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gains [7, 8, 9]. Gu et al. also provided the parametric approach of partial eigenstructure as-
signment for high-order linear systems via proportional plus derivative state feedback [10].
Abdelaziz presented a parametric control method to implement velocity-plus-acceleration
feedback by taking advantage of eigenstructure assignment and extended it to descriptor
second-order systems [11, 12]. Zhou proposed a hybrid optimized method that combined
measured receptance and system matrices under the condition that eigenvalue sensitivity
and norms of feedback gains were minimum to solve partial quadratic eigenvalue assignment
for velocity-plus-feedback control [13]. Furthermore, Rofooei [14] and Yang [15] put forward
the optimization problems of the velocity-plus-acceleration controller under different algo-
rithms, respectively. Unfortunately, the objects of the above research are all linear constant
systems rather than linear time-varying systems and even nonlinear systems. In this paper,
we design a type of velocity-plus-acceleration feedback controller for a class of second-order
nonlinear systems, called second-order quasi-linear systems, by using the parametric method.

Robust control is one of the hottest topics in modern control theories. For robust design,
a widely used method is LMI approach [16, 17, 18]. Moreover, Lindemann and Dimarogonas
[19], Liu et al. [20] and other researchers also devoted themselves to achieving robustness
criteria. However, the above methods are complicated to implement and produce a large
computation load, and also control or state constraints. In this paper, we utilize the overall
eigenvalue sensitivity function (see [21, 22] and references therein), to measure the robustness
of the closed-loop system. In the procedure of optimization, the degrees of freedom in
arbitrary parameters can be further used to simplify the computation.

The parametric control approach proposed by Prof. Duan can realize not only basic
control design, but also performance optimization, which has developed a new research
filed. Gu and his colleagues extended the Duan approach to output feedback of quasi-linear
systems and multi-objective optimization [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], which
provided the fundamental to deal with the design of velocity-plus-acceleration control for
second-order quasi-linear systems.

This paper considers a parametric design method for second-order quasi-linear systems by
velocity-plus-acceleration feedback. The proposed approach applies the solution of second-
order generalized Sylvester equations [35, 36], and aims at realizing a linear time-invariant
closed-loop system with expected eigenstructure which is dependent on an arbitrary matrix
F including expected eigenvalues. More specifically, the proposed method obtains the gen-
erally parametric expression of the right eigenvector matrix and gives a group of arbitrary
parameters that provides flexibility in design. Then, the completely parameterized forms of
the velocity-plus-acceleration feedback gain matrices are established concerning the matrix
F , right eigenvector, and the arbitrary parameters. Note that the arbitrary parameters can
provide the degrees of freedom to implement robust optimization.

The contributions of this research are summarized as follows. On the one hand, a para-
metric method is proposed to establish the completely parameterized forms of the velocity-
plus-acceleration controller. On the other hand, the degrees of freedom in arbitrary param-
eters can be further utilized in applications to cope with robust optimization. Note that
the significant advantages of the proposed optimized velocity-plus-acceleration feedback con-
troller are listed as follows. Firstly, acceleration information measured by an accelerometer
can be used directly such that it can reduce the accumulative error caused by numerical
integration of displacement and velocity in PD feedback, which is more favorable and reli-
able. Secondly, acceleration feedback can effectively improve the anti-interference ability of
the system, and it is beneficial to raise the natural frequency of the system, which can aug-
ment its ability of restraining mechanic resonance. Thirdly, a robust optimization problem
is considered, the proposed approach utilizes the degrees of freedom in arbitrary parame-
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ters to optimize controller such that the closed-loop system is insensitive to perturbations,
therefore enhance the robustness of the system. Finally, the proposed approach can locate
the closed-loop eigenvalues in a particular region on the complex plane which is insensitive
to perturbations and disturbances.

