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game of suppliers and manufacturers where the price of raw materials provided by the
suppliers is not fixed, and even may be affected by such as the weather, the market supply
and demand, the mode of transportation and the international exchange rate. This implies
that the existing algorithms for the MVI may not be applied directly to solve the problems
with random factors. Therefore, it is of great significance to study the stochastic mixed
variational inequalities under such realistic background and demand.

In this paper, we consider the following stochastic mixed variational inequality (SMVI)
problem: find x ∈ domg such that

〈E[f(x, ξ(ω))], y − x〉+ g(y)− g(x) ≥ 0, ∀y ∈ domg, (1.1)

where E denotes the expectation operator and f(x, ξ) : Rn × Ξ → Rn is measurable with
respect to a random function ξ : Ω → Ξ ⊆ Rn defined on probability space (Ω,F ,P) and
continuous with respect to x. The SMVI has received much attention due to its extensive
applications in many fields such as stochastic optimization problems, stochastic saddle point
problems and stochastic nash equilibrium problems; see [11-16] and the references therein.
Denote by X∗ the set of solutions for the SMVI. In what follows, we denote by F (x) :=
E[f(x, ξ(ω))]. If g is the indicator function of a closed and convex set X, then the SMVI
reduces to the stochastic variational inequality (SVI) problem: find x ∈ X such that

〈E[f(x, ξ(ω))], y − x〉 ≥ 0, ∀y ∈ X.

Note that the probability distribution of the random variables may not be known com-
pletely in general, so the existing numerical methods for the SVI are not applicable to the
SMVI directly. With this in mind, some methods such as the stochastic approximation (SA)
method and the sample average approximation (SAA) method have been developed to deal
with the involved expectation. Particularly, it has been shown that the SA method may be
efficient in dealing with large-scale problems. To this end, the algorithm proposed in this
paper for the SMVI is also based on the SA method.

The SA method was initially introduced by Robbins and Monro in [26] for solving stochas-
tic root-finding problems. The first SA-based projection method for the SVI was introduced
by Jiang and Xu [16] and they proved the convergence when the mapping F is strongly
monotone and Lipschitz continuous. Yousefian et al. [34] proposed a SA-based projection
scheme with distributed adaptive stepsize to deal with a Cartesian SVI in which the map-
ping F is still assumed to be strongly monotone and Lipschitz continuous. Koshal et al. [19]
proposed a stochastic iterative Tikhonov regularization method for the SVI, its convergence
requires the mapping F to be monotone and Lipschitz continuous. Iusem et al. [15] gave
an incremental projection method with regularization for Cartesian SVI, whose convergence
needs the mapping F to be monotone and Lipschitz continuous. Yousefian et al. [35] de-
veloped a regularized smoothing stochastic approximation scheme for the SVI where the
mapping F is monotone and non-Lipschitzian. For more results on the SA method for the
SVI, we refer to [7, 15, 17, 18, 31, 35, 36, 37] and the references therein.

Recently, to improve the iteration complexity and convergence speed, some improved SA-
based methods were proposed by replacing the expected value function through the averages
of increasing sample size of sampled functions. Particularly, Iusem et al. [13] developed a
dynamic sampled SA-based extragradient method for the SVI, whose convergence requires
the pseudo-monotonicity and Lipschitz continuity of the mapping. Since the Lipschitz con-
stant may be unknown or it is difficult to estimate, Iusem et al. [14] proposed a dynamic
sampled stochastic approximated extragradient method with line search for the SVI where
the Lipschitz constant is not necessary to be known. Zhang et al. [42] proposed an infeasi-
ble single projection algorithm with line search for the pseudo-monotone SVI, which needs
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only one projection per iteration and the algorithm works without any information of the
Lipschitz constant of the mapping. Recently, Yang et al. [38] developed a variance-based
modified backward-forward algorithm with a stochastic approximate version of Armijo’s line
search for the pseudo-monotone SVI, which requires only one projection at each iteration.
Based on this, one motivation of this paper is to extend the algorithm introduced in [38] to
solve the SMVI under some moderate conditions.

Compared to the SVI, there are few papers to study the SMVI. In 2020, Mishchenko et
al. [24] introduced an extended extragradient method to solve the SMVI and proved the
convergence of their algorithm when the mapping F is monotone. Yang and Lin [32] proposed
two fast variance-based proximal gradient algorithms for the SMVI, where both of them
require two oracle calls per iteration. They investigated the convergence rate and the oracle
complexity bound for the algorithms based on the monotonicity of the mapping F . Very
recently, Yang and Lin [33] proposed three variance-based single-call proximal extragradient
algorithms with high computational efficiency for the SMVI. Moreover, these algorithms
require only one evaluation of the expected mapping at each iteration, but the convergence
requires the mapping F to be monotone and Lipschitz continuous. It is obviously shown
that the monotonicity assumption of the mapping F is a little strong, and many functions
may not satisfy this condition in practice. Therefore, another motivation of this paper is to
develop a SA-based algorithm to solve the SMVI problem under weaker assumptions.

Contributions. Inspired by the work reported in [13, 38, 32], to the best of our knowledge,
we propose the first SA-based proximal backward-forward algorithm with respect to an
unknown Lipschitz constant for solving the SMVI problem. Our contributions in this paper
are five aspects:

(a) The proposed algorithm requires only one evaluation of the proximal mapping per
iteration and can be seen as a significant extension of the work given by [13, 38] from
the SVI to the SMVI. The convergence and the convergence rate are obtained without
the assumption of pseudomonotonicity of the mapping F , while this assumption is
essential in [13, 38].

(b) Compared with the algorithm introduced in [32] for the SMVI, we adopt a stochastic
line search technique and do not require the information of the Lipschitz constant,
which is beneficial to improve the computational efficiency.

(c) The operator involved is only g-pseudomonotone. This improves some recent results in
[13, 38, 32] where the involved operator is monotone or pseudomonotone and therefore
our algorithm is more applicable than the ones considered in [13, 38, 32] in practice.

(d) We analyse the asymptotic convergence, the optimal oracle complexity and the linear
convergence rate with finite computational budget under the assumption of bounded
proximal error bound.

(e) Some numerical experiments are given to illustrate the validity and superiority of the
proposed algorithm in comparison with other algorithms in [13, 38, 32].

The rest of the paper is organized as follows: In Section 2, we give some related defini-
tions and results. In Section 3, we describe the new algorithm and prove its asymptotic
convergence. In Section 4, we discuss the linear convergence rate and oracle complexity
of the proposed algorithm. Some numerical results are obtained in Section 5 to show the
superiority of the algorithm and Section 6 obtains the conclusion.
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2 Preliminaries

In this section, we recall some notations and results that may be used in the sequel. Let Rn

be the n-dimensional Euclidean space with inner product 〈·, ·〉 and norm ‖ · ‖ and domg be a
closed and convex set in Rn. To ease notation, we use ξ to denote ξ(ω). For a σ-algebra F , we
denote by E[ξ] and E[ξ|F ] the expectation and conditional expectation, respectively. Besides,
we denote by |ξ|F|p := p

√
E[|ξ|p|F ] the Lp-norm of ξ conditional to F , where |ξ|p denotes

the Lp-norm of ξ with p ≥ 1. Let N0 := N ∪ {0}, where N is the set of all positive integers.
For b ∈ R, dbe stands for the smallest integer no less than b. For a nonempty closed and
convex set C ⊆ Rn, PC denotes the projection operator onto C and σC denotes the indicator
function of C; that is, σC(x) = 0 if x ∈ C and ∞ otherwise. Let g : Rn → (−∞,+∞] be a
proper lower semicontinuous convex function and a constant λ > 0, the proximal operator
proxλg is defined by

proxλg(x) = argmin
y∈Rn

{g(y) + 1

2λ
‖x− y‖2},

where the domain of g is written as domg := {x ∈ Rn : g(x) < +∞}. Clearly, PC(x) =
proxλσC

(x).
For a given number p ≥ 2, we define the oracle error map ε : Rn × Ξ → Rn for (1.1) by

ε(x, ξ) := f(x, ξ)− F (x), ∀ξ ∈ Ξ, x ∈ Rn. (2.1)

and its p-moment function by

δp(x) :=
p

√
E[‖ε(x, ξ)‖p], ∀x ∈ Rn.

