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a portion λij of ∆i, where ∆i is the total demand for product i, to allocate to supplier j.
Naturally, it holds that λij ≥ 0 and

∑
j λij = 1. After determined the order λij , a random

vector ξ is realized and observed by all suppliers, which may provide new information that
will influence the production of the suppliers such as the market price and availability of
raw materials and various random technical parameters in their production processes. Then
at the second stage (the production stage) every supplier j has to solve an optimization
problem parameterized by ξ to determine her production amount yij(ξ), while fulfilling her
promised delivery frequency xij for all i and satisfying other production constraints. In a
deterministic environment, as it mostly is in the literature, this problem could be formulated
as a leader-follower Nash game, in which the suppliers (the leaders) solve a quasi-variational
inequality problem and the manufacturers (the followers) solve an EOQ problem.

Several non-stochastic versions of this problem has been studied from different angles in
the literature (see for instances [4–6,8, 12, 16, 18, 21–23,36]). We note that in particular, [1]
formulated this problem as a deterministic Nash game among the suppliers, but they did
not provide a general scheme for solving that Nash game. Besides, there seems to be no
paper that considered the multi-follower case.

While game models and uncertainty have been long recognized as inevitable factors in
manufacture and supply chain management (see for examples [7, 35]), there have been only
very few papers discussing game models in combination with stochasticity. In particular,
there has been no paper on multi-stage stochastic Nash games until very recently [20,27,40].
This is probably due to the fact that there has been no clear idea on the notion of “stochas-
tic variational inequality” in the optimization community until the seminal paper of [34],
in which this notion is clearly defined as a variational inequality in a specific Hilbert space
of response functions to the stochastic vector ξ. Such problems have not previously been
spotlighted, or for that matter even given a name. The motivation of this paper is to in-
troduce this new development to the community of supply chain management, therefore
to provide a new tool to researchers and practitioners in these fields. Our focus in this
paper is to address the“ optimization” side of this problem; namely, we are concerned
with the general mathematical structure of the problem, the conditions for existence of solu-
tions and possible numerical methods, rather than the “management side” of this problem,
which may include managerial insights of the solutions and sensitivity analysis for real-world
applications. Although the current paper does not include application examples, it is our
belief that the proposed model and computational scheme would have an impact on solving
real-world problems. After the first draft of this paper is finished, we noticed that [13] stud-
ied a one-leader-multiple-follower game in which every player solved a two-stage stochastic
optimization problem, and applied it in the flight booking problem under uncertain flight
delays and multi-stakeholder shale gas supply chain. Thereafter, such leader-follower game
models under uncertainty have been adopted and used in real-world applications such as
shale gas-water supply chains [10], global crude oil purchase and sale planning [25], cus-
tomer allocation in oligopolies [9], and problems on the energy, water, and food nexus [24].
All these impressive developments have provided further motivational support to the study
of a general Nash game model under uncertainty from the angle of stochastic variational
inequality.

The contributions of this paper are as follows.

1. We introduce a two-stage multi-manufacturer-multi-supplier game model under uncer-
tainty that attempts to suitably combine the competition factor and the randomness
factor in supply-chain management. We show that this game is essentially a two-stage
quadratic game under uncertainty among the suppliers. In particular, each supplier
has to solve a two-stage stochastic quadratic minimization problem parameterized by
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other suppliers’ decisions, which appears to be new in the literature of supply chain
management.

2. We introduce certain recent developments in stochastic optimization such as the re-
sponse function space and stochastic variational inequality (SVI) theory to describe the
mathematical structure of the proposed game model. Moreover, we demonstrate how
the suppliers’ game can be identified as a two-stage stochastic linear complementarity
(SLC) problem.

3. The progressive hedging algorithm, initiated from multistage stochastic optimization
and recently transplanted to the area of SVI, is then introduced as a scenario-based
decomposition algorithm for the Nash equilibrium of the suppliers’ game. It is argued
that, if the resulted SLC problem is monotone or elicitable monotone (see its meaning
later), then it can be numerically solved by the progressive hedging algorithm.

4. Preliminary numerical results are presented to show the effectiveness of the proposed
algorithm. Randomly generated problems of various sizes and different number of
scenarios are tested. Certain critical observations are made and heuristics in choosing
the key parameters are provided.

The rest of this paper is organized as follows. In Section 2 the manufacturer-supplier
game is formulated as a two-stage game of the suppliers under uncertainty. Section 3 estab-
lishes the connection between the proposed game model and an SLC problem, which is a
special type of the SVI problem. Section 4 describes specially designed progressive hedging
algorithms for the resulting SLC problems for monotone and elicitable monotone problems,
respectively, and presents convergence results on the algorithms. Section 5 reports results
of numerical experiments on randomly generated games with [M,N ] increases from [2,2] to
[10,10] and number of scenarios grows from 10 to 200. Section 6 concludes this paper.

2 The Two-Stage Multi-Leader Multi-Follower Nash Game Model
Under Uncertainty

We proceed to formulate a leader-follower Nash game model for competition among the
manufacturers and the suppliers. Generally, we adopt the notation system commonly used
in optimization. For example, lower case letters represent vectors, such as x and upper case
letters represent matrices or sets, such as A or A. In addition, unless otherwise specified,
we denote scalars and random vectors by Greek letters. Conventionally, Rn stands for
the usual n-dimensional Euclidean space and by “Hilbert space” we mean a vector space
equipped with an inner product. Therefore, Rn is a Hilbert space, but not vice versa since
the inner product could be defined differently.

The parameters and variables related to the suppliers (j ∈ [N ]) and manufacturers
(i ∈ [M ]) involved in the Nash game are as follows.

Variables (where ξ is a random vector of finite discrete distribution with support Ξ):

xij : the delivery frequency of supplier j to manufacturer i at the first stage;

x: the vector combining all xij in a natural order; namely

x = (x11, . . . , x1N , . . . , xM1, . . . , xMN )T ,

where “T” stands for the transpose;

(all vectors in this paper are column vectors)
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yij(ξ): the amount of product i produced by supplier j at the second stage;

y(ξ): the vector combining all yij(ξ); namely

y(ξ) = (y11(ξ), . . . , y1N (ξ), . . . , yM1(ξ), . . . , yMN (ξ))T ;

z(ξ): combination of x and y(ξ), namely z(ξ) = (xT , y(ξ)T )T ;

z(·): the mapping from ξ to z(ξ), which is also called “the response function”;

λij : demand allocations to each supplier j determined by the manufacturer i at the
first stage;

λ: the vector combining all λij , λ = (λ11, . . . , λ1N , . . . , λM1, . . . , λMN )T ;

λi : the demand allocation vector of manufacturer i, i.e., λi = (λi1, . . . , λiN )T ;

xj : the subvector of x consisting of all components involving supplier j, i.e., xj =
(x1j , . . . , xMj)

T ;

x−j : the vector obtained by deleting x1j , ..., xMj from x;

yj(ξ), y−j(ξ), zj(ξ), z−j(ξ), zj(·) and z−j(·), are similarly defined.

