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some protection from inevitable estimation inaccuracies. Robust optimization approaches
have then been proposed to reduce the sensitivity of the optimal portfolio weights to the
input parameter uncertainties and have thus enhanced the real-world applicability of the
classical mean-variance model [17, 28, 25]. Additionally, the traditional mean-variance port-
folio selection framework does not account for the market friction while transaction costs
are a key instance of such friction that can affect portfolios’ net performances in practice.

In this article, we propose the following portfolio selection model featuring distributional
robustness and incorporating transaction costs:

maxy inf
P∈F

EP [U(y, ξ)]− ρ∥y − ỹ∥1

s.t. e⊤y = 1,
(1.1)

where y ∈ ℜm is the vector of asset holdings in the portfolio with yi denoting the portion of
the total capital invested in asset i, ỹ ∈ ℜm denotes the starting portfolio, ξ ∈ ℜm is the asset
return vector which is an m-dimensional random variable defined on the probability space
(Ω,F ,P), U(·, ·) is the utility function, F is a set of distributions with certain properties,
and ρ is a tunable penalty parameter. We assume that a whole unit of capital has to be
invested and hence e⊤y = 1, where e is an all-one vector. Linear constraints Dy ≥ d can be
further added to represent practical investment restrictions. For instance, we may control
the maximal or minimal allowable positions of some assets, i.e., yl ≤ y ≤ yu. Note that
−
∑

i:yi<0 yi = (∥y∥1 − 1)/2 since e⊤y = 1. Therefore, if we set ỹ = 0, adding the ℓ1
regularization can also control the short positions.

Our objective is to maximize the expected utility over a set of distributions with the same
first and second order moments. We do not require the complete knowledge of the asset
return distribution, which is normally hard to obtain in practice, while the information of
the mean return and the covariance matrix is more accessible [24]. It is noted in [5] that “for
large investors whose principal cost is a fixed bid-ask spread, transaction costs are effectively
proportional to the gross market value of the selected portfolio, and thus to the ℓ1 penalty
term.” Although the ℓ1 term is not the real transaction cost, yet controlling the value of the
ℓ1 term helps manage the trading volume and thus the trading cost. For ease of expression,
we assume that the same spread applies to the universe of assets being considered, similar
as in [5], yet our model and solution method can easily be extended to the general case of
asset-specific bid-ask spreads. The ℓ1 penalty also acts as a measure of portfolio leverage [20]
and controls the total amount of short positions in the portfolio [8]. According to [5], adding
an ℓ1 penalty in the context of Markowitz portfolio optimization stabilizes the optimization
model and promotes solution sparsity.

The distributionally robust framework addresses the important concern faced by in-
vestors regarding the ambiguity in the knowledge of the asset return distribution. Consid-
ering the piecewise-linear utility function in [23] and [29] that approximates the exponential
utility function given a risk-aversion parameter, we show that model (1.1) can be converted
to an equivalent semidefinite programming problem (SDP). We adopt the 2-block Alternat-
ing Direction Method of Multipliers (ADMM) to find the optimal portfolio and prove the
convergence of the algorithm. We further compute the worst-case optimized uncertainty
equivalent (OCE), the negative of which is shown to be a convex risk measure, within the
framework of [2]. Performance of model (1.1) is evaluated through out-of-sample empirical
tests, which indicate enhanced portfolio stability, especially during the 07-09 crisis period of
high market volatility, and improved portfolio risk-return performance led by incorporating
the robustness and adding the ℓ1 penalty.

The remaining of the paper proceeds as follows. In Section 2, we reformulate model (1.1)
into a 2-block convex conic program. Moreover, we introduce the notion of the worst-case
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OCE risk and the computational framework. In Section 3, we present details of solving the
reformulated model by ADMM. Section 4 reports empirical results and Section 5 concludes
the paper.

The following notations will be used throughout this article. Let Sm be the linear space of
all m×m real symmetric matrices and Sm

+ be the cone of all positive semidefinite matrices.
I and I denote the identity matrix of appropriate dimensions and the identity operator,
respectively. For any vector x ∈ ℜn and matrix X ∈ ℜm×m, denote ∥x∥ as the Euclidean
norm and ∥X∥ as the Frobenius norm.

