√
m

∣∣∣ ∂
∂xi

fj

∣∣∣ for any i ∈ [p]

and x ∈ Y kt . Let

L̃kt := min
j∈[p]

−
4Lkt

j

α̃
+

√
2ε

α̃
+

16(Lkt
j )2

α̃2

 (4.3)

8: if ω(Y kt) ≤ L̃kt then

9: Solve the subproblem (4.1) with λ. Let xkt,∗ be an optimal solution and X̃
E

kt
ap

=

{xkt,∗}.
10: Store Y kt in L1 and {xkt,∗} in A.
11: else
12: Divide Y kt by the direction of maximum width and obtain Y kt,1 and Y kt,2.
13: Store Y kt,1 and Y kt,2 in L.
14: X̃Eap

= {x ∈ A : ∄ y ∈ A s.t. f(y) ⪯ f(x)}.

condition (4.2), that is, maxkt∈{1,...,2tε}
α̃
8ω(Y

kt)2 ≤ ε
8 . However, Theorems 3.3-3.11 require

the condition maxkt∈{1,...,2tε}
α̃
8ω(Y

kt)2 ≤ ε. (3) In line 3, t0 is the number of divisions we
set and this subdivision Yt0 also satisfies condition (4.2). (4) In line 6, we adopt the interval
arithmetic method in [10, 13] to calculate the minimum eigenvalue λi

min(x) and construct
(CMOP)kt . (5) In line 7, Lkt

j can be calculated by the interval arithmetic, see [11]. In what

follows, we use this Lkt
j to bound the distance between any function value fj(x) on Y kt and

the optimal value of its convex relaxation function fkt
j (x∗

j ) where f
kt
j (x∗

j ) = minx∈Y kt f
kt
j (x).

From the following theoretical analysis of this algorithm, conditions (4.2) and (4.3) together
guarantee that the ε-efficient solutions of the original problem can still be obtained when
only computing a finite subset of the efficient solution set of the multi-objective convex
subproblem on each sub-box. It is slightly different from the previous Theorems 3.3-3.11
which only require a condition similar to (4.2). (6) In line 9, (CMOP)kt is solved by the
weighted sum method. According to Lemma 2.3, it follows that the optimal solution xkt,∗

of the weighted sum method with λ ∈ Rp
++ is an efficient solution of (CMOP)kt , that is,

X̃
E

kt
ap

= {xkt,∗} ⊆ X
E

kt
ap

for any kt. Furthermore, this sub-box on which the weighted sum

optimization problem is solved is stored in L1. Obviously, when the algorithm terminates,
all boxes in L1 just make up the subdivision of X.
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Applying conditions (4.2) and (4.3), we present the following analogous lemma, which

was also used in [18]. It is one of the key tools to analyze X̃Eap ⊆ X ε
E .

Lemma 4.1. Let a box X ∈ Im, a twice continuously differentiable function f : Rm → R, a
sufficiently small positive number δ > 0, a constant α ≥ max{0,−minx∈X λmin(x)}+ δ, and
a positive scalar ε > 0 be given. Let Y kt = [akt , bkt ] ⊆ X be a sub-box and let Lkt > 0 be

chosen such that Lkt >
√
m

∣∣∣ ∂
∂xi

f
∣∣∣ for all i ∈ [m] and x ∈ Y kt . If the width of Y kt satisfies

ω(Y kt) ≤ −4Lkt

α
+

√
(4Lkt)2

α2
+

2ε

α
,

then |f(x) − ν| ≤ ε

4
for all x ∈ Y kt where fkt(x) := f(x) +

α

2

∑m
i=1(a

kt
i − xi)(b

kt
i − xi)

and ν := minx∈Y kt f
kt(x). Furthermore, if

α

8
ω(Y kt)2 ≤ ε

8
, then |fkt(x) − ν| ≤ 3ε

8
for all

x ∈ Y kt .

Proof. Using the definition of fkt , we can derive a bound between f and fkt , that is,∣∣f(x)− fkt(x)
∣∣ = ∣∣∣∣∣α2

n∑
i=1

(akt
i − xi)(b

kt
i − xi)

∣∣∣∣∣ ≤ α

8
∥bkt − akt∥2 =

α

8
ω(Y kt)2, ∀x ∈ Y kt .

The proof of |f(x)−ν| ≤ ε
8 is identical to the proof of Lemma 2.3 in [18] and will be omitted

here. Next, we verify the second statement in the above theorem, that is, |fkt(x)− ν| ≤ 3ε

8
.

Combining |f(x) − ν| ≤ ε

8
with the condition

α

8
ω(Y kt)2 ≤ ε

8
, for all x ∈ Y kt it is easy to

see that

|fkt(x)− ν| ≤ |fkt(x)− f(x)|+ |f(x)− ν| ≤ 3ε

8
.

It is now obvious that the lemma holds.

We conclude this section to briefly discuss the convergence of this algorithm, that is,
Algorithm 1 generates a subset of all globally approximate efficient solutions of (MOP) by
calculating a finite subset of the efficient solution set of the multi-objective sub-problems
only.