Objective Functions:

θj(xj ;x−j): the first-stage cost function of supplier j, where xj is the decision vector
and x−j is viewed as a parameter;

ϕj(yj(ξ);x, y−j(ξ), ξ): the second-stage cost function of supplier j, where yj(ξ) is the
decision vector and x, y−j(ξ), ξ are regarded as parameters (Note: we use a semicolon
“;” to separate decision variables and parameters, and we will do the same below).

Parameters of the first stage:

∆i: manufacturer i’s demand;

hi: unit inventory holding cost of manufacturer i;

pij : unit selling price of the product i from supplier j with pj = (p1j , . . . , pMj)
T ;

γij : unit flexible cost to produce product i of supplier j;

βij : unit flexible cost to deliver product i of supplier j;

Γij : fixed cost to pack and deliver a batch of products to manufacturer i from supplier
j.

Parameters of the second stage will be introduced when the concrete form of θj and ϕj

are introduced. They might be dependent on ξ.

In the following analysis, we assume that the parameters ∆i > 0, hi > 0, pij > 0, γij > 0,
βij > 0, and Γij > 0 are fixed scalars for i ∈ [M ], j ∈ [N ]. We assume that suppliers may
set different prices pij of the product and those prices are fixed constants. However, as it
often happens in practice, this price is often specified by buyer (the manufacturers), in that
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case it simply becomes pij = pik for all j ̸= k. Note that it is reasonable to assume that the
selling price pij is greater than the sum of unit production cost γij and unit transportation
cost βij of the product, i.e., pij > γij + βij , for all i ∈ [M ] and j ∈ [N ].

We now show that the solutions to the followers’ (i.e. the manufacturers’) EOQ problems
have explicit forms. Thus, the value of λ can be eliminated from the objectives of the leaders’
(i.e. the suppliers’) game. As a result, the leaders’ game will become a two-stage stochastic
quadratic game on z(·) only. Consider supplier j with xij > 0. Suppose that the product
i is delivered in batch of size si from the suppliers. Then by using the EOQ logic with
the similar arguments as [15], the total inventory cost of manufacturer i due to supplier j

is (hixij)
(
1
2

)
sij

(
sij
∆i

)
=

hiλ
2
ij∆i

2xij
, where sij =

λij∆i

xij
. Thus, manufacturer i can obtain its

optimal allocation decision by minimizing the total cost of purchase and inventory, i.e.,

min
λi

N∑
j=1

pijλij∆i +

N∑
j=1

hiλ
2
ij∆i

2xij

s.t.

N∑
j=1

λij = 1, λij ≥ 0 ∀j ∈ [N ]. (2.1)

Note that the optimal solution λ∗
i is independent of ∆i due to ∆i > 0. Since the objective

is strictly convex and quadratic, the optimal solution exists and is unique. Let the corre-
sponding Lagrange multiplier (which can be shown to be unique) to the equation constraint
be vi. Then, based on the equilibrium theorem of monotropic programming (see Chapter
11 of [29]), the optimal solution is

λ∗
ij = max

[
0,

xij

hi
(vi − pij)

]
for j ∈ [N ]. (2.2)

Direct verification shows that this formula also applies to xij = 0. Thus, (2.2) applies to all
x ≥ 0. However, it is reasonable to assume vi > pij for otherwise the manufacturer should
instead consider k(< N) suppliers rather than the N suppliers by ignoring the suppliers
with zero allocation.

From
∑N

j=1 λ
∗
ij = 1, one has

vi =

(
N∑

k=1

xik

)−1( N∑
k=1

xikpik + hi

)
for all i ∈ [M ]. (2.3)

Note that constraint (2.1) also guarantees
∑N

k=1 xik > 0 . Substituting (2.3) into (2.2), we
have

λ∗
ij =

xij∑N
k=1 xik

[
1 +

1

hi

N∑
k=1

xik(pik − pij)
]
, for all i ∈ [M ], j ∈ [N ]. (2.4)

Therefore,
∑N

j=1 λ
∗
ij = 1 for all i and λ∗

ij > 0 are equivalent to (2.3) and vi > pij for all i,
which are further equivalent to that there exists a positive number ε such that

N∑
k=1

xikpij −
N∑

k=1

xikpik ≤ hi − ε, for all i ∈ [M ], j ∈ [N ], (2.5)

where ε is a sufficiently small positive number that is introduced to avoid the possibility
that λ∗

ij becomes zero for some i and j.
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Assume that for manufacturer i, it requires a total number of ri deliveries of the ith
product at the first stage (the contracting stage), therefore we can further simplify (2.4) by
using the following relationship among the xijs:

xi1 + · · ·+ xiN = ri, with xi1, ..., xiN ≥ 0 ∀i ∈ [M ]. (2.6)

Note that the total cost at the first stage of supplier j is

M∑
i=1

[
(γij + βij − pij)∆iλ

∗
ij + Γijxij

]
. (2.7)

Substituting the explicit formula of λ∗
ij into (2.7) and using (2.6), the first-stage cost function

of supplier j becomes

θj(xj ;x−j) =

M∑
i=1

{
(γij + βij − pij)∆i

ri
xij

[
1 +

1

hi

N∑
k=1

xik(pik − pij)
]
+ Γijxij

}

=

M∑
i=1

cijxij +
∑
k ̸=j

M∑
i=1

[
(pij − γij − βij)∆i

rihi
xij(pij − pik)xik

]
= cTj xj + xT

j R−jx−j , (2.8)

where cj = (c1j , . . . , cMj)
T with cij = Γij − (pij−γij−βij)∆i

ri
and R−j = (Rjk)k∈[N ],k ̸=j with

Rjk =


(p1j−γ1j−β1j)(p1j−p1k)∆1

r1h1

. . .
(pMj−γMj−βMj)(pMj−pMk)∆M

rMhM

 ∈ RM×M .

To keep flexibility of this model, instead of specifying various concrete constraints for the
second stage problem, we assume that the production of supplier j at the second stage is the
minimizer of a quadratic production cost function parameterized by x and y−j(ξ) for every
ξ as follows (note that yj(ξ) is the decision variable, the others are regarded as parameters).

ϕj(yj(ξ);x, y−j(ξ), ξ)

=
1

2
yj(ξ)

TOjj(ξ)yj(ξ) +
∑
k ̸=j

yj(ξ)
TOjk(ξ)yk(ξ) +

N∑
k=1

yj(ξ)
TPjk(ξ)xk + dj(ξ)

T yj(ξ)

:=
1

2
yj(ξ)

TOjj(ξ)yj(ξ) + yj(ξ)
TOj,−j(ξ)y−j(ξ)

+yj(ξ)
TPjj(ξ)xj + yj(ξ)

TPj,−j(ξ)x−j + dj(ξ)
T yj(ξ), (2.9)

where Pjk(ξ), Ojk(ξ), Pj,−j(ξ) and Oj,−j(ξ) are ξ-dependent matrices of appropriate dimen-
sions with

Pj,−j(ξ)x−j =
∑
k ̸=j

Pjk(ξ)xk, Oj,−j(ξ)y−j(ξ) =
∑
k ̸=j

Ojk(ξ)yk(ξ),

and dj(ξ) is a random vector of appropriate dimension for j ∈ [N ], subject to a set of linear
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constraints of the form

Yj(x, y−j(ξ), ξ)

