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in application. However, when demand fluctuation is large, the obtained robust strategy
becomes less robust if the same expected mean loss function is also used to describe the
robust loss. Therefore, the distributionally robust optimization with the objective function
composing of mean is not suitable for the robust decision when risk fluctuation is large and
random. When the risk fluctuation is very large, especially when the tail risk of the prob-
ability distribution function is large, the expected mean risk loss decision model will fail
[1]. In order to overcome the problem caused by large risk fluctuation, value at risk (VaR)
measure is put forward, which depicts the maximum loss value at a given risk loss level.
In 1999, Rockfeller and Uryasev revised VaR [16] and proposed a conditional value at risk
(CVaR) to describe the risk loss with risk aversion. The research shows that CVaR is more
suitable for solving the decision-making problem with large risk fluctuation, e.g. risk averse
product ordering and inventory problem with large demand fluctuation. Therefore, using
CVaR model to solve two-level robust decision-making problems with large risk fluctuation
is more in line with the actual.

Early research on CVaR robustness was mainly on securities portfolio [23, 24, 10, 11].
Later, CVaR robust optimization model was applied to inventory management. For exam-
ple, in 2014, Qiu established a CVaR robust optimization inventory model under the convex
probability distribution cluster of disturbance parameters [13]. In 2016, a CVaR robust
optimization model based on the convex probability distribution cluster is studied to solve
the inventory management for direct chain enterprises [21]. Since 2017, the objective loss
function has been applied in the bilevel risk decision-making model which takes CVaR risk
into consideration. The main research results cover bilevel robust optimization problems in
some practical fields, such as the two-level robust optimization decision-making problems of
electric vehicle integrator participation in competition decision [9], green supply chain net-
work design problem [8], intelligent distribution problem [2, 3], wind power generator supply
problem [15], microgrid operation scheduling [6], hazardous waste management problem [17]
and Dr aggregator scheduling [14] in the power market.

In the above studies, CVaR is included in the upper decision function of the distribution-
ally robust bilevel optimization, but not in the lower level decision function. From the above
literature it is understood that a special algorithm is needed for solving each distributionally
robust bilevel optimization, i.e. there is no general theory on robust bilevel optimization
under conditional risk value. Many studies show that CVaR is suitable for decision-making
problems with large fluctuation [23, 24, 10, 11, 13, 21]. Therefore,it is necessary to make an
in-depth theoretical research on robust bilevel optimization based on CVaR.The upper level
and the lower level mean the decision order in a bilevel decision-making problem, which
is different from the one in perfect competition. In the game of perfect competition, for
decision-makers there is no order in decision-making. But in a bilevel decision-making prob-
lem, suppliers are the upper decision-makers who is the first in the supply chain to determine
wholesale prices, and retailers are the lower level decision-makers who then determines the
order quantity. Furthermore, the lower level demand risk often directly affects the upper
level demand decision in supply chain, especially when demand shows ”bullwhip effect”
where demand fluctuates greatly, which makes the mean risk measure obviously not suitable
for the actual decision. So, the upper and lower levels in supply chain management should
both be taken to consider the influence of demand probability distribution. Thus, this paper
studies some equivalent problems to solve distributionally robust bilevel programming based
on WCVaR.

The remainder of this paper is organized as follows. In Section 2, a concave probability
density distribution cluster describing random fluctuation is defined; the structure of dis-
tributionally robust bilevel programming based on WCVaR with the concave probability
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density distribution cluster is defined; the approximate equivalence of distributionally ro-
bust bilevel programming to robust bilevel probramming is proved; and a distributionally
robust bilevel programming is formulated by an approximate linear bilevel programming.
In Section 3, a conclusion is given.

2 Distributionally Robust Bilevel Programming based on WCVaR

In this section, distributionally robust bilevel programming based on WCVaR (or called
bilevel robust CVaR model) is studied. There are an upper level decision maker and a lower
level decision maker in this bilevel robust CVaR model. The upper level decision maker has
his own decision variables, random perturbation factors, a constraint set and an objective
function, while the lower level decision maker has all of his own. The bilevel robust decision
model consists of the upper robust optimization problem and the lower one. The structure
of the model is defined as follows.

