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optimization problems can be transferred into the multiobjefctive optimization problems
with equilibrium constraints, which are described by some parametric variational inequality
or complementarity problem. During last twenty years, much progress has been made for
solving multiobjefctive optimization problems with equilibrium constraints [14, 20, 21, 30].
In the problem (MP-PVI), if the set Ω is convex, then the problem (MP-PVI) can be equiv-
alently written as a multiobjective program with a generalized equation constraint

(MP-GEC)
min φ(x, y)
s.t. 0 ∈ F (x, y) +NΩ(y).

Furthermore, if the Mangasarian-Fromovitz constraint qualification (MFCQ) or other similar
constraint qualification holds for the constraint gi(y) ≤ 0, then NΩ(y) = ∇g(y)TNRq

−
(g(y)),

and the problem (MP-GEC) becomes the multiobjective program with complementarity
constraint

(MP-CC)

min φ(x, y)

s.t. F (x, y) +∇g(y)Tλ = 0,
0 ≥ g(y)⊥λ ≥ 0.

In this case, problems (MP-PVI), (MP-GEC) and (MP-CC) are equivalent if the multiplier λ
is unique for each y. When the multiplier is not unique or the constraint set Ω is not convex,
the problem (MP-PVI) can not be transformed into the problems (MP-GEC) and (MP-CC)
due to the changing feasible region. In order to better handle the problem (MP-PVI),
researchers propose many qualification conditions to deal with the problem (MP-PVI), es-
pecially when deriving optimality conditions, referring to [4, 25, 31]. Ye[26] provided several
constraint qualifications for multiobjective optimization problems with variational inequal-
ity constraints, including the error bound constraint qualification, the no nonzero abnormal
multiplier constraint qualification, the generalized MFCQ and the linear constraint qualifi-
cation, which are commonly used in mathematical programs with equilibrium constraints.
Mordukhovich [15] gave the calmness conditions for the auxiliary set-valued mappings to
ensure the stability of parameterized variational inequalities. In [16], the coderivative quali-
fication condition was imposed on the multiobjective optimization problem with equilibrium
constraints. All above qualification conditions are very strong and the equivalence of the
problems (MP-PVI),(MP-GEC) and (MP-CC) is guaranteed under these qualification condi-
tions. When some properties of the constraint functions are not satisfied, these qualification
conditions may be invalid. One of reasons for causing this situation is that some of these
qualification conditions are described by standard coderivatives (also called Mordukhovich
coderivatives). This kind of standard coderivatives are rough and some characters of the
constraint system are not considered, especially in the cases where the standard coderivatives
disappeared.

The directional limiting coderivative is a subset of standard coderivatives, and it describes
the local behavior of the set-valued mappings along the relevant directions. Based on the
directional limiting coderivatives, many types of qualification conditions can be restated. For
example, the metric regularity (subregularity) of a set-valued mapping in some directions
can be described by its directional limiting coderivative [7]. In recent years, many researchers
apply this kind of directional limiting coderivatives to the theoretical analysis and stability
analysis for optimization problems. Gfrerer made a systematically study on the sufficient
conditions for the calmness and Aubin property of implicit multifunctions, which includes
many types equilibrium constraints, such as the parameter-dependent variational inequalities
with non-polyhedral constraint sets and parameterized generalized equations with conic
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constraints, referring to [1, 7, 8] etc. In [9], the author established a M-stationarity condition
with respect to every critical direction under the subregularity of the constraint mapping. In
[24], the authors built the sum rules for the directionally coderivatives of multifunctions and
derived the directionally necessary conditions for a set-valued optimization problem with
equilibrium constraints. More approaches and results for directional limiting coderivatives
can be found in [2, 10, 11, 12].

Inspired by the ideas from [8, 9], we intend to establish the directional optimality condi-
tions of multiobjective program constrained by parameterized variational inequalities, which
is the directional version of the literature [21]. Compared to [21], the optimality conditions
and the qualification conditions in this paper are both weaken under some proper assump-
tions. The contribution of this paper is as follows.

• We employ a new generalized differential, i.e., the directional limiting coderivative,
to analyze the behavior of the constraint mappings along relevant directions and it
overcomes the shortcoming that the standard coderivatives are invalid.

• The more data of the original problem are considered instead of imposing strong
conditions when establishing the calculus of directionally limiting coderivatives for the
set-valued mappings in parameterized variational inequalities.

• The directional optimality condition for the multiobjective program is built. The
obtained optimality condition is detailed and it shows the local character of the optimal
solution along the critical direction, especially for these nonsmooth optimal solutions.

The paper is organized as follows. Section 2 provides some preliminaries about varia-
tional analysis and generalized differentials. Section 3 gives the calculus for directionally
limiting coderivatives of set-valued mappings under some mild assumptions. In section 4,
the directional necessary optimality condition for the considered optimization problem is
built. Section 5 is a conclusion.

2 Preliminaries

In this section we give some generalized differentials from variational analysis which will be
used throughout the whole paper. Detailed discussions on these subjects can be found in
books written by Rockafellar [22, 23] and Mordukhovich [17, 18]. For a subset Θ ⊂ Rn,
denote by Θ◦ the polar cone of Θ, that is Θ◦ = {v | ⟨v, u⟩ ≤ 0, ∀u ∈ Θ}. Θ⊥ denotes the
orthogonal complement to Θ. The symbol B denotes the closed unit ball in Rn. Given a
point x̄, d(x̄,Γ) denotes the distance from x̄ to set Γ. Denote ×q

i=1Γ := Γ1 × · · · × Γq. For
x, y ∈ Rn, x ⪯ y represents xi ≤ yi, i = 1, . . . , n. For a mapping F : Rn → Rm , JF (x)
denotes the Jacobian of F at x.

Given a direction u ∈ Rn and positive numbers ρ, δ > 0, consider the set Vρ,δ(u) given
by

Vρ,δ(u) := {z ∈ ρB | ∥ ∥u∥z − ∥z∥u ∥≤ δ∥z∥∥u∥}.