=

yj(ξ) ∈ RM
+ : Dj(ξ)xj +

∑
k ̸=j

Djk(ξ)xk +Bj(ξ)yj(ξ) +
∑
k ̸=j

Bjk(ξ)yk(ξ) ≥ bj(ξ)

 ,

=:
{
yj(ξ) ∈ RM

+ : Dj(ξ)xj +D−j(ξ)x−j +Bj(ξ)yj(ξ) +B−j(ξ)y−j(ξ) ≥ bj(ξ)
}
,

(2.10)

where RM
+ represents the nonnegative orthant of the space RM and Dj , Bj , Djk(ξ) and

Bjk(ξ) are random matrices of appropriate dimensions with

D−j(ξ)x−j =
∑
k ̸=j

Djk(ξ)xk, B−j(ξ)y−j(ξ) =
∑
k ̸=j

Bjk(ξ)yk(ξ),

and bj(ξ) is a random vector of appropriate dimension for j ∈ [N ].
Overall, the objective function of supplier j is the expectation of the total costs in two

stages
Eξ [θj(xj ;x−j) + ϕj(yj(ξ);x, y−j(ξ), ξ)] , (2.11)

where Eξ stands for the expectation over ξ.
We comment on the generality of this model. First, if Dj(ξ), D−j(ξ), Bj(ξ), B−j(ξ),

bj(ξ) and ϕj(yj(ξ), x(ξ), y−j(ξ), ξ) are independent of ξ, it is a deterministic game problem
for (xj , yj), parameterized by the decisions of the other suppliers in both stages; second,
as long as one element of Dj(ξ), D−j(ξ), Bj(ξ), B−j(ξ) bj(ξ) and ϕj(yj(ξ), x, y−j(ξ), ξ) is
dependent on ξ, the solution of the game will be generally dependent on ξ and it is therefore
sensible to write its solution as (xj , yj(ξ)); third, since the Nash equilibrium (if any) of the
model is dependent on ξ, it is no longer a single vector. Instead, the solution is a response
function (or mapping) of ξ

z(·) := (x(·), y(·))T : Ξ → Rn,

where Ξ is the support of the random vector ξ, which is the finite sample space composed
of all possible realizations of the random vector ξ, and Rn := RMN × RMN . Intuitively,
we could identify z(·) with a vector of length n|Ξ|, where |Ξ| is the cardinality of Ξ. Since
|Ξ| is exponential in term of the dimension of ξ, any direct solution method for z(·) seems
unrealistic.

Let L be the Hilbert space consisting of all response functions from Ξ to Rn, equipped
with the inner product

⟨z(·), w(·)⟩ := Eξ[z(ξ)
Tw(ξ)] :=

∑
ξ∈Ξ

π(ξ)z(ξ)Tw(ξ),

where π(ξ) > 0 is the probability of sample ξ and all such probabilities add up to one. A
notational difference ought to be emphasized. By z(·) we mean a function from Ξ to Rn,
but by z(ξ) we mean the image of ξ under the mapping z(·), where ξ is a certain scenario
in Ξ.

Since the first-stage decision x has to be made before ξ is realized, the solution of any
two-stage stochastic optimization problem must be “nonanticipative”. The nonanticipativity
constraint for z(·) is defined as z(·) ∈ N , where

N := {z(·) ∈ L : the x-part of z(ξ) is independent of ξ}.
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Obviously, N is a linear subspace of L , and its complementary subspace is denoted by
M, which is important for algorithmic development. Correspondingly, for supplier j, the
solution has to satisfy zj(·) ∈ Nj , where

Nj := {zj(·) : the xj-part of zj(ξ) is independent of ξ}. (2.12)

Under the nonanticipativity constraint z(·) ∈ N it is no confusion to superfluously write
x = x(ξ), which will provide a more elegant and generalized view on the progressive hedging
algorithm.

Let us write constraints for supplier j as

zj(·) ∈ Nj ∩ Cj(z−j(·)),

where Nj imposes the nonantipativity and Cj(z−j(·)) describes other constraints for zj(ξ),
which may depend on ξ and z−j(ξ), and is interpreted as follows.

zj(·) ∈ Cj(z−j(·)) ⇐⇒ zj(ξ) ∈ Cj(z−j(ξ), ξ) ∀ ξ

with

Cj(z−j(ξ), ξ) :=

{
zj(ξ) =

(
xj(ξ)
yj(ξ)

)
:

xj(ξ) satisfies (2.5) and (2.6),
yj(ξ) ∈ Yj(x(ξ), y−j(ξ), ξ)

}
. (2.13)

Again, we emphasize that Cj(z−j(·)) is a set in L and Cj(z−j(ξ), ξ) is a set in Rn. For
convenience of analysis, let us re-write the first-stage constraint as

xj(ξ) satisfies (2.5) and (2.6) ⇔ xj(ξ) ≥ 0, Ajxj(ξ) +A−jx−j(ξ) ≥ aj , (2.14)

where Aj , A−j and aj are the matrices and vectors defined by (2.5) and (2.6), respectively.
In fact, conditions (2.5) and (2.6) are equivalent to that xj(ξ) ≥ 0, and IM×M

−IM×M

Diag(p1)

x1(ξ) +

 IM×M

−IM×M

Diag(p2)

x2(ξ) + · · ·+

 IM×M

−IM×M

Diag(pN )

xN (ξ) ≥

 r
−r

r ◦ p̄− h+ ϵ

 ,

where IM×M is an identity matrix in size M × M , Diag(pj) is a diagonal matrix with
diagonal elements being vector pj = (p1j , . . . , pMj)

T , r = (r1, . . . , rM )T , p̄ =
(maxj{p1j}, . . . ,maxj{pMj})T , h = (h1, . . . , hM )T , and ◦ means the Hadamard product,
i.e., r ◦ p̄ = (r1p̄1, . . . , rM p̄M )T ; thus, Aj , A−j , aj in (2.14) has the following form:

Aj =

 IM×M

−IM×M

Diag(pj)

 , A−j = (Ak)k∈[N ],k ̸=j , and aj =

 r
−r

r ◦ p̄− h+ ϵ

 ∀ j ∈ [N ].

Thus, Cj(z−j(ξ), ξ)) defined in (2.13) has the following specific “analytical form”

Cj(z−j(ξ), ξ) =
{
zj(ξ) : Āj(ξ)zj(ξ) ≥ b̄j(ξ)− Ā−j(ξ)z−j(ξ) and zj(ξ) ≥ 0

}
, (2.15)

where

Āj(ξ) =

(
Aj 0

Dj(ξ) Bj(ξ)

)
, Ā−j(ξ) =

(
A−j 0

D−j(ξ) B−j(ξ)

)
, and b̄j(ξ) =

(
aj

bj(ξ)

)
.
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Now, we can rewrite the objective function (2.11) of supplier j as the mean value of a
quadratic function of zj(·), namely

Gj(zj(·); z−j(·)) := Eξ [θj(xj ;x−j) + ϕj(yj(ξ);x, y−j(ξ), ξ)]

= Eξ

[
1

2
zj(ξ)

T Q̄j(ξ)zj(ξ) +
(
c̄j(ξ) + R̄−j(ξ)z−j(ξ)

)T
zj(ξ)

]
,

where

Q̄j(ξ) =

(
0 Pjj(ξ)

T

Pjj(ξ) Ojj(ξ)

)
, c̄j(ξ) =

(
cj

dj(ξ)

)
and R̄−j(ξ) =

(
R−j 0

Pj,−j(ξ) Oj,−j(ξ)

)
.

