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be the set of all n × n Hermitian centroskew matrices. It is well known that Hermitian
centroskew matrices include symmetric centroskew-symmetric and symmetric Toeplitz ma-
trices. Hermitian centroskew matrices have practical applications in information theory,
linear system theory, linear estimate theory and numerical analysis [11, 12].

In this paper, we are interested in the quadratic inverse eigenvalue problem which consists
in finding matrices A,B,C ∈ Cn×n such that

AXΛ2 +BXΛ+ CX = O, (1.1)

where X = (x1, x2, . . . , xm) ∈ Cn×m and Λ = diag(λ1, λ2, . . . , λm) ∈ Cm×m are given
matrices. The quadratic inverse eigenvalue problem appears in some practical applications
[16]. Such as, setting the pole assignment problem can be seen as a quadratic inverse
eigenvalue problem [14]. The behavior of a time invariant second order differential system

Aẍ(t) +Bẋ(t) + Cx(t) = f(t) (1.2)

can be described by solving a quadratic inverse eigenvalue problem [35].

• If A = O, then the quadratic inverse eigenvalue problem (1.1) reduces to a generalized
inverse eigenvalue problem

BXΛ+ CX = O. (1.3)

• If A = O and B = I, then the quadratic inverse eigenvalue problem (1.1) reduces to a
standard inverse eigenvalue problem

XΛ+ CX = O. (1.4)

In general, the inverse eigenvalue problem is as important as the eigenvalue problem
[16, 30]. The inverse eigenvalue problem has wide applications in engineering and scientific
computation [39, 17, 19]. For instance, the inverse eigenvalue problem of centro-symmetric
matrices with a submatrix constraint initially occurs in the design of Hopfield neural network,
civil engineering and aviation [13, 3]. The parameterized generalized inverse eigenvalue
problem (PGIEP) [17] arises in the discrete analogue of inverse Sturm-Liouville problem
[27, 28], factor analysis [28] and structural design [22, 29, 36, 38]. The problem of designing
the truss structure with specified natural frequency may be recast as a PGIEP.

The literature on solvability condition and numerical method for the inverse eigenvalue
problem is large and still growing rapidly [19, 40, 9, 10, 17, 20, 21]. For instance, Bai [4] and
Zhang et al. [41] derived some necessary and sufficient conditions for the inverse eigenvalue
problem with Hermitian generalized skew-Hamiltonian matrices and Hermitian generalized
Hamiltonian matrices, respectively. Ghanbari [19] studied the explicit expression solution
of a generalized inverse eigenvalue problem, in which C is a semi-infinite Jacobi matrix
with positive off-diagonal entries and B is a nonsingular diagonal matrix. Liu et al. [31]
considered an existence condition of a solution and an analytic expression solution of the
generalized inverse eigenvalue problem for centrohermitian matrices. Moghaddam et al. [33]
proposed an algorithm for reconstructing penta-diagonal coefficient matrices of a general-
ized inverse eigenvalue problem. Wei et al. [37] discussed a generalized inverse eigenvalue
problem with Hermitian generalized Hamiltonian matrices and derived an analytic expres-
sion solution by the matrix decomposition theory and Hilbert space approximation theory.
Aishima [1] introduced a quadratically convergent algorithm for the inverse symmetric eigen-
value problem. Dai and Liang [18] considered the generalized inverse eigenvalue problem for
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the (P , Q)-conjugate matrix and the associated approximation problem by using the gener-
alized singular value decomposition and canonical correlation decomposition. Recently, Cai
and Chen [9] proposed an iterative method for solving the generalized inverse eigenvalue
problem and its optimal approximation problem over partially bisymmetric matrices. They
also studied [10] the least squares solution of a generalized inverse eigenvalue problem over
Hermitian Hamiltonian matrices with a submatrix constraint.

Inspired by the work mentioned above, we focus on the following problems.

Problem 1.1. Given X ∈ Cn×m, Λ = diag(λ1, λ2, . . . , λm) ∈ Cm×m, s = (s1, s2, . . . , sp, n+
1−sp, . . . , n+1−s2, n+1−s1) ∈ D2p,n, t = (t1, t2, . . . , tq, n+1−tq, . . . , n+1−t2, n+1−t1) ∈
D2q,n, u = (u1, u2, . . . , ur, n + 1 − ur, . . . , n + 1 − u2, n + 1 − u1) ∈ D2r,n, Ap ∈ C2p×2p,
Bq ∈ C2q×2q and Cr ∈ C2r×2r. Let S1 = {Y |Y [s|s] = Ap, Y [s|s] ∈ HSC(n−2p)×(n−2p)},
S2 = {Y |Y [t|t] = Bq, Y [t|t] ∈ HSC(n−2q)×(n−2q)} and S3 = {Y |Y [u|u] = Cr, Y [u|u] ∈
HSC(n−2r)×(n−2r)}. We want to find A∗ ∈ S1, B∗ ∈ S2 and C∗ ∈ S3 such that

∥A∗XΛ2 +B∗XΛ+ C∗X∥ = min
(A,B,C)∈S1×S2×S3

∥AXΛ2 +BXΛ+ CX∥.

Problem 1.2. Let SE be the set of solutions of Problem 1.1. For given A,B,C ∈ Cn×n,
we want to find (Â, B̂, Ĉ) ∈ SE such that

∥Â−A∥2 + ∥B̂ −B∥2 + ∥Ĉ − C∥2 = min
(A,B,C)∈SE

[
∥A−A∥2 + ∥B −B∥2 + ∥C − C∥2

]
.

Although Hajarian [23, 25] constructed the conjugate direction and BCR methods to
solve some special quadratic inverse eigenvalue problems. Hajarian and Hassan [24] es-
tablished the CGNR method for finding the least squares solution of a quadratic inverse
eigenvalue problem with partially bisymmetric matrices under a prescribed submatrix con-
straint. In fact, Hajarian [23, 25] and Hajarian and Hassan [24] extended the subspace
method for linear system to the setting of quadratic inverse eigenvalue problem from the
perspective of numerical algebra. Naturally, we want to know whether the quadratic inverse
eigenvalue problem can be solved from the perspective of optimization or not. This is one
of our motivations in this paper.

Since matricesX and Λ are known in the system (1.1), the investigated problem (Problem
1.1) can be transformed into finding the least squares solution of the generalized Sylvester
matrix equation (1.1). Such a problem has been investigated in many papers. For example,
Beik and Salkuyeh [5, 6] established some modified conjugate gradient type methods. How-
ever, the proposed methods in [5, 6] are extensions of the classical subspace methods for
linear system and feasible only when the considered generalized Sylvester matrix equation
is consistent. They can not be directly applied for the matrix equation with a submatrix
constraint. Naturally, one may ask :“does the nonlinear conjugate gradient method can be
extended to solve the quadratic inverse eigenvalue problem?” As another motivation in this
paper, we are interested in studying a nonlinear conjugate gradient method for solving the
quadratic inverse eigenvalue problem with a submatrix constraint. The contributions of this
paper are as follows.

• We establish a nonlinear conjugate gradient method for finding the least squares solu-
tion of the quadratic inverse eigenvalue problem.

• We give the convergence analysis of the proposed nonlinear conjugate gradient method.
A method for choosing the initial matrices to obtain the least Frobenius norm least
squares solution of the quadratic inverse eigenvalue problem is given.
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• By reformulating Problem 1.2 as another quadratic inverse eigenvalue problem with a
submatrix constraint, we apply the nonlinear conjugate gradient method to solve it.

• Experimental results demonstrate that our proposed method yields superior perfor-
mance for the quadratic inverse eigenvalue problem.

The remainder of this paper is organized as follows. In Section 2, we give an equivalent
characterization of Problem 1.1 and establish a nonlinear conjugate gradient method to
solve it. In Section 3, we present an iterative method for solving Problem 1.2. In Section 4,
we report some numerical results to illustrate the feasibility and efficiency of the proposed
method. This paper ends up with some concluding remarks in Section 5.

