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Introduction

We consider the system of nonlinear equations
F(z) =0, (1.1)

where F(z) : R" — R™is continuously differentiable. It is natural to transform (1.1) to the
nonlinear least squares problem

: 2
min &(r) = | F(2)|” (1.2)
Obviously, (1.1) has a solution if and only if the minimal value of (1.2) is zero. We assume
that the solution set of (1.1), denoted by X*, is nonempty. In this paper, || - || refers to the
2-norm both for vectors and matrices.
The Levenberg-Marquardt (LM) method is one of the most well-known methods for
solving (1.2). At each iteration, it computes the step

dy = —(JL T + M) T F, (1.3)

where Fy, = F(xy), Jp = F'(xy) is the Jacobian and the LM parameter A\ > 0 is introduced
to overcome the singularity or near singularity of J!Ji. The LM method has quadratic
convergence if the Jacobian J(z) is Lipschitz continuous and nonsingular at the solution of
(1.2) and if Ay, is chosen properly.
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However, the condition of nonsingularity is too strong. Under the local error bound con-
dition, which is weaker than the nonsingularity, Yamashita and Fukushima took \x = ||F|?
and proved that the LM method still converges quadratically [15]. More generally, Fan
and Yuan took A\, = || Fg||* and proved by a different approach that the LM method has
quadratic convergence for all a € [1,2] (cf. [6]). In [3], Fan proposed the modified LM
method, which computes not only a LM step but also an approximate LM step at each
iteration. Furthermore, Fan presented the accelerated LM method, which performs the line
search along the approximate LM step, and proved that the convergence order of the ac-
celerated LM method with order min{1 + «, 3} under the local error bound condition and
the Lipschitz continuity of the Jacobian [4]. Recently, Fan et al. proposed the adaptive
LM method, which can decide automatically whether an iteration should evaluate the Ja-
cobian matrix to compute an LM step, or use the latest evaluated Jacobian to compute an
approximate LM step [5].

In real applications, some nonlinear equations may not satisfy the local error bound
condition, but satisfy the more general Holderian local error bound condition.

Definition 1.1. We say F(z) provides a Holderian local error bound of order 7 € (0,1] in
some neighbourhood of z* € X*, if there exists a constant ¢ > 0 such that

cdist(x, X*) < ||F(z)||”, Vz € N(x*). (1.4)

Obviously, when v = 1, the Hoélderian local error bound condition is reduced to the
local error bound condition. Wang and Fan considered the convergence rate of the LM
method under the Hélderian local error bound condition and the Holderian continuity of
the Jacobian [12]. The convergence properties of the inexact Levenberg-Marquardt method
under the same conditions are also given in [13].

In this paper, we study the convergence properties of the accelerated Levenberg-Marquardt
method proposed in [4] under the Holderian local error bound condition and the Holderian
continuity of the Jacobian. At every iteration, it first solves the linear equations

(JETy + MeD)d = —JLF,  with Ay = pg||Frl°, 6 >0 (1.5)
to obtain the LM step dj, where py, > 0 is updated from iteration to iteration, then it solves
(JZJk. + )\kf)d = —JkTF(yk) with  yr = + dg (1.6)

to get the approximate LM step dk. After that, it performs a line search along dj, and define
the trial step R
Sk = di + apdyg, (17)

where oy, is the step size for Jk

This paper is organized as follows. In Section 2, we show that the accelerated LM method
converges globally under the Holderian continuity of the Jacobian. In Section 3, we study
the convergence order of the algorithm under the Holderian local error bound condition and
the Holderian continuity of the Jacobian. Finally, we conclude the paper in section 4.

