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Due to the special structure of complementarity constraints, the standard Mangasarian-
Fromovitz constraint qualification is violated at any feasible point. As a consequence, some
theoretical properties and numerical methods for nonlinear programming (NLP) are invalid
to deal with MPCC.

In recent years, there have been proposed a number of approaches for MPCC such as
interior point methods, penalty methods, relaxation methods, and regularization methods.
See, for instance, [1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 22]. Among these methods,
regularization methods have become very popular to solve MPCC. The basic idea of the
regularization method is to replace MPCC by a sequence of the parametrized NLP. There-
fore, the stationary point of MPCC can be obtained by solving a sequence of the regularized
problems. The first regularization method for MPCC is introduced in Scholtes [20]. Under
suitable assumptions, it is shown that any accumulation point of the exact KKT sequence is
a C-stationary point. Some of these more recent methods have better convergence proper-
ties. The regularization methods by Kadrani et al. [9] and Kanzow & Schwartz [10] converge
to M-stationary points as the limit of exact KKT points. Yin & Zhang [22] and Li et al.[14]
present a regularization method by using the log-exponential function. They show that the
sequence of exact KKT points converges to a C-stationary point. However, the regularized
subproblems are not solved exactly from a numerical point of view. In [11], the authors
replace exact KKT points by approximate stationary points, which are computationally fea-
sible. It is shown that without any additional assumptions, the regularization methods by
Kadrani et al. [9] and Kanzow & Schwartz [10] converge to weakly stationary points only,
whereas the regularization method by Scholtes converges to a C-stationary point. In [19],
the author presents a sequential optimality condition to improve the convergence results of
the regularization methods from [9, 10].

The approximate stationary conditions are realistic from a numerical point of view and
coincide with the usual termination criteria for many practical algorithms. However, the
weaker convergence results hold when approximate stationary points are considered. Hence,
we expect to find an inexact regularization method that may get better convergence results
for MPCC. We focus on the log-exponential regularization method. The aim of this paper
is to provide an explicit numerical method for MPCC which can deal with the gap between
the theoretical results and practical implementation of the log-exponential regularization
method. This paper shows that without any additional assumptions, the sequence generated
by the log-exponential regularization method converges to an M-stationary point, if the
sequence satisfies approximate second order stationary conditions. Motivated by this result,
we propose a modification of the second order primal-dual stabilized SQP method in [5],
where the regularized subproblems are solved inexactly from a numerical point of view.
It is shown that with appropriate choices of the approximate stationary conditions, the
algorithm is well defined. If all termination criteria are omitted, the iterates converge to an
infeasible stationary point of the norm of the constraint violations or the sequence satisfies
the approximate second order stationary conditions of the regularized subproblems. Finally,
we provide a numerical implementation of the proposed method based on some test problems
from MacMPEC database. Numerical results of the test problems certify the applicability
of the approach.

The paper is organized as follows. In section 2, we review some concepts and the log-
exponential regularization method for MPCC. In section 3, we show the convergence results
by considering approximate second order stationary points. In section 4, we present a feasi-
ble strategy to generate approximate second order stationary points of the log-exponential
regularized problems under suitable assumptions. The numerical results are presented in
section 5. It implies that our method is efficient to solve MPCC from a practical point of
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view. We conclude the paper in section 6.
We give some notations needed in this paper. We denote that νi is the i-th element of

vector νT = (ν1, . . . , νn) ∈ Rn. For a given index set I, [ν]I or νI denotes the subvector of
components νi such that i ∈ I ∩{1, . . . , n}. Similarly, given a symmetric matrix M ∈ Rn×n,
[M ]I denotes the symmetric matrix with elements mij for i, j ∈ I∩{1, . . . , n}. Given vectors
a ∈ Rn and b ∈ Rn, the vector with i-th component aibi is denoted by a · b. min{a, b} is
the vector with components min{ai, bi}. ei denotes the i-th column of identity matrix I and
e =

∑
ei. The support of z ∈ Rn is defined as supp(z) = {i | zi ̸= 0}.

2 An Inexact Log-exponential Regularization for MPCC

In this section, we review some concepts for MPCC. Let F be the feasible region of (1.1)
and z∗ ∈ F , we set some index sets as follows:

Ig(z∗) = {i | gi(z∗) = 0}, I+0 = {i | Gi(z
∗) > Hi(z

∗) = 0},
I00 = {i | Gi(z

∗) = Hi(z
∗) = 0}, I0+ = {i | Hi(z

∗) > Gi(z
∗) = 0}.

It is clear that
{
I0+, I00, I+0

}
is a partition of {1, 2, · · · ,m}.

Definition 2.1 ([15, 21]). (1)We say that z∗ ∈ F is a weakly stationary point of (1.1), if
there exist multipliers (λ, µ, u, v) ∈ Rp

+ × Rq × Rm × Rm such that

∇f(z∗) +∇g(z∗)λ+∇h(z∗)µ−∇G(z∗)u−∇H(z∗)v = 0, (2.1)

λ{1,...,p}\Ig(z∗) = 0, vI0+
= 0, uI+0

= 0. (2.2)

(2)We say that z∗ ∈ F is Clarke stationary (C-stationary) of (1.1), if there exist multipliers
(λ, µ, u, v) ∈ Rp

+ × Rq × Rm × Rm such that (2.1)-(2.2) and uivi ≥ 0, i ∈ I00.
(3)We say that z∗ ∈ F is Mordukhovich stationary (M-stationary) of (1.1), if there exist
multipliers (λ, µ, u, v) ∈ Rp

+ × Rq × Rm × Rm such that (2.1)-(2.2) and uivi = 0 or ui >
0, vi > 0 for all i ∈ I00.
(4)We say that z∗ ∈ F is strongly stationary (S-stationary) of (1.1), if there exist multipliers
(λ, µ, u, v) ∈ Rp

+ × Rq × Rm × Rm such that (2.1)-(2.2) and ui ≥ 0, vi ≥ 0 for all i ∈ I00.