2 Iterative Method for Problem 1.1

Notice that the solution set of Problem 1.1 is merely a linear manifold rather than a linear
subspace. First, we give an equivalent characterization of Problem 1.1. Let

S1 = {Y |Y [s|s] = Ap, Y [s|s] = O} ⊕ S̃1,

S2 = {Y |Y [t|t] = Bq, Y [t|t] = O} ⊕ S̃2,

S3 = {Y |Y [u|u] = Cr, Y [u|u] = O} ⊕ S̃3,

where

S̃1 = {Y |Y ∈ HSCn×n, Y [s|s] = O}, (2.1a)

S̃2 = {Y |Y ∈ HSCn×n, Y [t|t] = O}, (2.1b)

S̃3 = {Y |Y ∈ HSCn×n, Y [u|u] = O}. (2.1c)

Then Problem 1.1 has the following equivalent form.

Problem 2.1. Given X ∈ Cn×m, Λ = diag(λ1, λ2, . . . , λm) ∈ Cm×m, s = (s1, s2, . . . , sp, n+
1−sp, . . . , n+1−s2, n+1−s1) ∈ D2p,n, t = (t1, t2, . . . , tq, n+1−tq, . . . , n+1−t2, n+1−t1) ∈
D2q,n, u = (u1, u2, . . . , ur, n + 1 − ur, . . . , n + 1 − u2, n + 1 − u1) ∈ D2r,n, Ap ∈ C2p×2p,

Bq ∈ C2q×2q and Cr ∈ C2r×2r. We want to find Ã∗ ∈ S̃1, B̃∗ ∈ S̃2 and C̃∗ ∈ S̃3 such that

∥Ã∗XΛ2 + B̃∗XΛ+ C̃∗X − Z̃∥ = min
(Ã,B̃,C̃)∈S̃1×S̃2×S̃3

∥ÃXΛ2 + B̃XΛ+ C̃X − Z̃∥,

where Z̃ = −ÃpXΛ2− B̃qXΛ− C̃rX, in which Ãp, B̃q and C̃r denote the matrices satisfying

Ãp[s|s] = Ap, B̃q[t|t] = Bq, C̃r[u|u] = Cr and zeros elsewhere.

It is easy to see that (Ã∗, B̃∗, C̃∗) is a solution of Problem 2.1 if and only if (A,B,C) =

(Ã∗ + Ãp, B̃∗ + B̃q, C̃∗ + C̃r) is a solution of Problem 1.1.
In the sequel, we illustrate that the solution to Problem 2.1 exists. First, the property

of Hermitian centroskew matrix is needed.

Lemma 2.1 ([27]). A matrix X ∈ HSCn×n if and only if X = XH = −SnXSn.

The following result is important for the proof of the existence of the solution to Problem
2.1.
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Lemma 2.2 ([26]). If a quadratic function f has a lower bound in a nonempty polyhedron
X, then f must have a global minimum in X.

Proposition 2.3. Let L1(Ã, B̃, C̃) = ÃXΛ2 + B̃XΛ+ C̃X − Z̃, L2(Ã, B̃, C̃) = ÃHXΛ2 +

B̃HXΛ+C̃HX−Z̃, L3(Ã, B̃, C̃)=SnÃSnXΛ2+SnB̃SnXΛ+SnC̃SnX+Z̃ and L4(Ã, B̃, C̃)=

SnÃ
HSnXΛ2 + SnB̃

HSnXΛ+ SnC̃
HSnX + Z̃. Then

min
{Ã∈Cn×n,B̃∈Cn×n,C̃∈Cn×n:Ã[s|s]=O,B̃[t|t]=O,C̃[u|u]=O}∥∥∥L1(Ã, B̃, C̃)

4
+

L2(Ã, B̃, C̃)

4
− L3(Ã, B̃, C̃)

4
− L4(Ã, B̃, C̃)

4

∥∥∥2 (2.2)

takes a global minimum value at (Ã∗, B̃∗, C̃∗), where Ã∗[s|s] = O, B̃∗[t|t] = O and C̃∗[u|u] =
O.

Proof. Let

h(vec(Ã), vec(B̃), vec(C̃))

=
∥∥∥1
4

{
vec[L1(Ã, B̃, C̃)] + vec[L2(Ã, B̃, C̃)]− vec[L3(Ã, B̃, C̃)]− vec[L4(Ã, B̃, C̃)]

}∥∥∥2.
Then h is a quadratic function about variable (vec(Ã), vec(B̃), vec(C̃)). Let

X = {vec(Ã) ∈ Cn2

, vec(B̃) ∈ Cn2

, vec(C̃) ∈ Cn2

: Ã[s|s] = O, B̃[t|t] = O, C̃[u|u] = O}.

Obviously, X is a nonempty polyhedron. It then follows from Lemma 2.2 that the prob-
lem (2.2) takes the global minimum value at some point (vec(Ã∗), vec(B̃∗), vec(C̃∗)), where

Ã∗[s|s] = O, B̃∗[t|t] = O and C̃∗[u|u] = O. By the inverse vec operator, the result is
established. The proof is completed.

Proposition 2.4. The solution to Problem 2.1 exists.

Proof. For arbitrary Ã, B̃, C̃ ∈ HSCn×n, it follows from Lemma 2.1 that

∥ÃXΛ2 + B̃XΛ+ C̃X − Z̃∥2

=
∥∥∥ Ã+ ÃH − SnÃSn − SnÃ

HSn

4
XΛ2

+
B̃ + B̃H − SnB̃Sn − SnB̃

HSn

4
XΛ+

C̃ + C̃H − SnC̃Sn − SnC̃
HSn

4
X − Z̃

∥∥∥2
=

∥∥∥L1(Ã, B̃, C̃)

4
+

L2(Ã, B̃, C̃)

4
− L3(Ã, B̃, C̃)

4
− L4(Ã, B̃, C̃)

4

∥∥∥2.
Assume that the problem (2.2) takes the global minimum value at (Ã∗, B̃∗, C̃∗), where

Ã∗[s|s] = O, B̃∗[t|t] = O and C̃∗[u|u] = O. Then, for arbitrary (Ã, B̃, C̃) ∈ S̃1 × S̃2 × S̃3, we
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have

∥ÃXΛ2 + B̃XΛ+ C̃X − Z̃∥2

=
∥∥∥L1(Ã, B̃, C̃)

4
+

L2(Ã, B̃, C̃)

4
− L3(Ã, B̃, C̃)

4
− L4(Ã, B̃, C̃)

4

∥∥∥2
≥ min

{Ã∈Cn×n,B̃∈Cn×n,C̃∈Cn×n:Ã[s|s]=O,B̃[t|t]=O,C̃[u|u]=O}

∥∥∥L1(Ã, B̃, C̃)

4
+

L2(Ã, B̃, C̃)

4

−L3(Ã, B̃, C̃)

4
− L4(Ã, B̃, C̃)

4

∥∥∥2
=

∥∥∥L1(Ã∗, B̃∗, C̃∗)

4
+

L2(Ã∗, B̃∗, C̃∗)

4
− L3(Ã∗, B̃∗, C̃∗)

4
− L4(Ã∗, B̃∗, C̃∗)

4

∥∥∥2
=

∥∥∥ Ã∗ + ÃH
∗ − SnÃ∗Sn − SnÃ

H
∗ Sn

4
XΛ2 +

B̃∗ + B̃H
∗ − SnB̃∗Sn − SnB̃

H
∗ Sn

4
XΛ

+
C̃∗ + C̃H

∗ − SnC̃∗Sn − SnC̃
H
∗ Sn

4
X − Z̃

∥∥∥2. (2.3)

Let

Ã∗ =
Ã∗ + ÃH

∗ − SnÃ∗Sn − SnÃ
H
∗ Sn

4
,

B̃∗ =
B̃∗ + B̃H

∗ − SnB̃∗Sn − SnB̃
H
∗ Sn

4
,

C̃∗ =
C̃∗ + C̃H

∗ − SnC̃∗Sn − SnC̃
H
∗ Sn

4
.