For the upper robust optimization problem, let the upper loss function Fτ (x,y, ξ) :
Rn × Rm × Rr → R1 be continuous on variables (x,y) ∈ Rn × Rm, where x ∈ Rn is a
variable for the upper decision maker, y ∈ Rm is a variable for the lower decision maker, ξ
is a continuous random variable, τ ∈ T ⊂ Rr1 is a perturbation parameter and T is a convex
perturbation set. Let the constraint set of all variables (x,y) of the upper level problem be
defined as

X = {(x,y) | fi(x,y) ≤ 0, i = 1, 2, . . . , I},

where fi : Rn × Rm → R1 are continuous. Let Ξu = {p(ξ, τ )|τ ∈ T} be the probability
density distribution function cluster of the upper level problem, where p(ξ, τ ) is a probability
density distribution function for τ ∈ T .

For the lower robust optimization problem, let the lower loss function Gκ(x,y, ζ) :
Rn × Rm × Rs → R1 be continuous on variables (x,y) ∈ Rn × Rm, where x ∈ Rn is a
variable for the upper decision maker, y ∈ Rm is a variable for the lower decision maker,
ζ is a continuous random variable, κ ∈ K ⊂ Rs1 is a perturbation parameter and K is a
convex perturbation set. Let the constraint feasible set of all variables (x,y) of the lower
level problem be defined as

Y = {(x,y) | gj(x,y) ≤ 0, j = 1, 2, . . . , J},

where gj : Rn × Rm → R1 are continuous. Let Ξl = {q(ζ,κ)|κ ∈ K} be the probability
density distribution function cluster of the lower level problem, where q(ζ,κ) is a probability
density distribution function for κ ∈ K.

Ξu is the concave probability density distribution function cluster of the upper level
problem, if any probability density distribution function p(ξ, τ1), p(ξ, τ2) ∈ Ξu, for all
τ1, τ2 ∈ T and ∀t ∈ [0, 1] such that the corresponding probability density distribution
function p(ξ, tτ1 + (1− t)τ2) ∈ Ξu satisfies

tp(ξ, τ1) + (1− t)p(ξ, τ2) ≤ p(ξ, tτ1 + (1− t)τ2)

for tτ1 + (1− t)τ2 ∈ T .
Ξl is the concave probability density distribution function cluster of the lower level

problem, if any probability density distribution function q(ζ,κ1), q(ζ,κ2) ∈ Ξu, for all
κ1,κ2 ∈ K and ∀t ∈ [0, 1] such that the corresponding probability density distribution
function q(ζ, tκ1 + (1− t)κ2) ∈ Ξl satisfies

tq(ζ,κ1) + (1− t)q(ζ,κ2) ≤ q(ζ, tκ1 + (1− t)κ2)
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for tκ1 + (1− t)κ2 ∈ K.
The probability density distribution function cluster doesn’t have to be Wasserstein

ball [7, 22], because the definition of the probability density distribution function cluster
is defined without Wasserstein metric.The following example shows that there are many
concave probability density distribution function clusters.

Example 2.1. Let a triangular distributional cluster be given Ξ = {p(ξ, τ)|τ ∈ T = [−ϵ, ϵ]}
where 0 < ϵ < 1, and a probability density distribution function be

p(ξ, τ) =

{
1
2 (1− τ2ξ), ∀ξ ∈ [−1, 1],
0, ∀ξ ̸∈ [−1, 1],

where τ is a perturbation variable, and ξ a random variable at different values τ ∈ T . It is
clear that tp(ξ, τ1)+(1−t)p(ξ, τ2) ≤ p(ξ, tτ1 + (1− t)τ2) ∈ Ξ for all τ1, τ2 ∈ T and ∀t ∈ (0, 1).
So, Ξ is a concave probability density distribution function cluster.

Example 2.2. Let N probability density distribution functions: pi(ξ), i = 1, 2, . . . , N . Let
a set

Ξ = {p(ξ, τ ) =
N∑
i=1

λipi(ξ)|
N∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, . . . , N}.

Let T = {τ = (λ1, λ2, . . . , λN )|
∑N

i=1 λi = 1, λi ≥ 0, i = 1, 2, . . . , N}, where T is convex. It
is clear that tp(ξ, τ1)+(1− t)p(ξ, τ2) ≤ p(ξ, tτ1 + (1− t)τ2) ∈ Ξ for all p(ξ, τ1), p(ξ, τ2) ∈ Ξ
and ∀t ∈ (0, 1). So, Ξ is a concave probability density distribution function cluster.