It is obvious that the directional neighborhood of direction u = 0 is the closed unit ball ρB
and the set of the directional neighborhood of a nonzero direction u ̸= 0 is smaller than ρB.
Hence we can take use of the directional version of regularity conditions, which is weaker
than the usual nondirectional one.

Definition 2.1 (Tangent cone and normal cone [23]). Given a set Γ ⊂ Rn locally closed
around x̄ ∈ Γ, define
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(1) Contingent (Bouligand-Severi tangent) cone

TΓ(x̄) = lim sup
t→0

Γ− x̄

t
.

(2) Regular (Frechet) normal cone

N̂Γ(x̄) = {v ∈ Rn | lim sup
x→x̄

⟨v, x− x̄⟩
∥x− x̄∥

≤ 0}.

(3) Limiting (Mordukhovich) normal cone

NΓ(x̄) = lim sup
x→x̄

N̂Γ(x).

Definition 2.2 (Directional normal cone [9]). Let Γ ∈ Rn, x ∈ Γ and u ∈ Rn be given.
The limiting normal cone to Γ in direction u at x is defined by

NΓ(x̄;u) = {x∗ | ∃tk ↓ 0, uk → u, x∗
k → x∗ : x∗

k ∈ N̂Γ(x̄+ tkuk)}. (2.1)

If Γ is convex, then N̂Γ(x̄) = NΓ(x̄) becomes the classical normal cone in the sense
of convex analysis and we will write NΓ(x̄). By the definition, the limiting normal cone
coincides with the directional limiting normal cone in direction 0, i.e., NΓ(x̄) = NΓ(x̄; 0).
Furthermore, NΓ(x̄;u) ⊂ NΓ(x̄) for all u, NΓ(x̄; d) = ∅ whenever d /∈ TΓ(x̄).

Next we introduce the critical cone of a convex polyhedral set Γ, given a vector d ∈ Rn,
the cone

KΓ(x̄, d) := TΓ(x̄) ∩ {d}⊥

is called the critical cone to Γ at x̄ with respect to d. Recall that F is a face of a polyhedral
convex cone C provided for some vector z∗ ∈ C◦ one has

F = C ∩ [z∗]⊥.

With the above tangent cone and normal cones, the corresponding generalized derivatives
are given as follows. Let S : Rn ⇒ Rm be a multifunction with a closed graph and (x̄, ȳ) ∈
gphS := {(x, y) ∈ Rn ×Rm | y ∈ S(x)}.

Definition 2.3 (Graphical derivative and (regular) limiting coderivative [2]). Consider a
point (x̄, ȳ) ∈ gphS. Then

(i) the multifunction DS(x̄, ȳ) : Rn ⇒ Rm , defined by

DS(x̄, ȳ)(u) := {v ∈ Rn | (u, v) ∈ TgphS(x̄, ȳ)}, u ∈ Rn (2.2)

is called the graphical derivative of S at (x̄, ȳ);

(ii) the multifunction D̂∗S(x̄, ȳ) : Rm ⇒ Rn , defined by

D̂∗S(x̄, ȳ)(y∗) := {x∗ ∈ Rn | (x∗,−y∗) ∈ N̂gphS(x̄, ȳ)}, y∗ ∈ Rm (2.3)

is called the regular coderivative of S at (x̄, ȳ);
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(iii) the multifunction D∗S(x̄, ȳ) : Rm ⇒ Rn , defined by

D∗S(x̄, ȳ)(y∗) := {x∗ ∈ Rn | (x∗,−y∗) ∈ NgphS(x̄, ȳ)}, y∗ ∈ Rm (2.4)

is called the limiting coderivative of S at (x̄, ȳ).

Definition 2.4 (Directional limiting coderivative [2]). Given a pair of directions (u, v) ∈
Rn ×Rm, the multifunction D∗S((x̄, ȳ); (u, v))(y∗) : Rm ⇒ Rn, defined by

D∗S((x̄, ȳ); (u, v))(y∗) := {x∗ ∈ Rn | (x∗,−y∗) ∈ NgphS((x̄, ȳ); (u, v))}, y∗ ∈ Rm (2.5)

is called the directional limiting coderivative of S at (x̄, ȳ) in direction (u, v).

If S is single-valued at x̄, we drop ȳ in the notation of (2.2)-(2.5). In the case of smooth
single-valued mappings, for all u ∈ Rn, y∗ ∈ Rm and the direction u ∈ Rn, we have the
representation

DS(x̄)(u) = {∇S(x̄)u}, and D̂∗S(x̄)(y∗) = D∗S(x̄)(y∗) = D∗S(x̄;u)(y∗) = {∇S(x̄)T y∗}.

The mapping S is outer semicontinuous (osc) at x̄ if the existence of sequences xk → x̄ and
yk → y with yk ∈ S(xk) implies y ∈ S(x̄) and we say that S is osc if it is osc at every point,
which is equivalent to the closedness of gphS, see [23, Theorem 5.7].

Consider the mappings S1 : Rn ⇒ Rm, S2 : Rm ⇒ Rs and associate with them the
intermediate multifunction Ξ : Rn ×Rs ⇒ Rm defined by

Ξ(x, u) = {w ∈ S1(x) |u ∈ S2(w)}.

The following theorem gives the directional coderivative chain rule of composite mappings.
This rule is very important to establish the directional subdifferentials of constraint functions
and objective functions, which is essential in directional optimality conditions.

Theorem 2.5 (Directional coderivative chain rule [2]). Suppose S = S2◦S1 for osc mappings
S1, S2. Let x̄ ∈ domS, y ∈ S(x̄) and (h, l) ∈ Rn ×Rs be two given directions. Assume that

(a) there is a directional neighborhood U of (h, l) such that Ξ((x̄, ū) + U) is bounded;

(b) the mapping

W(x,w, u) :=

(
gphS1 − (x,w)
gphS2 − (w, u)

)
is metrically subregular at (x̄, w, ū, 0, 0) for all w ∈ Ξ(x̄, ū) in directions (h, k, l) with
k such that (h, k) ∈ TgphS1

(x̄, w),(k, l) ∈ TgphS2
(w, ū).