Using Lemma 2.1 again and the fact that Ã∗[s|s] = O, B̃∗[t|t] = O and C̃∗[u|u] = O, we
obtain

Ã∗ ∈ S̃1, B̃∗ ∈ S̃2, C̃∗ ∈ S̃3.

It then follows from (2.3) that

min
(Ã,B̃,C̃)∈S̃1×S̃2×S̃3

∥ÃXΛ2 + B̃XΛ+ C̃X − Z̃∥ = ∥Ã∗XΛ2 + B̃∗XΛ+ C̃∗X − Z̃∥,

which implies that (Ã∗, B̃∗, C̃∗) is a solution to Problem 2.1. The proof is completed.

Remark 2.5. From Proposition 2.4, we have that the solution to Problem 1.1 exists.

We also need the following lemmas in order to derive the normal equation of Problem
2.1.

Lemma 2.6. Let A ∈ Cn×n and X ∈ HSCn×n. Then〈
X,

A− SnASn

2

〉
=

〈
X,

1

4

(
A+AH − Sn(A+AH)Sn

)〉
= ⟨X,A⟩.

Proof. For any A ∈ Cn×n and X ∈ HSCn×n, we have〈
X,

A− SnASn

2

〉
=

1

2
⟨X,A⟩ − 1

2
⟨X,SnASn⟩ =

1

2
⟨X,A⟩ − 1

2
⟨SnXSn, A⟩

=
1

2
⟨X,A⟩ − 1

2
⟨−X,A⟩ = 1

2
⟨X,A⟩+ 1

2
⟨X,A⟩ = ⟨X,A⟩.
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Then 〈
X,

(A+AH)− Sn(A+AH)Sn

4

〉
=

1

2

(〈
X,

A− SnASn

2

〉
+

〈
X,

AH − SnA
HSn

2

〉)
=

1

2

(〈
X,

A− SnASn

2

〉
+
〈
X,

A− SnASn

2

〉)
=

1

2

(
⟨X,A⟩+ ⟨X,A⟩

)
= ⟨X,A⟩.

The proof is completed.

Lemma 2.7. Suppose that X ∈ Cn×n, W1 ∈ S̃1, W2 ∈ S̃2 and W3 ∈ S̃3. Then
⟨EsE

T
s XEsE

T
s ,W1⟩ = 0, ⟨EtE

T
t XEtE

T
t ,W2⟩ = 0 and ⟨EuE

T
u XEuE

T
u ,W3⟩ = 0.

Proof. Since W1 ∈ S̃1, W2 ∈ S̃2 and W3 ∈ S̃3, we immediately have ET
s W1Es = 0,

ET
t W2Et = 0 and ET

u W3Eu = 0. Hence

⟨EsE
T
s XEsE

T
s ,W1⟩ = Re{tr(WH

1 EsE
T
s XEsE

T
s )}

= Re{tr(W1EsE
T
s XEsE

T
s )}

= Re{tr(EsE
T
s W1EsE

T
s X)} = 0.

Similarly, we have ⟨EtE
T
t XEtE

T
t ,W2⟩ = 0 and ⟨EuE

T
u XEuE

T
u ,W3⟩ = 0. The proof is

completed.

Lemma 2.8 ([15]). Let X be a finite dimensional inner product space and let G be the
subspace of X. Assume that G⊥ is the orthogonal complement of G. Then, for any X ∈ X,
there exists an unique G0 ∈ G such that

∥X −G0∥ ≤ ∥X −G∥, ∀G ∈ G.

In this case, we say G0 is the projection of X onto the subspace G, denoted by G0 = PG(X).
Moreover, G0 = PG(X) if and only if (X −G0) ⊥ G, i.e., (X −G0) ∈ G⊥.

Lemma 2.9 ([27]). Let f(X) be a continuous and differentiable function on a linear sub-
space L of Cn×n. Then there exists X∗ ∈ L such that f(X∗) = min

X∈L
f(X) if and only if

PL(∇f(X∗)) = O.

Theorem 2.10. Let R = Z̃ − ÃXΛ2 − B̃XΛ − C̃X. Then (Ã∗, B̃∗, C̃∗) is a solution of
Problem 2.1 if and only if it is a solution of the following system of matrix equations

R(XΛ2)H +XΛ2RH − Sn(R(XΛ2)H +XΛ2RH)Sn

−EsE
T
s [R(XΛ2)H +XΛ2RH − Sn(R(XΛ2)H +XΛ2RH)Sn]EsE

T
s = O,

R(XΛ)H +XΛRH − Sn(R(XΛ)H +XΛRH)Sn

−EtE
T
t [R(XΛ)H +XΛRH − Sn(R(XΛ)H +XΛRH)Sn]EtE

T
t = O,

RXH +XRH − Sn(RXH +XRH)Sn

−EuE
T
u [RXH +XRH − Sn(RXH +XRH)Sn]EuE

T
u = O.

(2.4)

Proof. We first define the following function on S̃1 × S̃2 × S̃3:

f(Ã, B̃, C̃) = ∥Z̃ − ÃXΛ2 − B̃XΛ− C̃X∥2.

It is easy to see that (Ã∗, B̃∗, C̃∗) is a solution of Problem 2.1 if and only if

f(Ã∗, B̃∗, C̃∗) = min
(Ã,B̃,C̃)∈S̃1×S̃2×S̃3

f(Ã, B̃, C̃). (2.5)
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Lemma 2.9 implies that (2.5) is equivalent to

PS̃1

( ∂f

∂Ã

)
|Ã=Ã∗ = O, PS̃1

( ∂f

∂B̃

)
|B̃=B̃∗ = O, PS̃1

( ∂f

∂C̃

)
|C̃=C̃∗ = O. (2.6)

Now we derive ∂f

∂Ã
, ∂f

∂B̃
and ∂f

∂C̃
. For any (M1, M1, M3) ∈ Cn×n × Cn×n × Cn×n and

ξ ∈ R, by the Taylor series expansion, we have

f(Ã+ξM1, B̃+ξM2, C̃+ξM3) = f(Ã, B̃, C̃)+ξ
〈 ∂f

∂Ã
,M1

〉
+ξ

〈 ∂f

∂B̃
,M2

〉
+ξ

〈 ∂f

∂C̃
,M3

〉
+o(ξ).

(2.7)
According to the basic properties of Frobenius norm and matrix inner product, we get the
expression

f(Ã+ ξM1, B̃ + ξM2, C̃ + ξM3)

= ∥Z̃ − (Ã+ ξM1)XΛ2 − (B̃ + ξM2)XΛ− (C̃ + ξM3)X∥2

= ∥Z̃ − ÃXΛ2 − B̃XΛ− C̃X∥2 − 2ξ⟨Z̃ − ÃXΛ2 − B̃XΛ− C̃X,M1XΛ2 +M2XΛ+M3X⟩
+ ξ2∥M1XΛ2 +M2XΛ+M3X∥2

= f(Ã, B̃, C̃)− 2ξ⟨R,M1XΛ2 +M2XΛ+M3X⟩+ ξ2∥M1XΛ2 +M2XΛ+M3X∥2

= f(Ã, B̃, C̃)− 2ξ⟨R(XΛ2)H ,M1⟩ − 2ξ⟨R(XΛ)H ,M2⟩ − 2ξ⟨RXH ,M3⟩+ o(ξ),

which, together with (2.7), yields

∂f

∂Ã
= −2R(XΛ2)H ,

∂f

∂B̃
= −2R(XΛ)H ,

∂f

∂C̃
= −2RXH . (2.8)

For any T1 ∈ S̃1, by Lemmas 2.6, 2.7 and 2.8, we obtain

⟨−2R(XΛ2)H , T1⟩ = −1

2
⟨R(XΛ2)H +XΛ2RH − Sn(R(XΛ2)H +XΛ2RH)Sn, T1⟩

= −1

2
⟨R(XΛ2)H +XΛ2RH − Sn(R(XΛ2)H +XΛ2RH)Sn − EsE

T
s [R(XΛ2)H +XΛ2RH

−Sn(R(XΛ2)H +XΛ2RH)Sn]EsE
T
s , T1⟩. (2.9)

and

⟨−2R(XΛ2)H , T1⟩ = ⟨−2R(XΛ2)H − PS̃1

(
− 2R(XΛ2)H

)
, T1⟩+ ⟨PS̃1

(
− 2R(XΛ2)H

)
, T1⟩

= ⟨PS̃1

(
− 2R(XΛ2)H

)
, T1⟩. (2.10)

Together (2.9) and (2.10) yields

⟨PS̃1

(
− 2R(XΛ2)H

)
, T1⟩ = −1

2

〈
R(XΛ2)H +XΛ2RH − Sn(R(XΛ2)H +XΛ2RH)Sn

−EsE
T
s [R(XΛ2)H +XΛ2RH − Sn(R(XΛ2)H +XΛ2RH)Sn]EsE

T
s , T1

〉
.

