

A CLARKE-LEDYAEV MULTIDIRECTIONAL MEAN VALUE INEQUALITY FOR CONVEX FUNCTIONS*

Mihail Hamamdjiev and Nadia Zlateva[†]

Abstract: We establish a Clarke-Ledyaev multidirectional mean value inequality for a proper, convex, lower semicontinuous and bounded below function.

Key words: convex function, multidirectional mean value inequality

Mathematics Subject Classification: 49K27, 49J53, 49J52

1 Introduction

The pioneering multidirectional inequality is due to F. Clarke and Y. Ledyaev and appeared in 1994 in [4]. It compares the values of a locally Lipschitz function on two bounded, closed and convex subsets of a Banach space, one of which is compact, see [4, Theorem 4.1], stated here as Theorem 2.1. After then, the theme of multidirectional mean value inequalities of different types and in different settings was developed in number of publications, see e.g. [1, 2, 5, 6, 8, 11, 14, 15, 16, 17].

In this short note we prove a multidirectional mean value inequality of the type found in [4] for a proper convex, lower semicontinuous and bounded below function. As such a function is not necessarily locally Lipschitz, [4, Theorem 4.1] could not be directly applied. Instead, we use Hausdorff approximations of the function, which are Lipschitz functions.

Our main result is the following

Theorem 1.1. Let $(X, \|\cdot\|)$ be a Banach space and let $A, B \subseteq X$ be non-empty, closed, bounded and convex sets such that A is compact. Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a lower semicontinuous convex function, which is bounded below on X. In addition,

(a) if f is bounded on A, then for any $\varepsilon > 0$ and any $\delta > 0$ one can find $z \in [A, B] + \delta \mathbb{B}$ and $p \in \partial f(z)$ such that

$$\inf_{A} f - \sup_{B} f < \langle p, a - b \rangle + \varepsilon, \quad \forall a \in A, \ \forall b \in B.$$

^{*}Research supported by the Bulgarian National Scientific Fund under Grant KP-06-H22/4.

[†]Corresponding author

^{© 2022} Yokohama Publishers

(b) if f is bounded on B, then for any $\varepsilon > 0$ and any $\delta > 0$ one can find $w \in [A, B] + \delta \mathbb{B}$ and $g \in \partial f(w)$ such that

$$\inf_{\overline{B}}f-\sup_{A}f<\langle q,b-a\rangle+\varepsilon,\quad \forall a\in A,\ \forall b\in B,$$

where
$$\inf_{B} f := \lim_{\gamma \downarrow 0} \inf_{b \in B_{\gamma}} f(b)$$
.

Let us note that in [4, Theorem 4.1] the function f is assumed locally Lipschitz; i.e., to each $z \in [A, B]$ there corresponds an open neighbourhood of z in X in which f satisfies a Lipschitz condition. However, it is not difficult to find examples of a convex function and a couple of sets satisfying the assumptions of Theorem 1.1 that do not satisfy the assumptions of [4, Theorem 4.1], see Section 4 below.

The paper is organized as follows. After a short Section 2 on notations and preliminaries, in Section 3 we give the proof of Theorem 1.1. In the final Section 4 two examples are provided.

2 Preliminaries and Notations

The notation used throughout the paper is standard. As usual, $(X, \| \cdot \|)$ denotes a real Banach space, that is, complete normed space over \mathbb{R} . Its closed unit ball is denoted by \mathbb{B} . The dual space X^* of X is the Banach space of all continuous linear functionals p from X to \mathbb{R} . The natural norm of X^* is again denoted by $\| \cdot \|$. The value of $p \in X^*$ at $x \in X$ is denoted by $\langle p, x \rangle$.

For two non-empty sets $A, B \subseteq X$, the segment [A, B] is defined by

$$[A, B] := \{z : z = \lambda x + (1 - \lambda)y, \ x \in A, \ y \in B, \ \lambda \in [0, 1]\}.$$

The δ -enlargement of a non-empty set $C \subset X$ is $C_{\delta} := C + \delta \mathbb{B}$.

