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Abstract: This paper considers a class of stochastic multiobjective bilevel programs in which both the
upper-level and the lower-level programs are multiobjective. By introducing auxiliary variables to the
optimality conditions of the lower-level program, we transform the bilevel program into a stochastic mul-
tiobjective program with scalar variational inequality constraints. We employ some penalty function and
some sample average approximation techniques to present an approximation method. Then, we give a
comprehensive convergence analysis for the proposed method.
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1 Introduction

The origin of bilevel programs can be traced back to the work [27] which used to model
the market economy. Nowadays, bilevel programs have become an important branch in the
optimization field and attracted more and more attention. Many applications of bilevel
programs can be found in network design, transport system planning, management, eco-
nomics, and so on [28, 14, 22, 29]. However, due to their hierarchical structures, bilevel
programs are very difficult to solve and even the linear cases are known to be NP-hard [4].
For recent developments on numerical methods for bilevel programs, we refer the reader to
[3, 10, 7, 23, 32] and the references therein.

Up to now, most researches on bilevel programs mainly focus on the single objective
cases, while the multiobjective bilevel programs have important applications in practice
[1, 20, 33, 16, 2]. In this paper, we consider the following stochastic multiobjective bilevel
program (SMBLP):

min E[F (x, y, ξ)] (1.1)

s.t. x ∈ X, y ∈ S(x),
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where S(x) denotes the solution set of the lower-level program

min
y

E[f(x, y, ξ)] (1.2)

s.t. y ∈ Y.

Here, E denotes the mathematical expectation operator related to the stochastic variable
ξ defined on the probability space (Ω,F, P ) with a support set Ξ, X is a nonempty closed
subset of Rn, Y is a nonempty closed convex subset of Rm, F : Rn+m × Ω → Rp and
f : Rn+m × Ω → Rq are vector-valued random functions. Suppose that each objective
function fi (i = 1, . . . , q) is convex with respect to the lower-level variable. Note that,
although the lower-level constraint set Y does not depend on x, it is still widely used in
practice [22].

The multiobjective bilevel programs have several cases. The first is that the upper-level
is single objective but the lower-level is multiobjective. This kind of problems was originally
considered in Hausdorff topological spaces in [5], in which they were called semivectorial
bilevel optimization problems and the authors suggested an exterior penalty approach to
handle them. Afterwards, Dempe et al. [9] derived some first-order necessary optimality
conditions for this type of problems. The second is that the upper-level is multiobjective
but the lower-level is single objective. By using the Karush-Kuhn-Tucker (KKT) conditions
of the lower-level programs, this kind of problems may be formulated into multiobjective
programs with complementarity constraints and, along this way, some numerical methods
and optimality conditions were respectively presented [31, 30, 8]. The third is that both the
upper-level and the lower-level programs are multiobjective; see, e.g., [21, 26] for theoretical
results and algorithms for this type of bilevel programs.

There are also a few works to study the stochastic bilevel programs. In particular, Kosuch
et al. [18] and Kovacevic et al. [19] considered the applications of the stochastic single
objective bilevel programs in practical pricing, service provision, and swing option pricing.
Chen et al. [6] and Lin et al. [20] discussed optimality conditions and numerical methods
for the stochastic multiobjective bilevel programs, in which the upper-level programs are
multiobjective but the lower-level programs are single objective, and their applications in
network design and healthcare management.

In summarize, the SMBLP (1.1)–(1.2) considered in this paper is more general and, to
the best of our knowledge, it has not been studied so far. Since a convex multiobjective
program is equivalent to a vector variational inequality, (1.1)–(1.2) is generally transformed
into a stochastic multiobjective program with vector variational inequality constraints. We
consider a different way in this paper. That is, we use some kind of necessary and sufficient
conditions for the lower-level multiobjective program to transform (1.1)–(1.2) into a stochas-
tic multiobjective program with scalar variational inequality constraints and then employ
a penalty function and some sample average approximation (SAA) technique to present an
SAA-based penalty method.

The rest of this paper is organized as follows. In Section 2, we first introduce how
to reformulate the SMBLP to a multiobjective program with scalar variational inequality
constraint and then present an SAA-based penalty approximation method by using some
penalty function and some SAA technique. In Section 3, we investigate the limiting behavior
of weak Pareto optimal solutions of the SAA-based penalty approximation problems and,
in Section 4, we consider the convergence properties of Pareto stationary points of the
approximation problems. Finally, in Section 5, we make some concluding remarks.

Throughout, we adopt the following standard notations. For a given nonempty set D ⊆
Rn, int(D) denotes its interior. For a given real-valued function ψ : Rn×Rm → R, ∇xψ(x, y)
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and ∇2
xψ(x, y) denote its gradient and Hessian matrix respectively at x, ∇xyψ(x, y) and

∇2
xyψ(x, y) denote its gradient and Hessian matrix respectively at (x, y). For a given vector-

valued function Ψ : Rn × Rt → Rm, ∇xΨ(x, y) ∈ Rm×n denotes its Jacobian matrix at x,
∇xyΨ(x, y) ∈ Rm×(n+t) denotes its Jacobian matrix at (x, y). Moreover, ∥ · ∥ stands for the
2-norm and ∥ · ∥F denotes the Frobenius norm, whereas ProjY (x) stands for the projection
of a point x onto the closed convex set Y . For a ∈ Rn, b ∈ Rn, a ≺ b means ai < bi for each
i = 1, . . . , n.

2 SAA-Based Penalty Approximation Method

By [17], ȳ is a weak Pareto optimal solution of (1.2) if and only if it solves the vector
variational inequalities of finding ȳ ∈ Y such that

∇yE[f(x, ȳ, ξ)](z − ȳ) /∈ −intRq
+, ∀z ∈ Y,

which is equivalent to(
(z − ȳ)T∇yE[f1(x, ȳ, ξ)], . . . , (z − ȳ)T∇yE[fq(x, ȳ, ξ)]

)T
/∈ −intRq

+, ∀z ∈ Y. (2.1)

For simplicity, we denote by fj(x, y, ξ) := ∇yfj(x, y, ξ) (j = 1, . . . , q). By Theorem
16.8 of [24] and Assumption (A2) given in the next section, we have ∇yE[fj(x, y, ξ)] =
E[fj(x, y, ξ)] (j = 1, . . . , q). By Theorem 2.1 in [34], the above vector variational inequalities
(2.1) reduce to the scalar variational inequalities of finding (ȳ, λ̄) ∈ Y × Λ such that

(z − ȳ)T
q∑

j=1

λ̄jE[fj(x, ȳ, ξ)] ≥ 0, ∀z ∈ Y, (2.2)

where Λ := {λ ∈ Rq|λ ≥ 0,
∑q

j=1 λj = 1}. Thus, since (1.2) is assumed to be a convex
program, the SMBLP (1.1)–(1.2) can be transformed into the stochastic multiobjective
program with scalar variational inequality constraints

min E[F (x, y, ξ)]

s.t. (z − y)T
q∑

j=1

λjE[fj(x, y, ξ)] ≥ 0, ∀z ∈ Y, (2.3)

(x, y, λ) ∈ X × Y × Λ.