It follows from the relation (2.8) and the arbitrariness of T1 that

PS̃1

( ∂f

∂Ã

)
= PS̃1

(
− 2R(XΛ2)H

)
= −1

2

{
R(XΛ2)H +XΛ2RH + Sn(R(XΛ2)H +XΛ2RH)Sn

−EsE
T
s [R(XΛ2)H +XΛ2RH + Sn(R(XΛ2)H +XΛ2RH)Sn]EsE

T
s

}
.
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Similarly

PS̃2

(
∂f

∂B̃

)
= −PS̃2

(
2R(XΛ)H

)
= −1

2

{
R(XΛ)H +XΛRH + Sn(R(XΛ)H +XΛRH)Sn

− EtE
T
t [R(XΛ)H +XΛRH + Sn(R(XΛ)H +XΛRH)Sn]EtE

T
t

}
,

PS̃3

(
∂f

∂C̃

)
= −PS̃3

(
2RXH

)
= −1

2

{
RXH +XRH + Sn(RXH +XRH)Sn

− EuE
T
u [RXH +XRH + Sn(RXH +XRH)Sn]EuE

T
u

}
.

By the relation (2.6), the result is established. The proof is completed.

It is well known that many iterative methods for matrix equations are based on iterative
methods for linear system Ax = b, where A ∈ Cm×n and b ∈ Cm. For the least squares
problem

min
x∈Cn

∥b−Ax∥ for A ∈ Cm×n and b ∈ Cm, (2.11)

the LSQR and CGLS methods [8, 34] are all efficient. More importantly, CG-type method
overcomes the shortcoming of slow convergence of steepest descent method, and avoids
storing and computing Hessian matrix and its inverse of Newton method. Many researchers
have investigations into this direction. For instance, Zhou et al. [42] established a gradient-
based iterative algorithm for solving the coupled matrix equation. Based on CG method,
Lv and Zhang [32] raised a neat iterative algorithm in the least squares sense for solving a
periodic Sylvester matrix equation.

Motivated by the work mentioned above, we propose a nonlinear conjugate gradient
method for solving Problem 2.1.

Algorithm 2.11. (Nonlinear conjugate gradient method (NCG) for Problem 2.1)
Step 0 Input X ∈ Cn×m, Λ = diag(λ1, λ2, . . . , λm) ∈ Cm×m, s = (s1, s2, . . . , sp, n+ 1−

sp, . . . , n+1−s2, n+1−s1) ∈ D2p,n, t = (t1, t2, . . . , tq, n+1− tq, . . . , n+1− t2, n+1− t1) ∈
D2q,n, u = (u1, u2, . . . , ur, n+1−ur, . . . , n+1−u2, n+1−u1) ∈ D2r,n, Ap ∈ C2p×2p, Bq ∈
C2q×2q, Cr ∈ C2r×2r, Ãp ∈ Cn×n, B̃q ∈ Cn×n, C̃r ∈ Cn×n and Z̃ = −ÃpXΛ2−B̃qXΛ−C̃rX.

Choose the initial matrices Ã(1) ∈ S̃1, B̃(1) ∈ S̃2 and C̃(1) ∈ S̃3.
Step 1 Compute

R(1) = Z̃ − Ã(1)XΛ2 − B̃(1)XΛ− C̃(1)X,

P1(1) = R(1)(XΛ2)H +XΛ2RH(1)− Sn(R(1)(XΛ2)H +XΛ2RH(1))Sn

−EsE
T
s [R(1)(XΛ2)H +XΛ2RH(1)− Sn(R(1)(XΛ2)H +XΛ2RH(1))Sn]EsE

T
s ,

P2(1) = R(1)(XΛ)H +XΛRH(1)− Sn(R(1)(XΛ)H +XΛRH(1))Sn

−EtE
T
t [R(1)(XΛ)H +XΛRH(1)− Sn(R(1)(XΛ)H +XΛRH(1))Sn]EtE

T
t ,

P3(1) = R(1)XH +XR(1)H − Sn(R(1)XH +XRH(1))Sn

−EuE
T
u [R(1)XH +XRH(1)− Sn(R(1)XH +XRH(1))Sn]EuE

T
u .

Set M1(1) = −P1(1), M2(1) = −P2(1) and M3(1) = −P3(1). Denote

P (1) =

 P1(1) O O
O P2(1) O
O O P3(1)

 and M(1) =

 M1(1) O O
O M2(1) O
O O M3(1)

 .

Set k = 1.
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Step 2 If ∥R(k)∥ = 0 or ∥P (k)∥ = 0, stop. Otherwise, go to Step 3.

Step 3 Compute Q(k) = M1(k)XΛ2 +M2(k)XΛ+M3(k)X and

αk =
⟨M(k), P (k)⟩
4∥Q(k)∥2

. (2.12)

Update the sequences

Ã(k + 1) = Ã(k) + αkM1(k),

B̃(k + 1) = B̃(k) + αkM2(k),

C̃(k + 1) = C̃(k) + αkM3(k), R(k + 1) = R(k)− αkQ(k),

P1(k + 1) = R(k + 1)(XΛ2)H +XΛ2RH(k + 1)

− Sn(R(k + 1)(XΛ2)H +XΛ2RH(k + 1))Sn

− EsE
T
s [R(k + 1)(XΛ2)H +XΛ2RH(k + 1)

− Sn(R(k + 1)(XΛ2)H +XΛ2RH(k + 1))Sn]EsE
T
s ,

P2(k + 1) = R(k + 1)(XΛ)H +XΛRH(k + 1)− Sn(R(k + 1)(XΛ)H

+XΛRH(k + 1))Sn − EtE
T
t [R(k + 1)(XΛ)H +XΛRH(k + 1)

− Sn(R(k + 1)(XΛ)H +XΛRH(k + 1))Sn]EtE
T
t ,

P3(k + 1) = R(k + 1)XH +XR(k + 1)H − Sn(R(k + 1)XH

+XRH(k + 1))Sn − EuE
T
u [R(k + 1)XH +XRH(k + 1)

− Sn(R(k + 1)XH +XRH(k + 1))Sn]EuE
T
u .

Denote

P (k + 1) =

 P1(k + 1) O O
O P2(k + 1) O
O O P3(k + 1)

 .

Compute

βk =
∥P (k + 1)∥2

∥P (k)∥2
. (2.13)

Update the sequences

Mj(k + 1) = −Pj(k + 1) + βkMj(k)

for j = 1, 2, 3. Denote

M(k + 1) =

 M1(k + 1) O O
O M2(k + 1) O
O O M3(k + 1)

 .

Step 4 Set k = k + 1, go to Step 2.

Remark 2.12. According to Lemma 2.1 and Algorithm 2.11, it follows that matrix se-
quences generated by Algorithm 2.11 satisfy {Ã(k)}, {P1(k)}, {M1(k)} ⊆ S̃1, {B̃(k)},
{P2(k)}, {M2(k)} ⊆ S̃2 and {C̃(k)}, {P3(k)}, {M3(k)} ⊆ S̃3.
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Remark 2.13. If ∥R(k)∥ = 0, then (Ã(k), B̃(k), C̃(k)) is a solution of matrix equation

ÃXΛ2 + B̃XΛ+ C̃X − Z̃ = O. That is, (Ã(k), B̃(k), C̃(k)) is a solution of Problem 2.1 and

min
(Ã,B̃,C̃)∈S̃1×S̃2×S̃3

∥ÃXΛ2 + B̃XΛ+ C̃X − Z̃∥ = 0.