Let us remark on randomness and non-randomness of the parameters in the first-stage
problem, in particular on the case that the demand ∆i in first stage is random, therefore
is ξ-dependent. In that case, we only need regard it as parameters of the second stage.
That is, we move the objective terms containing ∆i into the second stage objective function
and regard the constraints containing ∆i as a second stage constraint and merge them into
Cj(z−j(·)). Then we write ∆i = ∆i(ξ) and particularly, change R−j to R−j(ξ) in the above
formula. There would be no conceptual complications to the algorithmic development in
the subsequent sections.

In summary, supplier j’s problem in the game model is

min
zj(·)

Gj(zj(·); z−j(·))

s.t. zj(·) ∈ Nj ∩ Cj(z−j(·)), (2.16)

Note that Gj(zj(·); z−j(·)) is quadratic in zj(·) and Cj(z−j(·)) is a polyhedron and therefore
(2.16) is in general a quadratic optimization problem in space L with a quadratic objective
function and linear constraints.

It appears that Model (2.16) is the most general two-stage quadratic game model in the
literature so far. It allows all interactions (cross terms) in the objective and also allows all
variables (all players’ decisions in first stage and other players’ decisions in the second stage)
to show up in the linear constraints. We notice that there are often various restrictions on the
cross terms like xT

j R−jx−j in the deterministic and stochastic game models in the literature.
Perhaps for the sake of enabling certain specific algorithms, or simply for keeping convexity
of the objective function. However, this kind of restriction do not appear in the proposed
model. Moreover, compared to robust optimization approaches to stochastic optimization,
a number of robust optimization methods (e.g., [2, 11, 19]) assume affine dependence of the
random parameters on ξ. In contrast, there is no linear dependence requirements on ξ for
the random parameters in the proposed model. Therefore, the proposed model may allow a
wider range of potential applications. In fact, the proposed model allows all possible cross
terms to be in both first and second stage objective functions.

3 Reformulation of the Suppliers’ Game into an SLC Problem

In this section, we derive an equivalent formulation of problem (2.16) that is an SLC problem.
Most of the work has appeared in [40]. We include the analysis here for self-containedness.
Readers who are only interested in finding a numerical solution to Problem (2.16) may go
to Section 4 directly and just keep in mind that Problem (2.16) is equivalent to the SLC
Problem below.
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Based on the theory of variational inequalities, a necessary condition for zj(·) to be an
optimal solution to problem (2.16) is

−∂Gj(zj(·); z−j(·)) ∈ NCj(z−j(·))∩Nj
(zj(·)), (3.1)

where ∂Gj is the subdifferential mapping of Gj(zj(·), z−j(·)) and NCj(z−j(·))∩Nj
(zj(·)) stands

for the normal cone of set Cj(z−j(·)) ∩ Nj at zj(·) in the sense of convex analysis [28].
Condition (3.1) will be also sufficient if problem (2.16) is convex for zj(·). Under the following
constraint qualification (CQ for short) condition

Cj(z−j(·)) ∩Nj ̸= ∅ ∀j ∈ [N ], (3.2)

(which simply says that every player has a feasible solution) one has

NCj(z−j(·))∩Nj
(zj(·)) = NCj(z−j(·))(zj(·)) +NNj (zj(·)) = NCj(z−j(·))(zj(·)) +Mj ,

where Mj represents the complementary subspace of Nj . Therefore, under CQ, (3.1) is
equivalent to

Find zj(·) ∈ Nj , wj(·) ∈ Mj s.t. − ∂Gj(zj(·); z−j(·))− wj(·) ∈ NCj(z−j(·))(zj(·)). (3.3)

Specifically for Cj(z−j(·)) in form (2.15), condition (3.3) is equivalent to the Karush-Kuhn-
Tucker (KKT) condition of problem (2.16), which can be written as follows

0 ≤
(
zj(ξ)
ηj(ξ)

)
⊥
(
Q̄j(ξ) −ĀT

j (ξ)
Āj(ξ) 0

)(
zj(ξ)
ηj(ξ)

)
+

(
c̄j(ξ) + R̄−j(ξ)z−j(ξ)
Ā−j(ξ)z−j(ξ)− b̄j(ξ)

)
+

(
wj(ξ)
0

)
≥ 0,

(3.4)
where “⊥” means “is perpendicular to” and ηj(ξ) is a dual vector. If Q̄j(ξ) is positive
semidefinite for all ξ and the optimal value of (2.16) is finite, then the KKT condition (3.4)
is also sufficient for the existence of optimal zj(·), wj(·), and ηj(·). However, we do not
assume Q̄j to be positive semi-definite in the following analysis.

Now let

R̄−j(ξ)z−j(ξ) =
∑
k ̸=j

R̄jk(ξ)zk(ξ), Ā−j(ξ)z−j(ξ) =
∑
k ̸=j

Ājk(ξ)zk(ξ)

with

R̄jk(ξ) =

(
Rjk 0

Pjk(ξ) Ojk(ξ)

)
and Ājk(ξ) =

(
Ak 0

Djk(ξ) Bjk(ξ)

)
.

The Nash equilibrium of the game requires condition (3.4) to hold for all suppliers, writing
all such conditions together, then the necessary conditions of the Nash equilibrium of the
suppliers’ game under uncertainty is to find

v(ξ) := (z1(ξ), η1(ξ), . . . , zN (ξ), ηN (ξ))T ∈ N̂ and (w1(ξ), 0, . . . , wN (ξ), 0)T ∈ M̂

such that ∀ξ ∈ Ξ,

0 ≤ v(ξ) ⊥

V11(ξ) . . . V1N (ξ)
...

...
VN1(ξ) . . . VNN (ξ)

 v(ξ) +


c̄1(ξ)
−b̄1(ξ)

...
c̄N (ξ)
−b̄N (ξ)

+


w1(ξ)
0
...

wN (ξ)
0

 ≥ 0,

(3.5)
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where N̂ = {v(·) : The x-part of v(·) is independent of ξ}, M̂ = N̂⊥ and

Vjj(ξ) =

(
Q̄j(ξ) −Āj(ξ)

T

Āj(ξ) 0

)
, ∀j ∈ [N ] and Vjk(ξ) =

(
R̄jk(ξ) 0
Ājk(ξ) 0

)
, ∀j ̸= k, j, k ∈ [N ].

To obtain a matrix with an easier-understood structure, we arrange the order of the vari-
ables as follows. Put all dual variables corresponding to the first-stage constraints together,
followed by the dual variables corresponding to the second-stage constraints and denote the
entire dual vector as η(·). In addition, denote

w(ξ) = (w1(ξ), . . . , wN (ξ))T .