2 Model Formulation and Risk Measure

In this section, we first reformulate the distributionally robust portfolio selection model
(1.1) to a tractable semidefinite program. As the exact distribution of the random asset
return is unknown, we introduce the worst-case OCE risk, i.e., a convex risk measure under
ambiguous distributions proposed in [23], to gauge the portfolio risk exposure.

To begin with, for notational convenience we set

h(y) := inf
P∈F

EP [U(y, ξ)]− ρ∥y − ỹ∥1

and

Y := {y ∈ ℜm| e⊤y = 1}.

As mentioned in the introduction, the utility function takes the following form:

U(y, ξ) = min
k∈{1,...,K}

{
αkξ

⊤y + βk

}
, (2.1)

which approximates the exponential utility function (1− exp(−αx))/α given a risk-aversion
parameter α. We aim to find the worst-case expected utility inf

P∈F
EP [U(y, ξ)] over the distri-

bution set

F :=
{
P|P(ξ ∈ ℜm) = 1, EP[ξ] = µ, EP[ξξ

⊤] = Σ
}
,

which is a family of distributions of the random return vector ξ with known mean vector µ
and covariance matrix Σ. In practice, investors usually do not have the complete information
of the multivariate distribution P to compute the exact expected utility while the first and
second order moment information is more accessible (see [24]). Let g(y) := inf

P∈F
EP [U(y, ξ)]

be the worst-case expected utility of portfolio y. Then a portfolio that maximizes such
worst-case utility is obtained by solving

ȳ = argmax
y∈Y

g(y).

Transaction costs are important in determining the net value of a portfolio and hence need
to be incorporated when making investment decisions. For institutional investors, broker
commissions can often be omitted due to their high trading volumes and an ℓ1 penalty term
suffices to capture the transaction costs [5]. In our portfolio selection model (1.1), we add
the ℓ1 penalty of the trading volume to the worst-case expected utility g(y) to control the
transaction costs.

Assumption 2.1. The mean vector µ and covariance matrix Σ of the random asset return
ξ are finite and satisfy Σ− µµ⊤ ≻ 0.



682 J. CHEN, L. SUN AND N. ZHANG

With Assumption 2.1 and Theorem 2.1 in [3], for any given y ∈ Y , h(y) is the optimal
value of the following semidefinite program:

h(y) = sup
R,r,r0

⟨R, Σ⟩+ µ⊤r + r0 − ρ∥y − ỹ∥1

s.t.

 −R −r+αky
2

(−r+αky)
⊤

2 βk − r0

 ⪰ 0, k = 1, . . . ,K. (2.2)

Consequently, model (1.1) can be equivalently written as

max
y

sup
R,r,r0

⟨R, Σ⟩+ µ⊤r + r0 − ρ∥y − ỹ∥1

s.t.

 −R −r+αky
2

(−r+αky)
⊤

2 βk − r0

 ⪰ 0, k = 1, . . . ,K,

e⊤y = 1.

(2.3)

2.1 OCE risk

In this section, we introduce the worst-case OCE risk proposed by Natarajan et al. [23],
which is a convex risk measure within the framework of OCE developed by Ben-Tal and
Teboulle [1, 2]. The general expression of OCE is given as follows:

S̄U (x) := sup
v∈R

{v + EPx
[U(x− v)]}, (2.4)

where U(·) is a normalized concave utility function and x is a random variable with proba-
bility distribution Px. Suppose that an investor expects to earn a future uncertain income
of x and he has a choice to consume part of it now. If he consumes v, then x − v is left
for later consumption and the resulting present value becomes v + Ex[U(x− v)]. Thus, the
OCE (2.4) measures the sure present value of a future uncertain income, accounting for the
optimal allocation between the present and the future consumptions.

In this paper, we only consider the case where the utility function takes a piecewise-
linear form. For a fixed portfolio y, define the portfolio payoff x := ξ⊤y with the first order
moment EPx

[x] = µ⊤y and the second order moment EPx
[xx⊤] = y⊤Σy, denoted by µx and

σ2
x, respectively. According to [23], the worst-case OCE is defined as

SU (x) = SU (ξ
⊤y) := sup

v∈R

{
v + inf

P∈F
EP

[
min

k∈{1,2,...,K}
αk(ξ

⊤y − v) + βk

]}
, (2.5)

and ρU (x) := −SU (x) is the corresponding risk measure.
We follow the computational framework in [23] to obtain the OCE risk of a portfolio.