If ∥P (k)∥ = 0, then (Ã(k), B̃(k), C̃(k)) is a solution of Problem 2.1 and

min
(Ã,B̃,C̃)∈S̃1×S̃2×S̃3

∥ÃXΛ2 + B̃XΛ+ C̃X − Z̃∥ > 0.

Now, we list some basic properties of Algorithm 2.11.

Lemma 2.14. Let the sequences {P (k)} and {M(k)} be generated by Algorithm 2.11. Then

⟨M(k), P (k + 1)⟩ = 0.

Proof. We first define G1(k), G2(k) and G3(k) as follows:

G1(k) = Q(k)(XΛ2)H +XΛ2QH(k)− Sn(Q(k)(XΛ2)H +XΛ2QH(k))Sn

− EsE
T
s [Q(k)(XΛ2)H +XΛ2RH(k)− Sn(Q(k)(XΛ2)H +XΛ2QH(k))Sn]EsE

T
s ,

G2(k) = Q(k)(XΛ)H +XΛQH(k)− Sn(Q(k)(XΛ)H +XΛQH(k))Sn

− EtE
T
t [Q(k)(XΛ)H +XΛRH(1)− Sn(Q(1)(XΛ)H +XΛQH(1))Sn]EtE

T
t ,

G3(k) = Q(1)XH +XQ(k)H − Sn(Q(k)XH +XQH(k))Sn

− EuE
T
u [Q(k)XH +XQH(k)− Sn(Q(k)XH +XQH(k))Sn]EuE

T
u .

Since R(k + 1) = R(k)− αkQ(k), it follows that

P1(k + 1) = R(k + 1)(XΛ2)H +XΛ2RH(k + 1)− Sn(R(k + 1)(XΛ2)H

+XΛ2RH(k + 1))Sn − EsE
T
s [R(k + 1)(XΛ2)H +XΛ2RH(k + 1)

− Sn(R(k + 1)(XΛ2)H +XΛ2RH(k + 1))Sn]EsE
T
s

= P1(k)− αk[Q(k)(XΛ2)H +XΛ2QH(k)− Sn(Q(k)(XΛ2)H +XΛ2QH(k))Sn

− EsE
T
s [Q(k)(XΛ2)H +XΛ2RH(k)− Sn(Q(k)(XΛ2)H +XΛ2QH(k))Sn]EsE

T
s

= P1(k)− αkG1(k).

Similarly, we have P2(k + 1) = P2(k)− αkG2(k) and P3(k + 1) = P3(k)− αkG3(k). Then

⟨M(k), P (k + 1)⟩ =
3∑

j=1

⟨Mj(k), Pj(k)− αkGj(k)⟩ = ⟨M(k), P (k)⟩ − αk⟨M(k), G(k)⟩.(2.14)

On the other hand, by Algorithm 2.11, Lemmas 2.1, 2.6 and 2.7 and Remark 2.12, it follows
that

⟨M1(k), G1(k)⟩ = ⟨M1(k), Q(k)(XΛ2)H +XΛ2QH(k)

−Sn(Q(k)(XΛ2)H +XΛ2QH(k))Sn

−EsE
T
s [Q(k)(XΛ2)H +XΛ2QH(k)

−Sn(Q(k)(XΛ2)H +XΛ2QH(k))Sn]EsE
T
s ⟩

= ⟨M1(k), Q(k)(XΛ2)H +XΛ2QH(k)

−Sn(Q(k)(XΛ2)H +XΛ2QH(k))Sn⟩
= 4⟨M1(k), Q(k)(XΛ2)H⟩ = 4⟨M1(k)XΛ2, Q(k)⟩.
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Similarly, we have

⟨M2(k), G2(k)⟩ = 4
〈
M2(k)XΛ,Q(k)

〉
and ⟨M3(k), G3(k)⟩ = 4

〈
M3(k)X,Q(k)

〉
.

Hence

⟨M(k), G(k)⟩ =
3∑

j=1

⟨Mj(k), Gj(k)⟩ = 4
〈
Q(k), Q(k)

〉
,

which, together with (2.12) and (2.14), yields

⟨M(k), P (k + 1)⟩ = ⟨M(k), P (k)⟩ − αk⟨M(k), G(k)⟩ = ⟨M(k), P (k)⟩ − 4αk⟨Q(k), Q(k)⟩

= ⟨M(k), P (k)⟩ − 4× ⟨M(k), P (k)⟩
4∥Q(k)∥2

∥Q(k)∥2 = 0.

The proof is completed.

Lemma 2.15. Let the sequences {M(k)} and {P (k)} be generated by Algorithm 2.11. Then

⟨M(k), P (k)⟩ = −∥P (k)∥2.

Proof. For k = 1, since Mj(1) = −Pj(1), we immediately have

⟨M(1), P (1)⟩ =
3∑

j=1

⟨Mj(1), Pj(1)⟩ = −
3∑

j=1

⟨Pj(1), Pj(1)⟩ = −∥P (1)∥2.

For k ≥ 2, it follows from Lemma 2.14 that

⟨M(k + 1), P (k + 1)⟩ =

3∑
j=1

⟨−Pj(k + 1) + βkMj(k), Pj(k + 1)⟩

= −∥P (k + 1)∥2 + βk⟨M(k), P (k + 1)⟩ = −∥P (k + 1)∥2.

The proof is completed.

Lemma 2.16. Let the sequences {M(k)} and {P (k)} be generated by Algorithm 2.11. Then

∞∑
k=1

∥P (k)∥4

∥M(k)∥2
< ∞. (2.15)

Proof. By direct calculations, we have

∥Q(k)∥2 = ∥M1(k)XΛ2 +M2(k)XΛ+M3(k)X∥2

=
∥∥((XΛ2)T ⊗ I

)
vec(M1(k)) +

(
(XΛ)T ⊗ I

)
vec(M2(k)) +

(
XT ⊗ I

)
vec(M3(k))

∥∥2
=

∥∥∥∥∥∥( (XΛ2)T ⊗ I (XΛ)T ⊗ I XT ⊗ I
) vec(M1(k))

vec(M2(k))
vec(M3(k))

∥∥∥∥∥∥
2

≤
∥∥( (XΛ2)T ⊗ I (XΛ)T ⊗ I XT ⊗ I

)∥∥2 ∥∥∥∥∥∥
 vec(M1(k))

vec(M2(k))
vec(M3(k))

∥∥∥∥∥∥
2

= θ

3∑
j=1

∥vec(Mj(k))∥2 = θ

3∑
j=1

∥Mj(k)∥2 = θ∥M(k)∥2, (2.16)
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where

θ =
∥∥( (XΛ2)T ⊗ I (XΛ)T ⊗ I XT ⊗ I

)∥∥2 .
According to Algorithm 2.11, Lemmas 2.6 and 2.7, we obtain

∥R(k + 1)∥2 = ∥R(k)− αkQ(k)∥2 = ∥R(k)∥2 − 2αk⟨R(k), Q(k)⟩+ α2
k∥Q(k)∥2

= ∥R(k)∥2 − 2αk⟨R(k),M1(k)XΛ2 +M2(k)XΛ+M3(k)X⟩+ α2
k∥Q(k)∥2

= ∥R(k)∥2 − 2αk

[
⟨R(k)(XΛ2)H ,M1(k)⟩+ ⟨R(k)(XΛ)H ,M2(k)⟩+ ⟨R(k)XH ,M3(k)⟩

]
+ α2

k∥Q(k)∥2

= ∥R(k)∥2 − αk

2

{〈
R(k)(XΛ2)H +XΛ2RH(k)− Sn(R(k)(XΛ2)H +XΛ2RH(k))Sn

− EsE
T
s [R(k)(XΛ2)H +XΛ2RH(k)− Sn(R(k)(XΛ2)H +XΛ2RH(k))Sn]EsE

T
s ,M1(k)