Theorem 4.2. Let X̃Eap
be the set generated by Algorithm 1. Then X̃Eap

⊆ X ε
E .

Proof. If this statement would not hold, then there exists x̂ ∈ X̃Eap
such that x̂ /∈ X ε

E .
Thus, one can find ŷ ∈ X0 satisfied f(ŷ) + εe ⪯ f(x̂). Obviously, ŷ /∈ A. Thus we can find

Y kt ∈ Yt0 such that ŷ ∈ Y kt\X̃
E

kt
ap
. This also indicates that there exists ẑ ∈ X̃

E
kt
ap

since

X̃
E

kt
ap

̸= ∅, that is, ẑ is an optimal solution of subproblem (4.1) with λ. Thus, we derive

p∑
j=1

λjf
kt
j (ẑ) ≤

p∑
j=1

λjf
kt
j (ŷ)

Obviously, using λ = (λ1, . . . , λp) ∈ Rp
++, one can find j0 ∈ [p] such that fkt

j0
(ẑ) ≤ fkt

j0
(ŷ).

We work with the definition of fkt
j0

and the condition f(ŷ)+ εe ⪯ f(x̂), for j0 it leads to the
chain of inequalities

fj0(ẑ) +
αkt
j0

2

m∑
i=1

(akt
i − ẑi)(b

kt
i − ẑi) ≤ fj0(x̂)− ε.
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Due to the first condition of (4.2) and αkt
j0

≤ α̃, it follows that

0 ≤
αkt
j0

2

m∑
i=1

(akt
i − ẑi)(b

kt
i − ẑi) +

ε

8
<

αkt
j0

2

m∑
i=1

(akt
i − ẑi)(b

kt
i − ẑi) + ε, (4.4)

which leads to fj0(ẑ) < fj0(x̂).

For any j ∈ {1, . . . , p} \ {j0}, based on the second condition of (4.2) and lemma 4.1, we
can show that

|fkt
j (ŷ)− fkt

j (ẑ)| ≤ |fkt
j (ŷ)− νkt

j |+ |fkt
j (ẑ)− νkt

j | ≤ 3ε

4

where νkt
j = minx∈Y kt f

kt
j (x). The above inequality implies that fkt

j (ẑ)− 3ε
4 ≤ fkt

j (ŷ). Using

the assumption condition f(ŷ) + εe ⪯ f(x̂), and the definition of fkt
j , we also obtain

fj(ẑ) +
αkt
j

2

m∑
i=1

(akt
i − ẑi)(b

kt
i − ẑi)−

3ε

4
≤ f(x̂)− ε, (4.5)

Similar to (4.4), the inequality (4.5) yields to fj(ẑ) ≤ fj(x̂) for any j ∈ {1, . . . , p} \ {j0}.
Together with fj0(ẑ) < fj0(x̂), we now obtain f(ẑ) ⪯ f(x̂) with ẑ ∈ X̃

E
kt
ap

⊆ A. This

contradicts the assumption that x̂ ∈ X̃Eap , that is, the statement X̃Eap ⊆ X ε
E holds.

5 Numerical Experiments

In this section, we demonstrate the numerical performance of our Algorithm 1 by some
examples, which include the nonconvex and disjointed Pareto front, respectively. All com-
putations have been performed on a computer with Inter(R) Core(TM)i5-8250U CPU and
8 Gbytes RAM. For all instances, we take ε = 0.02 and the weight vector λ = ( 1p , . . . ,

1
p )

where p is the number of objective functions.

Example 5.1. This test instance was proposed in [18]:

f(x) =

 x1

1

x1

(
2− exp

(
−
(

x2−0.2
0.004

)2)
− 0.8 exp

(
−
(

x2−0.6
0.4

)2))


with X = [0.1, 1]× [0, 1]. As stated in [18], the globally efficient solutions are (x̃1, x̃2) with
x̃2 ≈ 0.2 and x̃1 ∈ [0.1, 1]. This example also exists locally efficient solutions with x̃2 ≈ 0.6
and x̃1 ∈ [0.1, 1]. The graph of f2 and the image space are showed in Figure 2, respectively.
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Figure 2: Example 5.1

In this example, we roughly estimate tε = 12 and take t0 = 12. Figure 3 shows the
ε-efficient solutions and the non-dominated points of this example.

Figure 3: ε-efficient solutions and the non-dominated points of Example 5.1

Figure 3 (a) and (b) show performance in terms of how well the globally efficient solutions
are found and the Pareto front is approximated, respectively, by Algorithm 1. In other words,
the points generated by Algorithm 1 are globally approximate solutions, not locally ones.

Example 5.2. This test instance is based on [18]:

f(x) =


1− exp

(
−
∑3

i=1

(
xi − 1√

3

)2)
1− exp

(
−
∑3

i=1

(
xi +

1√
3

)2)
with X =

 −2
−2
−2

 ,

 2
2
2

 .

Similarly, by roughly estimating tε = 16. Thus, let t0 = 16. The results of ε-efficient
solutions and non-dominated points as illustrated in Figure 4, respectively. Obviously, the
shape of the approximate Pareto front can be characterized by this piecewise convexification
algorithm from it.