Then (3.5) becomes

∃ z(·) ∈ N and w(·) ∈ M with dual variable η(·) such that ∀ξ ∈ Ξ,

0 ≤
(
z(ξ)
η(ξ)

)
⊥
(
H11(ξ) H12(ξ)
H21(ξ) 0

)(
z(ξ)
η(ξ)

)
+

(
c̄(ξ)
−b̄(ξ)

)
+

(
w(ξ)
0

)
≥ 0,

(3.6)

where

H11(ξ) =



0 R12 . . . R1N P11(ξ)
T

R21 0 . . . R2N P22(ξ)
T

...
...

...
...

. . .

RN1 RN2 . . . 0 PNN (ξ)T

P11(ξ) P12(ξ) . . . P1N (ξ) O11(ξ) O12(ξ) . . . O1N (ξ)
P21(ξ) P22(ξ) . . . P2N (ξ) O21(ξ) O22(ξ) . . . O2N (ξ)

...
...

...
...

...
...

...
...

PN1(ξ) PN2(ξ) . . . PNN (ξ) ON1(ξ) ON2(ξ) . . . ONN (ξ)


, (3.7)

H12(ξ) =



−AT
1 −D1(ξ)

T

−AT
2 −D2(ξ)

T

. . .
. . .

−AT
N −DN (ξ)T

−B1(ξ)
T

−B2(ξ)
T

. . .

−BN (ξ)T


,

and

H21(ξ) =



A1 A2 . . . AN

A1 A2 . . . AN

...
...

...
...

A1 A2 . . . AN

D1(ξ) D12(ξ) . . . D1N (ξ) B1(ξ) B12(ξ) . . . B1N (ξ)
D21(ξ) D2(ξ) . . . D2N (ξ) B21(ξ) B2(ξ) . . . B2N (ξ)

...
...

...
...

...
...

...
...

DN1(ξ) DN2(ξ) . . . DN (ξ) BN1(ξ) BN2(ξ) . . . BN (ξ)


.
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The blank parts of the matrices are all zeros.
To summarize, we have shown the following result. Let C = {z(·) ∈ L : zj(·) ∈

Cj(z−j), ∀j} and N = N1 × . . .×NN .

Theorem 3.1. Under the constraint qualification that C ∩ N ̸= ∅, the problem of finding
a Nash equilibrium of supplier j can be converted to a stochastic linear complementarity
problem (3.6).

For the existence of solution to monotone SLC problem, we have the following result.

Theorem 3.2 (Theorem 3 of [31]). When applied to a monotone stochastic linear com-
plementarity problem, the progressive hedging algorithm (see next section for detail) can be
executed by solving in each iteration a strongly monotone linear complementarity problem
having the special property that the sequences {zν(·)} and {wν(·)}, ν = 1, 2, ..., thereby gen-
erated in N and M are sure to converge to a solution pair (z∗(·), w∗(·)) of a Nash equilibrium
at a linear rate.

Remark 3.3. Theorem 3.1 and Theorem 3.2 says that CQ plus monotonicity will guar-
antee the existence of a solution and the solution can be found by the progressive hedging
algorithm. To guarantee the monotonicity, at least the matrix H11(ξ) has to be positive
semidefinite.

It is generally not easy to obtain a sufficient condition for H11(ξ) to be positive semidef-
inite in practice. However, some specially structured H11(ξ) may be easily argued to be
positive semidefinite. Consider the four blocks of H11(ξ). Notice that, if ptj − γtj + βtj

are all equal for every t = 1, . . . ,M , then Rjk = −Rkj , which leads the upper-left block of
matrix H11(ξ) to be skew-symmetric. Actually, this condition is reasonable since the price
that each supplier offers is determined by her own cost, and every one follows the same rule
to offer her selling price. Moreover, if Pjk(ξ) = 0 for every j, k ∈ [N ], then H11(ξ) is positive
semidefinite when its lower-right block is positive semidefinite.

Remark 3.4. Particularly, if the recourse problem is a linear program, then

ϕj(yj(ξ);x(ξ), y−j(ξ), ξ) = dj(ξ)
T yj(ξ),

and only the upper-left block of H11(ξ) is nonzero. In this case, if Rjk = −Rkj , then one
can observe that H11(ξ) is positive semidefinite, and as a result, SLC problem (3.6) is a
monotone problem.

Remark 3.5. Specifically, if the second-stage constraint (2.10) has the following form:

Yj(x, y−j(ξ), ξ) =

yj ∈ RM
+ :

Fj(ξ)xj +Gj(ξ)yj(ξ) ≥ fj(ξ),
N∑

k=1

Sk(ξ)xk +
N∑

k=1

Tk(ξ)yk(ξ) ≥ g(ξ)

 , (3.8)

in which the second constraint involving strategies of all the players has a uniform formula-
tion for every j, together with the first-stage constraint (2.14), then for every ξ the whole
constraint of zj(ξ) (2.15) becomes

Cj(z−j(ξ), ξ) =
{
zj(ξ) : zj(ξ) ∈ C̄j(ξ), S̄(ξ)z(ξ) ≥ ḡ(ξ)

}
,

where C̄j(ξ) := {zj(ξ) : zj(ξ) ≥ 0, [Fj(ξ) Gj(ξ)]zj(ξ) ≥ fj(ξ)}, and

S̄(ξ) =

(
A1 . . . AN 0 . . . 0

S1(ξ) . . . SN (ξ) T1(ξ) . . . TN (ξ)

)
, ḡ(ξ) =

(
a

g(ξ)

)
.
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In such case, H12(ξ) and H21(ξ) in condition (3.6) have the following specific structures:

H21(ξ) = −H12(ξ)
T =


A1 . . . AN 0 0

S1(ξ) . . . SN (ξ) T1(ξ) . . . TN (ξ)
F1(ξ) G1(ξ)

. . .
. . .

FN (ξ) GN (ξ)

 ,

and b̄(ξ) becomes
b̄(ξ) = (aT , g(ξ)T , f1(ξ), . . . , fN (ξ))T .

Therefore, the semidefiniteness of matrix H11(ξ) determines the monotonicity of the SLC
problem (3.6).

4 Finding an Equilibrium via Progressive Hedging

The progressive hedging algorithm (PHA for short) was originally designed by [33] for multi-
stage stochastic minimization problems and it has been used in various fields such as financial
engineering [3], supply chain network design [17,26] and surgery planning [14]. Recently, it
has been extended to the monotone SVI problems in [31, 32] that is aimed at the inclusion
problem in L

Find z(·) ∈ N , w(·) ∈ M, such that −F(z(·)) ∈ NC(z(·)) + w(·), (4.1)

where F is a point-to-set continuous mapping. The SLC problem is a special case of (4.1),
where C ≡ the nonnegative orthant and F is defined by the linear mapping ξ → S(ξ)z(ξ) +
q(ξ). Then the Problem (4.1) becomes the SLC problem

Find z(·) ∈ N , w(·) ∈ M, such that 0 ≤ z(·) ⊥ F(z(·)) + w(·) ≥ 0, (4.2)

where F is a linear mapping of L → L . We notice that our suppliers’ game (3.6) is in
particular in this form.