Then one has

D∗S((x̄, ū); (h, l)) ⊂
⋃

w̌∈Ξ(x̄,ū)

⋃
k∈{ξ∈DS1(x̄,w̌)(h) |

l∈DS2(x̄,w̌)(ξ)}

D∗S1((x̄, w̌); (h, k)) ◦D∗S2((w̌, ū); (k, l)).

(2.6)

Definition 2.6 ([2]). Let S : Rn ⇒ Rm be a set-valued mapping and let (x̄, ȳ) ∈ gphS and
u ∈ Rn.

(i) (Directional metric regularity) S is metrically regular in direction (u, v) at (x̄, ȳ),
if there are positive numbers ρ > 0, δ > 0, and κ > 0 such that

d(x, S−1(y)) ≤ κd(y, S(x)), ∀(x, y) ∈ (x̄, ȳ) + Vρ,δ(u, v).
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(ii) (Directional metric subregularity) S is metrically subregular in direction u at
(x̄, ȳ), if there are positive numbers ρ > 0, δ > 0, and κ > 0 such that

d(x, S−1(ȳ)) ≤ κd(ȳ, S(x)), ∀x ∈ x̄+ Vρ,δ(u).

It is easy to see that if S is metrically regular in direction (u, v) at (x̄, ȳ), then it is
metrically subregular in direction u at x̄. If (u, v) = (0, 0), then S is metric regular at (x̄, ȳ).

One of great usage of the directional limiting coderivative is to characterize the directional
metric regularity property of set-valued mappings, that is a directional extension of the
Mordukhovich criterion [7, Theorem 2.9]: a multifunction S : Rn ⇒ Rm which has locally
closed-graph around (x̄, ȳ) is metric regular in direction (u, v) ∈ Rn ×Rm if and only if

0 ∈ D∗S((x̄, ȳ); (u, v))(v∗) ⇒ v∗ = 0. (2.7)

Let B be the feasible set of the problem (MP-PVI) and K ⊂ Rl is a closed convex
cone with nonempty interior. (x̄, ȳ) is said to be the generalized Pareto efficient solution of
(MP-PVI), if there exists (x̄, ȳ) ∈ B satisfying φ(x̄, ȳ) ∈ E(φ(B), B), that is

(φ(B)− φ(x̄, ȳ)) ∩ (−K) = {0}.

(x̄, ȳ) is said to be the generalized weakly Pareto efficient solution of (MP-PVI), if there
exists (x̄, ȳ) ∈ B satisfying φ(x̄, ȳ) ∈ WE(φ(B), B), namely

(φ(B)− φ(x̄, ȳ)) ∩ (−intK) = ∅. (2.8)

Especially, when K = Rl
+, the generalized (weakly) Pareto efficient solution becomes the

usually Pareto efficient solution in Rn.

We say that f : Rn → Rl is directionally Lipschitz continuous at x̄ in direction u if there
are positive numbers L, ρ, δ such that

∥f(x)− f(x̄)∥ ≤ L∥x− x̄∥, x ∈ x̄+ Vρ,δ(u).

It is easy to see that if f : Rn → Rl is directionally Lipschitz continuous and directionally
differentiable at x̄ in direction u then for all sequence {uk} which converges to u, we have

f ′(x;u) = lim
k→∞

f(x̄+ tkuk)− f(x̄)

tk
.

3 Calculus for directional limiting coderivatives

In this section, we introduce the calculus for the directionally limiting coderivatives of set-
valued mappings in parameterized variational inequalities. The calculus is obtained just
under the metric subregularity of the constraint function and some assumptions on the
original data of the problem.

Definition 3.1 (Metric subregularity constraint qualification). Let g(y) ∈ Rq
−. We say

that the metric subregularity constraint qualification (MSCQ) holds at ȳ for the system
g(y) ∈ Rq

− if the set-valued map G(y) := g(y) − Rq
− is metrically subregular at (ȳ, 0), or

equivalently the perturbed set-valued map G−1(w) := {y |w ∈ g(y)−Rq
−} is calm at (0, ȳ).
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When MSCQ is fulfilled for the constraint g(y) ∈ Rq
− at ȳ, by definition, MSCQ also

holds for all points y ∈ Ω near ȳ, then

NΩ(y) = N̂Ω(y) = ∇g(y)TNRq
−
(g(y)).

Denote the mapping M : Rn ×Rm ⇒ Rm by

M(x, y) := F (x, y) +NΩ(y) = F (x, y) +∇g(y)TNRq
−
(g(y)). (3.1)

Denote the mapping Q : Rm ⇒ Rm by

Q(y) := NΩ(y) = ∇g(y)TNRq
−
(g(y)). (3.2)

The following task is to establish the calculus for directionally limiting coderivative of
composite set-value mapping Q under its graphical derivative. Firstly, we give the directional
limiting coderivative of NRq

−
◦g. Denoting the mappings H : Rm ⇒ Rm and H : Rm×Rq ⇒

Rm ×Rq by
H(y) := NRq

−
(g(y)) = (NRq

−
◦ g)(y),

and
H(y, λ) = (g(y), λ)− gphNRq

−
. (3.3)

Denote I := {1, 2, . . . , q}, I(ȳ) := {i ∈ I | gi(ȳ) = 0}, I+(λ) := {i ∈ I |λi > 0}, then
I+(λ) ⊂ I(ȳ) ⊂ I.

Proposition 3.2. Let λ ∈ NRq
−
(g(ȳ)) , let v ∈ Rm be the direction satisfying ∇g(ȳ)v ∈

KRq
−
(g(ȳ), λ) and let η ∈ NKR

q
−
(g(ȳ),λ)(∇g(ȳ)v). Further assume that for every pair of faces

F1,F2 of the critical cone KRq
−
(g(ȳ), λ) with ∇g(ȳ)v ∈ F2 ⊂ F1 ⊂ [η]⊥ there holds

∇g(ȳ)T ξ = 0, ξ ∈ (F1 −F2)
◦ ⇒ ξ = 0.