Global Convergence of the Accelerated LM algorithm Under the
Holderian Continuity of the Jacobian

In this section, we first present the modified LM algorithm, then prove it converges globally
under the Holderian continuity of the Jacobian.
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Note that the step dji given by (1.5) is the minimizer of the problem:

1Fs + Jed||? + Axl|d])> £ x(d). (2.1)

min
deR™

Define
Ag = |ldell = | = (Ji Tk + Xed) 7ML Fy- (2.2)

Then dj, is also a solution of the trust region problem:

min | Fy + Jpd|?,  s.t. ||d]| < Ay. (2.3)
deR™

Following Powell’s result given in [11], we have

2 _ 2 T . 75 Fl
1,17 = 1 F% + Jrdl|” = ([T Frell min { [ldell, ;=7 ;- (2.4)
15 Tl
Similarly, dy, is not only the minimizer of the problem:
min (| (i) + Jed]l” + Aelld]* £ or1(d), (2.5)
but also a solution of the trust region problem:
min [[F(ys) + Jid|®, st |ld]] < Agy = ldill = || = (JE T+ M) T F ()|l (2.6)
Hence, we have
5 : 5o I F (y
1P = 1P + el > IE Pl min (i), 200 )
k

When dy, is a decreasing direction of the merit function ®(x) at yj, we perform a line
search along di. That is, we solve the problem

. T
mig | (v +od )| 28
We approximate it by
.12
min HF(yk) + aJkdk‘ , (2.9)
a>0
which is equivalent to the problem
2
max | F (i) |* = || () + adudi|| 2 é(0), (2.10)
where
pla) = —di JF Jpdpa® + 2dF (JF T + M) dra. (2.11)
The maximizer of ¢(«) is
df (JF T+ M) d ird
dk:k(kk+k)k=1+M>1 (2.12)

AL JT Ji.dy, AT JT Ji.dy,
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if Jka?k = 0. Since the value of &y could be very large when chik is close to 0, we give &y
an upper bound and compute the step size by solving

~ 112
mas (1F ()| = |[F () + i (2.13)

where & is a positive constant.
Define the actual reduction of the merit function ®(x) at the k-th iteration as

Aredy = ||Fy|? — || F(zg + sp)]? (2.14)
and the predicted reduction as
Predy = || Fyl|* = | F + Jidie|* + 1 () |1 = | F (yr) + aJidi || (2.15)
By (2.4), (2.7) and (2.9)—(2.12),

N 2
Predy, = ||Fi||> = | Fy + Judil” + | F (ye)]” — HF (Yx) + e Jrdi

~ 112
> |IBll® = 1B+ Jedil + IF (w)ll” = || F () + T

. Ji Fi| i 1 F (i)l
> |JE Fy|| min{ ||d ,” k + ||JEF(y min < ||d |, A~
> L Fill i {7 b I8 )| min { el =

. |7 F |
> || i Bl min { ||, : (2.16)
: { HH&M

The ratio of the actual reduction to the predicted reduction

_ Aredy,
" Predy

Tk (2.17)

plays a key role in deciding whether to accept the trial step and how to update the LM
parameter \.

The algorithm is presented as follows.

Algorithm 2.1. Givenxy € R™,§ > 0,1 > 110 > 0,0 <pg < p1 <p2 < 1l,a1 >1>ay > 0.
Set k= 1.

Step 1. If ||J{ Fy|| = 0, then stop; compute

Ao = || |’
Solve
(JE Tk + M\ D)d = —JL Fy, (2.18)
to obtain dj; set
Y = T + dg;
solve
(T3 Ji+ Me)d = =T F(yx) (2.19)

to obtain dk; set .
Sk = di + apdy. (2.20)
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Aredy, .

Step 2. Compute 1, = Bred.; Set
T + Sk, if Tk > po,
Thar = | (2:21)
Tk, otherwise.
Step 3. Compute
ay i, if Tk < p1,
HE+1 = M, if Tk € [p1,p2], (2.22)

max{asfik, o}, otherwise;

set k:=k + 1; go to Step 1.