4.1 The ideas for solving the SLC problem

Since the dimension of z(·) is very large, it is almost impossible to directly solve the problem
(4.2). The progressive hedging algorithm is a scenario-based decomposition scheme with
a projection step for resuming nonanticipativity [37]. Let us note that, by ignoring the
nonanticipativity, for given w(·), it is easy to find z(·) such that

0 ≤ z(·) ⊥ F(z(·)) + w(·) ≥ 0, (4.3)

because the task is equivalent to that for each ξ find the solution to the problem

0 ≤ z(ξ) ⊥ S(ξ)z(ξ) + q(ξ) + w(ξ) ≥ 0. (4.4)

Since (4.4) is of normal size, it is easy to solve for every ξ. This is the basic decomposition
idea of progressive hedging. However, even if S(ξ) is positive semidefinite, there may not be
a solution to (4.4); therefore, the PHA adds another trick to this decomposition scheme to
at least guarantee a unique solution to (4.4); that is, adding a proximal term to it by solving

0 ≤ z(ξ) ⊥ S(ξ)z(ξ) + q(ξ) + w(ξ) + σ(z(ξ)− zν(ξ)) ≥ 0, (4.5)
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where σ > 0 is a fixed parameter and zν(ξ) is the current iteration in the iterative procedure
of PHA.

The solution ẑ(·) obtained by separately solving (4.5) for all ξ ∈ Ξ, may not be in the
space N . Therefore, the next step of PHA is to restore the nonanticipativity by projecting
ẑ(·) to space N , i.e.

zν+1(·) = PN (ẑ(·)) and wν+1(·) = wν(·) + σPM(ẑ(·)), (4.6)

where P is the projection operator. The projection PN accounts to computing the expec-
tation of ẑ(ξ) in the two-stage setting and is therefore an easy job, while the projection
PM = I−PN , where I is the identity operator. With the new pair of (zν+1(·), wν+1(·)), the
PHA proceeds as an iterative method until the generated sequence converges.

4.2 The PHAs

The PHA, when applied to monotone SLC problems, is fairly fast as demonstrated in [31].
Zhang et al. [40] studied the quadratic two-stage N -person noncooperative game under
uncertainty, which include our model (3.6) as a special case. The problem of finding a Nash
equilibrium of the game is shown to be equivalent to a generally nonmonotone SLC problem.
They proposed specially designed progressive hedging algorithms to solve SLC problems in
both monotone and nonmonotone but “elicited monotone” cases. We next present their
results without proof.

Algorithm 1. PHA for SLC problem (3.6) in monotone case

Initiation. Let parameter σ > 0. Set z0(ξ) = 0, η0(ξ) = 0, w0(ξ) = 0 for all ξ, and ν = 0.

Iterations.
Step 1. For each ξ ∈ Ξ, obtain ẑν(ξ) = (x̂ν(ξ), ŷν(ξ)) and η̂ν(ξ)) via solving the

following linear complementarity problem

0 ≤
(
z
η

)
⊥
(
H11(ξ) H12(ξ)
H21(ξ) 0

)(
z
η

)
+

(
c̄(ξ)
−b̄(ξ)

)
+

(
wν(ξ)

0

)
+ σ

(
z − zν(ξ)
η − ην(ξ)

)
≥ 0.

Step 2. (Primal Update) For each ξ ∈ Ξ,

zν+1(ξ) =

(
Eξ(x̂

ν(ξ))
ŷν(ξ)

)
, ην+1(ξ) = η̂ν(ξ).

Step 3. (Dual Update) wν+1(ξ) = wν(ξ) + σ
[
ẑν(ξ)− zν+1(ξ)

]
.

Set ν := ν + 1, repeat until a stopping criterion is met.

We need a definition to present the convergence result for the nonmonotone case.

Definition 4.1 ([30]). Monotonicity of R is said to be elicitable (or elicited) at level ρ >
0:

• globally if R + ρPM is maximal monotone globally, where PM is the projection onto
subspace M, and

• locally around (z, y) ∈ graph (R) with z ∈ N , y ∈ M, if R+ρPM is maximal monotone
locally around (z, y).
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[40] obtained the following result for nonmonotone SLC problems. Denote

H(ξ) =

(
H11(ξ) H12(ξ)
H21(ξ) 0

)
.

Let diag (H(ξ)) be the block-diagonal matrix, consisting of diagonal blocks H(ξ) for all
ξ ∈ Ξ and let diag (H(ξ)) be its symmetric part, i.e.,

diag (H(ξ)) := [ diag (H(ξ)) + diag (H(ξ))T ]/2.

From Corollary 3.6 in [40], if diag (H(ξ)) is positive definite on N , then F +NC + ρPM is
maximal monotone for some large ρ > 0, thus SLC problem (3.6) is globally elicitable and
the following Algorithm 2 will produce series {(zν(·), wν(·))} that converges linearly to a
solution (z∗(·), w∗(·)) with respect to the (σ, ρ)-norm defined by

∥(z(·), w(·))∥2σ,ρ = ∥z(·)∥2 + 1

σ(σ − ρ)
∥w(·)∥2,

if the game has a solution and satisfies the constraint qualification.

Algorithm 2. Elicited PHA for SLC problem (3.6)

Initiation. Let parameter σ > ρ > 0. Set z0(ξ) = 0, η0(ξ) = 0, w0(ξ) = 0 for all ξ, and
ν = 0.

Iterations.
Step 1. For each ξ ∈ Ξ, obtain ẑν(ξ) = (x̂ν(ξ), ŷν(ξ)) and η̂ν(ξ)) via the following LCP

0 ≤
(
z
η

)
⊥
(
H11(ξ) H12(ξ)
H21(ξ) 0

)(
z
η

)
+

(
c̄(ξ)
−b̄(ξ)

)
+

(
wν(ξ)

0

)
+ σ

(
z − zν(ξ)
η − ην(ξ)

)
≥ 0.

Step 2. (Primal Update) For each ξ ∈ Ξ,

zν+1(ξ) =

(
Eξ(x̂

ν(ξ))
ŷν(ξ)

)
, ην+1(ξ) = η̂ν(ξ).

Step 3. (Dual Update) wν+1(ξ) = wν(ξ) + (σ − ρ)
[
ẑν(ξ)− zν+1(ξ)

]
.

Set ν := ν + 1, repeat until a stopping criterion is met.

Theorem 4.2. (Convergence of Algorithm 2, Theorem 3.3 of [40] and Theorem
2.1 of [38]) Suppose that F +NC is globally elicitable at level ρ. Then in the case that F
is linear, if N ∩ L+ ̸= ∅ (L+ is the nonnegative orthant of L ) and the SLC problem has
a solution, then the sequence {zν(·), wν(·)} generated by Algorithm 2 will globally converge
to some pair {z∗(·), w∗(·)} with (z∗(·), w∗(·)) being a solution to (4.1) at linear rate with
respect to the (σ, ρ)-norm.

5 Numerical Experiments

In this section, to test the effectiveness of PHAs in Algorithms 1 and 2, we conduct the
following three experiments for both monotone problems and nonmonotone-but-elicited-
monotone (nonmonotone for short) problems.

• Explore the choices of parameters in PHAs;
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• Test how PHAs work when the number of scenarios increases;

• Test how PHAs work when the number of players ([M,N ]) increases.

All numerical experiments are coded in Matlab R2015b and run on a laptop with an Intel(R)
Core(TM) I7-7500U 2.90GHz CPU and 16 GB of RAM under WINDOWS 10 operating
system.