Recall that the generalized directional derivative of a locally Lipschitz function $f: X \to \mathbb{R}$ at x in direction h is given by

$$f^{\circ}(x,h) := \limsup_{\substack{x' \to x \\ t \downarrow 0}} \frac{f(x'+th) - f(x')}{t},$$

and the Clarke subdifferential of f at x is the non-empty set

$$\partial^C f(x) := \{ \xi \in X^* : f^{\circ}(x,h) \geq \langle \xi, h \rangle, \ \forall h \in X \}.$$

Our main tool is the following fundamental Clarke-Ledyaev multidirectional mean value theorem.

Theorem 2.1. [4, [Theorem 4.1]]

Let $(X, \|\cdot\|)$ be a Banach space. Let A, B be non-empty closed convex bounded subsets of X, such that at least one of them is compact, and let $\varepsilon > 0$ be given. Let $f: X \to \mathbb{R}$ be a locally Lipschitz function on [A, B]. Then there exists a point $z \in [A, B]$ and $\xi \in \partial^C f(z)$, such that

$$\inf_{A} f - \sup_{B} f < \langle \xi, a - b \rangle + \varepsilon, \quad \forall a \in A, \ \forall b \in B.$$

The effective domain dom f of an extended real-valued function $f: X \to \mathbb{R} \cup \{+\infty\}$ is the set of points x where $f(x) \in \mathbb{R}$. The function f is proper if dom $f \neq \emptyset$. It is lower semicontinuous if $f(\bar{x}) \leq \liminf f(x)$ for all $\bar{x} \in X$.

Let us recall that for $\varepsilon \geq 0$, the ε -subdifferential of a proper, convex and lower semicontinuous function $f: X \to \mathbb{R} \cup \{+\infty\}$ at $x \in \text{dom } f$ is the set

$$\partial_{\varepsilon} f(x) = \{ p \in X^* : \langle p, y - x \rangle \le f(y) - f(x) + \varepsilon, \ \forall y \in X \},$$

and $\partial_{\varepsilon} f = \emptyset$ on $X \setminus \text{dom } f$. Of course, for $\varepsilon = 0$, $\partial_0 f(x)$ coincides with the subdifferential $\partial f(x)$ of f at x in the sense of Convex Analysis. The latter coincides with the Clarke subdifferential of f at x when f is continuous at x.

The domain dom $\partial_{\varepsilon}f$ of $\partial_{\varepsilon}f$ consists of all points $x \in X$ such that $\partial_{\varepsilon}f(x)$ is non-empty. Note that for $\varepsilon > 0$ the sets $\partial_{\varepsilon}f(x)$ are always non-empty, while $\partial f(x)$ could be empty at some points. Furthermore, for any real numbers ε_1 and ε_2 such that $0 < \varepsilon_1 \le \varepsilon_2$ one has $\partial_{\varepsilon_1}f(x) \subset \partial_{\varepsilon_2}f(x)$ and $\partial f(x) = \bigcap \partial_{\varepsilon}f(x)$.

From now on, $f: X \to \mathbb{R} \cup \{+\infty\}$ will always be a proper, lower semicontinuous and convex function. For $n \in \mathbb{N}$ define the inf-convolutions $\{f_n\}$ by

$$f_n(x) := \inf_{y \in X} \{ f(y) + n || x - y || \}.$$

The approximating sequence $\{f_n\}$ was originally introduced by Hausdorff [9] for any lower bounded lower semicontinuous function f of a real variable. It is clear that for sufficiently large n the function f_n is finite valued and we will always consider this case even if it is not stated explicitly. Some well-known properties of these inf-convolutions of f (see, for instance, [13, 10, 7]) are listed in next

Lemma 2.2. For n large enough

- (i) f_n is convex and n-Lipschitzian;
- (ii) $f_n(x) \leq f_{n+1}(x) \leq f(x)$ for all $x \in X$ and all $n \in \mathbb{N}$;
- (iii) $f_n(x) \to f(x)$ as $n \to \infty$ for all $x \in X$.