The relations among these stationarity concepts can be stated as follows:
S-stationarity ⇒ M-stationarity ⇒ C-stationarity ⇒ weak stationarity.

Definition 2.2 ([6, 21]). Let z∗ ∈ F and Ih = {1, 2, . . . , q}.
(1)MPCC-LICQ holds at z∗ if the gradients

{∇gi(z∗)|i ∈ Ig(z∗)} ∪ {∇hi(z∗)|i ∈ Ih} ∪ {∇Gi(z
∗)|i ∈ I0+ ∪ I00}

∪ {∇Hi(z
∗)|i ∈ I+0 ∪ I00}

are linearly independent.
(2) MPCC-MFCQ holds at z∗ if the gradients

{∇gi(z∗)|i ∈ Ig(z∗)} ∪ {{∇hi(z∗)|i ∈ Ih} ∪ {∇Gi(z
∗)|i ∈ I0+ ∪ I00}

∪ {∇Hi(z
∗)|i ∈ I+0 ∪ I00}}

are positive-linearly independent.

Definition 2.3 ([21]). The upper level strict complementarity (ULSC) holds at z∗, if z∗ ∈ F
is a weakly stationary point and uivi ̸= 0 for all i ∈ I00.
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Now, we focus on the log-exponential regularized problem NLP (t) [22, 14]:

min
z

f(z)

s.t. g(z) ≤ 0, h(z) = 0, Φ(z; t) = 0, (2.3)

where t > 0, Φ(z; t) = (ϕ1(z; t), . . . , ϕm(z; t))T and

ϕi(z; t) =

{ −t ln(exp(−Gi(z)/t) + exp(−Hi(z)/t)), t > 0,

min{Gi(z),Hi(z)}, t = 0
(2.4)

for i = 1, 2, . . . ,m. The above approximation function is used in [17]. From [17], we have

lim
t↘0

ϕi(z; t) = min{Gi(z),Hi(z)}, ∀i = 1, . . . ,m

and ϕi(z; t) is continuously differentiable for all t > 0. The gradient and Hessian with respect
to z are given by

∇ϕi(z; t) = νi1(z; t)∇Gi(z) + νi2(z; t)∇Hi(z), (2.5)

∇2ϕi(z; t) = νi1(z; t)∇2Gi(z) + νi2(z; t)∇2Hi(z)

−1

t
νi1(z; t)νi2(z; t)

[
∇Gi(z)∇Gi(z)

T +∇Hi(z)∇Hi(z)
T
]

(2.6)

+
1

t
νi1(z; t)νi2(z; t)

[
∇Gi(z)∇Hi(z)

T +∇Hi(z)∇Gi(z)
T
]
,

where

νi1(z; t) =
exp(−Gi(z)/t)

exp(−Gi(z)/t) + exp(−Hi(z)/t)
,

νi2(z; t) =
exp(−Hi(z)/t)

exp(−Gi(z)/t) + exp(−Hi(z)/t)

(2.7)

and

νi1(z; t), νi2(z; t) ∈ (0, 1), νi1(z; t) + νi2(z; t) = 1, ∀i = 1, . . . ,m. (2.8)

In particular,
lim

zk→z∗,tk→0
∇ϕi(zk; tk) = ∇Gi(z

∗)for i ∈ I0+,

lim
zk→z∗,tk→0

∇ϕi(zk; tk) = ∇Hi(z
∗)for i ∈ I+0.

(2.9)

We consider the inexact first and second order conditions for the regularized problem
(2.3), because the numerical algorithms rarely terminate in the exact conditions.

Definition 2.4. Let ε be a positive constant and z ∈ Rn. If there exist multipliers λ ∈
Rp, µ ∈ Rq, δ ∈ Rm such that

∥ ∇f(z) +
p∑

i=1

λi∇gi(z) +
q∑

i=1

µi∇hi(z)−
m∑
i=1

δi∇ϕi(z; t) ∥∞≤ ε,

gi(z) ≤ ε, λi ≥ −ε, | λigi(z) |≤ ε, i = 1, . . . , p, (2.10)

∥ h(z) ∥∞≤ ε, | ϕi(z; t) |≤ ε, i = 1, . . . ,m,

we say that z is an ε-KKT point of the regularized problem NLP (t).
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From [11], the authors prove the convergence results of the different regularization meth-
ods when approximate KKT points are considered. It is shown that without any addi-
tional assumptions, these regularization methods mentioned in [11] converge to weakly or
C-stationary points only. In order to improve the convergence properties for MPCC, we
have that zk is an εk-KKT point of NLP (tk) and z

∗ is a limit point of {zk}. zk also satisfies
the following condition:

dT∇2
zL(z

k, λk, µk, δk)d ≥ −εk∥d∥2 (2.11)

holds for every direction d ∈ T̄ (zk; tk), where L(z, λ, µ, δ) = f(z) +
∑p

i=1 λigi(z)
+
∑q

i=1 µihi(z)−
∑m

i=1 δiϕi(z; t) and

T̄ (zk; tk) =

 ∇gi(zk)T d = 0 i ∈ Ig(z∗), ∇hi(zk)T d = 0 i ∈ Ih,
d ∈ Rn|

∇ϕi(zk; tk)T d = 0 i = 1, . . . ,m.

 .

We say that zk is an approximate second order stationary point of NLP (tk), if z
k is defined

as an εk-KKT point satisfying (2.11).

3 Convergence Results

We focus on a sequence of the approximate second order stationary points generated by the
log-exponential regularization method. We can obtain some convergence properties of (1.1)
under the certain MPCC CQs. The proof is long and borrows some ideas from the proofs of
Yin & Zhang [22] and Kanzow & Schwartz [11]. It becomes somewhat technical with some
necessary modifications.