Assumption 2.1. (a) The Jacobian J(z) is Hélderian continuous of order v € (0, 1], i.e.,
there exists a positive constant xp; such that

17(2) = J@W)I < snjllz —yll", Yo,y € R (2.23)
x) 1s bounded above, 1.e., there exists a positive constant xp; such that
b) J is bounded ab i h i iti g h th
|J(z)| < Kepj, VzeR". (2.24)

By (2.23), we have

1F () — F(a) — J(@)(y — 2)]| = H [ e+ ity = )y - it - @)y )

N

<lly—z| / 17 + t(y — 2)) — J(x)|dt

1
Sﬁhjlly*xllm/ t'dt
0
Khj 14w
= —||ly — . 2.25
Sy — a (2.25)

Theorem 2.2. Under Assumption 2.1, the sequence {x} generated by Algorithm 2.1 sat-
isfies
liminf ||J] Fy| = 0. (2.26)
k— oo

Proof. Suppose that (2.26) is not true. Then there exists a positive constant 7 such that
|JL Fel| >, VEk. (2.27)
Define the index set of successful iterations as
S=A{k|re>po} (2.28)

We derive the contradictions in two cases.
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Case 1: S is infinite. By (2.7), (2.24) and (2.27),

o0
IEL? = D (U F? = 1Eeal®) = D ERIP = [ Fesa )
k=0

kes
> ZPOPT@dk
kes
- |75 Fl
> 5 ol 7 i min { i,
,; 175 T
. T
> Zponln{HdkH, HT}
kes bj
Hence,
li dr, =0
keS,k—+oo

We can get from (1.5) and (2.22) that

wr — +00, A\ = +oo, k¢S,

(2.29)

(2.30)

and it follows from || F}|| is non-increasing, (2.24), (2.27) and the definition of dj that

lim d =0.
k¢S, k—+oo
Hence we have
lim dk =0.
k—o0
By (2.24) and (2.25), we have
ldill = || = (JE T + MD) " TTE ()|

<= (T Tk 4+ M) T I El A+ = (JE Tk + Med) ™ T Trdy|
Khgj T —14T 1+v

+ — i d
1 ’UH (Jk Jr k ) Jk HH k”

ijﬁhj 1+v
<2lldg|| + ——=—||d .
= || k” (1 ’U))\kH k?“

It follows that

1F (@ + di)|I* = |y + Jdil|?|
2

Q’fhj 1 Khj
F Jud d +v J d 2+2v
= 1+U|| k+ JE k”” k” +<1+U)2|| k“ )

and

I (zk + di + odp)||> = | F 2k + di) + Judie)?|
2

2K - A K7, ; N
< | Ey + Ji(d d)|llld dy||*+ I__||d dy||* T2
f1+v|| i + Ji(di + ody) ||| di + oedi| +(1+v)2” k + ordi|

2Knj 5 1 Hi‘
Fi + Jy(d di) Il dgel|* T I \ldg||>T2.
1+UH K+ Ji(di + andi)||[|di | + (1+U)2H k|

+

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)
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It then follows from (2.16), (2.24), (2.25), (2.27), (2.32), (2.32) and (2.35) that

Aredy, — Predy,
re =1 =|——FH——
Pred,
< IE (yi)lI2 = 1% + Judicl|® + | F(zx + sl = 1F () + Jedil|>
- . JTFy,
17 el min { i, 55554}
2K 1 5 51t K G242
< (==L Fy + Ji(d d d d v i d d v
< (1+v|| k + Ji(di + andp)|l|di + ardy| +(1+U)2| K+ ardy||
2’£hj N 1 25%‘
F + Ji(d di)|| || d || I\ di |22
+1+UH K+ Jr(dy + andy)||||dr | +(1+U)QH kll
2Kp; 1 T . { |Jng|}
i F—s—Jdd*”/Jmed, ‘
1+UH k + Jedi||ldel ') /(1175 Frll [l #Al )
< 1250 By (e + o) e+ e[+ + 5y + a2+
< (T i i+ ondi s + endl 7 + s i + ol
2Kp; - 1 2“}21‘
F. + Ji(d di)|| || dg || I ||dg |22
+1+UH i+ Jr(di + cud) ||| di| +(1+U)2H k|l
2K3hj 1 . T
F + Jodg|ll|d +v/ dy ||, — ’
+1+UH b+ Jrdilll|di ) (Tmln{H k| ng})
0. (2.36)
Hence,
lim 7, =1. (2.37)