The remaining part of this paper is organized as follows. Section 2 establishes the problem
formulation of parametric design to the second-order quasi-linear system by velocity-plus-
acceleration feedback control and provides some preliminaries. In Section 3, we propose the
generally parameterized expressions of second-order quasi-linear velocity-plus-acceleration
feedback controller in two cases and realize the robust optimization, also give the general
procedure of the proposed parametric design. In Section 4, an example of attitude control
of combined spacecraft is presented to prove that the proposed method is effective. Section
5 draws the presented work.

2 Problem Formulation and Preliminaries

2.1 Problem statement

In this paper, we consider a type of second-order quasi-linear systems as follows

A2(θ, q, q̇)q̈ +A1(θ, q, q̇)q̇ +A0(θ, q, q̇)q = B(θ, q, q̇)u, (2.1)

where q ∈ Rn, u ∈ Rr are the state vector and the control vector, respectively; the matrices
A2(θ, q, q̇), A1(θ, q, q̇), A0(θ, q, q̇) ∈ Rn×n and B(θ, q, q̇) ∈ Rn×r are the system coefficient
matrices which are piecewise continuous functions of θ, q and q̇, where θ is a time-variant
parameter vector which satisfies

θ(t) =
[
θ1(t) θ2(t) · · · θl(t)

]T ∈ Ω ⊂ Rl, t ≥ 0.

Specifically, the above system (2.1) satisfies the following assumptions:

Assumption 2.1. rank A2(θ, q, q̇) = n.

Assumption 2.2. B(θ, q, q̇) is uniformly bounded relating to q, q̇ and θ(t) ∈ Ω.

For the above system (2.1), we choose the following velocity-plus-acceleration feedback
control law

u = Kv(θ, q, q̇)q̇ +Ka(θ, q, q̇)q̈, (2.2)

where Kv(θ, q, q̇) ∈ Rr×n and Ka(θ, q, q̇) ∈ Rr×n are the velocity and acceleration feedback
gain matrices, respectively, which are also piecewise continuous functions relating to q, q̇
and θ(t) ∈ Ω.

Under the controller (2.2), we can obtain the close-loop system as follows

Ac
2(θ, q, q̇)q̈ +Ac

1(θ, q, q̇)q̇ +A0(θ, q, q̇) = 0, (2.3)

where {
Ac

2(θ, q, q̇) = A2(θ, q, q̇)−B(θ, q, q̇)Ka(θ, q, q̇),

Ac
1(θ, q, q̇) = A1(θ, q, q̇)−B(θ, q, q̇)Kv(θ, q, q̇).

Constraint 2.1. rank Ac
2(θ, q, q̇) = n.
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Then, let

x =

[
q
q̇

]
,

the system (2.3) can be transformed into the following first-order form

Ec(θ, x)ẋ = Ac(θ, x)x, (2.4)

where 
Ec(θ, x) = diag (In, A

c
2(θ, x)) ,

Ac(θ, x) =

[
0 In

−A0(θ, x) −Ac
1(θ, x)

]
.

Based on the above discussion, the parametric control of second-order quasi-linear system
(2.1) via velocity-plus-acceleration feedback (2.2) can be stated as follows.

Problem 2.2 (VA). Given the second-order quasi-linear system (2.1) satisfying Assump-
tions 2.1, 2.2 and Constraint 2.1, and an arbitrary constant matrix F , exist the non-singular
right eigenvector matrix Vc(θ, x), and find the velocity and acceleration feedback gain ma-
trices Kv(θ, x) and Ka(θ, x) such that

Ac(θ, x)Vc(θ, x) = Ec(θ, x)Vc(θ, x)F. (2.5)

Remark 2.3. The condition (2.5) is equivalent to find a velocity-plus-acceleration con-
troller (2.2) such that closed-loop system (2.4) is similar to a linear constant form with
desired eigenstructure, that is, {Ec(θ, x), Ac(θ, x)} is similar to a matrix F by the proposed
parametric method.