Example 5.3. This example is considered in [27]:

f(x) =

 x1

1 + 9x2 − (x1(1 + 9x2))
1
2 − x1 sin(10πx1)

with X =

[(
0.1
0

)
,

(
1
1

)]
.

The f2 = 1 −
√
f1 − f1 sin(10πf1) that consists of several noncontiguous convex parts is

Pareto front. Figure 5 shows the graph of f2 and the image space, respectively.
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Figure 4: The ε-efficient solutions and non-dominated points of Example 5.2

Figure 5: Example 5.3

Figure 6: The solutions of the convexification method with different t0

In the same way, we roughly estimate tε = 12 and analysis the influences of t0, which are
shown in Figure 6. It is apparent from Figure 6 that these non-dominated points are almost
uniformly distributed with increasing the subdivision times, that is, t0 = 13 to t0 = 15.
More importantly, Figure 6 indicates that Algorithm 1 is also suitable for deal with this
complex multi-objective optimization problems.

Further, we verify that when the number of objectives is four, the piecewise convexifica-
tion method also has practical operability.

Example 5.4. A multi-objective rocket injector design problem was studied in [4] as follows:

min [f1, f2, f3, f4] subject to 0 ≤ x1, x2, x3, x4 ≤ 1
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where

f1 = 0.692 + 0.477x1 − 0.678x4 − 0.08x3 − 0.065x2 − 0.167x2
1 − 0.0129x1x4

+ 0.0796x2
4 − 0.0634x1x3 − 0.0257x3x4 + 0.0877x2

3 − 0.0521x1x2

+ 0.00156x2x4 + 0.00198x2x3 + 0.0184x2
2,

f2 = 0.37− 0.205x1 + 0.0307x4 + 0.108x3 + 1.019x2 − 0.135x2
1 + 0.0141x1x4

+ 0.0998x2
4 + 0.208x1x3 − 0.0301x3x4 − 0.226x2

3 + 0.353x1x2 − 0.0497x2x3

− 0.423x2
2 + 0.202x2

1x4 − 0.281x2
1x3 − 0.342x1x

2
4 − 0.245x3x

2
4 + 0.281x2

3x4

− 0.184x1x
2
2 + 0.281x1x3x4,

f3 = 0.153− 0.322x1 + 0.396x4 + 0.424x3 + 0.0226x2 + 0.175x2
1 + 0.0185x1x4

− 0.0701x2
4 − 0.251x1x3 + 0.179x3x4 + 0.015x2

3 + 0.0134x1x2 + 0.0296x2x4

+ 0.0752x2x3 + 0.0192x2
2,

f4 = 0.758 + 0.358x1 − 0.807x4 + 0.0925x3 − 0.0468x2 − 0.172x2
1 + 0.0106x1x4

+ 0.0697x2
4 − 0.146x1x3 − 0.0416x3x4 + 0.102x2

3 − 0.0694x1x2

− 0.00503x2x4 + 0.0151x2x3 + 0.0173x2
2.

Similarly, t0 = 12 satisfies the condition, then taking t0 = 13. Analogously to [4], we
display the projection (f1, f2, f3, f4) in f1f2f3-space and f2f3f4-space in Figure 7.

Figure 7: Projected Pareto fronts for Example 5.4

6 Conclusions

In this paper, we employ the αBB method and the interval division technique to obtain a
series of convex relaxation sub-multiobjective problems, which is regarded as the piecewise
convexification problem of MOP on the whole set X. Furthermore, we establish the (approx-
imate, weakly) efficient solution set of this piecewise convexification problem and investigate
that the globally approximate (weakly) efficient solution set of MOP can be approximated
by combining with two (approximate) solution sets of the piecewise convexification problem,

that is, X (ε−η)
wEap

(t) ⊂ X ε
wE ⊂ X (ε+η)

wEap
(t) or X (ε−η)

Eap
(t) ⊂ X ε

E ⊂ X (ε+η)
Eap

(t). Although these sets
cannot be calculated numerically, the theoretical results are still nice and well-structured.
In order to calculate, we apply two condition about the width of a box to design a piecewise
convexification algorithm. This algorithm also yields a subset of the globally approximated
efficient solution set of MOP by only computing a finite subset of the efficient solution set
of multi-objective subproblem on every sub-box.

Different from the traditional αBB method, we pay more attention to establishing the
theoretical properties of the piecewise convexification method itself in this paper, rather
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than emphasizing the design of the algorithm. Therefore, in numerical experiments, we only
verified the feasibility of the piecewise convexification algorithm and did not demonstrate
its effectiveness. In fact, this method with well theoretical properties deserves our further
study and this article can be seen as the first of a series of papers about this piecewise con-
vexification method for us. In our future research work, we will redefine the solution set of
the piecewise convexification problem, which takes advantage of the previous division infor-
mation. At the same time, the evolutionary algorithm and a new subdivision strategy will
be incorporated into the piecewise convexification method to quickly delete boxes and speed
up the algorithm. Moreover, a new termination condition will be added to the algorithm
to avoid calculating the minimum number of divisions. These researches are underway and
some interesting results would be obtained.
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