Then the mapping H(y, λ) is metric regular at (ȳ, λ, 0) in direction (v, η), and it holds

D∗H((ȳ, λ); (v, η)) ⊂ ∇g(ȳ)TD∗NRq
−
((g(ȳ), λ); (∇g(ȳ)v, η)). (3.4)

Proof. From 0 ∈ H(ȳ, λ), it has (g(ȳ), λ) ∈ gphNRq
−
. According to the characterization of

directional metric regularity in [11, Theorem 1], there is (ξ, γ) such that

∇g(ȳ)T ξ = 0, γ = 0, (ξ, γ) ∈ NgphNR
q
−
((g(ȳ), λ); (∇g(ȳ)v, η)) ⇒ γ = ξ = 0. (3.5)

By [7, Theorem 2.12], it has

NgphNR
q
−
((g(ȳ), λ); (∇g(ȳ)v, η)) = (F1 −F2)

◦ × (F1 −F2),

where F1,F2 are faces of the critical cone KRq
−
(g(ȳ), λ) with ∇g(ȳ)v ∈ F2 ⊂ F1 ⊂ [η]⊥.

Hence, the mapping H(y, λ) is metric regular at (ȳ, λ, 0) in direction (v, η).
Under the metric regularity of H, from Theorem 2.5, we obtain

D∗H((ȳ, λ); (v, η)) ⊂ D∗g((ȳ, g(ȳ)); (v,∇g(ȳ)v)) ◦D∗NRq
−
((g(ȳ), λ); (∇g(ȳ)v, η)).

Since g is continous differential, one has D∗g((ȳ, g(ȳ)); (v,∇g(ȳ)v))) = ∇g(ȳ)T , then

D∗H((ȳ, λ); (v, η)) ⊂ {∇g(ȳ)T y∗ | y∗ ∈ D∗NRq
−
((g(ȳ), λ); (∇g(ȳ)v, η))}.

The proof of the proposition is completed.
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Next we give the graphical derivative of Q. Let (y, y∗) ∈ NΩ(g(y)), define by

Λ(y, y∗) := {λ ∈ NRq
−
(g(y)) |∇g(y)Tλ = y∗}

the set of Lagrange multipliers associated with (y, y∗). Moreover,

Λ(y, y∗; v) := argmax{vT∇(∇g(y)Tλ)v |λ ∈ Λ(y, y∗)}

stands for the multiplier set in a direction v ∈ KΩ(y, y
∗), where KΩ(y, y

∗) = TΩ(y) ∩ {y∗}⊥
is the critical cone of Ω .

Proposition 3.3. Suppose that MSCQ holds for the system g(y) ∈ Rq
− at ȳ. Let v ∈

KΩ(ȳ, y
∗), λ ∈ Λ(ȳ, y∗). Then

NKΩ(ȳ,y∗)(v) = {∇g(ȳ)Tµ |µT∇g(ȳ)v = 0, µ ∈ TNR
q
−
(g(ȳ))(λ)}

= ∇g(ȳ)TNKR
q
−
(g(ȳ),λ)(∇g(ȳ)v),

(3.6)

where KΩ(ȳ, y
∗) = {v |∇g(ȳ)v ∈ TRq

−
(g(ȳ)), vT y∗ = 0}.

Proof. From the definition of KΩ(y, y
∗) and [11, Proposition 6], it has KΩ(ȳ, y

∗) = {v |∇g(ȳ)v ∈
TRq

−
(g(ȳ)), vT y∗ = 0} and the first equation is given in [11, Lemma 1]. We prove that the

second equation holds. Firstly, we intend to prove that if µ ∈ TNR
q
−
(g(ȳ))(λ), µT∇g(ȳ)v = 0,

then µ ∈ NKR
q
−
(g(ȳ),λ)(∇g(ȳ)v) . It is obvious that µ ∈ TNR

q
−
(g(ȳ))(λ) ∩ {∇g(ȳ)v}⊥. There

is t > 0 satisfying λ + tµ ∈ NRq
−
(g(ȳ)), then µ ∈ −λ

t + NRq
−
(g(ȳ)), which means that

µ ∈ T ◦
Rq

−
(g(ȳ)) + Rλ = (TRq

−
(g(ȳ) ∩ {λ})◦ = K◦

Rq
−
(g(ȳ), λ). Hence, µ ∈ K◦

Rq
−
(g(ȳ), λ) ∩

{∇g(ȳ)v}⊥ = NKR
q
−
(g(ȳ),λ)(∇g(ȳ)v). Conversely, take µ ∈ NKR

q
−
(g(ȳ),λ)(∇g(ȳ)v), from the

previous proof, it has µ ∈ (T ◦
Rq

−
(g(ȳ)) + Rλ) ∩ {∇g(ȳ)v}⊥, which is µT∇g(ȳ)v = 0, µ ∈

NRq
−
(g(ȳ))+Rλ. Therefore, there is µ̂ ∈ NRq

−
(g(ȳ)) and α ∈ R satisfying µ = µ̂+αλ. Since

λ ∈ NRq
−
(g(ȳ)), then µ ∈ TNR

q
−
(g(ȳ))(λ). The proof of the theorem is completed.

Proposition 3.4. Assume MSCQ holds at ȳ for the system g(y) ∈ Rq
−. For given y∗ ∈

Rm, v ∈ Rm, we have

DQ(ȳ, y∗)(v) = DNΩ(ȳ, y
∗)(v) = ∇(∇g(ȳ)Tλ)v +∇g(ȳ)TNKR

q
−
(g(ȳ),λ)(∇g(ȳ)v), (3.7)

where λ is the unique solution of the system y∗ = ∇g(ȳ)Tλ, λ ∈ NRq
−
(g(ȳ)).

Proof. From the definition of graphical derivative in (2.2), we have

DNΩ(ȳ, y
∗)(v) = {w ∈ Rm | (v, w) ∈ TgphNΩ

(ȳ, y∗)}.

When MSCQ holds at ȳ, there is λ satisfying y∗ = ∇g(ȳ)Tλ, λ ∈ NRq
−
(g(ȳ)). Then the set

of Lagrange multipliers Λ(y, y∗) and the directional multiplier set Λ(y, y∗; v) are unique, i.e.,
Λ(y, y∗) = Λ(y, y∗; v) = {λ}. From [11, Theorem 4], we obtain that

TgphNΩ
(ȳ, y∗) = ∇(∇g(ȳ)Tλ)v +NKΩ(ȳ,y∗)(v).