A cumulative probability distribution function ΨU
τ (x,y, u) of Fτ (x,y, ξ) is defined as

ΨU
τ (x,y, u) = P{Fτ (x,y, ξ) ≤ u} =

∫
Fτ (x,y,z)≤u

p(z, τ )dz, τ ∈ T. (2.1)

A cumulative probability distribution function ΨL
κ(x,y, v) of Gκ(x,y, ζ) is defined as

ΨL
κ(x,y, v) = P{Gκ(x,y, ζ) ≤ v} =

∫
Gκ(x,y,w)≤v

q(w,κ)dw,κ ∈ K. (2.2)

VaR loss value is defined for the upper decision maker and the lower decision maker
respectively as follows.

Definition 2.3. Let α denote the confidence level with α ∈ (0, 1) and

uτ (x,y) = min{u | ΨU
τ (x,y, u) ≥ α}, τ ∈ T. (2.3)

Then uτ (x,y) is called a α-VaR loss value of the upper decision maker at (x,y) under a
confidence level α and perturbation τ . uτ (x,y) represents the minimum guaranteed loss at
decision (x,y) under the confidence level α, total of which representing the VaR loss of the
upper decision maker.

Let β denote the confidence level with β ∈ (0, 1) and

vκ(x,y) = min{v | ΨL
κ(x,y, v) ≥ β}, κ ∈ K. (2.4)

Then vκ(x,y) is called a β-VaR loss value of the lower decision maker at (x,y) under a
confidence level β and perturbation κ. vκ(x,y) represents the minimum guaranteed loss at
decision (x,y) under the confidence level β, total of which representing the VaR loss of the
lower decision maker.
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When T is a point, the α-VaR defined above is consistent with the literature(Rockafellar,
Uryasev,2002).

Define functions

ΦU
τ ,α(x,y, u) = (1− α)−1

∫
Fτ (x,y,z)≥u

Fτ (x,y, z)p(z, τ )dz, τ ∈ T (2.5)

and

ΦL
κ,β(x,y, v) = (1− β)−1

∫
Gκ(x,y,w)≥v

Gκ(x,y,w)q(w,κ)dw, κ ∈ K. (2.6)

WCVaR values of the upper decision maker and of the lower decision maker is defined
respectively as follows.

Definition 2.4. Let α, β denote the confidence levels with α, β ∈ (0, 1). Define

UWCV aRα
T (x,y) = max

τ∈T
ΦU

τ ,α(x,y, uτ (x,y)) (2.7)

and

LWCV aRβ
K(x,y) = max

κ∈K
ΦL

κ,β(x,y, vκ(x,y)). (2.8)

UWCV aRα
T (x,y) is called α-WCVaR of the upper decision maker at (x,y) under confidence

level α. LWCV aRβ
K(x,y) is called β-WCVaR of the lower decision maker at (x,y) under

confidence level β.

Based on WCVaR, a distributionally robust bilevel programming model is defined as

(BRCVaR) min UWCV aRα
T (x,y) = max

τ∈T
ΦU

τ ,α(x,y, uτ (x,y))

s.t. (x,y) ∈ X,

where y is an optimal solution to the

lower optimization problem for an x,

min LWCV aRβ
K(x,y) = max

κ∈K
ΦL

κ,β(x,y, vκ(x,y))

s.t. (x,y) ∈ Y,

where x is a variable of the upper decision-maker and y is a variable of the lower decision-
maker. When x is fixed, all optimal solutions y(x) to the lower optimization problem

min LWCV aRβ
K(x,y) s.t. (x,y) ∈ Y are first solved. Then, an optimal solution to the

upper optimization problem

min LWCV aRβ
K(x,y(x)) s.t. (x,y(x)) ∈ X

is solved. In fact, it is difficult to calculate UWCV aRα
T (x,y) and LWCV aRβ

K(x,y). Two
other loss functions are defined by

ΘU
τ ,α(x,y, u) = u+ (1− α)−1

∫
z∈Rr

[Fτ (x,y, z)− u]+p(z, τ )dz, τ ∈ T (2.9)

and

ΘL
κ,β(x,y, v) = v + (1− β)−1

∫
w∈Rs

[Gκ(x,y,w)− v]+q(w,κ)dw, κ ∈ K, (2.10)
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where [Fτ (x,y, z) − z]+ = max{Fτ (x,y, z) − z, 0} and [Gκ(x,y,w) − v]+ =
max{Gκ(x,y,w)− v, 0}.

Function ΦU
τ ,α(x,y, u) and function ΘU

τ ,α(x,y, u) have the following relation:

ΘU
τ ,α(x,y, u) = ΦU

τ ,α(x,y, u) + u(1− α)−1[ΨU
τ (x,y, u)− α].

