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A CLARKE-LEDYAEV MULTIDIRECTIONAL MEAN VALUE
INEQUALITY FOR CONVEX FUNCTIONS*

MIHAIL HAMAMDJIEV AND NADIA ZLATEVAT

Abstract: We establish a Clarke-Ledyaev multidirectional mean value inequality for a proper, convex, lower
semicontinuous and bounded below function.
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Introduction

The pioneering multidirectional inequality is due to F. Clarke and Y. Ledyaev and appeared
in 1994 in [4]. It compares the values of a locally Lipschitz function on two bounded, closed
and convex subsets of a Banach space, one of which is compact, see [4, Theorem 4.1], stated
here as Theorem 2.1. After then, the theme of multidirectional mean value inequalities of
different types and in different settings was developed in number of publications, see e.g.
[1, 2,5, 6,8, 11, 14, 15, 16, 17].

In this short note we prove a multidirectional mean value inequality of the type found
in [4] for a proper convex, lower semicontinuous and bounded below function. As such a
function is not necessarily locally Lipschitz, [4, Theorem 4.1] could not be directly applied.
Instead, we use Hausdorff approximations of the function, which are Lipschitz functions.

Our main result is the following

Theorem 1.1. Let (X,|| -||) be a Banach space and let A, B C X be non-empty, closed,
bounded and convex sets such that A is compact. Let f : X — R U {+oo} be a lower
semicontinuous convex function, which is bounded below on X . In addition,

(a) if f is bounded on A, then for any e > 0 and any 6 > 0 one can find z € [A, B] + éB
and p € Of(z) such that

i%ff—supf<<p,a—b>+5, VYa € A, Vb€ B.
B
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(b) if f is bounded on B, then for any e > 0 and any § > 0 one can find w € [A, B] + 0B
and q € Of(w) such that

inf f—supf < {(q,b—a)+e, Va€cA, Vbe B,
B A

here inf f :=lim inf f(b).
where 40 5= iy f 10

Let us note that in [4, Theorem 4.1] the function f is assumed locally Lipschitz; i.e., to
each z € [A, B] there corresponds an open neighbourhood of z in X in which f satisfies a
Lipschitz condition. However, it is not difficult to find examples of a convex function and a
couple of sets satisfying the assumptions of Theorem 1.1 that do not satisfy the assumptions
of [4, Theorem 4.1], see Section 4 below.

The paper is organized as follows. After a short Section 2 on notations and preliminaries,
in Section 3 we give the proof of Theorem 1.1. In the final Section 4 two examples are
provided.

Preliminaries and Notations

The notation used throughout the paper is standard. As usual, (X, || - ||) denotes a real
Banach space, that is, complete normed space over R. Its closed unit ball is denoted by B.
The dual space X™* of X is the Banach space of all continuous linear functionals p from X
to R. The natural norm of X* is again denoted by || - ||. The value of p € X* at z € X is
denoted by (p, z).

For two non-empty sets A, B C X, the segment [A, B] is defined by

[A,Bl:={z:z=X X+ (1= Ny, € A, y€ B, A€[0,1]}.

The d-enlargement of a non-empty set C C X is C5 := C + 6B.
Recall that the generalized directional derivative of a locally Lipschitz function f : X — R
at x in direction h is given by

7 (@, h) = limsup L& tf;) )

tl0

and the Clarke subdifferential of f at z is the non-empty set
0% f(x) = {€ € X" : f°(a,h) > (&, ), Vh € X}.

Our main tool is the following fundamental Clarke-Ledyaev multidirectional mean value
theorem.

Theorem 2.1. [4, [Theorem 4.1]]

Let (X, - ||) be a Banach space. Let A, B be non-empty closed convex bounded subsets
of X, such that at least one of them is compact, and let € > 0 be given. Let f: X — R be
a locally Lipschitz function on [A, B]. Then there exists a point z € [A, B] and & € 9° f(2),
such that

i%ff—supf<<£,a—b>+a, Va € A, Vb € B.
B
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The effective domain dom f of an extended real-valued function f: X — RU {400} is
the set of points « where f(x) € R. The function f is proper if dom f # @. It is lower
semicontinuous if f(Z) <liminf f(x) for all z € X.

r—T

Let us recall that for € > 0, the e-subdifferential of a proper, convex and lower semicon-
tinuous function f: X — R U {+oo} at x € dom f is the set

Ocf(x) ={pe X™ : {py—2) < f(y) — f(z) +¢, Yy € X},

and O.f = @ on X \ dom f. Of course, for ¢ = 0, dy f(z) coincides with the subdifferential
Of(x) of f at z in the sense of Convex Analysis. The latter coincides with the Clarke
subdifferential of f at  when f is continuous at x.