Theorem 3.1. Let {tk} ↘ 0, {εk} ↘ 0 and {zk} be a sequence of the approximate second
order stationary points of NLP (tk). If zk → z∗ and MPCC-LICQ holds at z∗, then z∗ is
M-stationary. If in addition ULSC holds at z∗, then z∗ is S-stationary.

Proof. Let (λk, µk, δk) be multipliers associated with {zk} satisfying the εk-KKT conditions
(2.10) and condition (2.11) of NLP (tk). It is obvious that z∗ is a feasible point of (1.1).
Using (2.5) and (2.8), the first row of (2.10) can be written as follow:

∥ ∇f(zk) +
p∑

i=1

λki∇gi(zk) +
q∑

i=1

µk
i∇hi(zk)−

m∑
i=1

δ1,ki ∇Gi(z
k)−

m∑
i=1

δ2,ki ∇Hi(z
k)

−
∑

i∈I+0

δki νi1(z
k; tk)∇Gi(z

k)−
∑

i∈I0+

δki νi2(z
k; tk)∇Hi(z

k) ∥∞≤ εk, (3.1)

where

δ1,ki =

{
δki νi1(z

k; tk), i ∈ I0+ ∪ I00,
0, otherwise,

δ2,ki =

{
δki νi2(z

k; tk), i ∈ I+0 ∪ I00,
0, otherwise

and

νi1(z
k; tk), νi2(z

k; tk) ∈ (0, 1), νi1(z
k; tk) + νi2(z

k; tk) = 1, ∀i = 1, . . . ,m. (3.2)

Then we claim that the multipliers (λk, µk, δ1,k, δ2,k, δkI0+∪I+0
) are bounded. We derive

a contradiction by assuming that they are unbounded. We can assume that there exists a
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subsequence K satisfying

(λk, µk, δ1,k, δ2,k, δkI0+∪I+0
)

∥(λk, µk, δ1,k, δ2,k, δkI0+∪I+0
)∥

K−→ (λ̃, µ̃, δ̃1, δ̃2, δ̃I0+∪I+0
) ̸= 0.

From (2.9) and (3.2), we obtain

lim
k→+∞

νi1(z
k; tk) =

 1, i ∈ I0+,
ν∗i1, i ∈ I00,
0, i ∈ I+0,

lim
k→+∞

νi2(z
k; tk) =

 1, i ∈ I+0,
ν∗i2, i ∈ I00,
0, i ∈ I0+

(3.3)

and ν∗i1 + ν∗i2 = 1 for all i ∈ I00.
Then (3.1) divided by ∥(λk, µk, δ1,k, δ2,k, δkI0+∪I+0

)∥. We obtain

p∑
i=1

λ̃i∇gi(z∗) +
q∑

i=1

µ̃i∇hi(z∗)−
m∑
i=1

δ̃1i∇Gi(z
∗)−

m∑
i=1

δ̃2i∇Hi(z
∗) = 0 for k → +∞, (3.4)

where λ̃ ≥ 0. If λ̃i > 0, then λki > c for some constant c > 0 and k sufficiently large. We
have 0 ≤| gi(zk) |≤ εk

|λk
i |
≤ εk

c → 0, which implies that supp(λ̃) ⊆ Ig(z∗). Moreover, from

the definition of δ1,k and δ2,k, it is clear that supp(δ̃1) ⊆ I0+∪I00 and supp(δ̃2) ⊆ I+0∪I00.
If (λ̃, µ̃, δ̃1, δ̃2) ̸= 0, (3.4) is a contradiction to MPCC-LICQ. If (λ̃, µ̃, δ̃1, δ̃2) = 0, there
exists i0 ∈ I0+ ∪ I+0 such that δ̃i0 ̸= 0. We consider the case i0 ∈ I0+ and get δ̃1i0 =

lim
k→+∞

δki0νi01(z
k;tk)

∥(λk, µk, δ1,k, δ2,k, δkI0+∪I+0
)∥ = δ̃i0 ̸= 0. This contradicts the assumption δ̃1i0 = 0. The

other case can be proved in the same way. Thus, the sequence (λk, µk, δ1,k, δ2,k, δkI0+∪I+0
)

is bounded and converges to (λ∗, µ∗, δ1,∗, δ2,∗, δ∗I0+∪I+0
). Using (3.1) and

δ1,∗i δ2,∗i = lim
k→+∞

(δki )
2νi1(z

k; tk)νi2(z
k; tk) ≥ 0 for all i ∈ I00,

we conclude that z∗ is a C-stationary point.
Now, we show by contradiction that z∗ is M-stationary. We assume that there exists

i′ ∈ I00 such that δ1,∗i′ < 0 and δ2,∗i′ < 0. Thus, we have

δ1,∗i′ = lim
k→+∞

δki′νi′1(z
k; tk) = δ∗i′ν

∗
i′1 < 0 and δ2,∗i′ = lim

k→+∞
δki′νi′2(z

k; tk) = δ∗i′ν
∗
i′2 < 0. (3.5)

Consequently, ν∗i′1 ∈ (0, 1), ν∗i′2 ∈ (0, 1) and ν∗i′1+ν
∗
i′2 = 1. We assume that ν∗i′1 = α ∈ (0, 1).

Since MPCC-LICQ holds at z∗, we may choose a bounded sequence dk such that, for k
sufficiently large,

∇gi(zk)T dk = 0 i ∈ Ig(z∗),
∇hi(zk)T dk = 0 i = 1, . . . , q,

∇ϕ(zk; tk)T dk = 0 i ∈ I0+ ∪ I+0, (3.6)

∇Gi(z
k)T dk = 0, ∇Hi(z

k)T dk = 0 i ∈ I00\{i′},
∇Gi′(z

k)T dk = νi′2(z
k; tk), ∇Hi′(z

k)T dk = −νi′1(zk; tk).