As we indicted in Section 1, the purpose of the computational test is to show that the
PHAs work effectively for randomly generated medium sized manufacturer-supplier games.
Since PHA is the first algorithm proposed for SVI problems, currently, there is no other
method to compare with. Some well-known algorithms in stochastic optimization such as the
L-shaped method [39,41] appears not applicable to equilibrium problems for our comparison,
in particular for the nonlinear and nonconvex setting of the proposed manufacturer-supplier
games.

5.1 Data generation

In order to construct the monotonicity of the test problems, we generate the manufacturer-
supplier game (2.16) according to Remarks 1 and 3 in Section 3. Specifically, the suppliers’
second-stage constraints is generated in the form of (3.8), and the relevant data are randomly
generated by the rules in Table 1, in which the expression v = rand(l, u) (or V = rand(l, u))
means v (or V ) is randomly generated as a vector (or matrix) with its entries being uniformly
distributed in the interval (l, u).

Table 1. List of data values

Parameters of the first stage
∆i = 100, ri ∈ (2N, 5N), hi ∈ (0.1, 0.5), ∀ i ∈ [M ]

pij ∈ (2, 4), pij − γij − βij ∈ (1, 2), Γij ∈ (0.5, 1), ∀ i ∈ [M ], j ∈ [N ]

ε =1e-6

Parameters of the second stage (for every ξ ∈ Ξ)
Pjk(ξ) = 0, ∀ j, k ∈ [N ]

the lower-right block of H11(ξ) is generated as a positive definite matrix

by Ô(ξ)T Ô(ξ), where Ô(ξ) = rand(0, 1) is in size MN ×MN

dj(ξ) = rand(−1, 1), ∀ j ∈ [N ]

Fj(ξ) = rand(−1, 0), Gj(ξ) = rand(0, 1) are in size (⌊N/2⌋+ 1)×M , ∀ j ∈ [N ]

Sj(ξ) = rand(−1, 1), Tj(ξ) = rand(−1, 1) are in size (⌊N/2⌋+ 1)×M , ∀ j ∈ [N ]

fj(ξ), g(ξ) are random vectors to guarantee the feasibility, ∀ j ∈ [N ]

Following Remarks 1 and 3, when Pjk(ξ) = 0 ∀ j, k ∈ [N ] and the lower-right block of
H11(ξ) is positive semidefinite, we can obtain monotone problems by letting

pi1 − γi1 − βi1 = · · · = piN − γiN − βiN for all i ∈ [M ]. (5.1)

Besides, when Pjk(ξ) = 0 ∀ j, k ∈ [N ] and the lower-right block of H11(ξ) is positive
semidefinite, it is not difficult to see H11(ξ) is elicitable monotone at some level ρ > 0.
Therefore, in our experiments, we generate nonmonotone but elicitable monotone problems
following the rules in Table 1; as well as monotone problems following the rules in Table
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1 and make (5.1) holds, particularly with Ojk(ξ) = 0 for j ̸= k and Ojj(ξ) generated by

Ôjj(ξ)
T Ôjj(ξ), where Ôjj(ξ) = rand(0, 1) is of size M ×M .

5.2 Stopping criteria

Re-partition matrix H(ξ) into four blocks

(
M11 M12(ξ)

M21(ξ) M22(ξ)

)
with M11 being the upper-

left block of H11(ξ) without the Oij(ξ)s, which is a deterministic submatrix. The reason
why we isolate M11 is to reflect the structure of nonanticipativity constraint and to separate
the first-stage vector x, which is supposed to be a constant for every ξ. The vector q(ξ) is
divided into two blocks (q1 and q2(ξ)) according to the partition of H(ξ). Set

rel.err = max{rel.err1, rel.err2},

where

rel.err1 =
∥x−

∏
≥0(x− (M11x+ Eξ[M12(ξ)ȳ(ξ)] + q1))∥

1 + ∥x∥
,

rel.err2 = max
ξ

{∥ȳ(ξ)−
∏

≥0(ȳ (ξ)− (M21(ξ)x+M22(ξ)ȳ(ξ) + q2(ξ))) ∥
1 + ∥ȳ(ξ)∥

}
,

with (
∏

≥0(a))j = max{aj , 0}. Set the tolerance to be 10−5, and the maximal iterations to

be 2000, i.e., if rel.err ≤ 10−5 or iteration number ≥ 2000, the algorithm stops.

5.3 Numerical results for the choice of parameters

In addition to the parameter σ used in Algorithm 1, a step length τ is added in the dual
update step, namely

wν+1(ξ) = wν(ξ) + τσ(ẑν(ξ)− zν+1(ξ)). (5.2)

Similarly, for Algorithm 2, we revise Step 3 as follows,

wν+1(ξ) = wν(ξ) + τ(σ − ρ)
[
ẑν(ξ)− zν+1(ξ)

]
. (5.3)

It can be seen that (5.2) and (5.3) reduce to Step 3 in Algorithms 1 and 2 when τ = 1.
However, the choice of τ = 1.618, which has been successfully used in Douglas-Rachford
splitting methods, has achieved better performance in the numerical experiments of [40].
Thus, in this subsection, we will first check the impact of parameter σ and τ in Algorithm 1
for monotone problems, then fix τ and check the impact of parameters σ and ρ in Algorithm
2 for nonmonotone problems.

We set [M,N ] = [5, 5] and the number of scenarios (sn for short) at 10, then generate
10 monotone problems and 10 nonmonotone problems by the rules stated in Subsection 5.1.
Fix step length τ = 1 and τ = 1.618 respectively, then we apply Algorithm 1 for solving the
randomly generated monotone problems with parameter σ to be 0.5, 1, 2.5,

√
10 and 5, and

record the number of iterations for convergence and the time (counting by seconds) for each
problem. The average number of converging iteration (avg-iter for short) and the average
time (avg-time) for convergence among these 10 problems are listed in Table 2 and drawn
in Figure 1.

It can be seen from Table 2 and Figure 1 that the choice of σ is crucial for the speed
of convergence. The default value σ = 1 results in nearly 2 times more iterations than a
suitable selection of σ, while a larger or smaller σ slows down the convergence as well. For
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Table 2: Performance of Algorithm 1 with different parameters

([M,N]=[5,5], sn=10)

σ
τ = 1 τ = 1.618

avg-iter avg-time(s) avg-iter avg-time(s)
0.5 214 52.2 138 35.4
1 114 24.9 69 16.2
2.5 63 14.0 54 12.4√
10 69 17.1 67 15.7
5 104 24.3 103 22.8

Figure 1: Performance of Algorithm 1 with different parameters

this group of monotone problems, a good heuristic for the selection of σ is 2.5, which seems
to be N/2, i.e. half number of suppliers. Besides, Table 2 and Figure 1 show that the value
of τ has limited impact on the speed of convergence. Generally, τ = 1.618 can speed up 10%
than τ = 1 for this group of problems. Therefore, in the following experiments, we adopt
τ = 1.618 and use σ = N/2 when applying Algorithm 1 to solving monotone problems.