To deal with the scalar variational inequality constraints in (2.3), similarly as in [12], we
define the regularized gap function h : X × Y × Λ → R as

h(x, y, λ) := max
z∈Y

{
(y − z)T

q∑
j=1

λjE[fj(x, y, ξ)]−
α

2
∥y − z∥2

}
, (2.4)

where α > 0 is a given parameter. It follows from [12] that, for any (y, λ) ∈ Y × Λ,

h(x, y, λ) =
(
y −H(x, y, λ)

)T q∑
j=1

λjE[fj(x, y, ξ)]−
α

2

∥∥y −H(x, y, λ)
∥∥2,

where H(x, y, λ) := ProjY
(
y−α−1

∑q
j=1 λjE[fj(x, y, ξ)]

)
. Moreover, by Theorem 3.1 in [12],

we have h(x, y, λ) ≥ 0 for each (x, y, λ) ∈ X×Y ×Λ and h(x, y, λ) = 0 if and only if (x, y, λ)
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solves (2.2). Therefore, the SMBLP (1.1)–(1.2) is further equivalent to

min E[F (x, y, ξ)]

s.t. h(x, y, λ) = 0, (2.5)

(x, y, λ) ∈ X × Y × Λ.

From now on, we denote by F the feasible region of (2.5).
We now present our approximation method for (2.5). Although the variational inequal-

ity constraint in (2.3) is transformed into the equality constraint in (2.5), it is still the
essential difficulty in solving (2.5). Here, we employ a penalty function to get the following
approximation problem of (2.5):

min Θ(x, y, λ) := E[F (x, y, ξ)] + ρh2(x, y, λ)e (2.6)

s.t. (x, y, λ) ∈ X × Y × Λ,

where ρ > 0 is a penalty factor and e := (1, 1, . . . , 1)T ∈ Rp.
Note that for a given function g : Rn → Rn, set

G(x) = max
z∈Y

{g(x)T (x− z)}, (2.7)

by [13] page 3, when the maximizer on the right-hand side of (2.7) is unique, the gradient
of G at x is actually given by

∇xG(x) = g(x)−∇xg(x)
T (z − x). (2.8)

In addtion, by Theorem 3.2 in [12], if E[fj(x, y, ξ)] (j = 1, . . . , q) is continuously differen-
tiable, h(x, y, λ) is continuously differentiable. Since the maximizer of formulation (2.4) is
unique, we use the formulation (2.8) to obtain the gradient as follows:

∇xyλh(x, y, λ)

=


q∑

j=1

λj∇xE[fj(x, y, ξ)]
T
(
y −H(x, y, λ)

)
q∑

j=1

λjE[fj(x, y, ξ)]−
( q∑
j=1

λj∇yE[fj(x, y, ξ)]− αI
)(
H(x, y, λ)− y

)
E[f(x, y, ξ)]T

(
y −H(x, y, λ)

)

 , (2.9)

where I denotes the unit matrix in appropriate dimension, E[f(x, y, ξ)] =
[
E[f1(x, y, ξ)], . . . ,

E[fq(x, y, ξ)]
]
. Recalling that each fi(x, y, ξ) (i = 1, . . . , q) is convex with respect to y, we

have the following result.

Theorem 2.1. (x̄, ȳ) is a weak Pareto optimal solution of (1.1)–(1.2) if and only if there
exists λ̄ ∈ Λ such that (x̄, ȳ, λ̄) is a weak Pareto optimal solution of (2.5).

Proof. Suppose that (x̄, ȳ) is a weak Pareto optimal solution of (1.1)–(1.2). It follows that
ȳ is a weak Pareto optimal solution of (1.2). Since (1.2) is a convex program, there exists
λ̄ ∈ Λ satisfying (2.2), from which we have h(x̄, ȳ, λ̄) = 0 and hence (x̄, ȳ, λ̄) ∈ F . Since
(x̄, ȳ) is a weak Pareto optimal solution of (1.1)–(1.2), there does not exist (x, y) ∈ X × Y
such that E[F (x, y, ξ)] ≺ E[F (x̄, ȳ, ξ)]. Therefore, (x̄, ȳ, λ̄) is a weak Pareto optimal solution
of (2.5).

Conversely, suppose that (x̄, ȳ, λ̄) is a weak Pareto optimal solution of (2.5). We have
h(x̄, ȳ, λ̄) = 0 and there does not exist (x, y, λ) ∈ F such that E[F (x, y, ξ)] ≺ E[F (x̄, ȳ, ξ)].
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Hence, (ȳ, λ̄) is a solution of (2.2). In addition, since (1.2) is a convex program, (x̄, ȳ) is
feasible to (1.1). If (x̄, ȳ) is not a weak Pareto optimal solution of (1.1)–(1.2), there must
exist (x̃, ỹ) satisfying the constraints of (1.1)–(1.2) and

E[F (x̃, ỹ, ξ)] ≺ E[F (x̄, ȳ, ξ)]. (2.10)

Since ỹ is a weak Pareto optimal solution of (1.2) and (1.2) is a convex program, there exists
λ̃ ∈ Λ satisfying (2.2). So, we have h(x̃, ỹ, λ̃) = 0 and hence (x̃, ỹ, λ̃) ∈ F . Combing with
(2.10), this contradicts the fact that (x̄, ȳ, λ̄) is a weak Pareto optimal solution of (2.5).
Therefore, (x̄, ȳ) must be a weak Pareto optimal solution of (1.1)–(1.2).