Given an independent identically distributed (i.i.d) sample ξN := {ξ}Nj=1 drawn from Ξ,
we define two empirical mean operators and the oracle’s empirical mean error associated to
ξN , respectively, by

F̂ (x, ξN ) :=
1

N

N∑
j=1

f(x, ξj), F̂ (y, ηN ) :=
1

N

N∑
j=1

f(y, ηj), ε̂(x, ξN ) :=
1

N

N∑
j=1

ε(x, ξj).

(2.2)
Assumption 2.1 (A0).

(i) There exists a measurable function L : Ξ → R+ such that L(ξ) ≥ 1 for almost every
ξ ∈ Ξ and

‖f(x, ξ)− f(y, ξ)‖ ≤ L(ξ) ‖x− y‖ , ∀x, y ∈ Rn.

(ii) There exists x∗ ∈ Rn and p ≥ 2 such that E[‖f(x∗, ·)‖p] < ∞ and E[L(·)p] < ∞.

We now recall some lemmas which will be used later on.

Lemma 2.1 ([2]). Let g : Rn → (−∞,+∞] be a proper, convex and lower semicontinuous
function and λ > 0.

(i) For any x, y ∈ Rn,
∥∥proxλg(x)− proxλg(y)

∥∥ ≤ ‖x− y‖.

(ii) For all y ∈ Rn, p = proxλg(x) if and only if (p − x)T (y − p) ≥ λ(g(p) − g(y)). In

particular, (p− x)T (y − p) ≥ 0 when g(x) = σC(x), ∀y ∈ C.
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(iii) x∗ is a solution of (1.1) if and only if x∗ = proxλg[x
∗ − λF (x∗)].

Given x ∈ Rn and λ > 0, we define the natural residual function of (1.1) as

Hλ(x) :=
∥∥x− proxλg[x− λF (x)]

∥∥ . (2.3)

Lemma 2.2 ([2]). For all x ∈ Rn, λ 7→ Hλ(x)
λ is non-increasing with respect to λ ∈ (0,∞).

Lemma 2.3 ([14]). Assume that (A0) holds. For all q ∈ [p, 2p], the mean operator F is
L-Lipschitz continuous on Rn and δq is Lq-Lipschitz continuous on Rn, where L := E[L(·)]
and Lq := q

√
E[L(·)q] + L.

Lemma 2.4 ([4]). For any q ≥ 2 and vector-valued martingale {yj}Nj=0 adapted to the

filtration {Fj}Nj=0 with y0 = 0, there exists Cq > 0 such that∣∣∣∣∣ supj≤N
‖yj‖

∣∣∣∣∣
q

≤ Cq

∣∣∣∣∣
√√√√ N∑

j=1

‖yj − yj−1‖2
∣∣∣∣∣
q

≤ Cq

√√√√ N∑
j=1

| ‖yj − yj−1‖ |2q.

Lemma 2.5. Let ξN := {ξj}Nj=1 be an i.i.d. sample drawn from Ξ. Assume that (A0) holds
and take q ∈ [p, 2p]. Set C2 := 1 if q = p = 2. Otherwise, Cq is defined as in Lemma 2.4.
Then, for any x ∈ Rn and x∗ ∈ domg, we have∣∣ ∥∥ε̂(x, ξN )

∥∥ ∣∣
q
≤ Cq

δq(x
∗) + Lq ‖x− x∗‖√

N
.

Proof. Since domg is a closed convex set, we can replace X in Lemma 3.9 of [14] by domg,
hence the proof is similar to the one in [14].

Lemma 2.6. Let ξN := {ξj}Nj=1 is an i.i.d. sample drawn from Ξ and let αN : Ξ → [0, γ]

be a random variable for some 0 < γ ≤ 1. Given (α, x) ∈ [0, γ] × Rn and y(x, α, ξN ) :=

proxαg[x−αF̂ (x, ξN )]. Assume that (A0) holds. Then there exist positive constants {ci}4i=1

such that, for any x ∈ Rn and x∗ ∈ X∗,

∣∣ ∥∥ε̂(y(x, αN , ξN ), ξN )
∥∥ ∣∣

p
≤ c1δ2p(x

∗) + L̂2p ‖x− x∗‖√
N

,

where L̂2p := c2L2 + c3Lp + c4L2p.

Proof. Note that domg is a closed and convex set. Let x ∈ domg and x∗ ∈ X∗. Set
yN := y(x, αN , ξN ). For any s > 0, let R(s) := (1 + Lγ)‖x − x∗‖ + γs, and denote by
B(s) := B[x∗, R(s)] the ball.

Example 14.29 of [27] and (A0) imply that the map Ξ×domg 3 (ω, x) 7−→ ‖ε̂(x, ξN (ω))‖
is a normal integrand, that is,

ω 7−→ epi‖ε̂(x′, ξN (ω))‖ := {(x, y) ∈ domg × R : ‖ε̂(x, ξN (ω))‖ ≤ y}

is a set-valued measurable function ε : Ω −→ [0,∞) and R > 0. It follows that

ω 7−→ sup
x′∈B(ε(ω))∩domg

‖ε̂(x′, ξN (ω))‖ and ω 7−→ sup
x′∈B[x∗,R]∩domg

‖ε̂(x′, ξN (ω))‖

are measurable functions.
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When domg is unbounded, given α ∈ [0, γ], Lemma 2.1 (iii) implies that x∗ = proxαg[x
∗−

αF (x∗)]. Then, from Lemma 2.1 (i), the definitions of y(x, α, ξN ), (2.1) and (2.2), we get
that, for any α ∈ [0, γ],

‖x∗ − y(x, α, ξN )‖ =‖proxαg[x∗ − αF (x∗)]− proxαg[x− α(F (x) + ε̂(x, ξN ))]‖
≤‖x− x∗‖+ α‖F (x)− F (x∗)‖+ α‖ε̂(x, ξN )‖
≤(1 + Lγ)‖x− x∗‖+ γ‖ε̂(x, ξN )‖,

where, in the last inequality, we used the Lipschitz continuity of F . The rest of the proof is
similar to the proof of Theorem 3.11 in [14].

Remark 2.7. In Lemma 2.6, the constants satisfy

c1 := 2Cp + C2pCγL,p, c2 ≲
(

3
√
n√

2− 1
+

√
p

)
CγL,p, c3 ≲ pCγL,p, c4 := C2pCγL,p,

where CγL,p := 1 + 2γL+ γ|L(ξ)|2p and {Cp, C2p} are defined as in Lemma 2.6.

Lemma 2.8 ([25]). Let {vk}, {uk}, {ak}, {bk} be sequences of non-negative random vari-
ables, adapted to the filtration {Fk} such that almost surely

∑∞
k=1 a

k < ∞,
∑∞

k=1 b
k < ∞

and for each k ∈ N,E[vk+1|Fk] ≤ (1 + ak)vk − uk + bk. Then almost surely {vk} converges
and

∑∞
k=1 u

k < ∞.