When 1− α = P{Fτ (x,y, z) ≥ u}, we have ΘU
τ ,α(x,y, u) = ΦU

τ ,α(x,y, u).

Function ΦL
κ,β(x,y, v) and function ΘL

κ,β(x,y, v) have the following relation:

ΘL
κ,β(x,y, v) = ΦL

κ,β(x,y, v) + v(1− β)−1[ΨL
κ(x,y, v)− β].

When 1− β = P{Gκ(x,y,w) ≥ v}, we have ΘL
κ,β(x,y, v) = ΦL

κ,β(x,y, v).
It is always assumed that the following condition holds:

P{Fτ (x,y, z) = u} =

∫
Fτ (x,y,z)=u

p(z, τ )dz = 0, u ∈ R1, τ ∈ T

and

P{Gκ(x,y,w) = v} =

∫
Gκ(x,y,w)=v

q(w,κ)dw = 0, v ∈ R1, κ ∈ K

According to literature [16], the following conclusion holds.

Lemma 2.5. For a given (x,y), τ ∈ T and κ ∈ K, if minu∈R1 ΘU
τ ,α(x,y, u) has only one

optimal solution ū and minv∈R1 ΘL
κ,β(x,y, v) has only one optimal solution v̄, then

ΦU
τ ,α(x,y, ū) = min

u∈R1
ΘU

τ ,α(x,y, u), (2.11)

ΦL
κ,β(x,y, v̄) = min

v∈R1
ΘL

κ,β(x,y, v), (2.12)

where ū = uτ (x,y) and v̄ = vκ(x,y).

Let us first prove the following conclusion.

Lemma 2.6. For a given (x,y), suppose that Fτ (x,y, z) is quasi-concave on τ ∈ T and
Gκ(x,y, z) is quasi-concave on κ ∈ K, then

UWCV aRα
T (x,y) = max

τ∈T
min
u∈R1

ΘU
τ ,α(x,y, u) = min

u∈R1
max
τ∈T

ΘU
τ ,α(x,y, u), (2.13)

LWCV aRβ
K(x,y) = max

κ∈K
min
v∈R1

ΘL
κ,β(x,y, v) = min

v∈R1
max
κ∈K

ΘL
κ,β(x,y, v). (2.14)

Proof. According to Lemma 2.5,we have

UWCV aRα
T (x,y) = max

τ∈T
min
u∈R1

ΘU
τ ,α(x,y, u).

According to literature [16], ΘU
τ ,α(x,y, u) is convex on u. Let any τ1, τ2 ∈ T , ∀t ∈ [0, 1],

then we have tτ1 + (1 − t)τ2 ∈ T . So, the corresponding probability density distribution
function at tτ1 + (1− t)τ2 is p(z, tτ1 + (1− t)τ2). By Equation (2.9), we have

ΘU
tτ1+(1−t)τ2,α

(x,y, u)

= [u+ (1− α)−1

∫
z∈Rm

(Ftτ1+(1−t)τ2
(x,y, z)− u)+p(z, tτ1 + (1− t)τ2)dz]

≥ tΘτ1,α(x,y, u) + (1− t)Θτ2,α(x,y, u),
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where tτ1 + (1− t)τ2 ∈ T . Therefore, ΘU
τ ,α(x,y, u) is concave on τ . According to literature

[19], (2.13) is true. Similarly, (2.14) is true.

By Lemma 2.6 the following conclusion is obtained.

Lemma 2.7. Suppose that Fτ (x,y, z) is quasi-concave on τ ∈ T and Gκ(x,y, z) is quasi-
concave on κ ∈ K, then

min
(x,y)∈X

UWCV aRα
T (x,y) = min

(x,y)∈X
min
u∈R1

max
τ∈T

ΘU
τ ,α(x,y, u), (2.15)

min
(x,y)∈Y

LWCV aRβ
K(x,y) = min

(x,y)∈Y
min
v∈R1

max
κ∈K

ΘL
κ,β(x,y, v). (2.16)

Therefore, the following conclusion is proved by Lemma 2.7.

Lemma 2.8. Suppose that Fτ (x,y, z) is quasi-concave on τ ∈ T and Gκ(x,y, z) is quasi-
concave on κ ∈ K. Then

(i) solving min(x,y)∈X UWCV aRα
T (x,y) is equivalent to solving the following problem:

(FUWCVaR) min γ

s.t. γ ≥ ΘU
τ ,α(x,y, u), ∀τ ∈ T

(x,y) ∈ X, γ ∈ R1, u ∈ R1,

where (x,y, γ, u) are decision variables.