Note that the objective function in (2.6) contains a mathematical expectation, which
is usually difficult to compute in practice. We employ the SAA techniques to deal with
expectations. Recall that, given an integrable function ψ : Ω → R, the Monte Carlo sampling
estimate for E[ψ(ξ)] is obtained by taking independently and identically distributed random
samples Ωk := {ξ1, . . . , ξNk} from Ω, where Nk → +∞ as k → +∞, and letting E[ψ(ξ)] ≈
1
Nk

∑
ξi∈Ωk

ψ(ξi). The strong law of large numbers guarantees that this procedure converges

with probability one (abbreviated by w.p.1) [25], that is,

lim
k→+∞

1

Nk

∑
ξi∈Ωk

ψ(ξi) = E[ψ(ξ)], w.p.1. (2.11)

Thus, by taking some independently and identically distributed samples ξ1, . . . , ξNk from
Ωk, we get the following SAA-based penalty approximation problem of (2.6):

min Θk(x, y, λ) :=
1

Nk

∑
ξi∈Ωk

F (x, y, ξi) + ρk
(
hk(x, y, λ)

)2
e (2.12)

s.t. (x, y, λ) ∈ X × Y × Λ,

where

hk(x, y, λ) :=
(
y −Hk(x, y, λ)

)T q∑
j=1

λj
( 1

Nk

∑
ξi∈Ωk

fj(x, y, ξ
i)
)
− α

2

∥∥y −Hk(x, y, λ)
∥∥2 (2.13)

with Hk(x, y, λ) := ProjY

(
y − α−1

∑q
j=1 λj

(
1
Nk

∑
ξi∈Ωk

fj(x, y, ξ
i)
))

and ρk > 0 being a

penalty factor. We discuss the limiting behavior of this approximation approach in the
subsequent sections.

3 Convergence Analysis of Weak Pareto Optimal Solutions

In this section, we investigate the convergence properties of the weak pareto optimal solutions
of the approximation problem (2.12). We first make some assumptions.

(A1) For every ξ ∈ Ω, each Fi(x, y, ξ) (i = 1, . . . , p) and each fi(x, y, ξ) (i = 1, . . . , q) are
twice continuously differentiable with respect to (x, y) on X × Y .
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(A2) There exist ϱ > 0 and an integrable function K(ξ) such that E[K(ξ)] < +∞,
E[K2(ξ)] < +∞, and

∥∇2
xyfi(x, y, ξ)−∇2

xyfi(x̄, ȳ, ξ)∥F ≤ K(ξ)∥(x, y)− (x̄, ȳ)∥ϱ,

max
{ p∑

j=1

|Fj(x, y, ξ)|+
p∑

j=1

∥∇xyFj(x, y, ξ)∥+
p∑

j=1

∥∇2
xyFj(x, y, ξ)∥F ,

q∑
j=1

|fj(x, y, ξ)|+
q∑

j=1

∥∇xyfj(x, y, ξ)∥+
q∑

j=1

∥∇xyfj(x, y, ξ)∥F
}
≤ K(ξ)

for any (x, y) ∈ X × Y , (x̄, ȳ) ∈ X × Y and almost every ξ ∈ Ω.

(A3) The penalty factor ρk is taken to satisfy limk→+∞ ρk = +∞ and

lim
k→+∞

ρk
(
hk(x, y, λ)− h(x, y, λ)

)
= 0, ∀(x, y, λ) ∈ X × Y × Λ, (3.1)

in along with

lim
k→+∞

ρk∥(xk, yk, λk)− (x̄, ȳ, λ̄)∥ = 0 if lim
k→+∞

(xk, yk, λk) = (x̄, ȳ, λ̄). (3.2)

Here, h and hk are given in (2.4) and (2.13) respectively.

Remark 3.1. The convergence in (2.11) is of order O(k−
1
2 ) with probability one [15], which

implies that the sequence

{√
k
(
hk(x, y, λ)− h(x, y, λ)

)}
(3.3)

is convergence with probability one as k → +∞. Therefore, we may set ρk = kν with
ν ∈ (0, 12 ). It is easy to see that (3.1) holds by (3.3). On the other hand, under the condition
that (x̄, ȳ, λ̄) is an accumulation point of (xk, yk, λk), there at least exists a sub-column of
(xk, yk, λk) satisfying (3.2).

Lemma 3.2. Let (A1)− (A2) hold and limk→+∞(xk, yk, λk) = (x̄, ȳ, λ̄). Then, we have
limk→+∞ hk(xk, yk, λk) = h(x̄, ȳ, λ̄) with probability one.

Proof. By the mean value theorem and (A2), we have

∥∥fj(xk, yk, ξi)− fj(x̄, ȳ, ξ
i)
∥∥

=

∥∥∥∥ ∫ 1

0

(
∇xyfj

(
txk + (1− t)x̄, tyk + (1− t)ȳ, ξi

))T (
(xk, yk)− (x̄, ȳ)

)
dt

∥∥∥∥
≤ K(ξi)

∥∥(xk, yk)− (x̄, ȳ)
∥∥, ∀j = 1, . . . , q. (3.4)
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We then have from the nonexpansive property of ProjY , (A2) and (3.4) that

∥∥Hk(xk, yk, λk)−Hk(x̄, ȳ, λ̄)
∥∥

≤
∥∥∥∥(xk − α−1

q∑
j=1

λkj
( 1

Nk

∑
ξi∈Ωk

fj(x
k, yk, ξi)

))
−
(
x̄− α−1

q∑
j=1

λ̄j
( 1

Nk

∑
ξi∈Ωk

fj(x̄, ȳ, ξ
i)
))∥∥∥∥

≤ ∥xk − x̄∥+ α−1
[ q∑
j=1

λkj
1

Nk

∑
ξi∈Ωk

∥∥fj(xk, yk, ξi)− fj(x̄, ȳ, ξ
i)
∥∥

+

q∑
j=1

|λkj − λ̄j | ·
1

Nk

∑
ξi∈Ωk

∥∥fj(x̄, ȳ, ξi)∥∥]
≤ ∥xk − x̄∥

+ α−1
[ q∑
j=1

λkj
1

Nk

∑
ξi∈Ωk

K(ξi)
∥∥(xk, yk)− (x̄, ȳ)

∥∥+

q∑
j=1

|λkj − λ̄j | ·
1

Nk

∑
ξi∈Ωk

K(ξi)
]

→ 0 as k → +∞ w.p.1. (3.5)

Since hk(x, y, λ) ≥ 0 for any (x, y, λ) ∈ X × Y × Λ, we have

∥∥y −Hk(x, y, λ)
∥∥ ≤ 2

α

q∑
j=1

λj
1

Nk

∑
ξi∈Ωk

∥∥fj(x, y, ξi)∥∥ ≤ 2

α
· 1

Nk

∑
ξi∈Ωk

K(ξi). (3.6)