3 Algorithm and Convergence Analysis

In this section, we propose the variance-based proximal backward-forward algorithm with
line search for solving the SMVI and then prove the convergence of the proposed algorithm.

3.1 Algorithm

In this subsection, motivated by the works reported in [13, 38, 32], we introduce the following
variance-based proximal backward-forward algorithm with line search for solving the SMVI.

Remark 3.1. (a) Compared with the algorithm proposed in [13], Algorithm 1 requires
only one proximal projection at each iteration, which is beneficial to reduce the com-
putational cost.

(b) In Algorithm 1, we use the dynamic sampled SA line search scheme to ensure the step
size so that the termination criteria is generally not clear. The solution to this problem
is that Algorithm 1 regenerates a sample in Step 1 if xk = proxγg[x

k − γF̂ (xk, ξk)],
which makes the line search step (3.1) terminated after a finite number of steps. Note
that the algorithm terminates if the maximum iteration number is reached when the
algorithm is implemented in practice.

(c) For deterministic variational inequalities, xk is an exact solution when xk = ΠX [xk −
γF (xk)], so there is no need to regenerate a random sample in Step 1.

Proposition 3.2. Assume that (A0) holds. The line search step (3.1) in the iteration k of
Algorithm 1 terminates after a finite number lk of steps.
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Algorithm 1 (Variance-based proximal backward-forward algorithm with line search)

Initialization: Choose an initial point x0 ∈ Rn, parameters β ∈ (1 − 1√
2
, 1 + 1√

2
), µ ∈

(0,
√

2β−β2− 1
2

3β2 ), γ, θ ∈ (0, 1), and the sample rate {Nk} ⊂ N. Set k := 0.

Step 1: Generate a sample ξk := {ξkj }
Nk
j=1 from Ξ and compute F̂ (xk, ξk) :=

1
Nk

∑Nk

j=1 f(x
k, ξkj ). If xk = proxγg[x

k − γF̂ (xk, ξk)], regenerate a sample. Otherwise,
go to Step 2.
Step 2. Choose αk as the maximum α ∈ {γθlk |lk ∈ N0} such that

α
∥∥∥F̂ (yk(α), ξk)− F̂ (xk, ξk)

∥∥∥ ≤ µ
∥∥yk(α)− xk

∥∥ , (3.1)

where yk(α) := proxαg[x
k − αF̂ (xk, ξk)] and F̂ (yk(α), ξk) := 1

Nk

∑Nk

j=1 f(y
k(α), ξkj ).

Step 3. Set yk := proxαkg
[xk − αkF̂ (xk, ξk)] and generate a sample ηk := {ηkj }

Nk
j=1 from

Ξ. Calculate the next iterate

xk+1 := (1− β)xk + β(yk + αk(F̂ (xk, ξk)− F̂ (yk, ηk))). (3.2)

Set k := k + 1 and return to Step 1.

Proof. We consider the following two situations. (i) If xk ∈ domg, the conclusion follows
from Lemma 3.6 in [14] immediately with dk = 0. (ii) If xk /∈ domg, we set αl := γθlk and
F (·) := 1

Nk
f(·, ξkj ) in (2.3). Suppose by contradiction that the line search (3.1) dose not

terminate in a finite number of iterations. That is, for every lk ∈ N0, we have

αl

∥∥∥F̂ (yk(αl), ξ
k)− F̂ (xk, ξk)

∥∥∥ > µHαl
(xk).

Taking the limit lk → ∞ in the above inequality, we have from the continuity of F̂ (·, ξk)
and proxλg(·) that 0 ≥ µ‖xk − proxαl,g

[xk]‖ > 0. This gives a contradiction. Therefore, the
line search step (3.1) terminates in a finite number of iterations.

3.2 Almost sure convergence

In this subsection, we will prove the almost sure convergence of Algorithm 1. To this end,
we first define the filtrations

Fk := σ(x0, ξ0, ξ1, · · · , ξk−1, η0, · · · , ηk−1), F̂k = σ(x0, ξ0, ξ1, · · · , ξk, η0, · · · , ηk−1)

and the oracle errors

ε̂k1 := ε̂(xk, ξk), ε̂k2 := ε̂(yk, ηk), ε̂k3 := ε̂(yk, ξk).

We need the following assumptions which will be used later on.

Assumption 3.1 (A1). The solution set X∗ of (1.1) is nonempty.

Assumption 3.2 (A2). The mean operator F : domg → Rn is g-pseudomonotone on domg,
that is

〈F (x), y − x〉+ g(y)− g(x) ≥ 0 =⇒ 〈F (y), y − x〉+ g(y)− g(x) ≥ 0, ∀x, y ∈ domg.
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Remark 3.3. Clearly, a monotone mapping is pseudomonotone and g-pseudomonotone,
but the converse is not true in general, see example 3.1. Moreover, if g=0, then a g-
pseudomonotone mapping reduces to a pseudomonotone mapping. Here, we give the follow-
ing two examples satisfying the g-pseudomonotonicity.

The first example is a variant of the Example 2.3 of [43], which shows that a mapping
possesses g-pseudomonotonicity property, but is not monotone in the usual sense.

Example 3.1 Let domg = (−∞,+∞) and D = [a, b] ⊂ R with 0 ≤ a < c ≤ b be a closed
and convex subset. Let g : D −→ domg be a differentiable and convex function such that,
|g′(x)| ≤ r for all x ∈ D, where r > 0 is a constant. Let

F (x) =

 r + 5 + ex, x ∈ [a, c),

r + 2 + sinx, x ∈ [c, b],

It is easy to check that F is not monotone on D. However, we can show that F is g-
pseudomonotone on D. In fact, let

〈F (x), y − x〉+ g(y)− g(x) ≥ 0.

Then by the Mean Value Theorem, there exists ξ ∈ [a, b] such that, g(y)−g(x) = g′(ξ)(y−x)
and so

〈F (x), y − x〉+ g′(ξ)(y − x) ≥ 0.

Thus,

(F (x) + g′(ξ))(y − x) ≥ 0.

We know that F (x) ≥ r + 1 and so F (x) + g′(ξ) > 0. It follows from the above inequality
that y − x ≥ 0. Hence, we have

〈F (y), y − x〉+ g(y)− g(x) = (F (y) + g′(ξ))(y − x) ≥ 0,

which shows that F is g-pseudomonotone on D.

The second example is a variant of the Example 2.1 of [43], which shows that a g-
pseudomonotone mapping is not necessary pseudomonotone if g 6= 0.

Example 3.2 Let domg = (−∞,+∞) and D = [2, 4]. Let

g(x) = x2, x ∈ D

and

F (x) =


1
2x, x ∈ [2, 3],

1
2x− 3, x ∈ (3, 4].

It is easy to see that F is not pseudomonotone on D. However, we can show that F is
g-pseudomonotone on D. In fact, let

〈F (x), y − x〉+ g(y)− g(x) = (F (x) + y + x)(y − x) ≥ 0.
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It follows that F (x) + y + x > 0 and so y − x ≥ 0. Thus, we have

〈F (y), y − x〉+ g(y)− g(x) = (F (y) + y + x)(y − x) ≥ 0.

This implies that F is g-pseudomonotone on D.