Let us denote the set of the ε -minima of the function $f(\cdot) + n\|x - \cdot\|$ by

$$M_{\varepsilon}^{n}(x) := \{ y \in X : f(y) + n || x - y || \le f_{n}(x) + \varepsilon \}.$$

It is clear that for $\varepsilon > 0$ the sets $M_{\varepsilon}^{n}(x)$ are non-empty.

The following is well-known, for proof see e.g. [18, Lemma 3].

Lemma 2.3. For any $\varepsilon \geq 0$, and any $y \in M_{\varepsilon}^{n}(x)$ it holds that

$$\partial f_n(x) \subset \partial_{\varepsilon} f(y) \cap \partial_{\varepsilon} n \| \cdot \| (x - y).$$
 (2.1)

The result of Brøndsted and Rockafellar stating that the graph of $\partial_{\varepsilon} f$ is close to the graph of ∂f is also well known:

Theorem 2.4 (Brøndsted-Rockafellar [3]). Let $f: X \to \mathbb{R} \cup \{+\infty\}$, be a proper, convex and lower semicontinuous function, let $x \in \text{dom } f$, let $\varepsilon > 0$ and $p \in \partial_{\varepsilon} f(x)$. Then there exists $q \in \partial f(z)$ such that

$$||z - x|| \le \sqrt{\varepsilon}$$
, and $||q - p|| \le \sqrt{\varepsilon}$.

From Brøndsted-Rockafellar Theorem it easily follows that dom ∂f is f-graphically dense in dom f, i.e., for any $a \in \text{dom } f$ there exists a sequence $x_n \in \text{dom } \partial f$ with $x_n \to a$ and $f(x_n) \to f(a)$.

3 Proof of Theorem 1.1

Let us fix any $\varepsilon > 0$ and $\delta > 0$. Since A and B are assumed bounded, $d := \operatorname{diam}(A - B) = \sup\{\|a - b\| : a \in A, \ b \in B\}$ is finite. Take $\varepsilon' > 0$ such that $\varepsilon' + d\sqrt{\varepsilon'} < \varepsilon$, and $\sqrt{\varepsilon'} < \delta/2$.

(a) We have to consider two cases. Case 1. $\sup f = +\infty$. Let us note that since f is bounded on A, $A \subseteq \operatorname{dom} f$. Take any $a \in A$. By f-graphical density of $\operatorname{dom} \partial f$ in $\operatorname{dom} f$ there exists $z \in \operatorname{dom} \partial f$ such that $||a - z|| \leq \delta$. Pick any $p \in \partial f(z)$. Then, since $\sup_{B} f = +\infty$ and A, and B are assumed

$$\inf_{A} f - \sup_{B} f < \langle p, a - b \rangle, \quad \forall a \in A, \ \forall b \in B,$$

and the claim follows.

Case 2. $\sup_{B} f < +\infty$.

bounded, we obviously have

For $n \in \mathbb{N}$ large enough, the Hausdorff approximation $f_n : X \to \mathbb{R}$ is n-Lipschitz continuous, see Lemma 2.2(i). We apply Theorem 2.1 to f_n , A and B to obtain $z'_n \in [A, B]$ and $p'_n \in \partial f_n(z'_n)$ such that

$$\inf_{A} f_n - \sup_{B} f_n < \langle p'_n, a - b \rangle + \varepsilon'/8, \quad \forall a \in A, \ \forall b \in B.$$
 (3.1)

By compactness one can find $a_n \in A$ such that $f_n(a_n) = \inf_A f_n$. Lemma 2.2(ii) yields that $\sup_B f_n \leq \sup_B f$. Incorporating these in (3.1), we have that

$$f_n(a_n) - \sup_B f < \langle p'_n, a - b \rangle + \varepsilon'/8, \quad \forall a \in A, \ \forall b \in B.$$
 (3.2)

Take any $y(a_n) \in M_{\varepsilon'/8}^n(a_n)$, i.e.