2.2 Preliminaries

There exists the following right coprime factorization (RCF) for system (2.1) (see [36])

A(θ, x, s)N(θ, x, s) = B(θ, x)D(θ, x, s), (2.6)

with
A(θ, x, s) = s2A2(θ, x) + sA1(θ, x) +A0(θ, x) ,

where N(θ, x, s) ∈ Rn×r[s] and D(θ, x, s) ∈ Rr×r[s] are a pair of polynomial matrices.
Denote N(θ, x, s) = [nij(θ, x, s)]n×r and D(θ, x, s) = [dij(θ, x, s)]r×r and

τ1 = max {deg (nij(θ, x, s)) , i = 1, 2, . . . , n, j = 1, 2, . . . , r} ,
τ2 = max {deg (dij(θ, x, s)) , i = 1, 2, . . . , r, j = 1, 2, . . . , r} ,
τ = max {τ1, τ2} ,

where deg (nij(θ, x, s)) and deg (dij(θ, x, s)) represent the degrees of polynomial nij(θ, x, s)
and dij(θ, x, s) in relation to s. Then, N(θ, x, s) and D(θ, x, s) can be written into the
following forms 

N(θ, x, s) =

τ∑
i=0

Ni(θ, x)s
i,

D(θ, x, s) =

τ∑
i=0

Di(θ, x)s
i.

(2.7)
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3 Solution to Problem VA

3.1 Case of F arbitrary

Based on the above deduction, we provide the following theorem to solve Problem 2.2.

Theorem 3.1. Let N(θ, x, s) and D(θ, x, s) in Equation (2.7) satisfy RCF (2.6), F is an
arbitrary constant matrix, then

1. The Problem 2.2 has a solution if and only if there exists an arbitrary parameter
matrix Zc ∈ Cr×2n satisfying

det Vc(θ, x) ̸= 0, (3.1)

where

Vc(θ, x) =

[
V (θ, x)
V (θ, x)F

]
, (3.2)

and

V (θ, x) =

τ∑
i=0

Ni(θ, x)ZcF
i. (3.3)

2. When the above condition is satisfied, the velocity and acceleration feedback gain
matrices Kv(θ, x) and Ka(θ, x) can be solved as[

Kv(θ, x) Ka(θ, x)
]
= Wc(θ, x)(Vc(θ, x)F )−1, (3.4)

where

Wc(θ, x) =

τ∑
i=0

Di(θ, x)ZcF
i. (3.5)

Proof. Assume that there exist the velocity and acceleration feedback gain matrices Kv(θ, x),
Ka(θ, x) and the non-singular right eigenvector matrix Vc(θ, x) satisfying Equation (2.5).
Denote

Vc(θ, x) =

[
V0(θ, x)
V1(θ, x)

]
,

then, we obtain
Ac(θ, x)Vc(θ, x)

=

[
0 In

−A0(θ, x) −Ac
1(θ, x)

] [
V0(θ, x)
V1(θ, x)

]
=

[
V1(θ, x)

−A0V0(θ, x)−Ac
1(θ, x)V1(θ, x)

]
,

and
Ec(θ, x)Vc(θ, x)F

=

[
In 0
0 Ac

2(θ, x)

] [
V0(θ, x)
V1(θ, x)

]
F

=

[
V0(θ, x)F

Ac
2(θ, x)V1(θ, x)F

]
,

thus we have
V1(θ, x) = V0(θ, x)F,

and
−A0V0(θ, x)−Ac

1(θ, x)V1(θ, x) = Ac
2(θ, x)V1(θ, x)F, (3.6)
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let V0(θ, x) = V (θ, x), we obtain V1(θ, x) = V (θ, x)F , hence Equation (3.2) is proven.