Assumption 3.3 (A3). In Algorithm 1, the sequence {ξkj |k ∈ N0, j ∈ [Nk]} and {ηkj |k ∈
N0, j ∈ [Nk]} are i.i.d. samples drawn from Ξ independent of each other. Moreover,∑∞

k=0
1
Nk

< ∞.

Remark 3.4. In this paper, we set Nk = Nd(k+λ)(ln(k+λ))1+be and this can be regarded
as a sufficient choice of the above assumption, where N ∈ N, λ > 0 and b > 0.

Lemma 3.5 ([38]). Let L̂k := 1
Nk

∑Nk

j=1 L(ξkj ). If (A0) and (A3) hold, then almost surely

αk ≥ min{ µθ

L̂k
, γ}, and |αk|Fk|2 · |L(ξ)|2 ≥ min{µθ, γ}.

Remark 3.6. By Lemma 3.5, the step size sequence {αk} generated by Algorithm 1 satisfies
|αk|Fk|2 · |L(ξ)|2 ≥ min{µθ, γ} and αk < 1(∀k ∈ N0); that is, the conditional expectation to
Fk of the sequence {αk} is bounded.

The following lemma is essential to the analysis of convergence of the proposed algorithm.

Lemma 3.7 (a recursive error bound). Assume that (A0) and (A2) hold. Let {xk} and
{yk} be the sequences generated by Algorithm 1. Then, for any x∗ ∈ X∗,∥∥xk+1 − x∗∥∥2 ≤

∥∥xk − x∗∥∥2 − Ak

2
α2
kH(xk)2 +Akγ

2
∥∥ε̂k1∥∥2

+ 6β2γ2
∥∥ε̂k2∥∥2 + 6β2γ2

∥∥ε̂k3∥∥2 + 2βαk〈x∗ − yk, ε̂k2〉,
(3.3)

where Ak = 2β(2− β − 3βµ2)− 1.

Proof. For any x∗ ∈ X∗ and k ∈ N0, we have∥∥xk − x∗∥∥2 =
∥∥xk − yk + yk − xk+1 + xk+1 − x∗∥∥2

=
∥∥xk − yk

∥∥2 + ∥∥yk − xk+1
∥∥2 + ∥∥xk+1 − x∗∥∥2 + 2〈xk − yk, yk − xk+1〉

+ 2〈xk − yk, xk+1 − x∗〉+ 2〈yk − xk+1, xk+1 − x∗〉

=
∥∥xk − yk

∥∥2 + ∥∥yk − xk+1
∥∥2 + ∥∥xk+1 − x∗∥∥2 + 2〈xk − yk, yk − x∗〉

+ 2〈yk − xk+1, xk+1 − x∗〉

=
∥∥xk − yk

∥∥2 + ∥∥yk − xk+1
∥∥2 + ∥∥xk+1 − x∗∥∥2 + 2〈xk − yk, yk − x∗〉

− 2
∥∥yk − xk+1

∥∥2 + 2〈yk − xk+1, yk − x∗〉

=
∥∥xk − yk

∥∥2 − ∥∥yk − xk+1
∥∥2 + ∥∥xk+1 − x∗∥∥2 + 2〈xk − xk+1, yk − x∗〉.

This implies that∥∥xk+1 − x∗∥∥2 =
∥∥xk − x∗∥∥2 − ∥∥xk − yk

∥∥2 + ∥∥yk − xk+1
∥∥2 − 2〈xk − xk+1, yk − x∗〉.

By the definition of yk and Lemma 2.1,

〈yk − xk + αk(F (xk) + ε̂k1), x
∗ − yk〉 ≥ αk(g(y

k)− g(x∗)).
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It follows that∥∥xk+1 − x∗∥∥2 =
∥∥xk − x∗∥∥2 − ∥∥xk − yk

∥∥2
+
∥∥∥(1− β)(yk − xk)− βαk(F̂ (xk, ξk)− F̂ (yk, ηk))

∥∥∥2
− 2β〈xk − yk − αk(F (xk) + ε̂k1 − F (yk)− ε̂k2), y

k − x∗〉

≤
∥∥xk − x∗∥∥2 − ∥∥xk − yk

∥∥2 + 2(1− β)2
∥∥xk − yk

∥∥2
+ 2β2α2

k

∥∥∥F̂ (xk, ξk)− F̂ (yk, ηk)
∥∥∥2

− 2βαk(〈F (yk), yk − x∗〉+ g(yk)− g(x∗))− 2βαk〈ε̂k2 , yk − x∗〉

≤
∥∥xk − x∗∥∥2 + (2(1− β)2 − 1)

∥∥xk − yk
∥∥2 (3.4)

+ 6β2α2
k

∥∥∥F̂ (xk, ξk)− F̂ (yk, ξk)
∥∥∥2

+ 6β2α2
k

∥∥∥F̂ (yk, ξk)− F (yk)
∥∥∥2 + 6β2α2

k

∥∥∥F̂ (yk, ηk)− F (yk)
∥∥∥2

− 2βαk(〈F (yk), yk − x∗〉+ g(yk)− g(x∗))− 2βαk〈ε̂k2 , yk − x∗〉

≤
∥∥xk − x∗∥∥2 −Ak

∥∥xk − yk
∥∥2 + 6β2γ2

∥∥ε̂k2∥∥2 + 6β2γ2
∥∥ε̂k3∥∥2

− 2βαk(〈F (yk), yk − x∗〉+ g(yk)− g(x∗))− 2βαk〈ε̂k2 , yk − x∗〉.

On the other hand, we have from x∗ ∈ X∗ and (A2) that

〈F (yk), yk − x∗〉+ g(yk)− g(x∗) ≥ 0. (3.5)

Combining (3.4) and (3.5) yields∥∥xk+1 − x∗∥∥2 ≤
∥∥xk − x∗∥∥2 −Ak

∥∥xk − yk
∥∥2

+ 6β2γ2
∥∥ε̂k2∥∥2 + 6β2γ2

∥∥ε̂k3∥∥2 + 2βαk〈x∗ − yk, ε̂k2〉.
(3.6)

Note that yk = proxαkg
[xk − αk(F (xk) + ε̂k1)]. By Lemmas 2.1 and 2.2,

α2
kH(xk)2 ≤ Hαk

(xk)2

=
∥∥xk − proxαkg

[xk − αkF (xk)]
∥∥2

≤ 2
∥∥xk − yk

∥∥2 + 2
∥∥proxαkg

[xk − αk(F (xk) + ε̂k1)]− proxαkg
[xk − αkF (xk)]

∥∥2
≤ 2

∥∥xk − yk
∥∥2 + 2γ2

∥∥ε̂k1∥∥2 .
This together with (3.6) yields the conclusion.

Remark 3.8. In Lemma 3.2, we obtain a desired recursive relation with three oracle calls
per iteration, which only requires the g-pseudomonotonicity of the mapping, while the algo-
rithm considered in [13, 38, 32] requires that the mapping is monotone or pseudomonotone.
Besides, the variation interval of µ with respect to the line search scheme is larger than
that in [38]. Therefore, the above advantages of the proposed algorithm indicate that our
algorithm is more applicable and effective than other algorithms considered in [13, 38, 32]
in practice.
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We next aim at controlling the bound of the term Akγ
2
∥∥ε̂k1∥∥2+6β2γ2

∥∥ε̂k2∥∥2+6β2γ2
∥∥ε̂k3∥∥2

in the right side of (3.3). Since ε̂k1 and ε̂k2 are martingale differences, we can control them in a
relatively straightforward way by Lemma 2.5. The non-martingale difference ε̂k3 is controlled
by Lemma 2.6 based on the empirical process theory that is mentioned in [14]. Then, we
present some lemmas to show the convergence of the proposed algorithm.