k——+oo

In view of (2.22), we know that there exists a positive constant fi such that
e < (2.38)

holds for all large k. This contradicts to (2.31). So (2.27) cannot be true when S is infinite.
Case 2: S is finite. Then there exists a k such that r; < po for all k£ > k. Hence,

pr — +00. (2.39)
By the definition of dj, we have
dj, — 0. (2.40)
By the same analysis as (2.36), we have
re — 1. (2.41)

Thus, there exists a positive constant i such that pg < i holds for all large k, which gives
a contradiction to (2.39). Therefore, (2.27) cannot be true when S is finite.
Summarizing the above, we know that (2.26) holds true. The proof is completed. O

Convergence Rate of Algorithm 2.1 Under the Holderian Local
Error Bound Condition and the Holderian Continuity of the Ja-
cobian.

In this section, we analyze the convergence properties of Algorithm 2.1 under the Holderian
local error bound condition of F(z) and the Hélderian continuity of the Jacobian. We
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assume that the sequence {zj} generated by Algorithm 2.1 lies in some neighborhood of
x* € X™* and converges to the solution set X*. We make the following assumption.

Assumption 3.1. (a) F(z) provides a Holderian local error bound of order v € (0,1] in
some neighbourhood of z* € X*, i.e., there exist constants ¢ > 0 and 0 < b < 1 such that

cdist(z, X*) < ||F(2)||”, Vx e N(z*b), (3.1

where N(z*,b) = {z € R" | ||z — z*|| < b}.
(b) J(z) is Holderian continuous of order v € (0, 1], i.e., there exists a positive constant

kprj such that
17(x) = W)l < #nsllz =yl Va,y € N(@",b). (3:2)

Similarly to (2.25), we have

IF) ~ F@) = J@)y - )l < T2y =2, Yoy e N@t 5. (33)

Thus, there exists a constant xp¢ > 0 such that
[F(y) = F(2)|| < reglly —=ll, Va,y e N2, g) (34)
Denote by Zj the point in X* that is closest to zy, i.e.,
|Zx — x|l = dist(zg, X). (3.5)

In the following, we use the singular value decomposition technique to study the rela-
tionship between the norm of trial step s and dist(z, X*).

Due to the results given by Behling and Iusem in [1], we assume that rank(J(z)) = r for
all T € N(z*,b) N X*. Suppose that the singular value decomposition (SVD) of J(Zy) is

_ - - - - ) v o
J(@1) = U Sk Vi = (Ug,1, Uk 2) ( w1 0 > ( kal ) = Uk 1Sk Vi, (3.6)
k.2

where %y 1 = diag(6y 1, ...,0k,) > 0. Suppose the SVD of Jj, is

Ty =URS Vi = (Upr, Uga) | 24 Vi
E=Uk2gpVe = (Ug1,Ug2 IS VkT,2
=Uk,12k,1VkT,1 + Uk,QEk,ZVJIQa (3.7)

where ¥y 1 = diag(og1,...,0ky) > 0 and Xy o = diag(okr41,---,0kn) > 0. In the fol-
lowing, if the context is clear, we suppress the subscription &k in Uy ;, i, and V;;, and
write

= SV 4+ U B VF (3.8)

for convenience.
Without loss of generality, we assume that both xy and xj, + di lie in N (z*, g).