The domain dom . f of O f consists of all points x € X such that 0. f(x) is non-empty.
Note that for € > 0 the sets d. f(z) are always non-empty, while 9f(z) could be empty at
some points. Furthermore, for any real numbers £; and €5 such that 0 < e; < €5 one has

Oe, f () C 0c, f(2) and 0f(2) = () 0-f ().
e>0
From now on, f : X — R U {400} will always be a proper, lower semicontinuous and

convex function. For n € N define the inf-convolutions {f,} by
n := inf — .
Ful@) 1= i 17w) + lle — o)

The approximating sequence { f,, } was originally introduced by Hausdorff [9] for any lower
bounded lower semicontinuous function f of a real variable. It is clear that for sufficiently
large n the function f, is finite valued and we will always consider this case even if it is
not stated explicitly. Some well-known properties of these inf-convolutions of f (see, for
instance, [13, 10, 7]) are listed in next

Lemma 2.2. For n large enough,
(i) fn is conver and n-Lipschitzian;
(i) fn(z) < foyi(x) < f(z) for allxz € X and alln € N;
(iii) fn(z) = f(x) as n — oo for all z € X.
Let us denote the set of the e-minima of the function f(-) 4+ n||x — -|| by
MP(2) = {y € X : f(y) + nllz— yll < fulz) + <.

It is clear that for € > 0 the sets M(x) are non-empty.
The following is well-known, for proof see e.g. [18, Lemma 3].

Lemma 2.3. For any e >0, and any y € M7 (x) it holds that

Ofn(x) C O f(y) NOen| - [[(z —y). (2.1)
The result of Brgndsted and Rockafellar stating that the graph of 0. f is close to the
graph of Jf is also well known:

Theorem 2.4 (Brgndsted-Rockafellar [3]). Let f : X — R U {400}, be a proper, convex
and lower semicontinuous function, let x € dom f, let € > 0 and p € 0. f(x). Then there
exists ¢ € 0f(z) such that

|z — || < Ve, and |lg —pl| < Ve.

From Brgndsted-Rockafellar Theorem it easily follows that dom 0f is f-graphically dense
in dom f, i.e., for any a € dom f there exists a sequence z,, € domdf with z,, — a and

f(@n) = f(a).
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Proof of Theorem 1.1

Let us fix any € > 0 and 6 > 0. Since A and B are assumed bounded, d := diam (A — B) =
sup{|ja — b|| : @ € A, b € B} is finite. Take &’ > 0 such that ¢’ + dve’ < ¢, and Ve’ < §/2.
(a) We have to consider two cases.
CASE 1. sup f = 4+o0. Let us note that since f is bounded on A, A C dom f. Take
B

any a € A. By f-graphical density of domdf in dom f there exists z € dom df such that
la — z|| < 4§. Pick any p € 9f(z). Then, since sup f = 400 and A, and B are assumed
B

bounded, we obviously have
igff—supf< (p,a—b), VYae A, Vbe B,
B
and the claim follows.

CASE 2. sup f < +o0.
B

For n € N large enough, the Hausdorff approximation f,, : X — R is n-Lipschitz contin-
uous, see Lemma 2.2(i). We apply Theorem 2.1 to f,, A and B to obtain z], € [4, B] and
pl, € 0fn (7)) such that

ir}‘ffn—supfn < (pl,a—0b)+€/8, Vaec A, Vbe B. (3.1)
B

By compactness one can find a,, € A such that f,(a,) = iIAlf fn- Lemma 2.2(ii) yields
that sup f, < sup f. Incorporating these in (3.1), we have that
B B

fn(an) —sup f < (pl,,a—0b) +£'/8, Vae A, Vbe B. (3.2)
B

Take any y(an) € M g(an), Le.