Lemma 3.9 (bound on oracle error). Assume that (A0), (A1) and (A3) hold. Then there
exist positive constants Cp and C̄p (depending only on {n, p, γL(ξ), sup

k

1
Nk

}) such that, for

all x∗ ∈ X∗,

4Bk ≤
Cpγ

2δ22p(x
∗) + C̄2

pγ
2L̂2

2p

∥∥xk − x∗
∥∥2

Nk
,

where 4Bk := Akγ
2
∣∣ ∥∥ε̂k1∥∥2 ∣∣Fk

∣∣
p
2

+6β2γ2
∣∣ ∥∥ε̂k2∥∥2 ∣∣Fk

∣∣
p
2

+6β2γ2
∣∣ ∥∥ε̂k3∥∥2 ∣∣Fk

∣∣
p
2

, Cp := 2c21[Ak+

12β2 + sup
k

24γ2β2L̂2
2p

Nk
], C̄p := 2(Ak + 6β2 + 12β2(1 + γL)2 + sup

k

24γ2β2L̂2
2p

Nk
).

Proof. Since ξk is independent of Fk, we have from xk ∈ Fk and Lemma 2.5 with p = q that

∣∣ ∥∥ε̂k1∥∥ ∣∣Fk

∣∣
p
≤ Cp

δp(x
∗) + Lp

∥∥xk − x∗
∥∥

√
Nk

. (3.7)

Note that ∥∥x∗ − yk
∥∥ =

∥∥proxαkg
[x∗ − αkF (x∗)]− proxαkg

[xk − αk(F (xk) + ε̂k1)]
∥∥

≤
∥∥x∗ − xk − αk(F (x∗)− F (xk)) + αkε̂

k
1

∥∥
≤
∥∥x∗ − xk

∥∥+ αk

∥∥F (x∗)− F (xk)
∥∥+ αk

∥∥ε̂k1∥∥
≤ (1 + γL)

∥∥x∗ − xk
∥∥+ γ

∥∥ε̂k1∥∥ .
Taking

∣∣ · |Fk

∣∣
p
in the above inequality, we obtain∣∣ ∥∥x∗ − yk

∥∥ ∣∣Fk

∣∣
p
≤ (1 + γL)

∥∥x∗ − xk
∥∥+ γ

∣∣ ∥∥ε̂k1∥∥ ∣∣Fk

∣∣
p
. (3.8)

Note that ηk is independent of Fk and || · |F̂k|p|Fk|p =
∣∣ · |Fk

∣∣
p
, it follows from yk ∈ Fk and

Lemma 2.5 with p = q that

∣∣ ∥∥ε̂k2∥∥ ∣∣Fk|p =
∣∣∣∣ ∥∥ε̂k2∥∥ ∣∣F̂k

∣∣
p
|Fk

∣∣
p
≤ Cp

δp(x
∗) + Lp

∣∣ ∥∥yk − x∗
∥∥ ∣∣Fk

∣∣
p√

Nk

. (3.9)

Moreover, from Lemma 2.6, 0 < αk ≤ γ < 1, yk = y(xk, αk, ξ
k), xk ∈ Fk and ξk is

independent of F̂k, we have

∣∣ ∥∥ε̂k3∥∥ ∣∣Fk

∣∣
p
≤

c1δ2p(x
∗) + L̂2p

∥∥xk − x∗
∥∥

√
Nk

. (3.10)

Since |a2|Fk| p
2
= |a|Fk|2p, (a+ b)2 ≤ 2a2 + 2b2, L̂2p > LpCp, c1 > Cp and δ2p(x

∗) ≥ δp(x
∗),

by (3.7)-(3.10) we can obtain the conclusion of Lemma 3.9.
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Lemma 3.10 (stochastic quasi-Fejér property). Assume that (A0)− (A3) hold. Let p = 2

in Lemma 3.9 and ρ := Ak(min{µθ,γ})2
2|L(ξ)|22

. Then, for all x∗ ∈ X∗ and k ∈ N0, we have

E[
∥∥xk+1 − x∗∥∥2 |Fk] ≤

∥∥xk − x∗∥∥2 − ρH(xk)2 +
C2γ

2δ24(x
∗) + C̄2γ

2L̂2
4

∥∥xk − x∗
∥∥2

Nk
, (3.11)

where C2 and C̄2 are the same as in Lemma 3.9.

Proof. Since yk ∈ F̂k and ηk is independent of F̂k,

E[ε̂k2 |F̂k] =
1

Nk

Nk∑
j=1

E[f(yk, ηkj )|F̂k]− F (yk) =
1

Nk

Nk∑
j=1

F (yk)− F (yk) = 0.

From yk ∈ F̂k and ak ∈ F̂k, we obtain E[ak(x∗− yk)T ε̂k2 |F̂k] = 0. Note that E[E[·|F̂k]|Fk] =
E[·|Fk]. It follows that E[ak〈x∗ − yk, ε̂k2〉|Fk] = 0. Taking E[·|Fk] in (3.3), we obtain the
conclusion from the facts of xk ∈ Fk and Lemmas 3.5, 3.7 and 3.9.

Theorem 3.11 (asymptotic convergence). Assume that (A0)-(A3) hold. Then, almost
surely the sequence {xk} generated by Algorithm 1 is bounded, limk→∞ dist(xk, X∗) = 0 and
H(xk) → 0. In particular, almost surely every cluster point of {xk} belongs to X∗.

Proof. Let x∗ ∈ X∗. Note that
∑∞

k=0
1
Nk

< ∞ and xk ∈ Fk. By applying Lemma 2.8 with

vk :=
∥∥xk − x∗

∥∥2 , ak :=
C̄2γ

2L̂2
4

Nk
, bk :=

C2γ
2δ24(x

∗)
Nk

and uk := ρH(xk)2, we have that, almost

surely, {
∥∥xk − x∗

∥∥2} converges and
∑∞

k=0 H(xk)2 < ∞. In particular, almost surely {xk} is
bounded and

0 = lim
k→∞

H(xk)2 = lim
k→∞

∥∥xk − proxg[x
k − F (xk)]

∥∥2 . (3.12)

From the continuity of F and the proximal mapping, we know that almost surely every

cluster point x̄ of {xk} satisfies
∥∥x̄− proxg[x̄− F (x̄)]

∥∥2 = 0. Furthermore, by Lemma 2.1,

we have x̄ ∈ X∗. It follows that the boundedness of {xk} and the fact that every cluster
point of {xk} belonging to X∗ yield that limk→∞ dist(xk, X∗) = 0. Similarly, we can deduce
that limk→∞ E[H(xk)2] = 0 by taking expectation in (3.11).

Remark 3.12. In [38], Yang et al. also obtained the asymptotic convergence of their
algorithm. The related properties in [38] require the pseudomonotonicity of the mapping,
which is more restrictive than the assumption of g-pseudomonotonicity in Algprithm 1.
Moreover, those results obtained in [38] are only used to solve the SVI, while our results can
be seen as a significant extension of the work given by [13, 38] from the SVI to the SMVI.

4 Convergence Rate and Oracle Complexity Analysis

In this section, we analyse the optimal oracle complexity and the sublinear convergence rate
in terms of the mean natural residual function. Moreover, we discuss the linear convergence
rate for the proposed algorithm under the bounded proximal error bound condition.

We first prove the following lemma.