Specifically, we first compute the worst-case expected utility

inf
P∈F

EP

[
min

k∈{1,2,...,K}
αkξ

⊤y + βk

]
,

which can be reformulated as

inf
Px∈Fx

EPx

[
min

k∈{1,2,...,K}
αkx+ βk

]
, (2.6)
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due to Proposition 1 in [24]. Specifically, we can further rewrite problem (2.6) as the following
convex optimization problem:

min
P

∫ (
min

k∈{1,2,...,K}
αkx+ βk

)
dPx(x)

s.t.
∫
dPx(x) = 1,∫
xdPx(x) = µx,∫
x2dPx(x) = σx.

Therefore, from the duality theory in infinite-dimensional convex optimization problem (see,
e.g., [26, 19]), we can obtain the optimal solution of model (2.6) via solving the dual opti-
mization problem:

sup
m0,m1,M

m0 + µxm1 +M(µ2
x + σ2

x)

s.t. m0 +m1x+Mx2 ≤ mink∈{1,2,...,K}{αkx+ βk}, ∀x ∈ R,
(2.7)

where m0, m1, and M are dual variables. With the worst-case expected utility obtained by
solving the second order cone program (2.7), finding the worst-case OCE in (2.5) becomes
a maximization problem with a single variable v. For detailed computational procedures of
the worst-case OCE, refer to [23].

3 Solution Method: ADMM

In this section, we aim to solve model (2.3) to obtain the optimal robust and sparse portfolio
where the sparsity is owing to the ℓ1 regularization. We first recall some established results
that will be used in the subsequent analyses.

3.1 Preliminaries

Let Z be a convex set and we define the indicator function

IZ(z) :=

{
0, if z ∈ Z,

+∞, otherwise.
(3.1)

For a given closed proper convex function f : X → ℜ ∪ {+∞}, the Moreau-Yosida regular-
ization of f at x ∈ X is defined by

Ψf (x) = min
x′∈X

{
f(x′) +

1

2
∥x′ − x∥2

}
. (3.2)

The minimization problem in (3.2) has a unique optimal solution Proxf (x) called the prox-
imal point of x associated with f and Proxf is called the proximal mapping.

If f1(x) = IZ(x), then the corresponding proximal point of x is

Proxf1(x) = ΠZ(x),

where ΠZ(·) is the metric projection operator over Z. If f2(x) = ρ∥x∥1 = ρ
∑m

i=1 |xi|, then
the corresponding proximal point of x is

Proxf2(x) = sgn(x) ·max(0, |x| − ρ), (3.3)
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where sgn(·) is the sign function.
Now we briefly review the 2-block ADMM. Consider the following 2-block convex com-

posite optimization problem:

min
x∈X ,y∈Y

p(x) + f(x) + q(y) + g(y)

s.t. Ax+ By = c,
(3.4)

where A : X → Z and B : Y → Z are two linear operators between finite dimensional
Euclidean spaces X , Y, and Z. f : X → ℜ and g : Y → ℜ are two continuously differentiable
convex functions; p : X → ℜ ∪ {+∞} and q : Y → ℜ ∪ {+∞} are two closed proper convex
(not necessarily smooth) functions.

Let σ > 0 be a given parameter. The augmented Lagrangian function of (3.4) is defined
by

Lσ(x, y; z) := p(x) + f(x) + q(y) + g(y) + ⟨z,Ax+ By − c⟩+ σ

2
∥Ax+ By − c∥2.

The 2-block ADMM iterative scheme can be described as follows:
xk+1 ∈ argmin

{
Lσ(x, y

k; zk) + 1
2∥x− xk∥2S |x ∈ X

}
,

yk+1 ∈ argmin
{
Lσ(x

k+1, y; zk) + 1
2∥y − yk∥2T | y ∈ Y

}
,

zk+1 = zk + τσ(Axk+1 + Byk+1 − c).

(3.5)

If the proximal terms S = 0 and T = 0, the iterative scheme (3.5) is the classical ADMM
developed in[13] and [14]. In [12] and [15], the authors establish the global convergence
of the classical ADMM with any τ ∈ (0, (1 +

√
5)/2) when the adjoint operator A∗ of A is

surjective and B is an identity operator. A more general and easy-to-use convergence theorem
is developed in [11]. To know more about the convergent analysis of 2-block ADMM, refer
to [11, 15, 16, 18, 21, 30, 31], and references therein.