Meanwhile, considering Ac
2(θ, x) and Ac

1(θ, x) in Equations (2.3) and (3.6) can be written
as

A2(θ, x)V (θ, x)F 2 +A1(θ, x)V (θ, x)F +A0(θ, x)V (θ, x)

= B(θ, x)Kv(θ, x)V (θ, x)F +B(θ, x)Ka(θ, x)V (θ, x)F 2 ,
(3.7)

let
Wc(θ, x) = Kv(θ, x)V (θ, x)F +Ka(θ, x)V (θ, x)F 2

= K(θ, x)V̄c(θ, x),
(3.8)

where

K(θ, x) =
[
Kv(θ, x) Ka(θ, x)

]
,

and

V̄c(θ, x) =

[
V (θ, x)F
V (θ, x)F 2

]
= Vc(θ, x)F.

Then, Equation (3.7) becomes the second-order generalized Sylvester equation

2∑
i=0

Ai(θ, x)V (θ, x)F i = B(θ, x)Wc(θ, x). (3.9)

Therefore, using the general solution to the second-order generalized Sylvester matrix equa-
tion [35, 36], we can obtain the parametric solutions as given in Equations (3.3) and (3.5).
Then, the velocity and acceleration feedback gain matrices Kv(θ, x) and Ka(θ, x) are solved
by Equation (3.8) as shown in Equation (3.4).

With the above deduction, the proof is completed.

3.2 Case of F diagonal

In practical applications, the matrix F chooses to be the following diagonal form

F = diag {λ1, λ2, · · · , λ2n} , (3.10)

where λi ∈ C−, i = 1, 2, . . . , 2n are a set of negative real poles. In this situation, we provide
the following Corollary to deal with Problem 2.2.

Corollary 3.2. Let N(θ, x, s) and D(θ, x, s) in Equation (2.7) satisfy RCF (2.6), F is a
diagonal constant matrix as shown in Equation (3.10), then,

1. The Problem 2.2 has a solution if and only if exists a group of arbitrary parameter
vector zci ∈ Cr, i = 1, 2, . . . , 2n satisfying Equation (3.1), where

V (θ, x) =
[
v1(θ, x) v2(θ, x) · · · v2n(θ, x)

]
,

vi(θ, x) = N(θ, x, λi)z
c
i ,

i = 1, 2, . . . , 2n,

(3.11)

and

Vci =

[
N(θ, x, λi)z

c
i

N(θ, x, λi)z
c
iλi

]
, i = 1, 2, . . . , 2n. (3.12)
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2. When the above condition is satisfied, the velocity and acceleration feedback gain
matrices Kv(θ, x) and Ka(θ, x) can be solved as Equation (3.4), where

Wc(θ, x) =
[
wc

1(θ, x) wc
2(θ, x) · · · wc

2n(θ, x)
]
,

wc
i (θ, x) = D(θ, x, λi)z

c
i ,

i = 1, 2, · · · , 2n.

(3.13)

In this case, zci ∈ Cr, i = 1, 2, . . . , 2n is a group of arbitrary parameter vectors satisfying

Zc =
[
zc1 zc2 · · · zc2n

]
,

which represents the degrees of freedom in solution.

Proof. According to Theorem 3.1, when the matrix F takes to be a diagonal form in Equation
(3.10), Vc(θ, x) and Wc(θ, x) can be the form of columns provided by Equations (3.12) and
(3.13). It is easy to prove Corollary 3.2.

Remark 3.3. The completely parameterized expressions of the feedback gain matrices
Kv(θ, x), Ka(θ, x) and the closed-loop right eigenvector are proposed in terms of a matrix
F , which possesses the desired closed-loop eigenstructure, and the arbitrary parameter vec-
tor Zc. In practical applications, both parameters matrices F and Zc can be optimized
simultaneously to achieve additional requirements of the closed-loop system.

3.3 Robust optimization by using the degrees of freedom in arbitrary param-
eters

This subsection is to derive completely parameterized representations of the system design
specifications using the arbitrary parameter matrices F and Zc. Once the system specifica-
tion parametrization is obtained, the next step is to form the optimization problem.