Lemma 3.1. Under Assumption 3.1, there exists a constant ¢1 > 0 such that

min {1,1+v—%.,1-‘,-v+max{v—é %},(1+v)(1+v—%)+max{v—%,—%}}

Isk]l < érdist(zg, X™) v
(3.9)
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Proof. Since zj, € N(z*, %), we have

N o

[z — 2| < [lZx — 2kl + [lox — 27| <
So, Z), € N(z*, ). Then it follows from (3.1) that

Fy S s
Ak = el Fel|® = poc™ (|2, — @k~
Since dj, is the minimizer of g (d), we get from (3.3) and (3.11) that

dy)
di|* < 24
i < 2
< k(T — 1)
e Vi
| Fy + Ji (@ — 2 |” + Nl Zr — ]|
Ak

5 _38
Kpi€ 7 |2+2u—é

)QHJ_%—&"M v+ |2 — @il

= o(1+0)?

2 —

Ky , .

< (37 + 1) N e -
,“0(1 +v)2 H H

which gives
s 5
lde ]| < @@, — a1,
where ¢ > 0. As analyzed in (2.33), we know

K

lldill < 2||dwll +

hj T -1 4T 14w
+ A\ .
1 UH(Jk T+ e D)7 T |l del

Using the SVD of Ji, we have
(T Te + M) T

B (3 + M D)713 UlT
- ||(Vv17‘/2) ( (25 +)\k1)7122 U2T ”

»!
<
< < (524 M) 15y ) I

<IETH A+ 1(ES + Md) ™ 2.
By the theory of matrix perturbation [14],
[ diag(E1 — g1, Do) || < [Tk — J (@)l < fingllZe — 2 ]”

The above inequalities imply

151 = Zpall < mngllzn =zl 1182l < wnjllze — ze]”

669

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

Without loss of generality, we assume that p;||Zr — xxl|" < § holds for all large k. By

(3.16),
1

<
H 1 || — 5'_’€hj‘|jk _kaq,

<

)

Qi ro

(3.18)
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moreover, we have from (3.11) that

_ D) 1, o3
(55 + ) 718 < T2 < — 7 — a7 (3.19)

ko pocy

and

1 1 5
VA \/Moc%

Then the above inequalities together with (3.13), (3.14) and (3.15) show that there exists a
posotive ¢; such that

(23 4+ M) 718, < 5

7 Khj ) 2 1 1 = max{v—2% — 2%

ldl < 20l + == il |+ (= 4+ max{ —5, —— H|zw—ap |75 (3.21)
1
(1+v) g poc™  2./ppc?

So we obtain that

skl = lldx + adgll
< |||l + &ldi |
R 2@/43}1' v
< lldil| + 26 di|| + mlldkllH
Khj 1 1 V|| = max{v—2% — &
+ e max{—, ——— i |l — o)
+v LoC 2 /uoczw
. DAk s )
< (1 + 2@)6“.@k _ kamm{l,l«H}f%} + aﬁh]761+v||i‘k _ xk”mm{lJrv,(lJrv)(lJrvf%)}
(1+v)o
Khj 1 1 ~ = min v v v— 2 max{v—2,— 2
T R e
L+w HoCT  24/HoC?

min {1,1-1—1)—%,1+1)+max{v—é,—%},(1-{-1})(1—}-1}—%)—i—max{v—%,—%

< é1l| Tk — x| } (3.22)
for ¢; > 0. The proof is completed. O

In view of Algorithm 2.1, we show that u is bounded above.

-1, 1= }, then

. . 1
Lemma 3.2. Under Assumption 3.1, if v > max{; -1 ) 402

1
P y(14v)—4
there exists a constant i > 0 such that

pi < fi (3.23)
holds for all large k.

Proof. We discuss in two cases.
Case 1: ||Z — zg| < ||dg||- It follows from Lemma 3.1, (3.1), (3.3) and v > % — 1 that

1 F%ll = 1 Fx + Jedic|| > [|[Fell = | Fk + Je(Zx — i) ||

Rhj = 1+v
1+Ulll‘k |

1 1
> ||y — x> —

1
> c1|| Tk — x|

> cQ||dk||ma"{*~<l+v>f%} (3.24)
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holds for some ¢y, co > 0.
Case 2: ||z — x| > ||dk]|. By (3.24),

A

1Zk — =

(IF%ll = [1F% + T (@ — i)

HﬂWW&+%@WW&WwF+ AT

(|||
|2k — @]

1_
> cr|ldi |z — a7
max 1774,
> c3l|d|| { a3 } (3.25)

holds for some c3 > 0.
Thus, by (3.24) and (3.25),

N 2
Predy, = |Fel* = 1B+ Jadell” + | F (i) I* = || F () + o T

> (1Fl + 1 Fx + Jede DU Fkll = [1F% + Jde])
> N Eull U ERll = 1 Fr + Jrdi])

S,
zmmwaﬁ% e R (3.26)

holds for some ¢4 > 0.