3.2 ADMM for solving model (2.3)

For notational convenience, denote

A :=

(
Σ µ

µ⊤ 1

)
, X :=

(
R r/2

r⊤/2 r0

)
, Ck :=

(
0 0

0 βk

)
, Pky :=

αk

2

(
0 y

y⊤ 0

)
,

for k ∈ {1, . . . ,K}. Introducing an auxiliary variable Z := (Z1, . . . , Zk) ∈ Sm+1×· · ·×Sm+1,
we can reformulate model (2.3) into the following standard form of 2-block convex composite
optimization program:

minX,y,z,Z −⟨A, X⟩+ ρ∥z∥1 +
∑K

k=1 ISm+1
+

(Zk)

s.t. e⊤y − 1 = 0,

X − Pky + Zk = Ck, k = 1, . . . ,K,

y − ỹ − z = 0.

(3.6)

The Lagrangian function associated with (3.6) is

L(X, y, z, Z;x,Γ, γ) = −⟨A, X⟩+ ρ∥z∥1 +
∑K

k=1 ISm+1
+

(Zk)

+
∑K

k=1⟨Γk, Ck −X + Pky − Zk⟩+ ⟨γ, 1− e⊤y⟩+ ⟨x, y − ỹ − z⟩,
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and the corresponding Karush-Kuhn-Tucker (KKT) system is given by
e⊤y − 1 = 0, y − ỹ − z = 0, X − Pky + Zk = Ck, k = 1, . . . ,K,

A+
∑K

k=1 Γk = 0,
∑K

k=1 P∗Γk − γe+ x = 0,

z − Proxρ∥·∥1
(z − x) = 0, Zk −ΠSm+1

+
(Γk + Zk) = 0, k = 1, . . . ,K.

(3.7)

Let σ > 0 be a given parameter and the augmented Lagrangian function is

Lσ(X, y, z, Z;x,Γ, γ) = L(X, y, z, Z;x,Γ, γ)

+σ
2 (∥y − ỹ − z∥2 +

∑K
k=1 ∥Ck −X + Pky − Zk∥2 + ∥1− e⊤y∥2).

(3.8)
The iteration scheme of ADMM for (3.6) is described in Algorithm 1. According to Schur
complement, H in the linear system is positive definite. Next we show the global convergence
of Algorithm 1. Without loss of generality, assume that the solution set of KKT system (3.7)
is nonempty. The global convergence results of Algorithm 1 can be directly obtained from
Theorem B.1 in [11]. We present the proof here for the sake of completeness.

Theorem 3.1. Let {(Xt, yt, zt, Zt, γt,Γt, xt)} be the sequence generated by the ADMM in
Algorithm 1. The sequence {(Xt, yt, zt, Zt)} converges to an optimal solution of problem
(3.6) and the sequence {(γt,Γt, xt)} converges to its dual solution.

Proof. We first reformulate (3.6) into the framework of (3.4). Specifically, set

p(X, y) := 0, f(X, y) := −⟨A,X⟩, q(Z, z) := ρ∥z∥1 +
K∑

k=1

ISm+1
+

(Zk), g(Z, z) := 0,

Define linear operators A1 : Sm+1 × ℜm → ℜ, A2 : Sm+1 × ℜm → Sm+1
K , and A3 :

Sm+1 ×ℜm → ℜ as follows:

A1 := (0, e⊤), A2 :=

 I −P1

...
...

I −PK

 , and A3 := (0, I).

Then, we can set

A :=

 A1

A2

A3

 , B :=


0 0 . . . 0
I 0 . . . 0

. . .
. . .

...
I 0

−I

 , and c :=


1
C1

...
Ck

ỹ

 .

It is easy to check that B∗B ≻ 0.

A∗A = A∗
1A1 +A∗

2A2 +A∗
3A3 = A∗

2A2 +

(
0 0
0 ee⊤ + I

)
⪰ 0.

For any given 0 ̸= ∆ := (D; d) ∈ Sm+1 ×ℜm, we have

⟨A∗A∆, ∆⟩ = ⟨A∗
2A2∆, ∆⟩+ d⊤(ee⊤ + I)d.