〉
+
〈
R(k)(XΛ)H +XΛRH(k)− Sn(R(k)(XΛ)H +XΛRH(k))Sn

− EtE
T
t [R(k)(XΛ)H +XΛRH(k)− Sn(R(k)(XΛ)H +XΛRH(k))Sn]EtE

T
t ,M2(k)

〉
+
〈
R(k)XH +XRH(k)− Sn(R(k)XH +XRH(k))Sn

− EuE
T
u [R(k)XH +XRH(k)− Sn(R(k)XH +XRH(k))Sn]EuE

T
u ,M3(k)

〉}
+ α2

k∥Q(k)∥2

= ∥R(k)∥2 − αk

2

[
⟨P1(k),M1(k)⟩+ ⟨P2(k),M2(k)⟩+ ⟨P3(k),M3(k)⟩

]
+ α2

k∥Q(k)∥2

= ∥R(k)∥2 − αk

2
⟨P (k),M(k)⟩+ αk

⟨M(k), P (k)⟩
4∥Q(k)∥2

∥Q(k)∥2

= ∥R(k)∥2 − αk

4
⟨P (k),M(k)⟩.

This implies that

∥R(k + 1)∥2 − ∥R(k)∥2 = −αk

4
⟨P (k),M(k)⟩ = − 1

16

⟨M(k), P (k)⟩2

∥Q(k)∥2
≤ 0. (2.17)

Then the sequence {∥R(k)∥2} is decreasing and its limit exists. Hence, by Lemma 2.15 and
the relations (2.16) and (2.17), it follows that

∞∑
k=1

∥P (k)∥4

∥M(k)∥2
=

∞∑
k=1

⟨M(k), P (k)⟩2

∥M(k)∥2
≤

∞∑
k=1

θ
⟨M(k), P (k)⟩2

∥Q(k)∥2

= 16θ

∞∑
k=1

[
∥R(k)∥2 − ∥R(k + 1)∥2

]
= 16θ

[
∥R(1)∥2 − lim

k→∞
∥R(k)∥2

]
< ∞.

The proof is completed.

Theorem 2.17. Let {Pj(k)} (j = 1, 2, 3) be generated by Algorithm 2.11. Then
lim
k→∞

∥Pj(k)∥ = 0 for j = 1, 2, 3.
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Proof. By Lemma 2.14, it follows that

∥M(k + 1)∥2 =

3∑
j=1

∥∥Mj(k + 1)
∥∥2 =

3∑
j=1

∥∥− Pj(k + 1) + βkMj(k)
∥∥2

=
∥∥P (k + 1)

∥∥2 − 2βk⟨P (k + 1),M(k)⟩+ β2
k

∥∥M(k)
∥∥2

=
∥∥P (k + 1)

∥∥2 + β2
k

∥∥M(k)
∥∥2 =

∥∥P (k + 1)
∥∥2 + ∥∥P (k + 1)

∥∥4∥∥P (k)
∥∥4 ∥∥M(k)

∥∥2.
Then

∥M(k + 1)∥2

∥P (k + 1)∥4
=

1

∥P (k + 1)∥2
+

∥M(k)∥2

∥P (k)∥4
. (2.18)

Let tk = ∥M(k)∥2

∥P (k)∥4 . According to the relation (2.18), we immediately have

tk+1 = tk +
1

∥P (k + 1)∥2
. (2.19)

We now prove this result by contradiction. Assume that lim
k→∞

∥P (k)∥ ̸= 0. Then there exists

a positive number δ > 0 such that ∥P (k)∥ ≥ δ for all k ≥ 1. It follows from the relation
(2.19) that

tk+1 ≤ t0 +
k + 1

δ
,

which implies that
∞∑
k=1

1

tk
≥

∞∑
k=1

δ

δt0 + k + 1
= ∞. (2.20)

However, by Lemma 2.16, we get

∞∑
k=1

1

tk
=

∞∑
k=1

∥P (k)∥4

∥M(k)∥2
< ∞,

which obtains a contradiction. Hence lim
k→∞

∥P (k)∥ = 0, and then lim
k→∞

∥Pj(k)∥ = 0 for

j = 1, 2, 3. The proof is completed.

Finally, we consider the least Frobenius norm solution of Problem 2.1. The following
lemma is needed for the main result.

Lemma 2.18. Suppose that (Ã∗, B̃∗, C̃∗) is a solution of Problem 2.1. Then, an arbitrary

solution (Ã, B̃, C̃) of Problem 2.1 can be expressed as

(Ã, B̃, C̃) = (Ã∗ +W1, B̃∗ +W2, C̃∗ +W3), (2.21)

where (W1,W2,W3) ∈ S̃1 × S̃2 × S̃3 satisfies

W1XΛ2 +W2XΛ+W3X = O. (2.22)

Proof. For an arbitrary solution (Ã, B̃, C̃) of Problem 2.1, we first define the following ma-
trices

W1 = Ã− Ã∗, W2 = B̃ − B̃∗, W3 = C̃ − C̃∗.
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Obviously (W1,W2,W3) ∈ S̃1 × S̃2 × S̃3. Let R∗ = Ã∗XΛ2 + B̃∗XΛ + C̃∗X − Z̃. Since

(Ã∗, B̃∗, C̃∗) is a solution of Problem 2.1, it follows from Theorem 2.10 that

⟨Ã∗XΛ2 + B̃∗XΛ+ C̃∗X − Z̃,W1XΛ2 +W2XΛ+W3X⟩
= ⟨R∗(XΛ2)H ,W1⟩+ ⟨R∗(XΛ)H ,W2⟩+ ⟨R∗X

H ,W3⟩

=
1

4

{
⟨R∗(XΛ2)H +XΛ2RH

∗ − Sn(R∗(XΛ2)H +XΛ2RH
∗ )Sn

−EsE
T
s [R∗(XΛ2)H +XΛ2RH

∗ − Sn(R∗(XΛ2)H +XΛ2RH
∗ )Sn]EsE

T
s ,W1⟩

+⟨R∗(XΛ)H +XΛRH
∗ − Sn(R∗(XΛ)H +XΛRH

∗ )Sn

−EtE
T
t [R∗(XΛ)H +XΛRH

∗ − Sn(R∗(XΛ)H +XΛRH
∗ )Sn]EtE

T
t ,W2⟩

+⟨R∗X
H +XRH

∗ − Sn(R∗X
H +XRH

∗ )Sn

−EuE
T
u [R∗X

H +XRH
∗ − Sn(R∗X

H +XRH
∗ )Sn]EuE

T
u ,W3⟩

}
= 0.

Then

∥ÃXΛ2 + B̃XΛ+ C̃X − Z̃∥2

= ∥(Ã∗ +W1)XΛ2 + (B̃∗ +W2)XΛ+ (C̃∗ +W3)X − Z̃∥2

= ∥Ã∗XΛ2 + B̃∗XΛ+ C̃∗X − Z̃∥2

+2⟨Ã∗XΛ2 + B̃∗XΛ+ C̃∗X − Z̃,W1XΛ2 +W2XΛ+W3X⟩
+∥W1XΛ2 +W2XΛ+W3X∥2

= ∥Ã∗XΛ2 + B̃∗XΛ+ C̃∗X − Z̃∥2 + ∥W1XΛ2 +W2XΛ+W3X∥2.

This implies that

W1XΛ2 +W2XΛ+W3X = O.

The proof is completed.