From Proposition 3.3, we have NKΩ(ȳ,y∗)(v) = ∇g(ȳ)TNKR
q
−
(g(ȳ),λ)(∇g(ȳ)v). Combing the

definition of the graphical derivative in (2.2), we obtain

DNΩ(ȳ, y
∗)(v) = ∇(∇g(ȳ)Tλ)v +∇g(ȳ)TNKR

q
−
(g(ȳ),λ)(∇g(ȳ)v).
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With the help of directional coderivative chain rule, we establish the directional limiting
coderivatives of the composite set-valued mapping Q. Rewrite the mapping Q(y) = NΩ(y) =
∇g(y)TNRq

−
(g(y)) by

Q(y) = (S2 ◦ S1)(y), S1(y) =

(
y

NRq
−
(g(y))

)
=

(
y

H(y)

)
, S2(y, d) = ∇g(y)T d,

where S1 : Rm ⇒ Rm ×Rq, S2 : Rm ×Rq ⇒ Rm. Define the intermediate mapping Θ as

Θ(y, y∗) = {(y, d) ∈ S1(y) | y∗ = S2(y, d)}

= {(y, d) | d ∈ NRq
−
(g(y)),∇g(y)T d = y∗}.

Theorem 3.5. Let y∗ ∈ Rm be given and let λ be (uniquely) given by y∗ = ∇g(ȳ)Tλ, λ ∈
NRq

−
(g(ȳ)). Assume that there is a directional neighborhood U of (v, l) such that Θ((ȳ, y∗)+

U) is bounded. Let (v, l) ∈ DQ(ȳ, y∗),i.e., there is η satisfying

l = ∇(∇g(ȳ)Tλ)v +∇g(ȳ)T η, η ∈ NKR
q
−
(g(ȳ),λ)(∇g(ȳ)v). (3.8)

Assume that the mapping H(y, λ) is metric regular at (ȳ, λ, 0) in direction (v, η). Then for
v∗ ∈ Rm, it has

D∗Q((ȳ, y∗); (v, l))(v∗) ⊂ ∇(∇g(ȳ)Tλ)v∗+∇g(ȳ)TD∗NRq
−
((g(ȳ), λ); (∇g(ȳ)v, η))(∇g(ȳ)v∗).

(3.9)

Proof. Under MSCQ and the metric subregularity of H, from [2, Corollary 5.1], we have

D∗Q((ȳ, y∗); (v, l))(v∗) ⊂
⋃

ξ∈DS1(ȳ,ȳ,λ)
l=∇S2(ȳ,λ)ξ

D∗S1((ȳ, ȳ, λ); (v, ξ)) ◦ ∇S2(ȳ, λ)
T (v∗). (3.10)

Since

(ȳ, λ) ∈ gph(NRq
−
◦ g) ⇔ (g(ȳ), λ) ∈ gphNRq

−
,

due to the chain rule of tangent cone of constraint sets, it has

Tgph(NR
q
−
◦g)(ȳ, λ) ⊂ R :=

{
(v, η)

∣∣∣∣ ( ∇g(ȳ)v
η

)
∈ TgphNR

q
−
(g(ȳ), λ)

}
.

For given (v, η) ∈ R, there is tk ↓ 0 such that d((g(ȳ)+tk∇g(ȳ)v, λ+tkη), gphNRq
−
) = o(tk),

hence, d((g(ȳ + tkv), λ + tkη), gphNRq
−
) = o(tk). According to the metric subregularity of

H(ȳ, λ), there is (yk, λk) satisfying

∥(yk, λk)− (ȳ + tkv, λ+ tkη)∥ = o(tk), ∀(g(yk), λk) ∈ gphNRq
−
,

then (v, η) ∈ Tgph(NR
q
−
◦g)(ȳ, λ) and R ⊂ Tgph(NR

q
−
◦g)(ȳ, λ). Therefore, we have R =

Tgph(NR
q
−
◦g)(ȳ, λ). Furthermore, there is t ↓ 0 such that (g(ȳ)+ t∇g(ȳ)v, λ+ tη) ∈ gphNRq

−
.

From [4, Lemma 2E.4], we obtain that

(g(ȳ) + t∇g(ȳ)v, λ+ tη) ∈ gphNRq
−
⇔ (t∇g(ȳ)v, tη) ∈ gphNKR

q
−
(g(ȳ),λ)
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for (t∇g(ȳ)v, tη) sufficiently near (0, 0), then

TgphNR
q
−
(g(ȳ), λ) = gphNKR

q
−
(g(ȳ),λ),

therefore,
Tgph(NR

q
−
◦g)(ȳ, λ) = {(v, η) | η ∈ NKR

q
−
(g(ȳ),λ)(∇g(ȳ)v)}.

By a simple computation, we obtain that
DS1(ȳ, ȳ, λ)(v) = {(v, η) | η ∈ NKR

q
−
(g(ȳ),λ)(∇g(ȳ)v)}, ∇S2(ȳ, λ) = (∇(∇g(ȳ)Tλ),∇g(ȳ)T ).

From the formula ξ ∈ DS1(ȳ, ȳ, λ), l = ∇S2(ȳ, λ)ξ in (3.10), the relation (3.8) holds. Since

D∗S1((ȳ, ȳ, λ); (v, ξ)) = (I,D∗H((ȳ, λ); (v, ξ))), (3.11)

and

D∗S2((ȳ, ȳ, λ); (v, ξ))(v
∗) = ∇S2(y, λ)

T v∗ =

(
[∇(∇g(ȳ)Tλ)]T v∗

∇g(ȳ)v∗

)
, (3.12)

from (3.10), (3.11) and (3.12) , one has

D∗Q((ȳ, y∗); (v, l))(v∗) ⊂ [∇(∇g(ȳ))Tλ]T v∗ +D∗H((ȳ, λ); (v, η))(∇g(ȳ)v∗).