It can be easily seen that ⟨A∗A∆, ∆⟩ > 0 when d ̸= 0. When d = 0 and D ̸= 0,
⟨A∗A∆, ∆⟩ = K⟨D,D⟩ > 0. Thus, we have A∗A ≻ 0 and hence the conditions in Theorem
B.1 of [11] are satisfied. Therefore, the conclusion holds.
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Algorithm 1 : ADMM for solving (3.6)

Let σ > 0 and τ ∈ (0, (1 +
√
5)/2) be given parameters. Choose an initial point

(X0, y0, z0, Z0, γ0,Γ0, x0) and perform the following steps for t = 0, 1, . . . until that the
error tolerance level is met.

Step 1. Compute (Xt+1, yt+1) = argminX,y Lσ(X, y, zt, Zt;xt,Γt, γt). Specifically,

Rt+1 = 1
Kσ

(∑K
k=1(Γ

t
k)11 +Σ

)
−
∑K

k=1(Z
t
k)11,

rt+1
0 = 1

Kσ

(∑K
k=1(Γ

t
k)22 + 1

)
−
∑K

k=1 ((Z
t
k)22 + βk) ,

where (Γt
k)11, (Z

t
k)11 ∈ Sm, (Γt

k)12, (Z
t
k)12 ∈ ℜm, (Γt

k)22, (Z
t
k)22 ∈ ℜ, and

Γt
k =

(
(Γt

k)11 (Γt
k)12

(Γt
k)

T
12 (Γt

k)22

)
, Zt

k =

(
(Zt

k)11 (Zt
k)12

(Zt
k)

T
12 (Zt

k)22

)
.

Moreover, ζ := [rt+1; yt+1] is the solution to the following linear equation:

Hζ = rhs, (3.9)

where

H := σ

 1
2KI − 1

2

∑K
k=1 αkI

− 1
2

∑K
k=1 αkI

1
2

∑K
k=1 α

2
kI + ee⊤ + I

 ,

rhs :=

 ∑K
k=1(Γ

t
k − σZt

k)12 + µ∑K
k=1 αk(−Γt

k + σZt
k)12 + eγt + xt

 .

Step 2. Compute (zt+1, Zt+1) := argminz,Z Lσ(X
t+1, yt+1, z, Z;xt,Γt, γt). Specifically,

zt+1 = argmin
z

ρ∥z∥1 + σ
2 ∥z − (yt+1 − ỹ − 1

σx
t)∥2

= sgn(yt+1 − ỹ − 1
σx

t)max
{
0, |yt+1 − ỹ − 1

σx
t| − ρ

σ e
}
,

and for each k ∈ {1, . . . ,K},

Zt+1
k = ΠSm+1

+

(
Pky

t+1 + Ck −Xt+1 +
1

σ
Γt
k

)
.

Step 3. Compute

γt+1 = γt + τσ(1− e⊤yt+1),
Γt+1
k = Γt

k + τσ(Ck −Xt+1 + Pky
t+1 − Zt+1

k ), k = 1, . . . ,K,
xt+1 = xt + τσ(zt+1 − yt+1 + ỹ).

Based on the relative residuals of the KKT system (3.7), we measure the quality of a
solution (X, y, z, Z) to (3.6) obtained from Algorithm 1 by

η := max{ηP1 , ηP2 , ηP3 , ηD1 , ηD2 , ηC1 , ηC2},
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where

ηP1
= ∥e⊤y − 1∥, ηP2

= max
k∈{1,...,K}

{
X−Bky+Zk−Ck

1+∥Ck∥

}
, ηP3

= ∥y−ỹ−z∥
1+∥y∥+∥ỹ∥+∥z∥ ,

ηD1 =
∥A+

∑K
k=1 Γk∥

1+∥A∥ , ηD2 =
∥
∑K

k=1 B∗Γk−eγ−x∥
1+∥mγ∥ ,

ηC1
=

∥z−proxρ∥·∥1 (z−x)∥
1+∥z∥ , ηC2

= max
k∈{1...,K}

{Zk−Π
Sm+1
+

(Γk+Zk)

1+∥Zk∥+∥Γk∥

}
.