Hence, by the inequality ∥a∥ − ∥b∥ ≤ ∥a− b∥ and (3.6), we have

∥∥Hk(x, y, λ)
∥∥ ≤ 2

α
· 1

Nk

∑
ξi∈Ωk

K(ξi) + ∥y∥. (3.7)

It follows from (A2) and (3.5)–(3.6) that

∣∣∣∥∥yk −Hk(xk, yk, λk)
∥∥2 − ∥∥ȳ −Hk(x̄, ȳ, λ̄)

∥∥2∣∣∣
≤

∣∣∣∥∥yk −Hk(xk, yk, λk)
∥∥+

∥∥ȳ −Hk(x̄, ȳ, λ̄)
∥∥∣∣∣

·
∣∣∣∥yk − ȳ∥+

∥∥Hk(xk, yk, λk)−Hk(x̄, ȳ, λ̄)
∥∥∣∣∣

≤ 4

α
· 1

Nk

∑
ξi∈Ωk

K(ξi) ·
∣∣∣∥yk − ȳ∥+

∥∥Hk(xk, yk, λk)−Hk(x̄, ȳ, λ̄)
∥∥∣∣∣

→ 0 as k → +∞ w.p.1. (3.8)
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Moreover, by (A2) and (3.4), there holds

∥∥∥ q∑
j=1

λkj
( 1

Nk

∑
ξi∈Ωk

fj(x
k, yk, ξi)

)
−

q∑
j=1

λ̄j
( 1

Nk

∑
ξi∈Ωk

fj(x̄, ȳ, ξ
i)
)∥∥∥

≤
q∑

j=1

|λkj − λ̄j | ·
1

Nk

∑
ξi∈Ωk

∥∥fj(xk, yk, ξi)∥∥
+

q∑
j=1

λ̄j ·
1

Nk

∑
ξi∈Ωk

∥∥fj(xk, yk, ξi)− fj(x̄, ȳ, ξ
i)
∥∥

≤
q∑

j=1

|λkj − λ̄j | ·
1

Nk

∑
ξi∈Ωk

K(ξi) +

q∑
j=1

λ̄j ·
1

Nk

∑
ξi∈Ωk

K(ξi)
∥∥(xk, yk)− (x̄, ȳ)

∥∥
→ 0 as k → +∞ w.p.1. (3.9)

It then follows from (A2) and (3.9) that

∣∣∣ykT q∑
j=1

λkj
( 1

Nk

∑
ξi∈Ωk

fj(x
k, yk, ξi)

)
− ȳT

q∑
j=1

λ̄j
( 1

Nk

∑
ξi∈Ωk

fj(x̄, ȳ, ξ
i)
)∣∣∣

≤ ∥yk − ȳ∥ ·
q∑

j=1

λkj

( 1

Nk

∑
ξi∈Ωk

∥∥fj(xk, yk, ξi)∥∥)

+∥ȳ∥ ·
∥∥∥ q∑

j=1

λkj
( 1

Nk

∑
ξi∈Ωk

fj(x
k, yk, ξi)

)
−

q∑
j=1

λ̄j
( 1

Nk

∑
ξi∈Ωk

fj(x̄, ȳ, ξ
i)
)∥∥∥

→ 0 as k → +∞ w.p.1. (3.10)

Therefore, by (A2), (3.5), (3.7) and (3.9), we have

∣∣∣(Hk(xk, yk, λk)
)T q∑

j=1

λkj

( 1

Nk

∑
ξi∈Ωk

fj(x
k, yk, ξi)

)
−
(
Hk(x̄, ȳ, λ̄)

)T
q∑

j=1

λ̄j

( 1

Nk

∑
ξi∈Ωk

fj(x̄, ȳ, ξ
i)
)∣∣∣

≤
∥∥Hk(xk, yk, λk)−Hk(x̄, ȳ, λ̄)

∥∥∥∥∥ q∑
j=1

λkj

( 1

Nk

∑
ξi∈Ωk

fj(x
k, yk, ξi)

)∥∥∥
+
∥∥∥(Hk(x̄, ȳ, λ̄)

)∥∥∥∥∥∥ q∑
j=1

λkj

( 1

Nk

∑
ξi∈Ωk

fj(x
k, yk, ξi)

)
−

q∑
j=1

λ̄j

( 1

Nk

∑
ξi∈Ωk

fj(x̄, ȳ, ξ
i)
)∥∥∥

≤ 1

Nk

∑
ξi∈Ωk

K(ξi)
∥∥Hk(xk, yk, λk)−Hk(x̄, ȳ, λ̄)

∥∥+
[ 2
α
· 1

Nk

∑
ξi∈Ωk

K(ξi) + ∥ȳ∥
]

·
∥∥∥ q∑

j=1

λkj

( 1

Nk

∑
ξi∈Ωk

fj(x
k, yk, ξi)

)
−

q∑
j=1

λ̄j

( 1

Nk

∑
ξi∈Ωk

fj(x̄, ȳ, ξ
i)
)∥∥∥

→ 0 as k → +∞ w.p.1. (3.11)
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In consequence, by (2.11), (3.8) and (3.10)–(3.11), there holds∣∣hk(xk, yk, λk)− h(x̄, ȳ, λ̄)
∣∣

≤
∣∣∣(yk −Hk(xk, yk, λk)

)T q∑
j=1

λkj
( 1

Nk

∑
ξi∈Ωk

fj(x
k, yk, ξi)

)
−
(
ȳ −Hk(x̄, ȳ, λ̄)

)T
·

q∑
j=1

λ̄j
( 1

Nk

∑
ξi∈Ωk

fj(x̄, ȳ, ξ
i)
)∣∣∣+ α

2

∣∣∣∥∥yk −Hk(xk, yk, λk)
∥∥2 − ∥∥ȳ −Hk(x̄, ȳ, λ̄)

∥∥2∣∣∣
+
∣∣∣(ȳ −Hk(x̄, ȳ, λ̄)

)T q∑
j=1

λ̄j
( 1

Nk

∑
ξi∈Ωk

fj(x̄, ȳ, ξ
i)
)
−

(
ȳ −H(x̄, ȳ, λ̄)

)T
·

q∑
j=1

λ̄jE[fj(x̄, ȳ, ξ)]
∣∣∣+ α

2

∣∣∣∥∥ȳ −Hk(x̄, ȳ, λ̄)
∥∥2 − ∥∥ȳ −H(x̄, ȳ, λ̄)

∥∥2∣∣∣
→ 0 as k → +∞ w.p.1.