Hence, we have dk ∈ T̄ (zk; tk) and

dk
T∇2

zL(z
k, λk, µk, δk)dk = dk

T
[
∇2f(zk) +

p∑
i=1

λki∇2gi(z
k)

+

q∑
i=1

µk
i∇2hi(z

k)−
m∑
i=1

δki∇2ϕi(z
k; tk)

]
dk,
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dk
T∇2ϕi(z

k; tk)d
k

= νi1(z
k; tk)d

kT∇2Gi(z
k)dk + νi2(z

k; tk)d
kT∇2Hi(z

k)dk (3.7)

− 1

tk
νi1(z

k; tk)νi2(z
k; tk)d

kT
[
∇Gi(z

k)∇Gi(z
k)T +∇Hi(z

k)∇Hi(z
k)T
]
dk

+
1

tk
νi1(z

k; tk)νi2(z
k; tk)d

kT
[
∇Gi(z

k)∇Hi(z
k)T +∇Hi(z

k)∇Gi(z
k)T
]
dk.

From (3.6), we obtain, for i ∈ I0+,

dk
T∇2ϕi(z

k; tk)d
k = νi1(z

k; tk)d
kT∇2Gi(z

k)dk + νi2(z
k; tk)d

kT∇2Hi(z
k)dk (3.8)

− 1

tk
νi1(z

k; tk)νi2(z
k; tk)

(νi2(zk; tk)
νi1(zk; tk)

+ 1
)2

(dk
T∇Hi(z

k))2

and − 1
tk
νi1(z

k; tk)νi2(z
k; tk)

(
νi2(z

k;tk)
νi1(zk;tk)

+ 1
)2

(dk
T∇Hi(z

k))2 → 0 as k → +∞.

For i ∈ I+0, we know that

dk
T∇2ϕi(z

k; tk)d
k = νi1(z

k; tk)d
kT∇2Gi(z

k)dk + νi2(z
k; tk)d

kT∇2Hi(z
k)dk (3.9)

− 1

tk
νi1(z

k; tk)νi2(z
k; tk)

(νi1(zk; tk)
νi2(zk; tk)

+ 1
)2

(dk
T∇Gi(z

k))2

and − 1
tk
νi1(z

k; tk)νi2(z
k; tk)

(
νi1(z

k;tk)
νi2(zk;tk)

+ 1
)2

(dk
T∇Gi(z

k))2 → 0 as k → +∞. Clearly, for

i ∈ I0+ ∪ I+0, d
kT∇2ϕi(z

k; tk)d
k is bounded.

For i ∈ I00\{i′},

dk
T∇2ϕi(z

k; tk)d
k = νi1(z

k; tk)d
kT∇2Gi(z

k)dk + νi2(z
k; tk)d

kT∇2Hi(z
k)dk. (3.10)

From (3.6), we obtain, for i = i′,

dk
T∇2ϕi′(z

k; tk)d
k = νi′1(z

k; tk)d
kT∇2Gi′(z

k)dk + νi′2(z
k; tk)d

kT∇2Hi′(z
k)dk

− 1

tk
νi′1(z

k; tk)νi′2(z
k; tk).

Using the boundedness of dk, νi1(z
k; tk), νi2(z

k; tk), (λ
k, µk, δ1,k, δ2,k, δkI0+∪I+0

),

dk
T∇2

zL(z
k, λk, µk, δk)dk =

dk
T
[∇2f(zk) +

p∑
i=1

λki∇2gi(z
k) +

q∑
i=1

µk
i∇2hi(z

k)−
∑

i∈I0+∪I+0

δki∇2ϕ(zk; tk)]d
k,

−
∑
i∈I00

dk
T
[δ1,ki ∇

2Gi(z
k) + δ2,ki ∇

2Hi(z
k)]dk +

1

tk
δki′νi′1(z

k; tk)νi′2(z
k; tk),

we have that all terms in the above equation are bounded except the last one. From (3.5),
we know that

lim
k→+∞

1

tk
δki′νi′1(z

k; tk)νi′2(z
k; tk) = lim

k→+∞

1

tk
δki′νi′1(z

k; tk)(1− νi′1(zk; tk))

= (1− α)δ1,∗i′ lim
k→+∞

1

tk
= −∞. (3.11)
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Hence, dk
T∇2

zL(z
k, λk, µk, δk)dk → −∞, which is a contradiction to the condition

dk
T∇2

zL(z
k, λk, µk, δk)dk ≥ −εk∥dk∥2.

Therefore, z∗ is M-stationary of (1.1). Clearly, if in addition ULSC holds at z∗, then z∗ is
an S-stationary point.

The following example shows that we cannot obtain the conclusion of Theorem 3.1 under
MPCC-MFCQ instead of MPCC-LICQ.

Example 3.2. Consider the three-dimensional MPCC

min
z
−z1 − z3 s.t. − z2 ≤ 0, z21 − z2 ≤ 0, min{z1, z3} = 0.

We know that MPCC-MFCQ holds at z∗ = (0, 0, 0) and MPCC-LICQ does not hold at z∗.
Now we consider the log-exponential regularized problem

min
z
−z1 − z3 s.t. − z2 ≤ 0, z21 − z2 ≤ 0, − t ln(exp(−z1/t) + exp(−z3/t)) = 0

with parameter t > 0. Let tk = k−
1
2 , εk = 2k−

1
2 and zk = (k−1, k−2, k−1, k−1). It is clear

that zk togethers with the multipliers (λk1 , λ
k
2 , δ

k) = (0, 0,−2) satisfying εk-KKT conditions
and

dT∇2
zL(z

k, λk, µk, δk)d ≥ −εk∥d∥2 for all d ∈ T̄ (zk; tk).