To guarantee the robustness of the closed-loop system subject to parameter uncertainties
and disturbances, we select the following overall eigenvalue sensitivity function (see [21, 22])

J(Zc, F ) = ∥Vc(θ, x)∥2∥V −1
c (θ, x)∥2, (3.14)

where Vc(θ, x) is the matrix of right eigenvector in (3.2) or (3.12). The measure attains the
minimum value when the eigenproblem is perfectly conditioned and the assigned eigenvalues
are as insensitive as possible.

Further, we usually intend to locate the eigenvalues λi, i = 1, 2, . . . , 2n in a desired
region to fulfill the requirements of the practical control system. This leads to eigenvalue
constraints, for example of the form λi ≤ λi ≤ λi, where λi, λi ∈ R are the lower and
upper bounds. Then, the above constraints may be substituted by considering the change
of variables given by

λi = λi + (λi − λi)sin
2(∥zci ∥2), (3.15)

where zci , i = 1, 2, . . . , 2n are column vectors of the free parameter Zc.
Based on the obtained specification parametrization (3.14), the optimization problem is

formulated as {
min J,

s.t. (3.1), (3.10), (3.15).
(3.16)

According to Equations (3.2), (3.14) and (3.15), we see that the optimization problem
(3.16) depends on the matrix F and the arbitrary parameter Zc. By seeking the proper F
and Zc, the robustness of closed-loop system can be improved.
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3.4 General Procedure

According to Theorem 3.1 and Corollary 3.2, we present a general procedure to solve the
parametric design problem for the second-order quasi-linear system (2.1) by velocity-plus-
acceleration feedback control law (2.2).

Step 1 Design an arbitrary matrix F with desired eigenstructure.

Generally speaking, we choose the arbitrary matrix F in a diagonal form. Under the
pole assignment theories [37, 38, 39, 40], it is required that F is a Hurwitz matrix, that is,
all closed-loop eigenvalues are located in the left-half s-plane as follows

λi(F ) ∈ R−, i = 1, 2, . . . , 2n.

Step 2 Obtain a pair of RCF {N(θ, x, s), D(θ, x, s)}.
From the RCF (2.6), a pair of particular solutions can be given as{

N(s) = adj (A(θ, x, s))B(θ, x),

D(s) = det (A(θ, x, s)) Ir.

Step 3 Establish an optimization problem.

Once the condition (3.1) is satisfied, an optimization problem is formulated to improve
the robustness of the closed-loop system as shown in Equation (3.16).

Step 4 Compute the velocity and acceleration feedback gain matrices Kv(θ, x) and
Ka(θ, x).

By using the parameterized expressions of V (θ, x) and Wc(θ, x) in Equations (3.3), (3.5)
or (3.11), (3.13), the velocity and acceleration feedback gain matrices Kv(θ, x) and Ka(θ, x)
are computed as Equation (3.4).

4 Example—Attitude control of combined spacecrafts

4.1 System description

Consider the attitude motion of the extending space structures in Figure 1 (see [4]), the
dynamic equations can be written in the following form

Figure 1: Coordinates systems

A2(θ, q)q̈ +A1(θ, q)q̇ +A0(θ, q)q = B(θ, q)u, (4.1)
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where q =
[
α β γ

]T
represent pitch angle, roll angle and yaw angle, respectively, and

A2(θ, q) =

 Jx 0 0
0 Jy 0
0 0 Jz

 ,

A1(θ, q) =

 J̇x 0 −Ω(Jx − Jy + Jz)

0 J̇y 0

Ω(Jx − Jy + Jz) 0 J̇z

 ,

A0(θ, q) =

 4Ω2(Jy − Jz) 0 −ΩJ̇x
0 3Ω2(Jx − Jz) 0

ΩJ̇z 0 Ω2(Jy − Jx)

 ,

B(θ, q) =

 1 0 0
0 1 0
0 0 1

 ,

and let 

λ1 ∈ [−0.1, 0) ,

λ2 ∈ [−0.2,−0.1) ,

λ3 ∈ [−0.3,−0.2) ,

λ4 ∈ [−0.4,−0.3) ,

λ5 ∈ [−0.5,−0.4) ,

λ6 ∈ [−0.6,−0.5) .