. 1— .. .
Since || Fy + Jrdi|| < | Fkll, v > max{% -1, 7(1+1v)—% -1, 7(1+U')Y_% }, combining with

the analysis of (2.34), (2.35) and (2.36) , we have

Aredy, — Predy,
lry =1 = | ——F——
Predy,
_ IE@I? = 1B + Jdel® + | P + s0)ll? = [ (y) + Jud?
N rnax{%7 1 5 71*7’75_‘_1}
exllFul | U T T
2651 ] AE Kh 51242
< (21 i+ and) e+ a5+ e+ e
b 2505 Bt cad) Il e
1+ (14 v)2
2K max<{ L, 1 s B |
+ hJ HFk + JkdkHHdkHH_U)/(C4||Fk||||dkH {“’ Y(1+v)—§ v (14+v) - S })‘
- 0' (3.27)
Therefore,
kgrfm e = 1. (3.28)
By the updating rule (2.22), we know (3.23) holds. The proof is completed. O

Next we investigate the convergence rate of Algorithm 2.1. The estimations of |[U3U{ Fy||
and ||UsUd Fy|| are given as follows.

Lemma 3.3. Under Assumption 3.1, we have
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1. |WUT Fe|| < kpgllzr — xell;
2. |UxUF Fr|| < 2605 || T — a1

Proof. Result (1) follows immediately from (3.4). .
Let J, = U121V1T and S = —J,ij, where J,j is the pesudo-inverse of J,. Then §j is
the least squares solution of m}i%n | Fr + Jis||- By (3.3) and (3.17),
seER™

|U2UF Fi|| = ||Fy + i3k
< |\ Fr + Ji (T — 2|
< Fe+ Je(@e — z) | + | (Je — o) @k — )|

Khi _ v B
< 1+j11||$k —$k||1+ + ||U222V2T(xk — )|l
Khj = v = vl =
< 1 _’_]v”l'k: — 2"+ BTk — 2xl|)|1Zk — 2k
< 265 | T — el (3.29)
The proof is completed. 0
By the SVD of Jj,, we get
di = =VA(ZE + \eD) T UL Fe = Va (55 + Ad) ™ 2003 F, (3.30)
I = 2 -1 T 2 —1 T
di = —Vi(Z7 + A\ D)7 21U7 Fyg) — V(25 + A D)™ 22U F(yk), (3.31)

Fy + Jpdy, = F — Uy S1(22 + M) IS UL Y, — Up o (32 + M) 150U Fy,
= MU1 (23 4+ M\ D) THUL By + M\ Uo(33 + M) 71U Fy, (3.32)

and

Fyp) + Jidy = F(yr) — U1 21(22 + X\ D) 'S UL Fyr) — Us o (32 + M) 71 S0UL F(yg)
= M1 (22 4+ M) T UL Fyr) + MeUa(22 + M D)7 UL F (). (3.33)

Lemma 3.4. Under the assumptions of Lemma 3.2, we have
L [OUT F i) < gl — ag|mindrot (e (o551,