Since, for all k = 1, 2, . . .,

∥∇Lz(z
k, λk, δk)∥∞ =

∥∥∥∥∥
 −10
−1

+λk1

 0
−1
0

+λk2

 2zk1
−1
0

−δk
 1

2
0
1
2

∥∥∥∥∥
∞

≤εk,

zk2 ≥ −εk, λk1 ≥ −εk, | λk1zk2 |≤ εk, (zk1 )
2 − zk2 ≤ εk,

λk2 ≥ −εk, | λk2((zk1 )2 − zk2 ) |≤ εk,

| ϕ(zk; tk) | = | −tk ln(exp(−zk1/tk) + exp(−zk3/tk)) |
= | −k− 1

2 ln(2 exp(−k− 1
2 ) |≤| −2k− 1

2 |= εk

and T̄ (zk; tk) =

{
d ∈ R3| (2k−1,−1, 0)T d = 0, (0,−1, 0)T d = 0,

(− 1
2 , 0,−

1
2 )

T d = 0

}
= (0, 0, 0)T .

From the equation

∇L(z∗, λ∗, u∗, v∗)=

 −10
−1

+λ∗1

 0
−1
0

+λ∗2

 2z∗1
−1
0

−u∗
 1

0
0

−v∗
 0

0
1

=0,

it means that u∗ = −1, v∗ = −1 and λ∗1 = −λ∗2. There exist multipliers u∗ = −1, v∗ =
−1, λ∗1 = −λ∗2 = 0 such that the conditions of C-stationarity. However, z∗ is not an
M-stationary point.

Furthermore, we focus on finding a sequence of the approximate second order stationary
points. The existence of εk-KKT point of NLP (tk) satisfying (2.11) is discussed in the next
section. We design an algorithm to generate {zk}.
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4 A Second Order Stabilized SQP Method

Our primary interest in this paper is to compute a solution of MPCC by solving a sequence
of the regularized problems. Since the usual stopping criteria may fail to satisfy the KKT
conditions, we use the approximate stationary conditions to define the stopping criteria for
practical algorithm. In order to obtain M-stationarity, we consider the approximate second
order stationary points of NLP (t). First, we consider the basic strategy for MPCC as
follows.

General Scheme of a Practical Algorithm for MPCC

Choose tk ↘ 0,εk ↘ 0 and a stopping tolerance ε′ > 0, Let z0 be a
feasible point of NLP (t0) and set k = 0.

While εk ≥ ε′ do
Solve the regularization NLP (tk) and use zk as starting vector.
Find an approximate second order stationary point zk+1 of NLP (tk).
Set k ← k + 1.

end while
Return the final iterate zopt = zk and function value at zopt.

In this section, we present a detail procedure to compute a sequence satisfying approxi-
mate first and second order conditions of NLP (t). We recall the regularized problem (2.3),
by adding the slack variables, it is equivalently written in the form

min
z,ẑ

f(z) s.t. c(z, ẑ; t) = 0, ẑi ≥ 0, i = 1, 2, . . . , p, (4.1)

where c : Rn+p → Rq+m+p and

c(z, ẑ; t) =

 h(z)
Φ(z; t)
g(z) + ẑ

 . (4.2)

We set x = (z, ẑ)T , f̃(x) = f(z) and rewrite (4.1) as follows

min
x
f̃(x) s.t. c(x; t) = 0, xi ≥ 0, i = n+ 1, . . . , n+ p. (4.3)

We focus on the following approximate KKT conditions of (4.3), if there exists multiplier
y ∈ Rq+m+p such that

r(x, y; t) =

∥∥∥∥∥


c(x; t)

[∇f̃(x)−∇c(x; t)y]E ,
[x]I · [∇f̃(x)−∇c(x; t)y]I

min{[x]I , [∇f̃(x)−∇c(x; t)y]I}


∥∥∥∥∥ ≤ ε, (4.4)

where ε > 0, E = {1, . . . , n} and I = {n + 1, . . . , n + p}. The Hessian of the Lagrangian

with respect to x is denoted by H(x, y; t) = ∇2f̃(x)−
q+m+p∑

i=1

yi∇2ci(x; t). We set

A(x) = {i ∈ I : [x]i = 0}, F(x) = {1, . . . , n+ p+ q +m+ p}\ A(x), (4.5)

A+(x, y) = {i ∈ A(x) | [∇f̃(x)−∇c(x; t)y]i > 0}, (4.6)

A0(x, y) = {i ∈ A(x) | [∇f̃(x)−∇c(x; t)y]i = 0}. (4.7)
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The idea of our method is to solve problem (4.3) inexactly. Hopefully, as t approaches
to zero, the iterate approaches to a solution of MPCC. The proposed method is based on
a stabilized sequential quadratic programming (SQP) method from Gill & Kungurtsev [5].
The problem format presented in [5] assumes that all variables are sign constrained, i.e.,
x ≥ 0. However, the problem (4.3) is different from the problem considered in [5], since we
only need the slack variables xI ≥ 0. The proposed method can be adapted to the case
where not all variables are sign constrained. Hence, we change the SQP method in [5] to
solve (4.3) and consider the iteration of variable t. Since our approach is different from [5],
the SQP merit function of (4.3) is given by

M(x, y; yE , u, t) = f̃(x)− c(x; t)T yE +
1

2u
∥c(x; t)∥2 + 1

2u
∥c(x; t) + u(y − yE)∥2, (4.8)

where yE is a Lagrange multiplier estimate, u is a positive penalty parameter and t is a
positive smoothing parameter. Note that M(x, y; yE , u, t) is at least twice continuously
differentiable function with respect to x, y, and for any given yE , u, t,

∇M(x, y; yE , u, t) =

(
∇f̃(x)−∇c(x; t)(π(x; yE , u, t) + (π(x; yE , u, t)− y))

u(y − π(x; yE , u, t))

)
, (4.9)

∇2M(x, y; yE , u, t) =(
H(x, π(x; yE , u, t) + (π(x; yE , u, t)− y); t) + 2

u∇c(x; t)∇c(x; t)
T ∇c(x; t)

∇c(x; t)T uI

)
, (4.10)

where π(x; yE , u, t) = yE − c(x; t)/u.
From [5, Theorem 1.3], the motivation of M(x, y; yE , u, t) as an SQP merit function is

given by Gill et al. The result can be applied to problem (4.3) such as Theorem 4.1.