$$f(y(a_n)) + n||a_n - y(a_n)|| \le f_n(a_n) + \varepsilon'/8,$$
 (3.3)

and observe by using Lemma 2.2(ii) again, that

$$f_n(a_n) = \inf_A f_n \le \inf_A f,$$

which is finite as f is bounded on A. Using the latter in (3.3) we obtain that

$$f(y(a_n)) + n||a_n - y(a_n)|| \le \inf_A f + \varepsilon'/8.$$
 (3.4)

Since f is bounded below on X, say by μ , the latter easily yields

$$||a_n - y(a_n)|| \le \frac{\inf_A f - \mu + \varepsilon'/8}{n}.$$

Since the sequence $\{a_n\}$ is in the compact set A, there is a convergent to some $a_0 \in A$ subsequence, which we index in the same way for convenience. Hence, $\{y(a_n)\}$ also converges to a_0 . By the lower semicontinuity of f at a_0 , for large n,

$$f(a_0) \le f(y(a_n)) + \varepsilon'/4. \tag{3.5}$$

From (3.2), (3.3) and (3.5) we obtain that

$$f(a_0) - \sup_{B} f < \langle p'_n, a - b \rangle + \varepsilon'/2, \ \forall a \in A, \ \forall b \in B,$$

which yields

$$\inf_{A} f - \sup_{B} f < \langle p'_{n}, a - b \rangle + \varepsilon'/2,$$

$$\forall a \in A, \ \forall b \in B \text{ and } n \in \mathbb{N} \text{ large enough.}$$

$$(3.6)$$

Recall that $p'_n \in \partial f_n(z'_n)$, $z'_n \in [A, B]$. By Lemma 2.3 it holds that for any $y(z'_n) \in M^n_{\varepsilon'}(z'_n)$ we have $p'_n \in \partial_{\varepsilon'} f(y(z'_n))$. Fix $y(z'_n) \in M^n_{\varepsilon'}(z'_n)$. By Brønsted-Rockafellar Theorem there exists $p_n \in \partial f(z_n)$ such that $||z_n - y(z'_n)|| \le \sqrt{\varepsilon'}$ and $||p_n - p'_n|| \le \sqrt{\varepsilon'}$. It easily follows that for any $a \in A$, and any $b \in B$,

$$\langle p'_n, a - b \rangle \le \langle p_n, a - b \rangle + ||p'_n - p_n|| ||a - b|| \le \langle p_n, a - b \rangle + \sqrt{\varepsilon'} d.$$

Using the latter in (3.6), for large n we have

$$\inf_{A} f - \sup_{B} f < \langle p_n, a - b \rangle + \varepsilon'/2 + \sqrt{\varepsilon'}d, \ \forall a \in A, \ \forall b \in B,$$

hence,

$$\inf_{A} f - \sup_{B} f < \langle p_n, a - b \rangle + \varepsilon, \ \forall a \in A, \ \forall b \in B,$$

by the choice of ε' .

We only need to show that for large $n, z_n \in [A, B] + \delta \mathbb{B}$. To this end, we use first that $||z_n - y(z_n')|| \le \sqrt{\varepsilon'} < \delta/2$, by the choice of ε' , and second, that $y(z_n') \in M_{\varepsilon'}^n(z_n')$, hence

$$f(y(z'_n)) + n||z'_n - y(z'_n)|| \le f_n(z'_n) + \varepsilon' \le f(z'_n) + \varepsilon',$$
 (3.7)

where the last inequality follows by Lemma 2.2(ii). As in this case f is bounded above on A and on B, by convexity f is bounded above on [A, B]. Let f is bounded above on [A, B] by some constant M. Using this and the fact that f is bounded below by μ on X we have by (3.7) that

$$\mu + n\|z_n' - y(z_n')\| \le M + \varepsilon',$$

hence,

$$||z'_n - y(z'_n)|| \le \frac{M - \mu + \varepsilon'}{n} < \delta/2,$$

for sufficiently large n.