Combing Proposition 3.2, we obtain

D∗Q((ȳ, y∗); (v, l))(v∗)

⊂ [∇(∇g(ȳ))Tλ]T v∗ +∇g(ȳ)TD∗NRq
−
((g(ȳ), λ); (∇g(ȳ)v, η))(∇g(ȳ)v∗).

The proof of the theorem is completed.

4 Directional necessary optimality conditions

In this section, under the directional generalized differentials of set-valued mappings, we
establish the directional necessary optimality condition of the problem (MP-PVI). Before
giving directional optimality conditions, the scalar function of the multiobjective problem
is provided.

Lemma 4.1 ([13]). Let K ⊂ Rl be a closed convex cone with nonempty interior. Then for
every e ∈ intK, the function ϕe : R

l → R given by

ϕe(w) = inf{λ ∈ R |w ∈ λe−K}

is continuous, Lipschitz, sublinear, strictly-intK-monotone, in addition,

(i) for every λ ∈ R, one has

{w |ϕe(w) ≤ λ} = λe−K, {w |ϕe(w) < λ} = λe− intK;

(ii) ∂ϕe(w) ⊂ K∗;

(iii) for every w ∈ Rl, ∂ϕe(w) ̸= ∅, and

∂ϕe(w) = {w∗ ∈ K∗ | ⟨w∗, e⟩ = 1, ⟨w∗, w⟩ = 1}.
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The scalarization of (MP-PVI) is provided by

(SMP-PVI)
min (ϕe ◦ φ)(x, y)

s.t. 0 ∈ M(x, y).

Definition 4.2. Let (x̄, ȳ) be feasible for the problem (MP-PVI). We call (u, v) ∈ Rn ×Rm

a critical direction for the problem (MP-PVI) at (x̄, ȳ) if φ
′
((x̄, ȳ); (u, v)) ⪯ 0 and 0 ∈

DM((x̄, ȳ, 0); (u, v)).

By the definition, (u, v) is a critical direction of (MP-PVI) if and only if there exist
sequences tk→0, (uk, vk) → (u, v) satisfying

lim
k→∞

φ(x̄+ tkuk, ȳ + tkvk)− φ(x̄, ȳ)

tk
⪯ 0, lim

k→∞

d(0,M(x̄+ tkuk, ȳ + tkvk))

tk
= 0.

The following theorem reveals the solution relationship between (MP-PVI) and (SMP-
PVI).

Lemma 4.3 ([19]). Suppose that (x̄, ȳ) ∈ B is the weakly Pareto efficient solution of (MP-
PVI), then (x̄, ȳ) is the minimum solution of (SMP-PVI).

Next we give the directional optimality conditions of the problem (MP-PVI).

Theorem 4.4. Let K = Rl
+ and (x̄, ȳ) be the weakly Pareto solution to the problem

(MP-PVI). Assume that (u, v) is the critical direction for the problem (MP-PVI) at (x̄, ȳ).
The function φ is Lipschitz continuous at (x̄, ȳ) in direction (u, v). Suppose that λ is the
(uniquely) solution of the equation F (x̄, ȳ) +∇g(ȳ)Tλ = 0, λ ∈ NRq

−
(g(ȳ)). For each direc-

tion (u, v), there is η such that

∇F (x̄, ȳ)(u, v) +∇(∇g(ȳ)Tλ)v +∇g(ȳ)T η = 0, η ∈ NKR
q
−
(g(ȳ),λ)(∇g(ȳ)v). (4.1)

Assume that the mapping H given in (3.3) is metric subregular at (ȳ, λ, 0) in direction (v, η)
and the implication

∇xF (x̄, ȳ)T v∗ = 0

∇yF (x̄, ȳ)T v∗ +∇(∇g(ȳ)Tλ)v∗ +∇g(ȳ)Tw∗ = 0

w∗ ∈ D∗NRq
−
((g(ȳ), λ); (∇g(ȳ)v, η))(∇g(ȳ)v∗)

⇒ v∗ = 0 (4.2)

is fulfilled. Then there are z∗ ∈ Rl
+ and v∗ ∈ Rm satisfying

0 ∈ ∂⟨z∗, φ⟩((x̄, ȳ); (u, v)) +∇F (x̄, ȳ)T v∗ +∇(∇g(ȳ)Tλ)v∗

+∇g(ȳ)TD∗NRq
−
((g(ȳ), λ); (∇g(ȳ)v, η))(∇g(ȳ)v∗).

(4.3)

Proof. Since (u, v) is the critical direction for the problem (MP-PVI) at (x̄, ȳ), (u, v) is also
the critical direction of (SMP-PVI). In fact, by the definition of the critical directions, there is
sequences tk→0, (uk, vk) → (u, v), wk → 0, ϑk → 0, µ ∈ Rl

+ such that φ(x̄+tkuk, ȳ+tkvk) =
φ(x̄, ȳ) + tkwk − µ and 0 + tkϑk ∈ M(x̄+ tkuk, ȳ + tkvk). Hence,

lim
k→∞

(ϕe ◦ φ)(x̄+ tkuk, ȳ + tkvk)− (ϕe ◦ φ)(x̄, ȳ)
tk

= lim
k→∞

(ϕe(φ(x̄+ tkuk, ȳ + tkvk))− (ϕe(φ(x̄, ȳ))

tk

= lim
k→∞

ϕe(φ(x̄, ȳ) + tkwk − µ)− (ϕe(φ(x̄, ȳ))

tk
.
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Since ϕe is sublinear, we have ϕe(φ(x̄, ȳ) + tkwk − µ) ≤ ϕe(φ(x̄, ȳ)) + ϕe(tkwk) + ϕe(−µ),
then

lim
k→∞

(ϕe ◦ φ)(x̄+ tkuk, ȳ + tkvk)− (ϕe ◦ φ)(x̄, ȳ)
tk

≤ lim
k→∞

ϕe(φ(x̄, ȳ)) + ϕe(tkwk) + ϕe(−µ)− ϕe(φ(x̄, ȳ))

tk

= lim
k→∞

ϕe(tkwk) + ϕe(−µ)

tk
.