Theorem 4.1. For each t > 0, if (xt, yt) is a solution of problem (4.3) that satisfies the
second order sufficient optimality conditions, i.e., r(xt, yt; t) = 0,

pTH(xt, yt; t)p > 0 for all p ∈ C(xt, yt; t)\{0}, (4.11)

where C(xt, yt; t) = {p | ∇c(xt; t)T p = 0, pi = 0 for i ∈ A+(x
t, yt), pi ≥ 0 for i ∈

A0(x
t, yt)}, then for the choice yE = yt, there exists a positive ū such that for all 0 < u < ū,

the point (xt, yt) satisfies the second order sufficient optimality conditions for the problem

min
x,y

M(x, y; yE , u, t) s.t. xi ≥ 0, i = n+ 1, . . . , n+ p. (4.12)

Let vk = (xk, yk) be the kth estimate of a primal-dual solution of (4.3) with t > 0 and
uRk be a second penalty parameter such that 0 < uRk ≤ uk. The quadratic model of the
change in M(x, y; yEk , u

R
k , t) is defined as

Qk(v; y
E
k , u

R
k , t) = ∇M(vk; y

E
k , u

R
k , t)

T (v − vk) +
1

2
(v − vk)TB(vk;uRk , t)(v − vk), (4.13)

where v = (x, y), yEk is an estimate of yk, and

B(v;u, t) =

(
H(x, y; t) + 2

u∇c(x; t)∇c(x; t)
T ∇c(x; t)

∇c(x; t)T uI

)
. (4.14)
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Notice that B(vk;u
R
k , t) is independent of y

E
k . According to the definition of Qk(v; y

E
k , u

R
k , t),

we consider the subproblem

min
v
Qk(v; y

E
k , u

R
k , t) s.t. vi ≥ 0, i = n+ 1, . . . , n+ p. (4.15)

By introducing B(v;uRk , t), the subproblem (4.15) can be formally equivalent to the QP
subproblem

min
x,y

∇f̃(xk)T (x− xk) +
1

2
(x− xk)TH(xk, yk; t)(x− xk) +

1

2
uRk ∥y∥2

s.t. c(xk; t) +∇c(xk; t)T (x− xk) + uRk (y − yEk ) = 0, (4.16)

xi ≥ 0, i = n+ 1, . . . , n+ p.

At the start of the kth iteration, uRk−1, uk−1 and (xk, yk) are given. In order to compute

yEk and uRk , it is necessary to define the ϵ-active set and its complement set, i.e.,

Aϵ(x, y;u, t) = {i ∈ I : xi ≤ ϵ, with ϵ ≡ min{ϵ1, max{u, r(x, y; t)γ}}, (4.17)

Fϵ(x, y;u, t) = {1, . . . , n+ p+ q +m+ p}\ Aϵ(x, y, u), (4.18)

where 0 < γ < 1, 0 < ϵ1 < 1. Furthermore, the required non-negative scalar ξk is computed

as part of the vector (ξk, s
(1)
k ) which is given by [5, Algorithm 1]. From [5], we have that

s
(1)
k = (µ

(1)
k , w

(1)
k ) and s

(1)T
k B(vk;u

R
k−1, t)s

(1)
k = −ξk∥µ(1)

k ∥2. The feasibility and optimality
measures are given by

η(xk; t) = ∥c(xk; t)∥ =

∥∥∥∥∥
 h(z)

Φ(z; t)
g(z) + ẑ

∥∥∥∥∥ (4.19)

and

ω(xk, yk, ξk; t) = max

{∥∥∥∥∥
 [∇f̃(xk)−∇c(xk; t)yk]E ,

[xk]I · [∇f̃(xk)−∇c(xk; t)yk]I
min{[xk]I , [∇f̃(xk)−∇c(xk; t)yk]I}

∥∥∥∥∥, ξk
}
. (4.20)

Define

ψv(xk, yk, ξk; t) = η(xk; t) + βω(xk, yk, ξk; t), ψo(xk, yk, ξk; t) = βη(xk; t) + ω(xk, yk, ξk; t),

where β is fixed and 0 < β ≪ 1. These functions ψv(vk, ξk; t) and ψo(vk, ξk; t) are used to
define the “V-iterate” and “O-iterate” in Algorithm 1. The new parameter is defined by

uRk =

{
min{uRk−1,max{r(xk, yk; t), ξk}γ}, if max{r(xk, yk; t), ξk} > 0,
1
2u

R
k−1, otherwise,

(4.21)

which is used for the local quadratic model. If vk is not satisfied the conditions of “V-O-
iterate”, then vk is checked to whether satisfy some conditions of the problem

min
x,y

M(x, y; yEk−1, u
R
k−1, t) s.t. xi ≥ 0, i = n+ 1, . . . , n+ p (4.22)

with t > 0. These conditions are called the “M-iterate” in Step 3 of Algorithm 1. Otherwise,
the yEk and uRk are fixed at the current values and (xk, yk) is called an “F-iterate”.
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Note that the problem (4.15) is not suitable to obtain a search direction because
B(vk;u

R
k , t) is not a positive definite matrix in general. In addition, the computation of

a second order solution of a nonconvex QP is intractable in certain instances. Hence, it is
necessary to consider the definition of a more appropriate quadratic model and line-search di-
rection. The line-search direction is the sum of the descent direction dk and the direction
of negative curvature. The vector dk is either the local descent direction or global descent
direction.