Meanwhile, a group of RCF satisfying Equation (4.1) can be obtained as

N(θ, q, s) =

 1 0 0

0 1 0

0 0 1

 ,

D(θ, q, s) = Jxs
2 + J̇xs+ 4Ω2(Jy − Jz) 0 −Ω(Jx − Jy + Jz)s− ΩJ̇x

0 Jys
2 + J̇ys+ 3Ω2(Jx − Jz) 0

Ω(Jx − Jy + Jz)s+ΩJ̇z 0 Jzs
2 + J̇zs+Ω2(Jy − Jx)

 .

4.2 Non-optimized solution

Choose arbitrary F and Zc as

F = diag {−0.1,−0.2,−0.3,−0.4,−0.5,−0.6} , (4.2)

and

Zc =

 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 , (4.3)

then, according to Equations (3.3) and (3.5), we acquire V (θ, q)

V (θ, q) =

 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 ,
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and Wc(θ, q) as

Wc(θ, q) =

 0.01Jx − 0.1J̇x + 4Ω2(Jy − Jz) 0

0 0.04Jy − 0.2J̇y + 3Ω2(Jx − Jz)

ΩJ̇z − 0.1Ω(Jx − Jy + Jz) 0

−ΩJ̇x + 0.3Ω(Jx − Jy + Jz) 0.16Jx − 0.4J̇x + 4Ω2(Jy − Jz)
0 0

0.09Jz − 0.3J̇z +Ω2(Jy − Jx) ΩJ̇z − 0.4Ω(Jx − Jy + Jz)

0 −ΩJ̇x + 0.6Ω(Jx − Jy + Jz)

0.25Jy − 0.5J̇y + 3Ω2(Jx − Jz) 0

0 0.36Jz − 0.6J̇z +Ω2(Jy − Jx)

 .

Based on Equation (3.4), we can obtain the velocity and acceleration feedback gain
matrices Kv(θ, q) and Ka(θ, q) as

Kv =

 J̇x − 50Ω2(Jy − Jz) 0 5ΩJ̇x − Ω(Jx − Jy + Jz)

0 J̇y − 21Ω2(Jx − Jz) 0

−12.5ΩJ̇z +Ω(Jx − Jy + Jz) 0 J̇z − 5Ω2(Jy − Jx)

 ,

Ka =

 Jx − 100Ω2(Jy − Jz) 0 50
9 ΩJ̇x

0 Jy − 30Ω2(Jx − Jz) 0

−25ΩJ̇z 0 Jz − 50
9 Ω2(Jy − Jx)

 ,

(4.4)
by using the velocity-plus-acceleration feedback controller (4.4), the closed-loop system is
obtained as 100 0 − 50

9
0 30 0
25 0 50

9

 q̈ +

 50 0 −5
0 21 0

12.5 0 5

 q̇ +

 4 0 −1
0 3 0
1 0 1

 q = 0.

4.3 Optimized solution

Consider optimization problem (3.16), use the fminsearch function in MATLAB® Optimiza-
tion Toolbox, choose the initial conditions as Equations (4.2) and (4.3), then we have

F = diag {−0.0077,−0.1071,−0.2089,−0.3477,−0.4450,−0.5391} ,

and

Zc =

 1.2899 0 0
0 1.3017 0
0 0 1.2674

0.8088 0 0
0 0.8351 0
0 0 0.8953

 ,

then, according to Equations (3.3) and (3.5), we acquire V (θ, q)

V =

 1.2899 0 0
0 1.3017 0
0 0 1.2674

0.8088 0 0
0 0.8351 0
0 0 0.8953

 ,
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and Wc(θ, q) as

Wc = 0.0001J̇x − 0.0099Jx + 5.1596Ω2(Jy − Jz) 0

0 0.0149Jy − 0.1394J̇y + 3.9051Ω2(Jx − Jz)