Theorem 2.19. If we choose the initial matrices Ã(1), B̃(1) and C̃(1) as follows:



Ã(1) = Y (1)(XΛ2)H +XΛ2Y H(1)− Sn(Y (1)(XΛ2)H +XΛ2Y H(1))Sn

− EsE
T
s [Y (1)(XΛ2)H +XΛ2Y H(1)− Sn(Y (1)(XΛ2)H +XΛ2Y H(1))Sn]EsE

T
s ,

B̃(1) = Y (1)(XΛ)H +XΛY H(1)− Sn(Y (1)(XΛ)H +XΛY (1)H)Sn

− EtE
T
t [Y (1)(XΛ)H +XΛY H(1)− Sn(Y (1)(XΛ)H +XΛY H(1))Sn]EtE

T
t ,

C̃(1) = Y (1)XH +XY (1)H − Sn(Y (1)XH +XY H(1))Sn

− EuE
T
u [Y (1)XH +XY H(1)− Sn(Y (1)XH +XY H(1))Sn]EuE

T
u ,

(2.23)
where Y (1) ∈ Cn×m is an arbitrary matrix (especially, take Y (1) = O), then the solution

(Ã∗, B̃∗, C̃∗) given by Algorithm 2.11 is the unique least Frobenius norm least squares solution
of Problem 2.1.

Proof. Assume that the initial value (Ã(1), B̃(1), C̃(1)) is chosen as in (2.23). According to

Theorem 2.17, the solution (Ã∗, B̃∗, C̃∗) can be obtained by Algorithm 2.11 and it has the
following form:
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Ã∗ = Y (XΛ2)H +XΛ2Y H − Sn(Y (XΛ2)H +XΛ2Y H)Sn

− EsE
T
s [Y (XΛ2)H +XΛ2Y H − Sn(Y (XΛ2)H +XΛ2Y H)Sn]EsE

T
s ,

B̃∗ = Y (XΛ)H +XΛY H − Sn(Y (XΛ)H +XΛY H(k))Sn

− EtE
T
t [Y (XΛ)H +XΛY H − Sn(Y (XΛ)H +XΛY H)Sn]EtE

T
t ,

C̃∗ = Y XH +XY H − Sn(Y XH +XY H)Sn

− EuE
T
u [Y XH +XY H − Sn(Y XH +XY H)Sn]EuE

T
u .

(2.24)

Now suppose that (Ã, B̃, C̃) is an arbitrary solution of Problem 2.1. It follows from Lemma

2.18 that there exists (W1,W2,W3) ∈ S̃1 × S̃2 × S̃3 such that

(Ã, B̃, C̃) = (Ã∗ +W1, B̃∗ +W2, C̃∗ +W3) (2.25)

and

W1XΛ2 +W2XΛ+W3X = O. (2.26)

By the relation (2.26) and Lemmas 2.6 and 2.7, we have

⟨Ã∗,W1⟩+ ⟨B̃∗,W2⟩+ ⟨C̃∗,W3⟩ = 4⟨Y (XΛ2)T ,W1⟩+ 4⟨Y (XΛ)T ,W2⟩+ 4⟨Y XT ,W3⟩
= 4⟨Y,W1XΛ2 +W2XΛ+W3X⟩ = 0,

which, together with (2.25), yields

∥Ã∥2 + ∥B̃∥2 + ∥C̃∥2 = ∥Ã∗ +W1∥2 + ∥B̃∗ +W2∥2 + ∥C̃∗ +W3∥2

= ∥Ã∗∥2 + ∥B̃∗∥2 + ∥C̃∗∥2 + ∥W1∥2 + ∥W2∥2 + ∥W3∥2

+2
[
⟨Ã∗,W1⟩+ ⟨B̃∗,W2⟩+ ⟨C̃∗,W3⟩

]
= ∥Ã∗∥2 + ∥B̃∗∥2 + ∥C̃∗∥2 + ∥W1∥2 + ∥W2∥2 + ∥W3∥2 ≥ ∥Ã∗∥2 + ∥B̃∗∥2 + ∥C̃∗∥2.

This implies that the solution (Ã∗, B̃∗, C̃∗) is the least Frobenius norm solution of Problem
2.1. The proof is completed.

3 Iterative Method for Problem 1.2

In this section, we will establish an iterative method for solving Problem 1.2. For given
A,B,C ∈ Cn×n and an arbitrary solution (A,B,C) = (Ã+ Ãp, B̃ + B̃q, C̃ + C̃r) ∈ SE . Let
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A
′
= A− Ãp, B

′
= B − B̃q and C

′
= C − C̃r. Then

∥A−A∥2 + ∥B −B∥2 + ∥C − C∥2 = ∥Ã−A
′∥2 + ∥B̃ −B

′∥2 + ∥C̃ − C
′∥2

=
∥∥∥Ã− A

′
+A

′H

2

∥∥∥2 + ∥∥∥B̃ − B
′
+B

′H

2

∥∥∥2 + ∥∥∥C̃ − C
′
+ C

′H

2

∥∥∥2 + ∥∥∥A′ −A
′H

2

∥∥∥2
+
∥∥∥B′ −B

′H

2

∥∥∥2 + ∥∥∥C ′ − C
′H

2

∥∥∥2
=

∥∥∥Ã− A
′
+A

′H − Sn(A
′
+A

′H
)Sn

4

∥∥∥2 + ∥∥∥B̃ − B
′
+B

′H − Sn(B
′
+B

′H
)Sn

4

∥∥∥2
+
∥∥∥C̃ − C

′
+ C

′H − Sn(C
′
+ C

′H
)Sn

4

∥∥∥2 + ∥∥∥A′ −A
′H

2

∥∥∥2
+
∥∥∥B′ −B

′H

2

∥∥∥2 + ∥∥∥C ′ − C
′H

2

∥∥∥2
=

∥∥∥Ã− A
′
+A

′H − Sn(A
′
+A

′H
)Sn − EsE

T
s [A

′
+A

′H − Sn(A
′
+A

′H
)Sn]EsE

T
s

4

∥∥∥2
+
∥∥∥B̃ − B

′
+B

′H − Sn(B
′
+B

′H
)Sn − EtE

T
t [B

′
+B

′H − Sn(B
′
+B

′H
)Sn]EtE

T
t

4

∥∥∥2
+
∥∥∥C̃ − C

′
+ C

′H − Sn(C
′
+ C

′H
)Sn − EuE

T
u [C

′
+ C

′H − Sn(C
′
+ C

′H
)Sn]EuE

T
u

4

∥∥∥2
+
∥∥∥EsE

T
s [A

′
+A

′H − Sn(A
′
+A

′H
)Sn]EsE

T
s

4

∥∥∥2
+
∥∥∥EtE

T
t [B

′
+B

′H − Sn(B
′
+B

′H
)Sn]EtE

T
t

4

∥∥∥2
+
∥∥∥EuE

T
u [C

′
+ C

′H − Sn(C
′
+ C

′H
)Sn]EuE

T
u

4

∥∥∥2
+
∥∥∥A′ −A

′H

2

∥∥∥2 + ∥∥∥B′ −B
′H

2
∥2 + ∥C

′ − C
′H

2

∥∥∥2. (3.1)

Let

A =
A

′
+A

′H − Sn(A
′
+A

′H
)Sn − EsE

T
s [A

′
+A

′H − Sn(A
′
+A

′H
)Sn]EsE

T
s

4
, (3.2)

B =
B

′
+B

′H − Sn(B
′
+B

′H
)Sn − EtE

T
t [A

′
+B

′H − Sn(B
′
+B

′H
)Sn]EtE

T
t

4
, (3.3)

and

C =
C

′
+ C

′H − Sn(C
′
+ C

′H
)Sn − EuE

T
u [A

′
+ C

′H − Sn(C
′
+ C

′H
)Sn]EuE

T
u

4
. (3.4)
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It is easy to see that (A,B, C) ∈ S̃1 × S̃2 × S̃3. And, it follows from (3.1)–(3.4) that

∥A−A∥2 + ∥B −B∥2 + ∥C − C∥2

= ∥Ã−A∥2 + ∥B̃ − B∥2 + ∥C̃ − C∥2 +
∥∥∥EsE

T
s [A

′
+A

′H − Sn(A
′
+A

′H
)Sn]EsE

T
s

4

∥∥∥2
+
∥∥∥EtE

T
t [B

′
+B

′H − Sn(B
′
+B

′H
)Sn]EtE

T
t

4

∥∥∥2
+
∥∥∥EuE

T
u [C

′
+ C

′H − Sn(C
′
+ C

′H
)Sn]EuE

T
u

4

∥∥∥2
+
∥∥∥A′ −A

′H

2

∥∥∥2 + ∥∥∥B′ −B
′H

2

∥∥∥2 + ∥∥∥C ′ − C
′H

2

∥∥∥2. (3.5)

By direct calculations, we have

min
(Ã,B̃,C̃)∈S̃1×S̃2×S̃3

∥ÃXΛ2 + B̃XΛ+ C̃X − Z̃∥

= min
(Ã,B̃,C̃)∈S̃1×S̃2×S̃3

∥(Ã−A)XΛ2 + (B̃ − B)XΛ+ (C̃ − C)X − (Z̃ −AXΛ2 − BXΛ− CX)∥.