An optimal point v̂k = dk+vk of the subproblem (4.15) satisfies the optimality conditions

[∇Qk(dk + vk; y
E
k , u

R
k , t)]F(dk+vk) = 0, [∇Qk(dk + vk; y

E
k , u

R
k , t)]A(dk+vk) ≥ 0 and

[dk + vk]i ≥ 0, i = n+ 1, . . . , n+ p,
(4.23)

where the free and active set are evaluated at dk+vk. The local descent direction is computed
by the QP subproblem [5]

min
v
Qk(v; y

E
k , u

R
k , t) s.t. [v]Aϵ

= 0, (4.24)

which is given by relaxing the optimality conditions (4.23).
The global descent step is computed by solving the convex QP subproblem [5]

min
v
Q̂k(v; y

E
k , u

R
k , t) s.t. vi ≥ 0, i = n+ 1, . . . , n+ p, (4.25)

where Q̂k(v; y
E
k , u

R
k , t) = ∇M(vk; y

E
k , u

R
k , t)

T (v− vk)+ 1
2 (v− vk)

T B̂(vk;u
R
k , t)(v− vk) and

B̂(vk;u
R
k , t) =

(
Ĥ(xk, yk; t) +

2
uR
k

∇c(xk; t)∇c(xk; t)T ∇c(xk; t)
∇c(xk; t)T uRk I

)
. (4.26)

The Ĥ(x, y; t) is defined so that B̂(vk;u
R
k , t) is a positive definite matrix. The global descent

direction is defined by dk = v̂k − vk, where v̂k is the unique solution of the subproblem
(4.25). The detail computations of dk are summarized in Algorithm 2. The calculation of
the direction of negative curvature sk is given by Step 5 of Algorithm 1. The feasible second
order strategy can be stated as follow.

Algorithm 1: Second order primal dual algorithm for MPCC

Step 0 (Initialization)
Given initial point (x1, y1) ∈ Rn+p × Rq+m+p, parameters t1 > 0, ε1 > 0, 0 < γ < 1,
0 < ϵ1 < 1, 0 < γs < 0.5, 0 < ζ < 1, θ > 0 and the stopping tolerance ε′ > 0. Choose
yE0 ∈ Rq+m+p, τ0 > 0, ψmax

v,0 , ψmax
o,0 , ymax > 0, 0 < uR0 ≤ u1. Let k = 1, j = 1.

Step 1 (Least curvature estimate of Qk)
Compute the ϵ−free set Fϵ(xk, yk;u

R
k−1, tj) from (4.18) and r(xk, yk; tj) from (4.4);

∇ck = ∇c(xk; tj), Hk = H(xk, yk; tj); HF̄ϵ
and ∇cF̄ϵ

as submatrices of Hk and ∇ck related
to F̄ϵ = Fϵ(xk, yk;u

R
k−1, tj) ∩ {1, . . . , n+ p}.

If HF̄ϵ
+ (1/uRk−1)∇cF̄ϵ

∇cTF̄ϵ
is a positive semidefinite matrix then set

ξk = 0; µ
(1)
k = 0; w

(1)
k = 0;

else
Compute a direction µF̄ϵ

̸= 0 satisfying
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µT
F̄ϵ
(HF̄ϵ

+(1/uRk−1)∇cF̄ϵ
∇cTF̄ϵ

)µF̄ϵ
≤θλmin(HF̄ϵ

+(1/uRk−1)∇cF̄ϵ
∇cTF̄ϵ

)∥µF̄ϵ
∥2<0;

ξk = −µT
F̄ϵ
(HF̄ϵ

+ (1/uRk−1)∇cF̄ϵ
∇cTF̄ϵ

)µF̄ϵ
/∥µF̄ϵ

∥2 > 0;

[µ
(1)
k ]Aϵ

= 0; [µ
(1)
k ]F̄ϵ

= µF̄ϵ
; w

(1)
k = −(1/uRk−1)∇cTk µ

(1)
k ;

end if
Set s

(1)
k = (µ

(1)
k , w

(1)
k ).

Step 2 (Check the approximate second order conditions)
If

r(xk, yk; tj) ≤ εj , ξk ≤ εj and uRk−1 ≤ εj , (4.27)

then set tj+1 = ζtj ; εj+1 = ζεj ;
If εj < ε′ , stop;
else set j ← j + 1 and go to Step 1;

else go to Step 3.

Step 3 (Compute the new multipliers and parameters)
If ψv(xk, yk, ξk; tj) ≤ 1

2ψ
max
v,k−1, then [V-iterate]

set ψmax
v,k = 1

2ψ
max
v,k−1, y

E
k = yk, τk = τk−1and u

R
k as in (4.21);

else if ψo(xk, yk, ξk; tj) ≤ 1
2ψ

max
o,k−1, then [O-iterate]

set ψmax
o,k = 1

2ψ
max
o,k−1, y

E
k = yk, τk = τk−1 and uRk as in (4.21);

else if [M-iterate]

∥[∇xM(xk, yk; y
E
k−1, u

R
k−1, tj)]E∥ ≤ τk−1,

∥[xk]I · [∇xM(xk, yk; y
E
k−1, u

R
k−1, tj)]I∥ ≤ τk−1, (4.28)

∥min{[xk]I , [∇xM(xk, yk; y
E
k−1, u

R
k−1, tj)]I}∥ ≤ τk−1,

∥∇yM(xk, yk; y
E
k−1, u

R
k−1, tj)∥ ≤ τk−1u

R
k−1,

ξk ≤ τk−1

then set yEk = max{−ymaxe, min{yk, ymaxe}}, τk = 1
2τk−1 and

uRk =

{
min{ 12u

R
k−1,max{r(xk, yk; tj), ξk}γ}, if max{r(xk, yk; tj), ξk} > 0,

1
2u

R
k−1, otherwise,

(4.29)

else set yEk = yEk−1, τk = τk−1, uRk = uRk−1. [F-iterate]
end if

Step 4 (Termination criterion)
If min{∥c(xk; tj)∥, εj} > uRk and∥∥∥∥∥

(
[∇c(xk; tj)c(xk; tj)]E

min{[xk]I , [∇c(xk; tj)c(xk; tj)]I}

)∥∥∥∥∥ ≤ εj with k an M−iterate (4.30)

then set tj+1 = ζtj ; εj+1 = ζεj ;
If εj < ε′ , stop;
else set j ← j + 1, τk−1 = τk, u

R
k−1 = uRk and go to Step 1;

else go to Step 5.