Lemma 4.1 (L2-boundedness of the iterates). Assume that (A0) − (A3) hold and {xk} is

generated by Algorithm 1. Let x∗ ∈ X∗, and choose k0 := k0(C̄2, γL̂
2
4) ∈ N, ϕ ∈ (0, 1) such

that
∞∑

i≥k0

1

Ni
≤ ϕ

C̄2γ2L̂2
4

, (4.1)
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then

sup
k≥k0

∣∣ ∥∥xk − x∗∥∥ ∣∣2
2
<

∣∣ ∥∥xk0 − x∗
∥∥ ∣∣2

2
+ ϕC2δ4(x

∗)2

C̄2L̂2
4

1− ϕ
.

Proof. We have from (A3) that there exists k0 ∈ N0 satisfying (4.1). Let di :=
∥∥xi − x∗

∥∥2
for i ∈ N0 and k ≥ k0 be given. Taking expectation in (3.11), making use of E[E[·|F̂k]|Fk] =
E[·|Fk], and summing recursively from i = k0 to i = k − 1, we obtain

|dk|22 ≤ |dk0 |22 + C̄2γ
2L̂2

4

k−1∑
i=k0

|di|22
Ni

+ C2γ
2δ24(x

∗)

k−1∑
i=k0

1

Ni
. (4.2)

Let tω := {k ≥ k0||dk|2 > ω}. For any ω > 0 and tω < ∞, it follows from (4.1) and (4.2)
that

ω2 < |dtω |22 ≤ |dk0 |22 + C̄2γ
2L̂2

4

tω−1∑
i=k0

|di|22
Ni

+C2γ
2δ24(x

∗)

tω−1∑
i=k0

1

Ni
< |dk0 |22 + ϕω2 +

ϕC2δ
2
4(x

∗)

C̄2L̂2
4

.

This implies that any threshold ω2, which {|dk|22}k≥k0
eventually exceeds, is bounded above

by
|dk0

|22+
ϕC2δ24(x∗)

C̄2L̂2
4

1−ϕ . Therefore, {|dk|22}k≥k0
is bounded and satisfies the statement of the

lemma.

Based on the above lemma, we next discuss the sublinear convergence rate in terms of
the mean natural residual function and the oracle complexity.

Theorem 4.2 (sublinear convergence rate). Assume that (A0) − (A3) hold. Let ρ :=
Ak(min{µθ,γ})2

2|L(ξ)|22
and Nk := Nd(k + λ)(ln(k + λ))1+be for N ∈ N, b > 0, λ > 0. For any

x∗ ∈ X∗, if supk≥0

∣∣ ∥∥xk − x∗
∥∥ ∣∣2

2
≤ M for some M > 0, then for all k ∈ N0,

min
i=0,··· ,k

E[H(xi)2] ≤ 1

(k + 1)ρ

(∥∥x0 − x∗∥∥2 + C2γ
2δ4(x

∗)2 + C̄2γ
2L̂2

4M

N bdln(λ− 1)eb

)
.

Proof. From Remark 3.4, it is obvious that {Nk} satisfies (A3), and so Theorem 3.11 and
Lemma 4.1 hold. It follows that the sequence {xk} is bounded in L2. Given x∗ ∈ X∗

and supk≥0 |
∥∥xk − x∗

∥∥ |22 ≤ M for some M > 0. Then, supk E[
∥∥xk − x∗

∥∥ |2] ≤ M . Taking

expectation in (3.11), making use of E[E[·|F̂k]|Fk] = E[·|Fk] and summing recursively from
i = 0 to i = k, we have

ρ

k∑
i=0

E[H(xi)2] ≤
∥∥x0 − x∗∥∥2 + (C2γ

2δ4(x
∗)2 + C̄2γ

2L̂2
4M)

k∑
i=0

1

Ni
.

Note that

k∑
i=0

1

Ni
≤

∞∑
i=0

1

Ni
≤
∫ ∞

−1

dq

N (q + λ)(ln(q + λ))1+b
=

1

N b(ln(λ− 1))b

and mini=0,··· ,k E[H(xi)2] ≤ 1
k+1

∑k
i=0 E[H(xi)2], we obtain the conclusion immediately.
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Theorem 4.3 (oracle complexity). Let the assumptions of Theorem 4.1 hold and Nk :=
Nd(k + λ)(ln(k + λ))1+be for N := O(n), b > 0, λ > 0. For τ > 0, Algorithm 1 achieves the
tolerance

min
i=0,··· ,K

E[H(xi)2] ≤ τ,

after K := b−1O(τ−1) iterations and, with probability 1, an oracle complexity
∑K

i=0(1+li)Ni

bounded above by

b−2 · ln 1
θ

(
γmaxi=0,··· ,K L̂i

min{µθ, γ}

)
· dln(b−1τ−1)e1+b · O(nτ−2),

where lk is the number of oracle calls used in the line search (3.1) at iteration k and L̂k is

defined as in Lemma 4.1. Moreover, the mean oracle complexity
∑K

i=0(1 + E[li])Ni satisfies

the same upper bound with maxi=0,··· ,K L̂i replaced by L.

Proof. By Theorem 4.2, there exists a constant M > 0 such that

min
i=0,··· ,K

E[H(xi)2] ≤ Mn(N bk)−1, ∀k ∈ N.

Thus, we have from τ > 0 that mini=0,··· ,K E[H(xi)2] ≤ τ afterK = O(nN−1τ−1) iterations.
The total number of the oracle call is given by

K∑
i=0

(1 + li)Ni ≲
(

max
i=0,··· ,K

li

) K∑
i=0

Ni(ln i)
1+b

≲
(

max
i=0,··· ,K

li

)
K2N (lnK)1+b

≲
(

max
i=0,··· ,K

li

)
N−1n2b−2τ−2(ln(nN−1b−1τ−1))1+b (4.3)

and mini=0,··· ,K E[H(xi)2] ≤ τ. From Lemma 3.5, we have lk ≤ log 1
θ
( γL̂k

min{µθ,γ} ). Hence, we

can get the claimed bound on
∑K

i=0(1 + li)Ni from (4.3) and N = O(n) immediately.
On the other hand, the concavity of the mapping z 7−→ log 1

θ
(z) and the Jensen’s in-

equality imply that

E[li] ≤ E[log 1
θ

( γL̂k

min{µθ, γ}

)
] ≤ log 1

θ

( γL

min{µθ, γ}

)
,

where the last inequality follows from E[L̂k] = L by the definitions of {L̂k, L} and (A3). This
together with (4.3) and N = O(n) imply the claimed bound on the mean oracle complexity∑K

i=0(1 + E[li])Ni.

Remark 4.4. By Lemma 4.1, the constant M in Theorem 4.2 can be estimated by

M ≤
maxk=0,··· ,k0

∣∣ ∥∥xk − x∗
∥∥ ∣∣2

2
+ ϕC2δ4(x

∗)2

C̄2L̂2
4

1− ϕ
.

Moreover, the number k0 in the above inequality can be estimated from (4.1) by

k0 ≥ exp

 b

√
C̄2γ2L̂2

4

ϕbN

− λ+ 1.
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To obtain the line convergence rate of the Algorithm 1, we need the following assumption.

Assumption 4.1 (A4). The SMVI satisfy the bounded metric subregularity condition at
any x̄ ∈ X∗, namely, for any compact set V satisfying X∗ ⊆ V , there exsits a constant κ > 0
such that

dist(x,X∗) ≤ κdist(0, F (x∗) + ∂g(x)), ∀x ∈ V.