Denote Z̃ = Z̃ −AXΛ2 − BXΛ− CX. Then

min
(Ã,B̃,C̃)∈S̃1×S̃2×S̃3

∥ÃXΛ2 + B̃XΛ+ C̃X − Z̃∥

= min
(Ã−A,B̃−B,C̃−C)∈S̃1×S̃2×S̃3

∥(Ã−A)XΛ2 + (B̃ − B)XΛ+ (C̃ − C)X − Z̃∥. (3.6)

According to (3.5) and (3.6), it follows that

min
(A,B,C)∈SE

[
∥A−A∥2 + ∥B −B∥2 + ∥C − C∥2

]
is equivalent to finding a least Frobenius norm solution of the following problem

min
(Ã,B̃,C̃)∈S̃1×S̃2×S̃3

∥ÃXΛ2 + B̃XΛ+ C̃X − Z̃∥, (3.7)

where

Ã = Ã−A = Ã− A
′
+A

′H − Sn(A
′
+A

′H
)Sn − EsE

T
s [A

′
+A

′H − Sn(A
′
+A

′H
)Sn]EsE

T
s

4
,

B̃ = B̃ − B = B̃ − B
′
+B

′H − Sn(B
′
+B

′H
)Sn − EtE

T
t [B

′
+B

′H − Sn(B
′
+B

′H
)Sn]EtE

T
t

4
,

C̃ = C̃ − C = C̃ − C
′
+ C

′H − Sn(C
′
+ C

′H
)Sn − EuE

T
u [C

′
+ C

′H − Sn(C
′
+ C

′H
)Sn]EuE

T
u

4
.

By applying Algorithm 2.11, we can obtain the unique least Frobenius norm solution (Ã∗, B̃∗, C̃∗)
of the problem (3.7). Then the unique solution of Problem 1.2 can be obtained as follows:

Â = Ã∗ +
A

′
+A

′H − Sn(A
′
+A

′H
)Sn − EsE

T
s [A

′
+A

′H − Sn(A
′
+A

′H
)Sn]EsE

T
s

4
+ Ãp,

B̂ = B̃∗ +
B

′
+B

′H − Sn(B
′
+B

′H
)Sn − EtE

T
t [B

′
+B

′H − Sn(B
′
+B

′H
)Sn]EtE

T
t

4
+ B̃q,

Ĉ = C̃∗ +
C

′
+ C

′H − Sn(C
′
+ C

′H
)Sn − EuE

T
u [C

′
+ C

′H − Sn(C
′
+ C

′H
)Sn]EuE

T
u

4
+ C̃r.
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4 Numerical Experiments

In this section, we report some numerical results to illustrate the efficiency of the proposed
method and verify conclusions in this paper. All of the tests were run on the Intel (R) Core
(TM), where the CPU is 2.40 GHz and the memory is 8.0 GB. The programming language
is MATLAB R2015a. In view of the influence of round-off errors, we regard a matrix T as
the zero matrix if ⟨T, T ⟩ < 10−10.

Example 4.1. Consider the following quadratic inverse eigenvalue problem

AXΛ2 +BXΛ+ CX = O,

where
X =

and Λ = diag(4.6176 + 0.2816i, 1.1012 + 0.4456i, 0.4056 + 0.2760i,−0.4480 + 0.1190i,
−0.0826 + 0.0344i, 0.1136 + 0.2238i). Let s = {2, 5}, t = {2, 5}, u = {3, 4}, Ap =(

0.25 + 0.01i −0.5 + 0.2i
−0.25− 0.01i 0.25 + 0.01i

)
, Bq =

(
0.25 −0.5 + 0.2i

−0.25− 0.01i 0.25 + 0.01i

)
and Cr =(

0.05 + 0.01i 0.15 + 0.03i
0.2 + 0.02i 0.1 + 0.01i

)
. Then

Ãp =


0 0 0 0 0 0
0 0.25 + 0.01i 0 0 −0.5 + 0.2i 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −0.25− 0.01i 0 0 0.25 + 0.01i 0
0 0 0 0 0 0

 ,

B̃q =


0 0 0 0 0 0
0 0.25 0 0 −0.5 + 0.2i 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −0.25− 0.01i 0 0 0.25 + 0.01i 0
0 0 0 0 0 0

 ,

C̃r =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.05 + 0.01i 0.15 + 0.03i 0 0
0 0 0.2 + 0.02i 0.1 + 0.01i 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

Z̃ = −ÃpXΛ2 − B̃qXΛ− C̃rX =
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First, we illustrate the efficiency of Algorithm 2.11 for solving the quadratic inverse eigen-
value problem. Let the initial matrices Ã(1) = B̃(1) = C̃(1) = zeros(6, 6). By Algorithm
2.11, we obtain the least Frobenius norm solution of Problem 1.1 after 69 iterative steps as
follows.

Ã∗,NCG = ÃNCG(69) + Ãp =

B̃∗,NCG = B̃NCG(69) + B̃q =

C̃∗,NCG = C̃NCG(69) + C̃r =

At this moment, the norms of R(k) and P (k) are ∥R(k)∥ = 2.1513 and ∥P (k)∥ = 7.4137e−11,
respectively. The relationship between the number of iterations and the norm of P (k) is
shown in Figure 1. Figure 1 illustrates that Algorithm 2.11 is efficient for solving the
constrained quadratic inverse eigenvalue problem.

Iteration number (k)
10 20 30 40 50 60 70

T
he

 n
or

m
 o

f P
(k

)

10-10

10-5

100

105

Figure 1: The relationship between the number of iterations and the norm of P (k) for
Example 4.1

Second, we compare Algorithm 2.11 with the CGNR method developed by Hajarian and
Abbas [24]. For fairness, we also choose the zero matrices as the initial values. By the
CGNR method, we obtain the solution of Problem 2.1 after 67 iterative steps as follows.
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ÃCGNR(67) =

B̃CGNR(67) =

C̃CGNR(67) =

It is easy to see that ÃCGNR(67)[s|s] ̸= O, B̃CGNR(67)[t|t] ̸= O and C̃CGNR(67)[u|u] ̸=
O. The reason is that the iterative sequences {ÃCGNR(k)}, {B̃CGNR(k)} and {C̃CGNR(k)}
generated by CGNR method can not satisfy

ÃCGNR(k)[s|s] = O, B̃CGNR(k)[t|t] = O, C̃CGNR(k)[u|u] = O.

In other words, the submatrix constrained solution generated by CGNR method can only
be approximated.

By contrast, our proposed method projects the iterative sequences {ÃNCG(k)}, {B̃NCG(k)}
and {C̃NCG(k)} to linear subspaces S̃1, S̃2 and S̃3, respectively. Hence, we always have

ÃNCG(k)[s|s] = O, B̃NCG(k)[t|t] = O, C̃NCG(k)[u|u] = O.

This illustrates that our proposed method can solve the submatrix constrained quadratic
inverse eigenvalue problem more accurately.

5 Concluding Remarks

This paper is concerned with the least squares solution of a class of constrained quadratic
inverse eigenvalue problem and its optimal approximation problem. We propose a nonlin-
ear conjugate gradient method for finding the solution over Hermitian centroskew matrices
with a submatrix constraint. The convergence analysis of the proposed method is given.
Numerical results illustrate that the proposed method is efficient for the quadratic inverse
eigenvalue problem.
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