Therefore, the conclusion holds.

Next, we show our main convergence result. We denote by Ō and Ok the sets of weak
Pareto optimal solutions of problems (2.5) and (2.12) respectively.

Theorem 3.3. Suppose that (A1)− (A3) hold, (xk, yk, λk) ∈ Ok for each k, and (x̄, ȳ, λ̄) is
an accumulation point of

{
(xk, yk, λk)

}
. Then, we have (x̄, ȳ, λ̄) ∈ Ō with probability one.

Proof. Without loss of generality, we assume that limk→∞(xk, yk, λk) = (x̄, ȳ, λ̄). It follows
from the mean value theorem and (A2) that, for each (xk, yk, ξi), there exists (xki , yki) =
γki(xk, yk) + (1− γki)(x̄, ȳ) with γki ∈ (0, 1) such that∣∣Fj(x

k, yk, ξi)− Fj(x̄, ȳ, ξ
i)
∣∣ =

∣∣∣∇xyFj(x
ki , yki , ξi)T

(
(xk, yk)− (x̄, ȳ)

)∣∣∣
≤ K(ξi)

∥∥(xk, yk)− (x̄, ȳ)
∥∥, ∀j = 1, . . . , p. (3.12)

Thus, we have from (A2), (2.11) and (3.12) that∣∣∣ 1

Nk

∑
ξi∈Ωk

Fj(x
k, yk, ξi)−E[Fj(x̄, ȳ, ξ)]

∣∣∣
≤ 1

Nk

∑
ξi∈Ωk

∣∣Fj(x
k, yk, ξi)− Fj(x̄, ȳ, ξ

i)
∣∣+ ∣∣∣ 1

Nk

∑
ξi∈Ωk

Fj(x̄, ȳ, ξ
i)−E[Fj(x̄, ȳ, ξ)]

∣∣∣
≤ 1

Nk

∑
ξi∈Ωk

K(ξi)
∥∥(xk, yk)− (x̄, ȳ)

∥∥+
∣∣∣ 1

Nk

∑
ξi∈Ωk

Fj(x̄, ȳ, ξ
i)−E[Fj(x̄, ȳ, ξ)]

∣∣∣
→ 0 as k → +∞ w.p.1, ∀j = 1, . . . , p. (3.13)

Since (xk, yk, λk) ∈ Ok, there does not exist (x, y, λ) ∈ X × Y × Λ such that

1

Nk

∑
ξi∈Ωk

Fj(x, y, ξ
i) + ρk

(
hk(x, y, λ)

)2
<

1

Nk

∑
ξi∈Ωk

Fj(x
k, yk, ξi) + ρk

(
hk(xk, yk, λk)

)2
for each j = 1, . . . , p. Let (x̃, ỹ, λ̃) ∈ F ⊆ X × Y × Λ be arbitrarily fixed. Then, there at
least exists one jk such that

1

Nk

∑
ξi∈Ωk

Fjk(x̃, ỹ, ξ
i) + ρk

(
hk(x̃, ỹ, λ̃)

)2 ≥ 1

Nk

∑
ξi∈Ωk

Fjk(x
k, yk, ξi) + ρk

(
hk(xk, yk, λk)

)2
.
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Taking a further subsequence if necessary, we may assume that there is an index j0 such
that

1

Nk

∑
ξi∈Ωk

Fj0(x̃, ỹ, ξ
i) + ρk

(
hk(x̃, ỹ, λ̃)

)2
≥ 1

Nk

∑
ξi∈Ωk

Fj0(x
k, yk, ξi) + ρk

(
hk(xk, yk, λk)

)2
. (3.14)

Hence, by (2.11) and (3.13), we have

ρk
(
hk(xk, yk, λk)

)2 − ρk
(
hk(x̃, ỹ, λ̃)

)2
≤ 1

Nk

∑
ξi∈Ωk

Fj0(x̃, ỹ, ξ
i)− 1

Nk

∑
ξi∈Ωk

Fj0(x
k, yk, ξi)

k→+∞−−−−−→ E[Fj0(x̃, ỹ, ξ)]−E[Fj0(x̄, ȳ, ξ)]. w.p.1.

This indicates that the item

ρk
((
hk(xk, yk, λk)

)2 − (
hk(x̃, ỹ, λ̃)

)2)
(3.15)

is almost surely bounded.
On the other hand, by (2.11), there holds

hk(x̃, ỹ, λ̃) → h(x̃, ỹ, λ̃), w.p.1 as k → +∞. (3.16)

Since (3.15) is almost surely bounded and h(x, y, λ) ≥ 0, taking a limit in (3.15), we have
from (3.16) and Lemma 3.2 that, with probability one,

h(x̄, ȳ, λ̄) = h(x̃, ỹ, λ̃) = 0, ∀(x̃, ỹ, λ̃) ∈ F .

This means that (x̄, ȳ, λ̄) ∈ F .
We next show that (x̄, ȳ, λ̄) is almost surely a weak Pareto optimal solution of problem

(2.5). In fact, by (x̃, ỹ, λ̃) ∈ F , (2.11), (3.16) and (A3), we have

ρk
(
hk(x̃, ỹ, λ̃)

)2
= ρk

((
hk(x̃, ỹ, λ̃)

)2 − (
h(x̃, ỹ, λ̃)

)2)
= ρk

(
hk(x̃, ỹ, λ̃) + h(x̃, ỹ, λ̃)

)(
hk(x̃, ỹ, λ̃)− h(x̃, ỹ, λ̃)

)
→ 0 w.p.1 as k → +∞. (3.17)

In addition, we have from (3.14) that

1

Nk

∑
ξi∈Ωk

Fj0(x̃, ỹ, ξ
i) + ρk

(
hk(x̃, ỹ, λ̃)

)2 ≥ 1

Nk

∑
ξi∈Ωk

Fj0(x
k, yk, ξi). (3.18)

Letting k → +∞ in (3.18) and taking (2.11), (3.13), (3.17) into account, we obtain

E[Fj0(x̃, ỹ, ξ)] ≥ E[Fj0(x̄, ȳ, ξ)] w.p.1, ∀(x̃, ỹ, λ̃) ∈ F .