According to Proposition 3 in [39], the bounded metric subregularity condition is equiv-
alent to the bounded proximal error bound condition at x̄ ∈ X∗, that is, for any λ > 0 and
compact set V satisfying X∗ ⊆ V , there exists a constant κ > 0 such that

dist(x,X∗) ≤ κ
∥∥x− proxλg[x− λF (x∗)]

∥∥ , ∀x ∈ V.

Next, we give an example which satisfies the bounded proximal error bound condition.

Example 4.1 (Stochastic Networked Nash-Cournot game). Consider a networked Nash-
Cournot game with uncertain data in [19, 35, 41, 33], in which the cost-minimizing agents
compete in quantity levels when facing with a price function associated with aggregate
output. Assume that there are I firms that compete over a network of J nodes in supplying
a homogeneous product in a non-cooperative fashion. The level of sales of firm i ∈ [I] at
node j ∈ [J ] is denoted by xij , and the firm is characterized by a random linear production
cost function ci(xi, ξi) = (ai+ ξi)

∑
j∈[J ] xij for some parameter ai > 0, where ξi is a mean-

zero random variable. Assume that the price at node j, denoted by Pj(
∑

i∈[I] xij , ηj) is

a stochastic linear function corrupted by noise Pj(
∑

i∈[I] xij , ηj) = dj + ηj − bj
∑

i∈[I] qij ,
where dj indicates the price when the production is zero, bj represents the slope of the
inverse demand function, and ηj is a zero-mean random disturbance. For simplicity, we
assume the transportation costs to be zero. Except the nonnegativity constraints on xij ,
we suppose that firm i′s production at node j is capacitated by capij . Therefore, firm i′s
optimization problem is given by

minE
[
fi(x, ξ, η)] = E[ci(xi, ξi)−

∑
j∈[J ]

Pj(
∑
i∈[I]

xij , ηj)xij

]
s.t. xi ∈ Xi = {xi ∈ RJ |xi ≥ 0, xij ≤ capij}.

Under some dominated conditions, we may interchange the orders of expectation and deriva-
tive so that the above stochastic Nash-Cournot game may be transformed into the SMVI,
in which g(x) = σX(x) with X = ΠI

i=1Xi and F (x∗) = (F1(x
∗), · · · , FI(x

∗)), Fi(x
∗) =

E[∂xi , fi(x, ξ, η)]. It can be proved that the bounded proximal error bound at any x̄ ∈ X∗

with X∗ = Πi∈IX
∗
i is satisfied. In fact, by letting gi(xi) = σXi(xi) with σXi(xi) = 0 if

xi ∈ Xi and ∞ otherwise, the stochastic Nash-Cournot game is equivalent to the following
generalized equations:

0 ∈ Fi(x
∗) + ∂gi(xi), i ∈ I.

Since Xi is a polyhedral set and diag(b) is a semidefinite diagonal matrix, ∂gi(xi) is a
polyhedral multifunction. Hence, by [39], the bounded proximal error bound at x̄ for any
x̄ ∈ X∗ is satisfied, i.e., for any compact set V containing x̄, there exists κ such that

dist(x,X∗) ≤ κ
∥∥x− proxλg[x− λF (x∗)]

∥∥ , ∀x ∈ V.

Theorem 4.5 (linear convergence rate). Let the sequence {xk} be generated by Algorithm 1
and K > 0 be a given integer. Assume that there exists a compact set V such that X∗ ⊆ V
and xk ∈ V (0 ≤ k ≤ K). Consider (A0)-(A4) and the following conditions:
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(i) There exists D̄ > 0 such that E[dist2(x0, X∗)] < D̄;

(ii) 0 < φ := 1− ρ
κ2 +

C̄2γ
2L̂2

4

N0
≤ 1;

(iii) For any k ∈ N0, we have Nk ≥ N0 and Nk ≥ dϱK

φk e, where ϱK :=
∑K

k=1 Nk−K∑K
k=1

1

φk

.

Then there exsits D > 0 such that

E[dist2(xk+1, X∗)] ≤ φk

(
φD̄ + (K + 1)

D
ϱK

)
, ∀k ∈ K.

Proof. Let x̄k := proxg[x
k]. By xk ∈ Fk and the continuity of the proximal mapping,

x̄k ∈ Fk. From (3.11), dist(xk, X∗) = inf
∥∥xk − x̄k

∥∥ and N0 ≤ Nk(∀k ∈ N0), we have

E[dist2(xk+1, X∗)|Fk] ≤ E[
∥∥xk+1 − x̄k

∥∥2 |Fk]

≤

(
1 +

C̄2γ
2L̂2

4

N0

)∥∥xk − x̄k
∥∥2 − ρH(xk)2 +

C2γ
2δ24(x̄

k)

Nk

≤

(
1− ρ

κ2
+

C̄2γ
2L̂2

4

N0

)
dist2(xk, X∗) +

C2γ
2δ24(x̄

k)

Nk
. (4.4)

Taking E[·|Fk] in (4.4), we obtain

E[dist2(xk+1, X∗)] ≤ φE[dist2(xk, X∗)] +
C2γ

2δ24(x̄
k)

Nk
.

Note that δ4(·) is continuous, x̄k ∈ X∗ and X∗ is bounded, we obtain that there exsits D > 0
such that C2γ

2δ24(x̄
k) ≤ D. From φ ∈ (0, 1), we have

E[dist2(xk+1, X∗)] ≤ φE[dist2(xk, X∗)] +
D
Nk

≤ φk+1E[dist2(x0, X∗)] + φk D
N0

+ φk−1 D
N1

+ · · ·+ D
Nk

≤ φk+1E[dist2(x0, X∗)] + φk D
ϱK

+ φk D
ϱK

+ · · ·+ φk D
ϱK

≤ φk

(
φD̄ + (K + 1)

D
ϱK

)
.

This completes the proof.

5 Numerical Results

5.1 Numerical experiments

In this section, we give some numerical examples to illustrate the efficiency of Algorithm 1
by comparing with several related algorithms such as Algorithms VBPE and VBPFB in [32],
Algorithm VBMBF in [38] and Algorithm EGLS in [13] according to the CPU time and the
empirical errors. All algorithms were coded in MATLAB R2019a and run the same computer
with Windows 10 system, AMD Ryzen 5 3550H with Radeon Vega Mobile Gfx 2.10 GHz
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and 16.0 GB. We use randn and unifrnd in Matlab 2019a to generate i.i.d samples from Ξ
and terminate algorithms when the total number of iterations reaches 8000. The numerical
results are listed on the following, where ’iter’ and ’time’ denote the number of iterations and

the CPU time in seconds, respectively. In addition, we define the empirical error:= xk+1−x∗

x∗

and the tolerance ε := 10−4. Note that domg is a nonempty, closed and convex set in this
section. See Figs. 1− 4 and Table 5.1 for more details about the numerical results.

The parameters are chosen as follows:

Algorithm 1: γ = 0.99, θ = 0.4, β = 0.7, µ = 0.2, Nk = (k + 100)(ln(k + 100))2.

VBPE: αk = 0.1, Nk = d0.7−(k+1)e.
VBPFB: αk = 0.1, Nk = d0.7−(k+1)e.
VBMBF: γ = 0.99, θ = 0.4, µ = 0.2, Nk = (k + 100)(ln(k + 100))2.

EGLS: γ = 0.99, θ = 0.4, β = 0.1, λ = 0.2, Nk = d0.7−(k+1)e.