For a given error tolerance ε, Algorithm 1 terminates when η < ε. We set ε = 10−5 for tests
in section 4.

4 Empirical Results

We present two examples that evaluate the performance of robust and sparse portfolios
through out-of-sample empirical tests using monthly data of 48 industry portfolios.
We consider the five-piece linear utility function in Uichanco ([29]) (i.e., U(y, ξ) =
mink∈{1,2,...,5}

{
αkξ

⊤y + βk

}
) that approximates the exponential utility function

(1 − exp(−αξ⊤y))/α. For the risk-neutral investor, α = 0. When α is large, portfolios
with more risk exposures become more highly penalized. Chapter 2 of [10] indicates that
the upper bound on the risk aversion is usually 4 for most portfolio allocation decisions.
Hence, we consider α = 1 in our examples. Values of coefficients αk and βk, k = 1, 2, ..., 5,
are given in Table 1.

k 1 2 3 4 5
αk 86.4266 26.0312 7.8404 2.3615 0.7113
βk 284.7210 55.2174 7.9214 0.2509 -0.0791

Table 1: Parameters of the five-piece utility function (α = 1).

Following the computational procedures in Section 2.1, we compute the worst-case OCE
risk as follows:

SU (x) =

{
−µx − 0.8695 + 4.9868σx, σx ≥ 0.3706

−µx + 0.0361 + 6.7303σ2
x, otherwise,

(4.1)

where x denotes ξ⊤y as in Section 2.1.

Example 1. This example shows merits of incorporating the ℓ1 regularization in portfolio
selection using the same rolling-sample method as in [5] and [9]. Specifically, given a penalty
parameter ρ, we construct the first portfolio at the beginning of January 1995 using a data
sample of past 60 months from January 1990 to December 1994. The mean vector µ and
covariance matrix Σ in model (2.3) are chosen as sample mean and sample covariance,
respectively. The optimal portfolio is then held for three months till the end of March 1995
and the portfolio’s out-of-sample monthly returns are recorded. We repeat the procedure
and obtain a new portfolio at the beginning of April 1995 by solving (2.3) with µ and Σ
updated using data from April 1990 to March 1995. When updating our portfolio every

Details of the dataset can be found on Kennith French’s website http://www.mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html.
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quarter, we can either keep the same value of ρ or adjust the value of ρ to keep the number
of selected assets (i.e., number of active positions) unchanged. We continue the exercise till
the end of 2009 and with a series of out-of-sample monthly returns we calculate the average
return, its standard deviation, and worst-case OCE risk.

To test effects of the ℓ1 regularization on portfolio selection, we conduct the above exercise
under ρ = 0 and record the number of active positions for each portfolio. It turns out that
all of the portfolios contain a total of 48 active positions. Then we construct three portfolio
strategies requiring 35, 24, and 11 active positions by adjusting the value of ρ each time the
portfolio is updated. For each of these four strategies, we compute the aforementioned three
quantities over 5 non-overlapping 3-year evaluation periods. It can be seen from Table 2 that
except for the period 2001-2003, portfolio strategies developed with the regularization term
added have significantly better performances in terms of the average return, the standard
deviation, and the worst-case OCE risk than the one obtained in the absence of the ℓ1
regularization. While in the period of 2001-2003, regularized portfolios have smaller volatility
and worst-case OCE risk compared to the unregularized portfolio. For better visualization
we also draw two bar charts of these strategies’ out-of-sample average return (Figure 1)
and worst-case OCE risk (Figure 2) respectively, which clearly illustrates the performance
improvements led by incorporating the ℓ1 penalty in portfolio selection.

Evaluation period NSA Mean Stdev Worst-Case OCE risk

01/1995-12/1997

48 0.3638 2.3284 10.3778
35 1.3112 1.3833 4.7175
24 1.3164 1.2855 4.2246
11 1.5711 1.2700 3.9155

01/1998-12/2000

48 0.2256 4.7734 22.7089
35 0.8007 1.6806 6.7106
24 0.7041 1.7403 7.1049
11 0.3183 2.4115 10.8379

01/2001-12/2003

48 -0.031 4.1276 19.7450
35 -0.3663 2.8079 13.4992
24 -0.1592 2.9346 13.9240
11 -0.0531 3.2793 15.5368

01/2004-12/2006

48 0.1234 2.4321 11.1355
35 0.8470 1.4329 5.4291
24 0.8240 1.4639 5.6067
11 0.8827 1.2652 4.5571

01/2007-12/2009

48 -0.9536 4.9047 24.5429
35 -0.1030 2.3437 10.9211
24 -0.3781 2.0502 9.7325
11 -0.2110 3.1032 14.8165

Table 2: Out-of-sample performances of portfolios with different numbers of selected assets
(abbreviated as NSA).
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Figure 1: Out-of-sample average returns of portfolios with different numbers of selected assets.