This means that (x̄, ȳ, λ̄) is a weak Pareto optimal solution of (2.5) with probability one,
that is, (x̄, ȳ, λ̄) ∈ Ō with probability one.
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4 Convergence Analysis of Pareto Stationary Points

Since both (2.5) and (2.12) are generally nonconvex, in this section, we focus on the con-
vergence of Pareto stationary points of the approximation problem (2.12). To this end, we
suppose X := {x ∈ Rn| gi(x) ≤ 0, i = 1, . . . , r} and Y := {y ∈ Rm| ci(y) ≤ 0, i = 1, . . . , s},
where gi(x) (i = 1, . . . , r) are continuously differentiable functions and ci(y)(i = 1, . . . , s)
are continuously differentiable convex functions. Set Ig(x) := {i| gi(x) = 0, i = 1, . . . , r},
Ic(y) := {i| ci(y) = 0, i = 1, . . . , s}, and I(λ) := {i|λi = 0, i = 1, . . . , q}.

Definition 4.1. (x̄, ȳ, λ̄) is called a Pareto stationary point of (2.5) if there exist multipliers
σ̄ ∈ Rp

+, δ̄ ∈ R, ū ∈ Rr
+, v̄ ∈ Rs

+, w̄ ∈ Rq
+, l̄ ∈ R such that

p∑
i=1

(
σ̄i∇xE[Fi(x̄, ȳ, ξ)]

)
p∑

i=1

(
σ̄i∇yE[Fi(x̄, ȳ, ξ)]

)
0

+ δ̄

∇xh(x̄, ȳ, λ̄)
∇yh(x̄, ȳ, λ̄)
∇λh(x̄, ȳ, λ̄)

+


r∑

i=1

ūi∇xgi(x̄)

s∑
i=1

v̄i∇yci(ȳ)

l̄e0 − w̄

 = 0, (4.1)

ūT g(x̄) = 0, g(x̄) ≤ 0, (4.2)

v̄T c(ȳ) = 0, c(ȳ) ≤ 0, (4.3)

w̄T λ̄ = 0, λ̄ ≥ 0,
q∑

i=1

λ̄i = 1,
p∑

i=1

σ̄i = 1, (4.4)

where e0 is a q-dimensional unit vector. In what follows, the set of all multipliers associated
with (x̄, ȳ, λ̄) is denoted by D(x̄, ȳ, λ̄).

Definition 4.2. (xk, yk, λk) is called a Pareto stationary point of (2.12) if there exist mul-
tipliers σk ∈ Rp

+, u
k ∈ Rr

+, v
k ∈ Rs

+, w
k ∈ Rq

+, l
k ∈ R such that

p∑
i=1

σk
i

(
1
Nk

∑
ξi∈Ωk

∇xFi(x
k, yk, ξi) + 2ρkhk(xk, yk, λk)∇xh

k(xk, yk, λk)
)

p∑
i=1

σk
i

(
1
Nk

∑
ξi∈Ωk

∇yFi(x
k, yk, ξi) + 2ρkhk(xk, yk, λk)∇yh

k(xk, yk, λk)
)

p∑
i=1

σk
i

(
2ρkhk(xk, yk, λk)∇λh

k(xk, yk, λk)
)



+


r∑

i=1

uki∇xgi(x
k)

s∑
i=1

vki ∇yci(y
k)

lke0 − wk

 = 0, (4.5)

(uk)T g(xk) = 0, g(xk) ≤ 0, (4.6)

(vk)T c(yk) = 0, c(yk) ≤ 0, (4.7)

(wk)Tλki = 0, λk ≥ 0,
q∑

i=1

λki = 1,
p∑

i=1

σk
i = 1. (4.8)

Definition 4.3. Let (x̄, ȳ, λ̄) be a feasible point of (2.5). The Basic Regularity Condition
(BRC) is said to be satisfied at (x̄, ȳ, λ̄) if there exist t ∈ {1, . . . , p} and multipliers σ̄i ≥ 0
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(i ∈ {1, . . . , p} but i ̸= t), δ̄ ∈ R, ūi ≥ 0 (i ∈ Ig(x̄)), ūi = 0 (i ̸= Ig(x̄)), v̄i ≥ 0 (i ∈ Ic(ȳ)),
v̄i = 0 (i ̸= Ic(ȳ)), w̄i ≥ 0 (i ∈ I(λ̄)), w̄i = 0 (i ̸= I(λ̄)), l̄ ∈ R such that

∑
i∈{1,...,p},i ̸=t

σ̄i∇xE[Fi(x̄, ȳ, ξ)]∑
i∈{1,...,p},i ̸=t

σ̄i∇yE[Fi(x̄, ȳ, ξ)]

0

+ δ̄

∇xh(x̄, ȳ, λ̄)
∇yh(x̄, ȳ, λ̄)
∇λh(x̄, ȳ, λ̄)

+


r∑

i=1

ūi∇xgi(x̄)

s∑
i=1

v̄i∇yci(ȳ)

l̄e0 − w̄

 = 0

implies all multipliers to be zero.

Remark 4.4. The BRC property was first given in [11]. For the multiobjective problem

min (f1(x), . . . , fm(x))

s.t. gi(x) ≤ 0, i = 1, . . . , k, (4.9)

hr(x) = 0, r = 1, . . . , p,

if x̄ is a Pareto optimal solution of (4.9) and the BRC holds at x̄, the multiplier subset is
nonempty bounded and, moreover, there is at least one scalar subproblem in the form

min fq(x)

s.t. fj(x) ≤ fj(x̄), j = 1, . . . ,m, j ̸= q,

gi(x) ≤ 0, i = 1, . . . , k,

hr(x) = 0, r = 1, . . . , p

such that the Mangasarian-Fromovitz constraint qualification holds at x̄ and the converse is
also true, that is, if there is a scalar subproblem in the above form satisfying the Mangasarian-
Fromovitz constraint qualification at x̄, the BRC holds at x̄ for (4.9).

Lemma 4.5. Let (A1)− (A2) hold and limk→+∞(xk, yk, λk) = (x̄, ȳ, λ̄). Then, we have

lim
k→+∞

∇xyλh
k(xk, yk, λk) = ∇xyλh(x̄, ȳ, λ̄)

with probability one.