Due to wk → 0, ϕe(tkwk) → 0, and −µ ∈ Rl
−, ϕe(−µ) ≤ 0, then

lim
k→∞

(ϕe ◦ φ)(x̄+ tkuk, ȳ + tkvk)− (ϕe ◦ φ)(x̄, ȳ)
tk

≤ 0,

which means that (u, v) is the critical direction of (SMP-PVI).
Next we illustrate that, under the qualification condition (4.2), the mapping M given in

(3.1) is metric regular at (x̄, ȳ) in direction (u, v), which means it is also metric subregular
at (x̄, ȳ) in direction (u, v). Since M(x, y) = F (x, y) +Q(y), by the directional codervative
calculus in [7], we obtain the directional coderivative of M :

D∗M((x̄, ȳ, 0); (u, v, 0))(v∗) = D∗(F +Q)((x̄, ȳ, 0); (u, v, 0))(v∗)

= ∇F (x̄, ȳ)T v∗

+D∗Q((ȳ,−F (x̄, ȳ)); (v,−∇F (x̄, ȳ)(u, v)))(v∗).

Under the metric subregularity of H given in (3.3) at (ȳ, λ, 0) in direction (v, η), from
Theorem 3.5, we have

D∗Q((ȳ,−F (x̄, ȳ)); (v,−∇F (x̄, ȳ)(u, v)))(v∗) ⊂ ∇(∇g(ȳ)Tλ)v∗

+∇g(ȳ)TD∗NRq
−
((g(ȳ), λ); (∇g(ȳ)v, η))(∇g(ȳ)v∗).

Hence, we obtain that

D∗M((x̄, ȳ, 0); (u, v, 0))(v∗) ⊂ ∇F (x̄, ȳ)T v∗ +∇(∇g(ȳ)Tλ)v∗

+∇g(ȳ)TD∗NRq
−
((g(ȳ), λ); (∇g(ȳ)v, η))(∇g(ȳ)v∗). (4.4)

From (2.3), we know that the metric regularity of M at (x̄, ȳ) in direction (u, v) is equivalent
to

0 ∈ D∗M((x̄, ȳ, 0); (u, v, 0))(v∗) ⇒ v∗ = 0. (4.5)

Under the metric regularity of M at (x̄, ȳ) in direction (u, v), moreover, the functions
ϕe and φ are Lipschitz continuous at (x̄, ȳ) in direction (u, v), then ϕe ◦ φ is also Lipschitz
continuous at (x̄, ȳ) in direction (u, v). Take a similar proof as [9, Theorem 7 (ii)], we obtain

0 ∈ ∂(ϕe ◦ φ)((x̄, ȳ); (u, v)) +D∗M((x̄, ȳ, 0); (u, v, 0))(v∗). (4.6)

Apply the directional subdifferential chain rule in Theorem 2.5 to ϕe ◦φ, taking w = s = 0,
we obtain that

∂(ϕe ◦ φ)((x̄, ȳ); (u, v)) ⊂ D∗φ((x̄, ȳ); (u, v))∂ϕe(φ(x̄, ȳ)). (4.7)
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From Lemma 4.3 and [2, Proposition 5.1], there is z∗ ∈ ∂ϕe(φ(x̄, ȳ)) ⊂ Rl
+ satisfying

D∗φ((x̄, ȳ); (u, v))(z∗) = ∂⟨z∗, φ⟩((x̄, ȳ); (u, v)). (4.8)

Combing (4.4) and (4.6-4.8), we obtain

0 ∈ ∂⟨z∗, φ⟩((x̄, ȳ); (u, v)) +∇F (x̄, ȳ)T v∗ +∇(∇g(ȳ)Tλ)v∗

+∇g(ȳ)TD∗NRq
−
((g(ȳ), λ); (∇g(ȳ)v, η))(∇g(ȳ)v∗).

(4.9)

The proof of the theorem is completed.

Remark 4.5. In the paper [21], Theorem 4.2 provides the optimality condition of the prob-
lem (MP-PVI) under the linear independent constraints qualification, which is the matrix(

Jx,yL(x̄, ȳ, λ)
JgI(ȳ)

)
(4.10)

is of full row rank. The qualification condition (4.10) is much stronger than the qualification
condition (4.2). Under the qualification condition (4.2), the metric regularity of M at
(x̄, ȳ) in direction (u, v) holds, which is (4.5). In fact, the constraint qualification (4.5) is a
directional extension of the Mordukhovich criterion. In [21], under the linear independent
constraints qualification (4.10), we investigate the Mordukhovich criterion of the inquired
set-valued mappings, and obtain the optimality conditions. In this paper, by virtue of
(4.2), we study the directional Mordukhovich criterion of the inquired set-valued mappings,
and the directional optimality conditions are derived. The difference of them is that, before
computing the directional limiting coderivatives of set-valued mappings, it needs to compute
their graphic derivatives, which is also very complicated.

At last we give an example to illustrate the validity of the directional necessary optimality
condition.

Example 4.6. Consider the problem (MP-PVI), where

φ(x, y) =

(
x2
1 − 2x2 + y21

−x2
2 + 2x2 + y22 − 4

3y2

)
, F (x, y) =

(
y1 − x1 + x2 − 0.5

y2 − 2x1 + 2x2 − 0.5

)
,

and

g(y) =

(
−(y1 − 1)2 − 2y2 +

5
4

−(y2 − 1)2 − y1 +
3
4

)
.

The weakly Pareto efficient solution of the problem is (x̄, ȳ) = (0.5, 0.5, 0.5, 0.5)T . In this
problem, we have

∇xF (x̄, ȳ) =

(
−1 1
−2 2

)
, ∇yF (x̄, ȳ) =

(
1 0
0 1

)
, ∇g(ȳ) =

(
1 −2
−1 1

)
.

∇xF (x̄, ȳ) is not surjective and ∇yF (x̄, ȳ),∇g(ȳ) are surjective. The metric subregularity
constraint qualification is fulfilled for the constraint g(y) ∈ R2

− at ȳ. λ = 0 is the uniquely
solution of the equation F (x̄, ȳ) +∇g(ȳ)Tλ = 0, λ ∈ NR2

−
(g(ȳ)).