Fix τ = 1.618, we apply Algorithm 2 for solving the randomly generated nonmonotone
problems with different values of σ and ρ:

• fix ρ = 25, and set σ to be 50, 75, 100, 125, respectively;

• fix σ = 50, and set ρ to be 0, 5, 15, 25, respectively,

to see the impact of σ and ρ in Algorithm 2 on the speed of convergence for nonmonotne
problems. Notice that the choice of σ in Algorithm 2 is much bigger than the suitable
selection for monotone problems in Algorithm 1. This is because the matrix H11(ξ) is no
longer semidefinite and the value of σ needs to contribute for the elicited monotonicity. The
average number of converging iteration and the average time for convergence among these
10 nonmonotone problems are listed in Table 3 and are drawn in Figure 2.

Figure 2 indicates that the choice of σ has more influence than the choice of ρ on the
performance of Algorithm 2 for nonmonotone problems. When fixing ρ = 25, larger σ makes
slower convergence; while fixing σ = 50, different values of ρ have little difference on the
convergence time and number of iterations. However, based on the number of iterations and
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Table 3: Performance of Algorithm 2 with different parameters

([M,N]=[5,5], sn=10, τ = 1.618)

ρ = 25 σ = 50
σ avg-iter avg-time(s) ρ avg-iter avg-time(s)
50 105 21.8 0 96 20.2
75 127 26.1 5 100 20.8
100 154 31.7 15 103 21.7
125 195 40.0 25 105 21.8

Figure 2: Performance of Algorithm 2 with different parameters

time among the ten nonmonotone problems, the best choice of σ differs from each other.
In the following experiments, we use σ = 10N and ρ = σ/2 when applying Algorithm 2 to
solving nonmonotone problems.

5.4 Numerical results when the number of scenarios increases

In this subsection, we set [M,N ] = [5, 5] and sn=10, 20, 50, 100, 200, respectively, then for
each setting of sn, generate 10 monotone problems and 10 nonmonotone problems by the
rules stated in Subsection 5.1.

(1) Choosing σ = 2.5 and τ = 1.618, apply Algorithm 1 for the randomly generated
monotone problems and record the number of iterations and time for convergence,
with corresponding results being listed in Table 4 and Figure 3;

(2) Choosing σ = 50, ρ = 25 and τ = 1.618, apply Algorithm 2 for the randomly generated
nonmonotone problems and record the number of iterations and time for convergence,
with corresponding results being listed in Table 5 and Figure 4.
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Table 4: Monotone results while sn increases

([M,N]=[5,5], σ = 2.5, τ = 1.618)

sn avg-iter avg-time(s)
10 54 12.4
20 54 25.1
50 63 69.8
100 71 159.5
200 95 409.8

Figure 3: Convergence results of Algorithm 1 when number of scenarios increases

Table 4 and Figure 3 show that both number of iterations and time for convergence
increase near linearly while the number of scenarios grows. Besides, it can be observed that
the growth rate of number of iterations is comparatively steady, which coincides with the
results in [40]. Hence, the reason for the rise of convergence time may be caused by the
proportional growth of the number of subproblems for each iteration when sn increases.
Thus, if using parallel computation for subproblems, which is a possible choice of future
experiments, then the time for convergence could be expected to be stable.

Table 5: Nonmonotone results while sn increases

([M,N]=[5,5], σ = 50, ρ = 25, τ = 1.618)

sn avg-iter avg-time(s)
10 105 21.8
20 108 43.5
50 136 138.9
100 139 284.8
200 158 649.6

It can be seen that the nonmonotone case in Figure 4 presents similar trend to the mono-
tone case in Figure 3. The number of iterations for convergence is relatively stable, while
the convergence time rises at a near linear rate when sn grows. However, compared with the
monotone results, both number of iterations and time for converging in the nonmonotone
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Figure 4: Convergence results of Algorithm 2 when number of scenarios increases

case are consistently nearly twice larger than those in the monotone case.

5.5 Numerical results when the number of players grows

In this subsection, we set sn=20 and respectively

• fix N = 5, increase M from 2 to 10;

• fix M = 5, increase N from 2 to 10.

For each setting of [M,N ], generate 10 monotone problems and 10 nonmonotone problems
by the rules stated in Subsection 5.1.

(1) Choosing σ = N/2 and τ = 1.618, apply Algorithm 1 for the randomly generated
monotone problems and list results in Table 6 and Figure 5;

(2) Choosing σ = 10N , ρ = σ/2 and τ = 1.618, apply Algorithm 2 for the randomly
generated nonmonotone problems and list results in Table 7 and Figure 6.

It is shown in Table 6 and Figure 5 that when we fix N and increase M , or vice versa,
the number of iterations that Algorithm 1 converges to a solution has no significant change,
while the average time for convergence grows slowly.

Table 7 and Figure 6 illustrate that when applying Algorithm 2 to solving nonmonotone
problem with parameter σ = 10N and ρ = σ/2, the convergence speed will be slowed down
at a bigger rate while rising either M or N . However, it can be observed by comparison
of Figure 5 and Figure 6 that the shape of the increase trend is similar between monotone
problems solved by Algorithm 1 and nonmonotone problems solved via Algorithm 2. The
difference is only on the slope of the increasing trend.
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Table 6: Monotone results while [M,N] increases

(sn=20, σ = N/2, τ = 1.618)

Fixed N = 5 Fixed M = 5
M avg-iter avg-time(s) N avg-iter avg-time(s)
2 57 19.3 2 3 1.2
3 54 19.3 3 38 12.6
4 50 19.4 4 50 19.9
5 54 25.1 5 54 25.1
6 55 25.6 6 62 27.3
7 69 33.3 7 60 28.5
8 67 33.7 8 62 35.1
9 78 42.1 9 63 37.0
10 91 54.3 10 68 45.7

Figure 5: Convergence results of Algorithm 1 when [M,N ] increases

Table 7: Nonmonotone results while [M,N] increases

(sn=20, σ = 10N , ρ = σ/2, τ = 1.618)

Fixed N = 5 Fixed M = 5
M avg-iter avg-time(s) N avg-iter avg-time(s)
2 31 10.5 2 15 5.0
3 79 27.6 3 58 18.7
4 113 42.9 4 87 34.3
5 108 43.5 5 108 43.5
6 110 54.3 6 116 64.8
7 115 64.3 7 161 95.7
8 129 79.4 8 187 135.5
9 229 152.5 9 223 188.8
10 248 185.0 10 252 265.5

6 Conclusion

This paper studies a model of quadratic two-stage manufacturer-supplier game under un-
certainty. In addition to allowing all parameters in the second stage to be random, this
model allows all kind of cross terms to appear in the objective functions of both stages.
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Figure 6: Convergence results of Algorithm 2 when [M,N ] increases

The problem of finding a Nash equilibrium of this model is converted to a stochastic lin-
ear complementarity problem that appears in the literature of stochastic optimization only
recently.

It is explained in detail that the progressive hedging scheme can be used in solving
the suppliers’ game model for both the monotone case and the elicited monotone case.
Preliminary numerical experiments are conducted and the results indicate that the specially
tailored progressive hedging algorithms for stochastic linear complementarity problems are
effective for the manufacturer-supplier game in moderate size. The experiment results also
provided heuristic choices on the parameters of the algorithms.
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