So, $z'_n \in [A, B]$ and $||z_n - z'_n|| \le ||z_n - y(z'_n)|| + ||y(z'_n) - z'_n|| \le \delta$, which means that $z_n \in [A, B] + \delta \mathbb{B}$ for large n.

Finally, taking n large enough, and setting $p:=p_n$ and $z:=z_n$ we obtain that $p\in\partial f(z)$, $z\in[A,B]+\delta\mathbb{B}$, and

$$\inf_{A}f-\sup_{B}f<\langle p,a-b\rangle+\varepsilon,\ \forall a\in A,\ \forall b\in B.$$

The proof of (a) is then completed.

(b) The proof is quite similar to the proof of (a) but we prefer to present it for completeness. Since f is bounded on B, $B \subset \text{dom } f$ and $\inf f$ is finite.

We consider again two cases.

Case 1. $\sup f = +\infty$. Take any $b \in B \subseteq \operatorname{dom} f$. By f-graphical density of $\operatorname{dom} \partial f$ in dom f there exists $w \in \text{dom } \partial f$ such that $||b-w|| \leq \delta$. Pick any $q \in \partial f(w)$. Then, since $\sup f = +\infty$ and the sets A, and B are assumed bounded, we obviously have

$$\inf_{\overline{B}}f-\sup_{A}f<\langle q,b-a\rangle,\quad \forall a\in A,\ \forall b\in B,$$

and the claim follows.

Case 2. $\sup f < +\infty$. Let $\gamma > 0$ be such that

$$\underline{\inf}_{B} f \leq \inf_{B_{\alpha}} f + \varepsilon'/4.$$

 $\frac{\inf_{B} f \leq \inf_{B_{\gamma}} f + \varepsilon'/4.}{\text{For large enough } n \text{ we apply Theorem 2.1 for the } n\text{-Lipschitz continuous Hausdorff}$ approximation $f_n: X \to \mathbb{R}$ and the sets A and B to obtain $w'_n \in [A, B]$ and $q'_n \in \partial f_n(w'_n)$ such that

$$\inf_{B} f_n - \sup_{A} f_n < \langle q'_n, b - a \rangle + \varepsilon'/4, \quad \forall a \in A, \ \forall b \in B.$$
 (3.8)

For some $b_n \in B$ it holds that $f_n(b_n) \leq \inf_{\mathcal{D}} f_n + \varepsilon'/4$. Lemma 2.2(ii) yields that $\sup_{n \in B} f_n \leq 1$ $\sup f$. Incorporating these in (3.8), we have that

$$f_n(b_n) - \sup_A f < \langle q'_n, b - a \rangle + \varepsilon'/2, \quad \forall a \in A, \ \forall b \in B.$$
 (3.9)

Take any $y(b_n) \in M_{\epsilon'/4}^n(b_n)$, i.e.

$$f(y(b_n)) + n||b_n - y(b_n)|| \le f_n(b_n) + \varepsilon'/4,$$
 (3.10)

and using Lemma 2.2(ii) again, we get that

$$f_n(b_n) \le \inf_B f_n + \varepsilon'/4 \le \inf_B f + \varepsilon'/4.$$

Note that $\inf_B f$ is finite as f is bounded on B. Using the latter we estimate the right hand side of (3.10) by

$$f(y(b_n)) + n||b_n - y(b_n)|| \le \inf_{B} f + \varepsilon'/2.$$
 (3.11)

Since f is bounded below on X by μ , the latter easily yields

$$||b_n - y(b_n)|| \le \frac{\inf_B f - \mu + \varepsilon'/2}{n}.$$

Hence, for sufficiently large n, $||b_n - y(b_n)|| \le \gamma$, and $y(b_n) \in B_{\gamma}$. From (3.9) and (3.10) we have that

$$f(y(b_n)) - \sup_{A} f < \langle q'_n, b - a \rangle + 3\varepsilon'/4, \ \forall a \in A, \ \forall b \in B.$$
 (3.12)