Next we verify the validity of the qualification condition (4.2). For the direction (u, v),
there is η ∈ NK

R2
−
(g(ȳ),λ)(∇g(ȳ)v), KR2

−
(g(ȳ), λ) = TR2

−
(g(ȳ)) ∩ [λ]⊥ = R2

− satisfying

∇F (x̄, ȳ)(u, v) +∇(∇g(ȳ)Tλ)v +∇g(ȳ)T η = 0.



778 F.-Y. MENG, Z.-H. XIAO AND Y.-H. REN

Then {
v1 = u1 − u2 − η1 + η2
v2 = 2u1 − 2u2 + 2η1 − η2,

and

η ∈ NK
R2

−
(g(ȳ),λ)(∇g(ȳ)v) = NR2

−

(
v1 − 2v2
−v1 + v2

)
= NR2

−

(
−3u1 + 3u2 − 5η1 + 3η2
u1 − u2 + 3η1 − 2η2

)
.

(4.11)
Some calculations yield that for every u ∈ R2 the set T (u) := {(v, η) ∈ R2 × R2 |(u, v, η)
fulfills (4.11)} is not empty and

T (u) =


{(( 32 (u1 − u2),

3
2 (u1 − u2)), (0,

1
2 (u1 − u2)))} if u1 > u2,

{((0, 0), (−3(u1 − u2),−4(u1 − u2)))} if u1 < u2,

{((0, 0), (0, 0))} if u1 = u2,

∅ otherwise.

(4.12)

According to (4.12), we verify that (4.2) is satisfied. Since g(ȳ) = λ = 0, the left of (4.2)
becomes 

v∗1 − v∗2 = 0
v∗1 + ϑ1 − ϑ2 = 0
v∗2 − 2ϑ1 + ϑ2 = 0
(ϑ,−∇g(ȳ)v∗) ∈ NgphN

R2
−
(∇g(ȳ)v, η),

(4.13)

and we will verify v∗ = 0 from the following two cases.

(i) u1 > u2, v = ( 32 (u1−u2),
3
2 (u1−u2)), η = (0, 1

2 (u1−u2)). We obtain ∇g1(ȳ)v < 0, η1 =
0, ∇g2(ȳ)v = 0, η2 = 1

2 (u1 − u2). It follows from [10] that (ϑ1,∇g1(ȳ)v
∗) ∈ {0} × R,

(ϑ2,∇g2(ȳ)v
∗) ∈ R × {0}, so ϑ1 = 0, v∗1 − v∗2 = 0. Combing (4.13), we obtain that

v∗ = 0.

(ii) u1 < u2 = 0, v = 0, η = (−3(u1 − u2),−4(u1 − u2)), it has ∇g(ȳ)v = 0. By [10], it
holds (ϑi,−∇gi(ȳ)v

∗) ∈ R× {0}, i = 1, 2. Since ∇g(ȳ) has full of row rank, it has
v∗ = 0.

(iii) u1 = u2, v = η = 0, from [10], it has (ϑi,−∇gi(ȳ)v
∗) ∈ (R × {0}) ∪ ({0} × R)∪

(R+ × R−), i = 1, 2. According the discussion in above (i) and (ii), when
(ϑi,−∇gi(ȳ)v

∗) ∈ (R× {0}) ∪ ({0} ×R), it also has v∗ = 0. When (ϑi,−∇gi(ȳ)v
∗) ∈

R+ ×R−, i = 1, 2, from (4.13), by some calculation, we can also obtain that v∗ = 0.

In a summary, we get that v∗ = 0 from every possible directions and the qualification
condition (4.2) holds.

Since the objective function φ is differentiable, it has ∂⟨z∗, φ⟩((x̄, ȳ); (u, v)) =
∇⟨z∗, φ⟩(x̄, ȳ). From (4.3), we obtain that{

∇x⟨z∗, φ⟩(x̄, ȳ) +∇xF (x̄, ȳ)T v∗ = 0
∇y⟨z∗, φ⟩(x̄, ȳ) +∇yF (x̄, ȳ)T v∗ +∇g(ȳ)Tϑ = 0,

(4.14)

where (ϑ,−∇g(ȳ)v∗) ∈ NgphN
R2

−
((g(ȳ), λ); (∇g(ȳ)v, η)) and η satisfies (4.1). Choose the

direction (u1, u2) = (−1, 1), v = (0, 0), there exist the multipliers z∗ = (1, 1) and v∗ =
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(− 1
3 ,−

1
3 ), ϑ = (0, 2

3 ) satisfying the optimality condition (4.14). In fact, from (4.14), we
conclude that  1 + v∗1 + 2v∗2 = 0

1 + v∗1 + ϑ1 − ϑ2 = 0
− 1

3 + v∗2 − 2ϑ1 + ϑ2 = 0.

Since (u1, u2) = (−1, 1), v = (0, 0), we have η = (6, 9), then (∇g1(ȳ)v, η1) = (0, 6),
(∇g2(ȳ)v, η2) = (0, 9). Furthermore, it has one has (ϑ1,−∇g1(ȳ)v

∗) = (0, 0) ∈ (R×{0}) and
(ϑ2,−∇g2(ȳ)v

∗) = ( 23 , 0) ∈ R×{0}, which means that (ϑ,−∇g(ȳ)v∗) ∈ NgphN
R2

−
(∇g(ȳ)v, η).

Thus for the given direction (u, v), there are nonzero multipliers z∗ and v∗ satisfying the
optimality condition (4.14).

5 Conclusions

In this paper, we consider the directional optimality conditions for multiobjective pro-
gram constrained by parameterized variational inequalities. When some information of the
constraint system is not sufficient, the usual qualification conditions described by limiting
coderivatives are not satisfied. The directional limiting coderivative, which uses the original
data of the problem to study the local behavior of the set-valued mappings from relevant
directions, can be utilized to redescribe these qualification conditions. Under the directional
qualification conditions, the directional optimality conditions are obtained.
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