Proof. By (A1) and (A2), we have that, for each j = 1, . . . , q,∥∥∇xyfj(x
k, yk, ξi)−∇xyfj(x̄, ȳ, ξ

i)
∥∥
F
≤ K(ξi)

∥∥(xk, yk)− (x̄, ȳ)
∥∥ϱ. (4.10)

It then follows from (2.11) and (3.5) that∥∥Hk(xk, yk, λk)−H(x̄, ȳ, λ̄)
∥∥ ≤

∥∥Hk(xk, yk, λk)−Hk(x̄, ȳ, λ̄)
∥∥+

∥∥Hk(x̄, ȳ, λ̄)−H(x̄, ȳ, λ̄)
∥∥

→ 0 as k → +∞ w.p.1. (4.11)

Moreover, we have from (A2), (2.11) and (4.10) that∥∥∥ q∑
j=1

λkj
( 1

Nk

∑
ξi∈Ωk

∇xfj(x
k, yk, ξi)

)
−

q∑
j=1

λ̄j∇xE[fj(x̄, ȳ, ξ)]
∥∥∥
F

≤
q∑

j=1

|λkj − λ̄j | ·
1

Nk

∑
ξi∈Ωk

K(ξi) +

q∑
j=1

λ̄j ·
1

Nk

∑
ξi∈Ωk

K(ξi)∥xk − x̄∥ϱ

+

q∑
j=1

λ̄j

∥∥∥ 1

Nk

∑
ξi∈Ωk

∇xfj(x̄, ȳ, ξ
i)−∇xE[fj(x̄, ȳ, ξ)]

∥∥∥
F

→ 0 as k → +∞ w.p.1. (4.12)
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Hence, from (A2), (2.9), (3.6), (4.11) and (4.12), we have∥∥∇xh
k(xk, yk, λk)−∇xh(x̄, ȳ, λ̄)

∥∥
≤

∥∥∥ q∑
j=1

λkj
( 1

Nk

∑
ξi∈Ωk

∇xfj(x
k, yk, ξi)

)
−

q∑
j=1

λ̄j∇xE[fj(x̄, ȳ, ξ)]
∥∥∥
F
·
∥∥yk −Hk(xk, yk, λk)

∥∥
+
∥∥ q∑

j=1

λ̄jE[fj(x̄, ȳ, ξ)]
∥∥
F
·
[
∥yk − ȳ∥+

∥∥Hk(xk, yk, λk)−H(x̄, ȳ, λ̄)
∥∥]

→ 0 as k → +∞ w.p.1. (4.13)

By (2.11) and (3.4), we have∥∥∥ 1

Nk

∑
ξi∈Ωk

fj(x
k, yk, ξi)−E[fj(x̄, ȳ, ξ)]

∥∥∥
≤ 1

Nk

∑
ξi∈Ωk

∥∥fj(xk, yk, ξi)− fj(x̄, ȳ, ξ
i)
∥∥+

∥∥∥ 1

Nk

∑
ξi∈Ωk

fj(x̄, ȳ, ξ
i)−E[fj(x̄, ȳ, ξ)]

∥∥∥
→ 0 as k → +∞ w.p.1. (4.14)

It then follows from (A2), (2.9), (4.11), (4.13) and (4.14) that∥∥∇yh
k(xk, yk, λk)−∇yh(x̄, ȳ, λ̄)

∥∥
≤

q∑
j=1

|λkj − λ̄j | ·
∥∥∥ 1

Nk

∑
ξi∈Ωk

fj(x
k, yk, ξi)

∥∥∥+

q∑
j=1

λ̄j

∥∥∥ 1

Nk

∑
ξi∈Ωk

fj(x
k, yk, ξi)−E[fj(x̄, ȳ, ξ)]

∥∥∥
+
∥∥∥ q∑

j=1

λkj
( 1

Nk

∑
ξi∈Ωk

∇yfj(x
k, yk, ξi)

)
·
(
Hk(xk, yk, λk)− yk

)
−

q∑
j=1

λ̄j∇yE[fj(x̄, ȳ, ξ)]

·
(
H(x̄, ȳ, λ̄)− ȳ

)∥∥∥
F
+ α

[∥∥yk − ȳ∥+ ∥Hk(xk, yk, λk)−H(x̄, ȳ, λ̄)
∥∥]

→ 0 as k → +∞ w.p.1.

In consequence, by (2.9), (3.6), (4.11) and (4.14), there holds∥∥∇λh
k(xk, yk, λk)−∇λh(x̄, ȳ, λ̄)

∥∥
≤

∥∥∥ 1

Nk

∑
ξi∈Ωk

f(xk, yk, ξi)−E[f(x̄, ȳ, ξ)]
∥∥∥
F
·
∥∥yk −Hk(xk, yk, λk)

∥∥
+
∥∥E[f(x̄, ȳ, ξ)]

∥∥
F
·
[∥∥yk − ȳ∥+ ∥Hk(xk, yk, λk)−H(x̄, ȳ, λ̄)

∥∥]
→ 0 as k → +∞ w.p.1.

Therefore, the conclusion holds.

From now on, we denote by S̄ and Sk the sets of Pareto stationary points of (2.5) and
(2.12) respectively.

Theorem 4.6. Let (A1) − (A3) hold and the constant C satisfy
∥∥Θk(xk, yk, λk)

∥∥ ≤ C for

each k. Let (xk, yk, λk) ∈ Sk for each k, (x̄, ȳ, λ̄) be an accumulation point of
{
(xk, yk, λk)

}
,

and the BRC hold at (x̄, ȳ, λ̄). Then, we have (x̄, ȳ, λ̄) ∈ S̄ with probability one.
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Proof. Without loss of generality, we assume that limk→∞(xk, yk, λk) = (x̄, ȳ, λ̄). Let σk ∈
Rp

+, u
k ∈ Rr

+, v
k ∈ Rs

+, w
k ∈ Rq

+, l
k ∈ R be the corresponding multiplier vectors in

(4.2)–(4.8). By the mean value theorem and (A2), we have∥∥∇xyFj(x
k, yk, ξi)−∇xyFj(x̄, ȳ, ξ

i)
∥∥

=
∥∥∥ ∫ 1

0

(
∇2

xyFj(tx
k + (1− t)x̄, tyk + (1− t)ȳ, ξi)

)T (
(xk, yk)− (x̄, ȳ)

)
dt
∥∥∥

≤ K(ξi)
∥∥(xk, yk)− (x̄, ȳ)

∥∥, ∀j = 1, . . . , p. (4.15)