€

fy(an)) + nllan = y(an)|l < fulan) +£'/8, (3-3)

and observe by using Lemma 2.2(ii) again, that
_ <
fn(an) lgffn > II}‘ff,
which is finite as f is bounded on A. Using the latter in (3.3) we obtain that
f(y(an)) + nllan — y(an)|| <inf f +'/8. (34)

Since f is bounded below on X, say by u, the latter easily yields

ianf—M+E//8
” .

lan —y(an)|| <

Since the sequence {a,} is in the compact set A, there is a convergent to some ag € A
subsequence, which we index in the same way for convenience. Hence, {y(a,)} also converges
to ag. By the lower semicontinuity of f at ag, for large n,

flao) < f(y(an)) +€'/4. (3.5)
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From (3.2), (3.3) and (3.5) we obtain that

flag) —sup f < (pl,,a —b) +€'/2, Va € A, Vb € B,
B

which yields
ll’lff - Supf < <p;7,va - b> +€//2u
A B (3.6)
VYa € A, Vb € B and n € N large enough.

Recall that p), € 0f,(z)), 2, € [A, B]. By Lemma 2.3 it holds that for any y(z}) €
M2 (2],) we have p, € 0. f(y(z},)). Fix y(z,) € MZ(z],). By Bronsted-Rockafellar Theorem
there exists p, € df(2,) such that ||z, —y(z)|| < Ve’ and ||p, —pl, || < V. Tt easily follows
that for any a € A, and any b € B,

(P a =) < (puya—b) + [P, — pullla —bll < (pn,a —b) + Ve'd.
Using the latter in (3.6), for large n we have

inf f —sup f < (pn,a —b) +¢'/2+Ve'd, Ya € A, Vb€ B,
B

hence,
ir}lff—supf< (pn,a—Db) +¢, Ya€ A, Vbe B,
B

by the choice of &'.
We only need to show that for large n, z, € [A, B] + 0B. To this end, we use first that
2 — y(24)|| < Ve’ < §/2, by the choice of &', and second, that y(z),) € M2 (z,), hence

Fly(zn) + nllzy —y(z)l < fulz) +6" < fz) + ¢, (3.7)

where the last inequality follows by Lemma 2.2(ii). As in this case f is bounded above on
A and on B, by convexity f is bounded above on [A, B]. Let f is bounded above on [A, B|
by some constant M. Using this and the fact that f is bounded below by p on X we have
by (3.7) that
pnllz, —y(z)l < M+,
hence,
M—pu+¢
A e

for sufficiently large n.

So, 2z}, € [A,B] and ||zn, — 2zl || < llzn — y(z0)|l + ly(2)) — 2] < &, which means that
zn € [A, B] + 0B for large n.

Finally, taking n large enough, and setting p := p,, and z := z,, we obtain that p € 9f(z),
z € [A, B] + B, and

ir}‘ff—supf< (p,a—0by+e, Yae A Vbe B.
B
The proof of (a) is then completed.

(b) The proof is quite similar to the proof of (a) but we prefer to present it for complete-
ness. Since f is bounded on B, B C dom f and inf f is finite.
B

We consider again two cases.
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CASE 1. sup f = +o00. Take any b € B C dom f. By f-graphical density of domdf in
A

dom f there exists w € dom df such that ||b — w|| < §. Pick any g € 9f(w). Then, since
sup f = +oo and the sets A, and B are assumed bounded, we obviously have
A

inf f—sup f <{(¢,b—a), Va€c A, VbeE B,
B A
and the claim follows.
CASE 2. sup f < +o00. Let v > 0 be such that
A
inf f < inf f +<'/4.
B ¥
For large enough n we apply Theorem 2.1 for the n-Lipschitz continuous Hausdorff
approximation f, : X — R and the sets A and B to obtain w], € [A, B] and ¢, € 9f,(w),)
such that
iréffn —sup fn < (q,,,b—a)+¢e'/4, Vae A, Vb€ B. (3.8)
A
For some b, € B it holds that f,(b,) < iréf fn+€' /4. Lemma 2.2(ii) yields that sup f,, <
A

sup f. Incorporating these in (3.8), we have that
A

fn(bp) —sup f < {q,,b—a)+'/2, Va€ A, Vbe B. (3.9)
A
Take any y(bn) € M7, (bn), ie.
F(y(bn)) +nllbn — y(ba)ll < fa(bn) +€'/4, (3.10)

and using Lemma 2.2(ii) again, we get that
fu(bn) < i%ffn +e/4< i%ff +¢&'/4.