(ii) solving min(x,y)∈Y LWCV aRβ
K(x,y) is equivalent to solving the following problem:

(FLWCVaR) min δ

s.t. δ ≥ ΘL
κ,β(x,y, v), ∀κ ∈ K

(x,y) ∈ Y, δ ∈ R1, v ∈ R1,

where (x,y, δ, v) are decision variables.

Proof. (i) By Lemma 2.7, we only need to prove that solving (FUWCVaR) is equivalent
to solving min(x,y)∈X minu∈R1 maxτ∈T ΘU

τ ,α(x,y, u). Suppose that (x̄, ȳ, γ̄, ū) is an
optimal solution to (FUWCVaR). If (x̄, ȳ, ū) is not an optimal solution to
min(x,y)∈X minu∈R1 maxτ∈T ΘU

τ ,α(x,y, u), then there are an (x′,y′) ∈ X and u ∈ R1, such
that

max
τ∈T

ΘU
τ ,α(x

′,y′, u′) < max
τ∈T

ΘU
τ ,α(x̄, ȳ, ū).

Let γ′ = maxτ∈T ΘU
τ ,α(x

′,y′, u′). Obviously, γ̄ = maxτ∈T ΘU
τ ,α(x̄, ȳ, ū) and

γ′ ≥ ΘU
τ ,α(x

′,y′, u′), ∀τ ∈ T .

Therefore, (x′,y′, γ′, u′) is a feasible solution to (FUWCVaR) and γ′ < γ̄. So, (x̄, ȳ, γ̄, ū) is
not a optimal solution to (FUWCVaR). This is a contradiction.

In turn, suppose that (x̄, ȳ, ū) is an optimal solution to
min(x,y)∈X minu∈R1 maxτ∈T ΘU

τ ,α(x,y, u). Let γ̄ = maxτ∈T ΘU
τ ,α(x̄, ȳ, ū). If (x̄, ȳ, γ̄, ū)

is not a optimal solution to (FUWCVaR), then there are an (x′,y′) ∈ X and (γ′, u′) such
that γ′ < γ̄, where

γ′ ≥ ΘU
τ ,α(x

′,y′, u′), ∀τ ∈ T .

Specifically,
max
τ∈T

ΘU
τ ,α(x

′,y′, u′) ≤ γ′ < γ̄.
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Clearly (x̄, ȳ, ū) is not an optimal solution tomin(x,y)∈X minu∈R1 maxτ∈T ΘU
τ ,α(x,y, u).

Thus, a contradiction occurs.
Similarly, (ii) is true.

By Lemma 2.5 and 2.8, if (x̄, ȳ, γ̄, ū) is a optimal solution to (FUWCVaR), then there is a
τ̄ ∈ T such that γ̄ = ΘU

τ ,α(x̄, ȳ, ū), and ū = uτ̄ (x̄, ȳ) is the VaR risk loss value. If (x̄, ȳ, δ̄, v̄)

is a optimal solution to (FLWCVaR), then there is a κ̄ ∈ K such that δ̄ = ΘL
κ,β(x̄, ȳ, v̄),

and v̄ = vκ̄(x̄, ȳ) is the VaR risk loss value.
So, by Lemma 2.8, the following theorem is obtained.

Theorem 2.9. Suppose that Fτ (x,y, z) is quasi-concave on τ ∈ T and Gκ(x,y, z) is
quasi-concave on κ ∈ K. Then solving (BRCVaR) is equivalent to solving the following
problem:

(FBRCVaR) min γ

s.t. γ ≥ ΘU
τ ,α(x,y, u), ∀τ ∈ T

(x,y) ∈ X, γ ∈ R1, u ∈ R1,

where (y, δ, v) is an optimal solution to the

lower optimization problem at the tuple (x, γ, u)

min δ

s.t. δ ≥ ΘL
κ,β(x,y, v), ∀κ ∈ K

(x,y) ∈ Y, δ ∈ R1, v ∈ R1.

Theorem 2.9 shows that (FBRCVaR) can be used to describe the actual robust bilevel
decision model. But, given that (FBRCVaR) is a semi-infinite programming problem, it
is very difficult to solve it directly. In practical applications, there is a finite number of
probability density distribution functions and of the corresponding loss functions for bilevel
decision problems.