Using that $f(y(b_n)) \ge \inf_{B_{\gamma}} f \ge \inf_{B} f - \varepsilon'/4$ from (3.12) we get

$$\underline{\inf}_{B} f - \sup_{A} f < \langle q'_{n}, b - a \rangle + \varepsilon', \ \forall a \in A, \ \forall b \in B.$$
(3.13)

Recall that $q'_n \in \partial f_n(w'_n), w'_n \in [A, B]$. By Lemma 2.3 it holds that for any $y(w'_n) \in$ $M_{\varepsilon'}^n(w_n'), q_n' \in \partial_{\varepsilon'}f(y(w_n'))$. Fix $y(w_n') \in M_{\varepsilon'}^n(w_n')$. By Brønsted-Rockafellar Theorem there exist $q_n \in \partial f(w_n)$ such that $||w_n - y(w'_n)|| \le \sqrt{\varepsilon'}$ and $||q_n - q'_n|| \le \sqrt{\varepsilon'}$. For any $a \in A$, and any $b \in B$,

$$\langle q'_n, b - a \rangle \le \langle q_n, b - a \rangle + ||q'_n - q_n|| ||b - a|| \le \langle q_n, b - a \rangle + \sqrt{\varepsilon'} d.$$

Using the latter in (3.13) we have for large n,

$$\underline{\inf}_{B} f - \sup_{A} f < \langle q_n, b - a \rangle + \varepsilon' + \sqrt{\varepsilon'} d, \ \forall a \in A, \ \forall b \in B,$$

hence,

$$\underline{\inf}_{B} f - \sup_{A} f < \langle q_n, b - a \rangle + \varepsilon, \ \forall a \in A, \ \forall b \in B,$$

by the choice of ε' .

Similarly as it was done in Case 2 of (a) we show that for large $n, w_n \in [A, B]_{\delta}$. We know that $||w_n - y(w'_n)|| \le \sqrt{\varepsilon'} < \delta/2$, by the choice of ε' , and that $y(w'_n) \in M^n_{\varepsilon'}(w'_n)$, hence

$$f(y(w'_n)) + n||w'_n - y(w'_n)|| \le f_n(w'_n) + \varepsilon' \le f(w'_n) + \varepsilon',$$
 (3.14)

where the last inequality follows by Lemma 2.2(ii). Note that, since f is convex and bounded above on A and B, it is bounded above on [A, B] by some constant M. Using this and that f is bounded below by μ on X by (3.14) we have that

$$\mu + n\|w'_n - y(w'_n)\| \le M + \varepsilon',$$

hence,

$$\|w'_n - y(w'_n)\| \le \frac{M - \mu + \varepsilon'}{n} < \delta/2,$$

for sufficiently large n.

Thus, $w'_n \in [A, B]$ and $||w_n - w'_n|| \le ||w_n - y(w'_n)|| + ||y(w'_n) - w'_n|| \le \delta$, which means that $w_n \in [A, B]_{\delta}$ for large n.

Finally, taking n large enough, and setting $q:=q_n$ and $w:=w_n$ we obtain that $q\in \partial f(w), w\in [A,B]_{\delta}$, and

$$\inf_{B} f - \sup_{A} f < \langle q_n, b - a \rangle + \varepsilon, \ \forall a \in A, \ \forall b \in B.$$

The proof of (b), as well as, the proof of the theorem are then completed.

4 Examples

As we mentioned in the Introduction, it is not difficult to provide examples of a convex function and a couple of sets satisfying the assumptions of Theorem 1.1 which do not satisfy the assumptions of [4, Theorem 4.1].

First we give such an example in a finite dimensional case. Let $X:=\mathbb{R}^2, A:=\{(1,0)\},$ $B:=\{(x,y)\in\mathbb{R}^2: x^2+y^2\leq\rho, 0\leq\rho<1\},$ and

$$f(x,y) := \left\{ \begin{array}{ll} -\sqrt{1-x^2-y^2}, & \text{when } x^2+y^2 \leq 1, \\ +\infty, & \text{otherwise.} \end{array} \right.$$

Of course, in this example both sets A and B are compact.