Then, we have from (A2), (2.11) and (4.15) that∥∥∥ 1

Nk

∑
ξi∈Ωk

∇xyFj(x
k, yk, ξi)−∇xyE[Fj(x̄, ȳ, ξ)]

∥∥∥
≤ 1

Nk

∑
ξi∈Ωk

∥∥∇xyFj(x
k, yk, ξi)−∇xyFj(x̄, ȳ, ξ

i)
∥∥

+
∥∥∥ 1

Nk

∑
ξi∈Ωk

∇xyFj(x̄, ȳ, ξ
i)−∇xyE[Fj(x̄, ȳ, ξ)]

∥∥∥
≤ 1

Nk

∑
ξi∈Ωk

K(ξi)
∥∥(xk, yk)− (x̄, ȳ)

∥∥
+
∥∥∥ 1

Nk

∑
ξi∈Ωk

∇xyFj(x̄, ȳ, ξ
i)−∇xyE[Fj(x̄, ȳ, ξ)]

∥∥∥
→ 0 as k → +∞ w.p.1, ∀j = 1, . . . , p. (4.16)

In addition, by the condition
∥∥Θk(xk, yk, λk)

∥∥ ≤ C and (2.12), we have

(
hk(xk, yk, λk)

)2 ≤ (ρk)−1
(
C +

∥∥ 1

Nk

∑
ξi∈Ωk

F (xk, yk, ξi)
∥∥), ∀k. (4.17)

Note that limk→+∞
1
Nk

∑
ξi∈Ωk

F (xk, yk, ξi) = E[F (x̄, ȳ, ξ)] holds with probability one by

(3.13). Letting k → +∞ in (4.17), by Lemma 3.2, we have

h(x̄, ȳ, λ̄) = 0 w.p.1. (4.18)

Note that ∣∣hk(xk, yk, λk)− hk(x̄, ȳ, λ̄)
∣∣

≤ ∥yk − ȳ∥+
∣∣∣(Hk(xk, yk, λk)

)T q∑
j=1

λkj
( 1

Nk

∑
ξi∈Ωk

fj(x
k, yk, ξi)

)
−
(
Hk(x̄, ȳ, λ̄)

)T q∑
j=1

λ̄j
( 1

Nk

∑
ξi∈Ωk

fj(x̄, ȳ, ξ
i)
)∣∣∣

+
α

2

[∥∥yk −Hk(xk, yk, λk)
∥∥2 − ∥∥ȳ −Hk(x̄, ȳ, λ̄)

∥∥2].
This together with (3.8), (3.11) and (A3) implies limk→+∞ ρk

(
hk(xk, yk, λk)−hk(x̄, ȳ, λ̄)

)
=
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0 with probability one. It then follows from (4.18) and (A3) that∣∣ρkhk(xk, yk, λk)∣∣ =
∣∣∣ρk(hk(xk, yk, λk)− h(x̄, ȳ, λ̄)

)∣∣∣
≤ ρk

∣∣hk(xk, yk, λk)− hk(x̄, ȳ, λ̄)
∣∣+ ρk

∣∣hk(x̄, ȳ, λ̄)− h(x̄, ȳ, λ̄)
∣∣

→ 0 as k → +∞ w.p.1. (4.19)

(i) We first show that the sequences {σk}, {uk}, {vk}, {wk}, {lk} are all bounded with
probability one. To this end, we set

τk :=

√
∥σk∥2 + ∥uk∥2 + ∥vk∥2 + ∥wk∥2 + ∥lk∥2 (4.20)

and

σ̂k =
σk

τk
, ûk =

uk

τk
, v̂k =

vk

τk
, ŵk =

wk

τk
, l̂k =

lk

τk
. (4.21)

Taking a subsequence if necessary, we may suppose that all limits σ̃ := limk→+∞ σ̂k, ũ :=
limk→+∞ ûk, ṽ := limk→+∞ v̂k, w̃ := limk→+∞ ŵk, l̃ := limk→+∞ l̂k exist with probability
one. It is easy to see from (4.20)–(4.21) that

∥σ̃∥2 + ∥ũ∥2 + ∥ṽ∥2 + ∥w̃∥2 + ∥l̃∥
2
= 1. (4.22)

Assume by contradiction that {σk}, {uk}, {vk}, {wk}, {lk} are not all bounded almost
surely. It follows that {τk} is almost surely unbounded. Without loss of generality, we
suppose limk→+∞ τk = +∞ with probability one. By (4.8), we have σ̃ = 0 with probability
one. Dividing (4.2) by τk and taking a limit, we have from (4.16), (4.19), and Lemma 4.5
that 

r∑
i=1

ũi∇xgi(x̄)

s∑
i=1

ṽi∇yci(ȳ)

l̃e0 − w̃

 = 0, w.p.1.

It then follows from the BRC that ũi = 0 (i = 1, . . . , r), ṽi = 0 (i = 1, . . . , s), w̃i = 0 (i =
1, . . . , q), and l̃ = 0 with probability one. This together with σ̃ = 0 contradicts (4.22).
Therefore, {σk}, {uk}, {vk}, {wk}, {lk} are all bounded with probability one.

(ii) We next show that (x̄, ȳ, λ̄) satisfies (4.1)–(4.4) with probability one. In fact, by
(i), we may assume that the limits σ̄ = limk→+∞ σk, ū = limk→+∞ uk, v̄ = limk→+∞ vk,
w̄ = limk→+∞ wk, l̄ = limk→+∞ lk exist with probability one. Taking a limit in (4.2)–(4.8),
we obtain by (4.16), (4.19) and Lemma 4.5 that (4.1)–(4.4) hold with probability one. That
is, (x̄, ȳ, λ̄) ∈ S̄ with probability one.

5 Conclusions

For the SMBLP (1.1)–(1.2), since the lower-level program is assumed to be convex, we used
the necessary and sufficient conditions for multiobjective problems and some techniques to
transform (1.1)–(1.2) into the stochastic multiobjective problem (2.3) with scalar variational
inequality constraints. By means of the regularized gap function (2.4), we transformed
(2.3) into (2.5). Furthermore, by some penalty function and sample average approximation
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techniques, we used (2.12) to approximate (2.5). Convergence analysis for both the weak
Pareto optimal solutions and the Pareto stationary points have been considered as well.
Note that all the above theoretical results were based on the (weak) Pareto solution. As a
future work, we will try to extend the results to cases of the cone efficient solutions or the
proper efficient solutions. We will also investigate the applications of (1.1)–(1.2) in practice.
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