For the upper optimization problem, assume that there exists a finite number of prob-
ability density distribution functions {pk(ξ)|k = 1, 2, . . . , N} and the corresponding loss
function Fk(x,y, ξ)(k = 1, 2, . . . , N). A mixed probability density distribution function
cluster is defined by

ΞN = {p(ξ, τ ) =
N∑

k=1

λkpk(ξ)|τ ∈ T}, (2.17)

where T = {τ = (λ1, λ2, . . . , λN )|
∑N

k=1 λk = 1, λk ≥ 0, k = 1, 2, . . . , N}. Obviously, ΞN is
a concave probability density distribution function cluster that is similar to that in litera-
ture(Zhu et al,2009). For τ ∈ T , the corresponding loss function is defined by

Fτ (x,y, ξ) = {
N∑

k1=1

λk1
Fk1

(x,y, ξ) | τ ∈ T}. (2.18)

It is clear that Fτ (x,y, ξ) is quasi-concave on τ ∈ T . For k, k1 = 1, 2, . . . , N and α ∈ (0, 1),
define

ΘU
k,k1,α(x,y, u) = u+ (1− α)−1

∫
z∈Rr

(Fk1
(x,y, z)− u)+pk(z)dz. (2.19)
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For the lower optimization problem, assume that there exists a finite number of prob-
ability density distribution functions {qk(ζ)|k = 1, 2, . . . ,M} and the corresponding loss
function Gk(x,y, ζ)(k = 1, 2, . . . ,M). A mixed probability density distribution function
cluster is defined as follows:

ΞM = {q(ζ,κ) =
M∑
k=1

µkqk(ζ)|κ ∈ K}, (2.20)

where K = {κ = (µ1, µ2, . . . , µN )|
∑N

k=1 µk = 1, µk ≥ 0, k = 1, 2, . . . ,M}. Obviously,
ΞM is a concave probability density distribution function cluster that is similar to that in
literature(Zhu et al,2009). For κ ∈ K, the corresponding loss function is defined by

Gκ(x,y, ζ) = {
M∑

k1=1

µk1
Gk1

(x,y, ζ) | κ ∈ K}. (2.21)

It is clear that Gκ(x,y, ζ) is quasi-concave on κ ∈ K. For k, k1 = 1, 2, . . . ,M and β ∈ (0, 1),
define

ΘL
k,k1,β(x,y, v) = v + (1− α)−1

∫
w∈Rs

(Gk1(x,y,w)− v)+qk(w)dw. (2.22)

We have the following results.

Lemma 2.10. Suppose that (2.17),(2.18),. . .,(2.22) are true. Then

(1) solving

(FUWCVaR) min γ

s.t. γ ≥ ΘU
τ ,α(x,y, u), ∀τ ∈ T

(x,y) ∈ X, γ ∈ R1, u ∈ R1,

is equivalent to solving the following problem:

(FUWCVaR1) min γ

s.t. γ ≥ ΘU
k,k1,α(x,y, u), k, k1 = 1, 2, . . . , N,

(x,y) ∈ X, γ ∈ R1, u ∈ R1,

where (x,y, γ, u) are decision variables.

(2) solving

(FLWCVaR) min δ

s.t. δ ≥ ΘL
κ,β(x,y, v), ∀κ ∈ K

(x,y) ∈ Y, δ ∈ R1, v ∈ R1,

is equivalent to solving the following problem:

(FLWCVaR1) min δ

s.t. δ ≥ ΘL
k,k1,β(x,y, v), k, k1 = 1, 2, . . . ,M,

(x,y) ∈ Y, δ ∈ R1, v ∈ R1,

where (x,y, δ, v) are decision variables.
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Proof. If we are to prove solving (FUWCVaR) is equivalent to solving (FUWCVaR1), we
only need to prove that (FUWCVaR) and (FUWCVaR1) have the same set of feasible
solutions. Suppose that (x,y, γ, u) is a feasible solution to (FUWCVaR1), then we have

γ ≥ ΘU
k,k1,α(x,y, u), k, k1 = 1, 2, . . . , N.

Let us take λk1 , λk1 ≥ 0, k, k1 = 1, 2, . . . , N,
∑N

k=1 λk = 1,
∑N

k1=1 λk1 = 1; when the two
sides of the above inequality are multiplied by λk and λk1 , they can be added together as
follows:

γ ≥
N∑

k=1

λk

N∑
k1=1

λk1Θ
U
k,k1,α(x,y, u).