2. |U2UF F(yi)|| < 7|2 — 2™,

)
where By = min {'7(1 +8)(14+v),y(1 +v)%,y(1 +v)*(1+v— %),v + (14 9),

b b
v+7(1+v),v+7(1+v)(1+v—%),v(1+v—ﬂ)+v(1+5)7

v(1+v—%)—l—w(l—&-v),v(l—kv—%)—i—’y(l—i—v)(l—&-v—%)}.
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Proof. By Lemmas 3.2 and (3.4),
Me = || Fill® < sz — o). (3.34)
It follows from (3.18), (3.32), (3.34) and Lemma 3.3 that
4/1/{1"’5
| Fx + Jrdr|l < &éf |12k — k]| + 26| 2 — 2l
< CSHLEk _ kamin{1+6,1+v}’ (335)
Gl td
where c5 = 4M5§f + 2K .
The above inequality, together with (3.3) and (3.13) implies that
1E (i)l = 1 F (zx + di)|
< 1B + Jidie ]| + gl del| T
< C5HQ_C]€ 7 xk|‘min{1+6,1+v} + ’ihj”dkHlJrv
< CGH‘/Z.IC _ xk|‘min{1+6,1+v,(1+v)(l+v7%)}’ (336)
where cg = c5 + kp; > 0. So we have
min v v v—
[T UT F (i)l < 1F(ye) | < col|zn — | Fo TG lrema, (3.37)
Thus the Holderian local error bound condition yields
_ 1
15 = ykll < —[1E (i) I
< Cjnjk _ mk||min{7(1+5)’”f(1+v),7(1+ﬂ)(1+1’*%)}. (3.38)
c
Let Jp = U1 2,V and jpy, = —j]j_FkJ. Since py, is the least squares solution of IIGIgl | F+
p n

Jipll, we deduce from (3.2), (3.3), (3.13), (3.17) and (3.38) that

||U2U2TF(yk)||
= [|F(yx) + Jeprll
<N F(yx) + Jr(@r — yr)||
< [F(yr) + () @k — yi)l + (e — T (yr)) (Gr — yi) |
Khj | " _
<7 +jv 1T — vl + 1 (e — T (yr) — U2S2V5 ) Gk — yi)|
Khj - v _ _
<7 +jv 176 — vl + 1Tk — T (we) @ — ye) | + 10222V (5 — i) |
Khj = v AT - V|5
<7 +jv 156 =yl + fn il 10k — yill + £ni |20 — el Tk — yill
A4v
< _Phi% = o (1) min{y(148),y(14+v),y(14+v) (1+v— L)}
< 1Tk — 2|
(1+v)ctt?
4 Clﬁlhcjcﬁ ||Ii'k . zk||min{v,v(1+v—%)}-ﬁ-min{'}/(l-‘,—&),'y(l-‘,—v),’y(l-‘,—v)(l—&-v—%)}
C6Khj |z — zk||v+min{v(1+5)ﬁ(1+v)ﬂ(1+v)(1+v—%)}

< crl| @k — x|,

(3.39)
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14v ~
KhjC CKpjC6 C6Khj
where ¢; = (1+Jv)‘j:1+v +—=+=%>0.

O

Theorem 3.5. Under conditions of Lemma 3.2, the sequence {xy} generated by Algorithm
2.1 converges to the solution set of (1.1) with order vB;, where

4 5
61:min{1—|—25,1+5—|—v,5—|—(1+v)(1+v—5),,80,1—&—21),11—1—(14—@)(14—@—ﬂ),

é 6 é )
2 — — 1 1 ——),1 1 — — ), (1 +2v)(1 - —
v 7"’607 +5+U( +v )7 +U+’U( +v 2,}/))( + 1))( +v 27)7

2y

- R S IR P}

Also, if v > % —1 and v < § < 2yv, the sequence xy, generated by 2.1 converges to some
solution of (1.1) superlinearly with order min{~y(1 + &§ +v),yv +~v2(1 +v)}.
Proof. Tt follows from (3.34), (3.17),(3.18), (3.19), (3.20), (3.31) and Lemma 3.4 that

ldill < ISTHIIUYF o)l + 110 S20l1U3 F (gl
2(36

- s KhjC _s
< 2@y — OO (RO} g ST 3, gy |0
g Hoc?
< cg|@x — xkHmin{l+5,1+v,(1+v)(1+v—%)7v—%4—50}’ (3.40)
where ¢g = 2 + "% > (. Then we can similarly get from (3.33) that
Hoc?