Our second example is in a Banach space $(X, \|\cdot\|)$. Let $A := \{0\}$, $B := x_0 + \mathbb{B}$, where $\|x_0\| > 2$, and $x_0^* \in X^*$ is such that $\|x_0^*\| = 1$ and $\langle x_0^*, x_0 \rangle = \|x_0\|$, and

$$f(x) := \begin{cases} -\sqrt{\langle x_0^*, x \rangle}, & \text{if } x \in [A, B], \\ +\infty, & \text{if not.} \end{cases}$$

References

- [1] D. Aussel, J.-N. Corvellec and M. Lassonde. Mean value property and subdifferential criteria for lower semicontinuous functions, *Trans. Amer. Math. Soc.* 347 (1995) 4147–4161.
- [2] D. Aussel, J.-N. Corvellec and M. Lassonde, Nonsmooth constrained optimization and multidirectional mean value inequalities, SIAM J. Optim. 9 (1999) 690–706.
- [3] A. Brøndsted and R.T. Rockafellar, On the subdifferentiability of convex functions, *Proc. Amer. Math. Soc.* 16 (1965) 605–611.
- [4] F. Clarke and Y. Ledyaev, Mean value inequalities, Proc. Amer. Math. Soc. 122 (1994) 1075–1083.
- [5] F. Clarke and Y. Ledyaev, Mean value inequalities in Hilbert space, Trans. Amer. Math. Soc. 344) (1994) 307–324.
- [6] F. Clarke and Y. Ledyaev, Multidirectional mean value inequalities and weak monotonicity, J. Lond. Math. Soc. 71 (2005) 187–202.
- [7] S. Fitzpatrick and R.R. Phelps, Bounded approximants to monotone operators on Banach spaces, Ann. Inst. H. Poincaré, Anal. Non Linéaire 9 (1992) 573–595.
- [8] M. Hamamdjiev and M. Ivanov, New multirectional mean value inequality, J. Convex Anal. 25 (2018) 1279–1290.
- [9] F. Hausdorff, Über halbstetige Funcktionen und deren Verallgemeinerung, Math. Z. 5 (1919) 292–309.
- [10] J.-B. Hiriart-Urruty, Lipschitz r-continuity of the approximate subdifferential of a convex function, *Math. Scand.* 47 (1980) 123–134.
- [11] M. Ivanov and N. Zlateva, On nonconvex version of the inequality of Clarke and Ledyaev, *Nonlinear Anal.* 49 (2002) 1023–1036.
- [12] R. Kipka and Y. Ledyaev, A generalized multidirectional mean value inequality and dynamic optimization, *Optimization* 68 (2019), 1365–1389.
- [13] P.-J. Laurent, Approximation et Optimisation, Enseignement des sciences 13, Paris, Hermann, 1972.
- [14] Y. Ledyaev and Q. Zhu, Multidirectional mean value inequalities and weak monotonicity, *J. Lond. Math. Soc.* 71 (2005) 187–202.
- [15] A. S. Lewis and D. Ralph, A nonlinear duality result equivalent to the Clarke-Ledyaev mean value inequality, *Nonlinear Anal.* 26 (1996) 343–350.
- [16] D. T. Luc, A strong mean value theorem and applications, Nonlinear Anal. 26 (1996) 915–923.
- [17] Q. Zhu, Clarke-Ledyaev mean value inequalities in smooth Banach spaces, Nonlinear Anal. 32 (1998) 315–324.

[18] N. Zlateva, Integrability through infimal regularization, C. R. Acad. Bulgare Sci. 68 (2015) 551–560.

> Manuscript received 5 June 2021 revised 27 October 2021 accepted for publication 27 October 2021

M. Hamamdjiev

Faculty of Mathematics and Informatics Sofia University, 5, James Bourchier Blvd. 1164 Sofia, Bulgaria E-mail address: mihailh@fmi.uni-sofia.bg

N. Zlateva

Faculty of Mathematics and Informatics Sofia University, 5, James Bourchier Blvd. 1164 Sofia, Bulgaria E-mail address: zlateva@fmi.uni-sofia.bg