By (2.9), for all τ ∈ T , we have

ΘU
τ ,α(x,y, u) = u+ (1− α)−1

∫
z∈Rr

[Fτ (x,y, z)− u]+p(z, τ )dz

= u+ (1− α)−1

∫
z∈Rr

[

N∑
k1=1

λk1
Fk1

(x,y, z)− u]+
N∑

k=1

λkpk(z)dz

=

N∑
k=1

λk(u+ (1− α)−1

∫
z∈Rr

[

N∑
k1=1

λk1(Fk1(x,y, z)− u)]+pk(z)dz)

≤
N∑

k=1

λk

N∑
k1=1

λk1
ΘU

k,k1,α(x,y, u).

So, we have γ ≥ ΘU
τ ,α(x,y, u). Hence, (x,y, γ, u) is a feasible solution to (FUWCVaR).

In turn, let (x,y, γ, u) be a feasible solution to (FUWCVaR), we have

γ ≥ ΘU
τ ,α(x,y, u)

=

N∑
k=1

λk(u+ (1− α)−1

∫
z∈Rr

[

N∑
k1=1

λk1
(Fk1

(x,y, z)− u)]+pk(z)dz).

Let λi = 1, λj = 1 where i = k and j = k1; λi = 0, λj = 0 where i = 1, 2, . . . , N and
j = 1, 2, . . . , N but i ̸= k and j ̸= k1, then the above inequality becomes

γ ≥ ΘU
k,k1,α(x,y, u).

Hence, (x,y, γ, u) is a feasible solution to (FUWCVaR1) when λi = 1 and λj = 1, where i
and j traverses 1, 2, . . . , N .

Now, by Lemma 2.10, we obtain the following conclusion.

Theorem 2.11. Suppose that (2.17),(2.18),. . . ,(2.22) are true. Then solving (BRCVaR)
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is equivalent to solving the following problem:

(FBRCVaR1) min γ

s.t. γ ≥ ΘU
k,k1,α(x,y, u), k, k1 = 1, 2, . . . , N,

(x,y) ∈ X, γ ∈ R1, u ∈ R1,

where (y, δ, v) is an optimal solution to the

lower optimization problem at the tuple (x, γ, u)

min δ

s.t. δ ≥ ΘL
k,k1,β(x,y, v), k, k1 = 1, 2, . . . ,M,

(x,y) ∈ Y, δ ∈ R1, v ∈ R1.

Theorem 2.11 shows that if the finite probability (density) distribution functions and the
corresponding loss functions are known, then their mixing distribution and finite distribution
have the same loss WCVaR value. Therefore, we can compute (FBRCVaR1) approximately
for a practical problem.

For the upper optimization problem, take an approximation of sample points {zk,k1,k2 |
k2 = 1, 2, . . . , N1; k, k1 = 1, 2, . . . , N},

ΘU
k,k1,α(x,y, u) = u+ (1− α)−1

∫
z∈Rr

(Fk1
(x,y, z)− u)+pk(z)dz

≈ u+ (1− α)−1N−1
1

N1∑
k2=1

(Fk1
(x,y, zk,k1,k2

)− u)+.

For the lower optimization problem, take an approximation of sample points {wk,k1,k2
| k2 =

1, 2, . . . ,M1; k, k1 = 1, 2, . . . ,M},

ΘL
k,k1,β(x,y, v) = v + (1− β)−1

∫
w∈Rs

(Gk1(x,y,w)− v)+qk(w)dw

≈ v + (1− β)−1M−1
1

M1∑
k2=1

(Gk1
(x,y, zk,k1,k2

)− v)+.

So, (FBRCVaR1) can be approximately solved by the following problem:

(FBRCVaR2) min γ

s.t. γ ≥ u+ (1− α)−1N−1
1

N1∑
k2=1

(Fk1
(x,y, zk,k1,k2

)− u)+, k,

k1 = 1, 2, . . . , N,

(x,y) ∈ X, γ ∈ R1, u ∈ R1,

where (y, δ, v) is an optimal solution to the

lower optimization problem at the tuple (x, γ, u)

min δ

s.t. δ ≥ v + (1− β)−1M−1
1

M1∑
k2=1

(Gk1(x,y, zk,k1,k2)− v)+, k,

k1 = 1, 2, . . . ,M,

(x,y) ∈ Y, δ ∈ R1, v ∈ R1.
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Therefore, we can obtain the approximate robust equilibrium solution to the original
problem (BRCVaR) by solving the nonlinear bilevel optimization problem (FBRCVaR2).
When all the functions Fk1