| F (ys) + o Jpdi |
< ||F(yx) + Jidy|
= [AUL(Z3 4+ M) T UL Fye) | + 1MeU2(53 + M) ™ U3 F(ye) ||

< M2 T F (i)l + 103 F () |
. 4/7:/‘€(l§2f06 7 — g |10, A0 A=) oz 60
< col|h — mk”min{1+26,1+6+v,6+(1+v)(1+v—%),,@0}, (3.41)
where ¢y = % + ¢7 > 0. Thus, we have from (3.1)-(3.3), (3.41) and (3.42) that
I1E ()l

= | F(yk + ody)]|

< (1P (yr) + and (ye)d ]| + rngog ™ [ldi |

< |IF(yr) + cnJidl| + [[(J (yr) = T)di|l + ronjo |y
< ||F(yx) + CkkadAk” + ﬁhjdekHUHOZkH + /ihjd1+v||dk”1+v

< Cg||53k o mk||min{1+26,1+5+v,5+(1+v)(1+v7%),Bg}

+ K G cs | Ty, — xk”min{u,v(1+v—%)}+min{1+5,1+v,(1+u)(1+v—%),u—gwo}
+ /ﬁhjdcé+v|‘§7k . xk||(1+”) min{1+4,1+v,(14v)(14+v—2),v—2+80}

< crol|Zk — zil|™, (3.42)
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where c¢19 = ¢g + KpjGc"cs + /fhjézcé"w > (0 and

0 )
51:min{1—|—25,1+5—|—1},5—|—(1+v)(1+v—ﬂ),ﬂg,l—i-%},v—l-(l—!—v)(l—i—v—Z),

) ) ) )
211—;+ﬁ0,1—|—6+v(1—|—v——),1—|—v—|—v(1—|—v—5),(1—1—211)(1—4—1)—%),

2y

v(l—i—v—%)—!—v—%—F,@o,(l—kv)(v—%—!—ﬂo)}. (3.43)

Then,

_ 1
[Zk1 — T || < EHF(%H)H7
c
< %II:& — |75 (3.44)
This means that {zj} converges to the solution set X* of (1.1) with order vf;.
Also, when v > % —1land v < § < 2yv, we have

Bo=v+y(14+v) and fr=min{l+d+v,v+~v(1+v)}. (3.45)
Then the sequence converges with the order
min{y(1 + 3 +v),yv +v*(1 +v)}, (3.46)

and
Y1464+ v) >yl +v) > 1, w++2(1+v) >w+y=79(1+v) > 1. (3.47)

We can get from the above two equations that the sequence xj generated by 2.1 converges
to some solution of (1.1) superlinearly with order min{vy(1 + § + v),yv +~v%(1 +v)}. The
proof is completed. O

Remark 3.6. Under Assumption 3.1, if v = v =1 and ¢ € (0, 2], then the Holderian local
error bound condition degenerates into the local error bound condition and the sequence
{x},} generated by Algorithm 2.1 with Ay = || Fi||° satisfies

| Zx41 — Thgrll < OllTp — x|, (3.48)

which is the same as the result given in [4].

Conclusions

In this paper, we consider an accelerated modified Levenberg-Marquardt (LM) algorithm
for the system of nonlinear equations. We study the convergence properties of this algo-
rithm under the Holderian local error bound condition and the Holderian continuity of the
Jacobian, which are more general than the local error bound condition and the Lipschitz
continuity of the Jacobian. We add line search under these more general assumptions,
which means that the Jacobian evaluated only after every 2 computations of the step. We
show that the LM algorithm converges globally and the convergence order of the algorithm
is 7B, defined in Theorem 3.5. Also, if v > % —1and v < § < 27w, the sequence zy,
generated by Algorithm 2.1 converges to some solution of (1.1) superlinearly with order
min{y(1 + 6 +v),yv +%(1 +v)}.
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