1.2899ΩJ̇z − 0.0099Ω(Jx − Jy + Jz) 0

0.2648Ω(Jx − Jy + Jz)− 1.2674ΩJ̇x 0.0979Jx − 0.2812J̇x + 3.2352Ω2(Jy − Jz)
0 0

0.0553Jz − 0.2648J̇z − 1.2674Ω2(Jx − Jy) 0.8088ΩJ̇z − 0.2812Ω(Jx − Jy + Jz)

0 0.4827Ω(Jx − Jy + Jz)− 0.8953ΩJ̇x
0.1654Jy − 0.3716J̇y + 2.5053Ω2(Jx − Jz) 0

0 0.2602Jz − 0.4827J̇z − 0.8953Ω2(Jx − Jy)

 ,

Based on Equation (3.4), we can obtain the velocity and acceleration feedback gain
matrices Kv(θ, q) and Ka(θ, q) as

Kv =

 J̇x − 530.9847Ω2(Jy − Jz) 0

0 J̇y − 34.7528Ω2(Jx − Jz)

Ω(Jx − Jy + Jz)− 132.7462ΩJ̇z 0Ω2(Jy − Jx)

6.6419ΩJ̇x − Ω(Jx − Jy + Jz)
0

J̇z − 6.6419Ω2(Jy − Jx)

 ,

Ka =

 Jx − 1494.0481Ω2(Jy − Jz) 0 8.8796ΩJ̇x
0 Jy − 62.9465Ω2(Jx − Jz) 0

−373.5120ΩJ̇z 0 Jz − 8.8796Ω2(Jy − Jx)

 ,

(4.5)
by using the velocity-plus-acceleration feedback controller (4.5), the closed-loop system is
obtained as 1494.0481 0 −8.8796

0 62.9465 0
373.5120 0 8.8796

 q̈ +

 530.9847 0 −6.6419
0 34.7582 0

132.7642 0 6.6419

 q̇

+

 4 0 −1
0 3 0
1 0 1

 q = 0.

4.4 Numerical simulation and comparison

Let Jn and Jo represent the non-optimized and optimized indices, respectively, then we have

Jn = 8.0423, Jo = 7.0944. (4.6)
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Choose initial conditions asq(0) =
[
0 1 1

]
rad,

q̇(0) =
[
1 0 1

]
rad/s,

and add a disturbance as g(t) = 0.5 sin(t− 100), t ∈ [100, 110], we can obtain Figures 2–4.
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Figure 2: Variation diagram of attitude angle in the process of on-orbit refueling
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Figure 3: Variation diagram of attitude velocity in the process of on-orbit refueling

In Figure 2, the optimized controller reduces the maximum amplitude of attitude angles
and results in better dynamical performance, and in Figure 3, two controllers possess the
same attitude velocity within errors permissibility. From Figure 4, we can see that the
bounds of input of the optimized controller are smaller than the non-optimized one, which
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Figure 4: Variation diagram of control signals

means that the optimized controller leads to better control performances such that the
effectiveness of the proposed method can be illustrated effectively. Meanwhile, through
Equation (4.6) yields Jn < Jo, which implies the overfull sensitivity is reduced such that the
robustness of the system can be improved.

5 Conclusion

In this paper, a parametric method is proposed for a type of quasi-linear systems, which
provides the parameterized forms of the robust optimized controller under velocity-plus-
acceleration feedback and also the right closed-loop eigenvector that is dependent on an
arbitrary matrix F with desired closed-loop eigenvalues. With this controller, the closed-
loop system is a linear time-invariant one with desired eigenstructure. Meanwhile, a group
of parameters Zc can be exploited to optimize the controller and achieve regional pole
assignment via its degrees of freedom to realize practical control requirements of the closed-
loop system. The contribution of such a control law for automobile suspension, robotic
control, vibration control, and other practical applications can be momentous.
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