, Gk1
, fi, gj are linear, (FBRCVaR2) becomes a linear bilevel

programming. When all the functions are convex, the exact penalty function method can be
used to solve (FBRCVaR2). The penalty optimization problem of (FBRCVaR2) is defined
by

(FBRCVaR2)(ρ, ϱ) min F̃ (x,y, γ, u, ρ) = γ + ρ

I∑
i=1

max{fi(x,y), 0}

+ρ

N∑
k,k1=1,2,...,N

max{−γ + u+ (1− α)−1N−1
1

N1∑
k2=1

(Fk1(x,y, zk,k1,k2)− u)+, 0}

s.t. (x,y) ∈ Rn ×Rm, γ ∈ R1, u ∈ R1,

where (y, δ, v) is an optimal solution to the

lower optimization problem at the tuple (x, γ, u)

min G̃(x,y, δ, v, ϱ) = δ + ϱ

I∑
i=1

max{hj(x,y), 0}

+ϱ

M∑
k,k1=1,2,...,M

max{−δ + v + (1− β)−1M−1
1

M1∑
k2=1

(Gk1(x,y, zk,k1,k2)− v)+, 0}

s.t. (x,y) ∈ Rn ×Rm, δ ∈ R1, v ∈ R1,

where (ρ, ϱ) > 0 is penalty parameter. By using the smoothing function

pϵ(t) =


0, if t ≤ 0,
t3

6ϵ2 , if 0 ≤ t ≤ ϵ,

t+ ϵ2

2t −
4ϵ
3 , if t ≥ ϵ,

which is second-order continuously differentiable in [20] and limϵ→0 pϵ(t) = max{t, 0}, the
problem (FBRCVaR2)(ρ, ϱ) is defined by

(FBRCVaR2)(ρ, ϱ) min F̃ϵ(x,y, γ, u, ρ) + ρ∥∇G̃ϵ(x,y, δ, v, ϱ)∥2

s.t. (x,y) ∈ Rn ×Rm, δ ∈ R1, v ∈ R1.γ ∈ R1, u ∈ R1,
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where the smoothing function F̃ and G̃ are defined respectively by

F̃ϵ(x,y, u, ρ) = γ + ρ

I∑
i=1

pϵ(fi(x,y)) + ρ

N∑
k,k1=1,2,...,N

pϵ(−γ

+u+ (1− α)−1N−1
1

N1∑
k2=1

pϵ(Fk1
(x,y, zk,k1,k2

)− u)),

G̃(x,y, u, ρ) = δ + ϱ

I∑
i=1

pϵ(hj(x,y)) + ϱ

M∑
k,k1=1,2,...,M

pϵ(−δ + v + (1− β)−1M−1
1

M1∑
k2=1

pϵ(Gk1(x,y, zk,k1,k2)− v)).

Approximate solution to (FBRCVaR2) is solved by (FBRCVaR2)(ρ, ϱ). As shown in [21],
the numerical results are obtained by the penalty function method.

3 Conclusion

In this study, a concave probability density distribution function cluster with a convex per-
turbation set is defined. Then, VaR loss value and WCVaR value are defined respectively
for the upper decision maker and the lower decision maker in a two-level decision system. A
distributionally robust bilevel programming (BRCVaR) based on WCVaR with the concave
probability density distribution cluster is defined. Next, it is proved that the distributionally
robust bilevel programming (BRCVaR) based on WCVaR is equivalent to a robust bilevel
programming with a perturbation parameter set. When the concave probability density
distribution function cluster is a finite number of mixed probability density distribution
functions, (BRCVaR) is proved equivalent to bilevel programming (FBRCVaR1) with in-
equality constraints. In particular, this model (BRCVaR) can be solved approximately by
the nonlinear bilevel optimization problem (FBRCVaR2) when the finite sample data is
known.

The future work will mainly include the following three aspects. (1) When the objective
function and constraint functions are convex in (BRCVaR) model, its optimization condi-
tion and dual theory should be studied. (2) When the objective function and constraint
functions are convex in (BRCVaR) model, its algorithm is worth studying. (3) The applica-
tion of (BRCVaR) model in supply chain is worth studying. In addition, concepts such as
distributionally robust constraints under Wasserstein distance in [4, 12] shall be introduced
to the study of (BRCVaR) model.
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