Example 2. We compare out-of-sample performances of the robust and sparse portfolio
and the equally weighted portfolio. We continue to apply the rolling-sample procedure
described in Example 1 but with an evaluation period of three months instead of three
years. This time we fix the value of ρ to be 1 and compute a strategy’s return, standard
deviation, and worst-case OCE risk over each evaluation period. Investors may also chosse
the value for ρ using the cross-validation as in [6]. Column 1 of Table 3 provides a list of 12
evaluation periods starting from January 2007 and ending at December 2009. According to
Table 3, the robust and sparse portfolio has better performances than the equally weighted
portfolio. Specifically, in 9 out of 12 testing quarters the robust and sparse portfolios have
higher average returns and lower OCE risk than the equally weighted portfolios. In addition,
during the crisis period from July 2007 to March 2009 when there was very high market
volatility, portfolios obtained under the robust and sparse optimization model outperform
the equally weighted portfolio significantly by having higher portfolio return and 50% less
worst-case OCE risk, indicating that the robust and sparse portfolios are better immunized
against the market fluctuations. Table 3 also shows that when the market increases sharply,
the equally weighted strategy has better performance compared to the robust strategy, which
is more conservative in compensation for robustness.

Figure 2: Out-of-sample OCE risk of portfolios with different numbers of selected assets.
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Evaluation period Methods Mean Stdev Worst-Case OCE risk

01/2007-03/2007
eq w 1.2051 1.6970 6.3880
robust -0.7783 1.7139 8.4557

04/2007-06/2007
eq w 2.5430 3.2359 12.7243
robust 2.8698 3.9249 15.8334

07/2007-09/2007
eq w 0.4381 3.5137 16.2145
robust 1.0657 0.4111 0.1149

10/2007-12/2007
eq w -0.6221 3.7980 18.6925
robust -0.5919 1.8181 8.7889

01/2008-03/2008
eq w -2.6726 2.2720 13.1331
robust -0.1944 1.4088 6.3503

04/2008-06/2008
eq w -0.3271 7.2287 35.5057
robust 2.0854 3.4811 14.4046

07/2008-09/2008
eq w -3.2451 6.9158 36.8633
robust 0.0591 4.0150 19.0934

10/2008-12/2008
eq w -8.7858 12.4995 70.2488
robust -0.6947 3.5479 17.5179

01/2009-03/2009
eq w -3.4637 10.8853 56.8770
robust -0.9231 3.0207 15.1172

04/2009-06/2009
eq w 7.3654 9.1552 37.4203
robust -6.2543 16.0266 85.3062

07/2009-09/2009
eq w 6.2669 3.1745 8.6942
robust 2.0360 1.2681 3.4183

10/2009-12/2009
eq w 2.1378 5.3834 23.8386
robust 6.3474 5.4908 20.1646

Table 3: Out-of-sample performances of the equally weighted strategy and the robust and
sparse strategy (ρ = 1).

5 Conclusion

We introduce a new model for portfolio selection that incorporates robustness to reduce
the model sensitivity to parameter estimations. Transaction costs are considered and mod-
eled by an ℓ1 regularization term penalizing high trading volumes. Under the objective of
maximizing a piecewise-linear concave utility function over a set of distributions sharing
the same first and second order moment information, our distributionally robust model is
equivalent to a semidefinite program that can be solved effectively using the 2-block al-
ternating direction method of multipliers. We show the global convergence of the solution
algorithm. In addition, we compute the worst-case OCE to measure the performance of
the robust and sparse portfolio and demonstrate merits of incorporating the robustness and
the ℓ1 penalty into a utility-maximization model for portfolio selection, including enhancing
portfolio stability and improving risk-return performance through out-of-sample empirical
tests.
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