Note that infg f is finite as f is bounded on B. Using the latter we estimate the right
hand side of (3.10) by

F(y(bn)) +nllbn — y(ba)|| < inf f +£'/2. (3.11)

Since f is bounded below on X by p, the latter easily yields

info—[L+€l/2
" .

[[br. — y(bn)|| <

Hence, for sufficiently large n, ||b, — y(b,)|| < 7, and y(b,) € B,. From (3.9) and (3.10)
we have that
f(y(bn)) —sup f < {q),,b—a) +3c'/4, Ya € A, Vb € B. (3.12)
A

Using that f(y(b,)) > iélff > inf f —€’/4 from (3.12) we get
ki B
inf f —sup f < {¢,,b—a)+¢', Vae€ A, Vbe B. (3.13)
B A

'), wh, € [A, B]. By Lemma 2.3 it holds that for any y(w),) €

Recall that ¢/, € 9f,(w),), w,
). Fix y(w},) € M2 (w),). By Brensted-Rockafellar Theorem there

ME(wy,), gy € O f(y(wy,)
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exist g, € Of (w,) such that |lw, —y(w’)| < Ve and ||g, — ¢, || < Ve'. For any a € A, and
any b € B,

()sb— @) < (gn,b—a) + I, — @ullllb — a]| < (gn,b—a) + V'd.
Using the latter in (3.13) we have for large n,
inf f —sup f < (qn,b—a) +&' +Ve'd, Vae A, Vb e B,
B A

hence,
inf f —sup f < (gn,b—a)+¢e, Yae€ A, Vbe B,
B A

by the choice of &'.
Similarly as it was done in Case 2 of (a) we show that for large n, w, € [4, Bls. We
know that ||w, —y(w})| < Ve’ < §/2, by the choice of ¢/, and that y(w!,) € M (w,), hence

fy(wy)) +nllw, =yl < folw),) +&" < fuwy,) +€, (3.14)

where the last inequality follows by Lemma 2.2(ii). Note that, since f is convex and bounded
above on A and B, it is bounded above on [A, B] by some constant M. Using this and that
f is bounded below by p on X by (3.14) we have that

ptnllwy, = y(wy)[| < M+ ¢,

hence,
M—p+¢

[y, = y(wp)| < <0/2,

for sufficiently large n.

Thus, w), € [A, B] and [|w, — w},|| < [Jw, — y(w))|| + [ly(w],) — wi|| < §, which means
that w,, € [A, B)s for large n.

Finally, taking n large enough, and setting ¢ := ¢, and w := w,, we obtain that ¢ €
of (w), w € [A, Bls, and

inf f —sup f < {gn,b—a)+¢, Ya€ A, Vbe B.
B A

The proof of (b), as well as, the proof of the theorem are then completed. O

Examples

As we mentioned in the Introduction, it is not difficult to provide examples of a convex
function and a couple of sets satisfying the assumptions of Theorem 1.1 which do not satisfy
the assumptions of [4, Theorem 4.1].

First we give such an example in a finite dimensional case. Let X := R2 A := {(1,0)},
B:={(z,y) eR?: 22 + 4% < p,0 < p < 1}, and

_f =\/1—22 =42, whena?®+¢> <1,
flz,y) = { 400, otherwise.

Of course, in this example both sets A and B are compact.
Our second example is in a Banach space (X, | -||). Let A := {0}, B := z9 + B, where
lzoll > 2, and x§ € X* is such that ||z§]| =1 and (z§,z0) = ||zo]|, and

| =ag, ), ifxe[A B,
fla) = { (i&—oo, if not.
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