Example 5.1. Consider the following SMVI in which ξ is uniformly distributed on Ξ =
[0, 1], x ∈ X = [0, 4]× [0, 4]× [0, 4] and f : R3 × Ξ → R3, g : R3 → R are given by

f(x, ξ) :=

 x1 − ξx2 + 3− 2ξ
−ξx1 + 2x2 + ξx3 − 2− ξ

ξx2 + 3x3 − 3− ξ

 ,

and

g(x) :=
1

2
x2
1 + x2

2 + x2
3 − x1x2 + x2x3 + x1 − 3x2 − 3x3 + 6.

Numerical results are shown in Fig.1.

Example 5.2. In Example 1, g(x) has been replaced by g(x) := x2
1 − x1x2 − 2x2x3 + x1 +

2x2 + 2x3. Numerical results are shown in Fig.2.

Table 5.1: Comparison of Algorithm 1 and VBMBF.

ϵ = 10−4 ϵ = 10−8 ϵ = 10−15

Algorithm 1 VBMBF Algorithm 1 VBMBF Algorithm 1 VBMBF

Ex.1(X=50)
time 0.1983 0.5382 0.4044 0.7960 0.4210 0.7734
iter 373 1000 1000 1000 1000 1000

Ex.1(X=100)
time 0.6216 1.5663 0.8955 1.3509 0.9431 1.3397
iter 729 1000 1000 1000 1000 1000

Ex.1(X=200)
time 1.8561 3.5202 2.1475 3.2118 2.2866 3.3194
iter 915 1000 1000 1000 1000 1000

Ex.2(X=50)
time 0.2740 0.4856 0.3983 0.6780 0.4531 0.7578
iter 1000 1000 1000 1000 1000 1000

Ex.2(X=100)
time 0.7995 1.4846 0.8373 1.4661 0.9050 1.3753
iter 1000 1000 1000 1000 1000 1000

Ex.2(X=200)
time 1.9069 2.9232 2.0519 3.0930 2.2227 2.9678
iter 1000 1000 1000 1000 1000 1000
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Fig.1 Results for Example 5.1.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

2

4

6

8

10

12

14

Algorithm1
VBPE
VBPFB
VBMBF
EGLS

Fig.2 Results for Example 5.2.

In Figs.1-2 and Table 5.1, we show the performances of all algorithms in solving the
quadratic function problems presented in Examples 5.1 and 5.2. It is observed that the
empirical error solved by Algorithms VBPE, VBPFB, VBMBF and EGLS vary with the
same decreasing trend as Algorithm 1, while the Algorithm VBMBF spends the most CPU
time among them.

Note that in the special case where PC(x) = proxλσC
(x), Algorithm 1 degenerates to

Algorithm VBMBF proposed in [38] for SVI. By comparing Algorithm 1 with Algorithm
VBMBF in Examples 5.1 and 5.2, we have from Figs.1-2 and Table 5.1 that Algorithm 1 is
more competitive both in the CPU time (Algorithm 1 saves nearly 30% CPU time) and the
empirical error. In particular, Algorithm 1 possesses better performances on stability while
Algorithm VBMBF fluctuates greatly in terms of the empirical error. Moreover, Algorithm
VBMBF outperforms Algorithms VBPE, VBPFB and EGLS with respect to the empirical
error, which implies that our algorithm performs well even in the simplest case, namely,
PC(x) = proxλσC

(x).
In a word, the results shown in Figs.1-2 and Table 5.1 indicate that Algorithm 1 is better

than other algorithms (although Algorithms VBPE, VBPFB and EGLS take less CPU time,
their empirical errors decrease slowly and far away from 0, which means that the solutions
solved by them may be rougher than the ones solved by Algorithm 1).

Example 5.3. Consider the following SMVI: Find x∗ ∈ X such that

E[A(ξ)x∗ + b(ξ)]T (x− x∗) + g(x)− g(x∗) ≥ 0, ∀x ∈ X,
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where g(x) := λ ‖x‖1 , λ is the regularization parameter, A(ξ) ∈ Rn×n is a random matrix,
b(ξ) is a random vector, both A(ξ) and b(ξ) are unknown ahead of time. Given x∗ =

(0, 0, · · · , 0)T . In our test, we generate the matrix A(ξ) by A(ξ) = M+MT

2 , where all elements
of M ∈ Rn×n and b(ξ) ∈ Rn are both uniformly distributed random samples generated from
[0,1], and the dimension of the tested problem is 500. Numerical results are shown in Fig.3.
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Fig.3 Results for Example 5.3.

Example 5.4. This calculation example is derived from g(x) := λ ‖x‖2 instead of g(x) in
Example 5.3. The selections of other functions and parameters are consistent with Example
5.3. Numerical results are shown in Fig.4.
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Fig.4 Results for Example 5.4.

The numerical results are shown in Figs.3-4. In Examples 5.3 and 5.4, we consider the
general SMVI problem. As is shown in the figures, Algorithms VBMBF and EGLS take
less running time than other variance-based algorithms, but the empirical error solved by
Algorithm 1 is hardly decayed among all algorithms. Besides, Algorithm 1 outperforms
Algorithms VBPE and VBPFB even if they take approximately the same CPU time. All in
all, for the tested problems, Algorithm 1 is better than Algorithm VBPE, VBPFB, VBMBF
and EGLS in the calculation accuracy, while Algorithms VBMBF and EGLS are slightly
competitive with Algorithm 1 in calculation speed.

5.2 Application of Algorithm 1 to the stochastic Nash game

In this subsection, we apply the Algorithm 1 to solve the stochastic Nash game discussed in
Example 4.1. In our test, we consider a Cournot game with I = 5, 10, 20 firms and J = 10
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markets. For any i ∈ I and j ∈ J , we set capij = 2, dj ∼ U(40, 50), bj ∼ U(1, 2), ai ∼
U(3, 5), where U(u, u) denotes the uniform distribution on [u, u] and u < u. Moreover, let
ξi ∼ U(−ai/5, ai/5), ηj ∼ U(−bi/5, bi/5) and the initial point x0 = (1, ..., 1)T . The specific

numerical results are shown in table 5.2, where the relative error:= ∥xK−x∗∥
∥x∗∥ .

Table 5.2: The numerical results of stochastic Nash game

The number of the firm Max Iterations Relative error CPU time (s)

I=5 100 3.8210e-1 1.1754e+1

500 1.0700e-2 5.6553e+1

1000 3.7000e-3 1.1183e+2

2000 2.9000e-3 2.2700e+2

I=10 100 8.3800e-2 2.5801e+0

500 6.9200e-2 7.8577e+1

1000 1.8900e-2 1.6774e+2

2000 2.6000e-3 3.6233e+2

I=20 100 1.6950e-1 4.2369e+1

500 7.3800e-2 2.0949e+2

1000 2.9300e-2 4.9200e+2

2000 8.1000e-3 8.7351e+2

From Table 5.2, we can see that the number of the firm and the maximum iteration may
slow down the values of relative error. On the contrary, the CPU time may increase with
the increase of the number of the firm and the maximum iteration.

6 Conclusion

In this paper, we introduce a modified proximal backward-forward algorithm with variance
reduction for stochastic mixed variational inequalities. The new algorithm uses the line
search scheme which is not necessarily to know the Lipschitz constant and requires only
one evaluation of the proximal mapping per iteration. Besides, we obtain the asymptotic
convergence, the sublinear convergence rate and the optimal oracle complexity in terms of
the mean natural residual function. We also discuss the linear convergence rate with finite
computational budget under the assumption of the bounded proximal error bound. Finally,
some numerical results are obtained to show the superiority of the new algorithm.
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