Step 5 (Compute the search direction)
Compute the set Fϵ(xk, yk;u

R
k , tj) from (4.18); dk from Algorithm 2;
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If ∇M(vk; y
E
k , u

R
k , tj)

T s
(1)
k > 0 , then set s

(2)
k = −s(1)k ;

else set s
(2)
k = s

(1)
k ;

Let d̄k and µ
(2)
k be the first n+ p components of dk and s

(2)
k ;

Compute σk = argmax
σ≥0
{σ| [xk + d̄k + σµ

(2)
k ]I ≥ 0, ∥σ[µ(2)

k ]I∥ ≤ max{ξk, ∥[d̄k]I∥}} and

sk = (µk, wk) = σks
(2)
k .

If dk ̸= 0, sk = 0 and (xk, yk) is a V-O-iterate, then set lk = 1;
else set lk = 2.

Step 6 (Line search strategy)
Compute ∆vk = dk + sk, uk = max{uRk , uk} and ∇M = ∇M(vk; y

E
k , u

R
k , tj). Define the

univariate function Ψk(α;u, tj) =M(vk +α∆vk; y
E
k , u, tj) with respect to α, the line-search

model function
φk(α;u, lk, tj) = Ψk(0;u, tj)+αΨ

′
k(0;u, tj)+

1
2 (lk−1)α

2 min{0,∆vTk B(vk;uRk−1, tj)∆vk} and
ρk(α;u, lk, tj) = (Ψk(0;u, tj)−Ψk(α;u, tj))/(φk(0;u

R
k , lk, tj)− φk(α;u

R
k , lk, tj)).

If dk = 0, sk = 0, then set αk = 1;
else if dk ̸= 0 or ∇MT sk < 0 or uRk = uRk−1, then set αk = 1;

while ρk(αk;u
R
k , lk, tj) < γs and ρk(αk;uk, lk, tj) < γs, do αk = 1

2αk;
end while

else set [dk = 0, sk ̸= 0, ξk > 0]

ξRk = −sTk∇2M(vk; y
E
k , u

R
k , tj)sk/∥µk∥2; (4.31)

if ξRk > γsξk, then set αk = 1;
while ρk(αk;u

R
k , lk, tj) < γs and ρk(αk;uk, lk, tj) < γs, do αk = 1

2αk;
end while

else set αk = 0.
end if

end if
Set

uk+1 =

{
uk, if ρk(αk;uk, lk, tj) ≥ γs or dk = sk = 0 or αk = 0,
max{ 12uk, u

R
k }, otherwise,

(4.32)

vk+1 = (xk+1, yk+1) = vk + αkdk + αksk, k ← k + 1 and go to Step 1.

Remark 4.1. In Step 1 of Algorithm 1, we introduce the new index set F̄ϵ =
Fϵ(xk, yk;u

R
k−1, tj) ∩ {1, . . . , n + p} instead of Fϵ(xk, yk;u

R
k−1, tj) used in [5]. We suppose

that Step 1 is always successful to determine whether or not HF̄ϵ
+ (1/uRk−1)∇cF̄ϵ

∇cTF̄ϵ
is

positive semidefinite and compute a µFϵ
̸= 0 if HF̄ϵ

+ (1/uRk−1)∇cF̄ϵ
∇cTF̄ϵ

is not positive

semidefinite. The similar line search strategy was proposed by [5].

Note that Algorithm 1 and Algorithm 2 are different from the Algorithm 5 and 2 in [5],
since they are related to the iteration of variable tj and adapted to the case that all variables
are not sign constrained. In order to obtain an M-stationary point of MPCC, we consider
the approximate second order conditions (see Step 2 of Algorithm 1), which establish by
the new definition of r(x, y; t). In addition, the new r(x, y; t) have effect on the M-iterate
conditions and ψv, ψo of V-O-iterate (see Step 3 of Algorithm 1). The special structure of
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Algorithm 2: Computation of the descent direction dk
Given vk,y

E
k ,u

R
k ,∇ck,Hk from Algorithm 1. Set 0 < γ̃ < min{γ, 1− γ} < 1;

B = B(vk;u
R
k , tj);

∇Mk = ∇M(vk; y
E
k , u

R
k , tj); κk = r(vk; tj)

γ̃ ; [v̂
(0)
k ]Aϵ = 0; [v̂

(0)
k ]Fϵ = [vk]Fϵ ;

Qk(v) = Qk(v; y
E
k , u

R
k , tj); Q̂k(v) = Q̂k(v; y

E
k , u

R
k , tj); Compute B̂ from B.

Step 1 (Local descent direction)
If BFϵ

is a positive definite matrix and vk is a V-O-iterate, then set

[∆v̂
(0)
k ]Aϵ

= 0; Solve BFϵ
[∆v̂

(0)
k ]Fϵ

= −[∇Qk(v̂
(0)
k )]Fϵ

;

v̂k = v̂
(0)
k +∆v̂

(0)
k ; dk = v̂k − vk;

If vk + dk is feasible, ∇MT
k dk < 0 and [∇Qk(vk + dk)]Aϵ ≥ −κke, then

go to step 3;
else go to step 2.

else go to step 2.
Step 2 (Global descent direction)

Set [v̂
(0)
k ]Aϵ

= 0; Solve B̂Fϵ
[∆v̂

(0)
k ]Fϵ

= −[∇Q̂k(v̂
(0)
k )]Fϵ

; Compute α̂0 ≥ 0 and

v̂
(1)
k such that v̂

(1)
k = v̂

(0)
k + α̂0∆v̂

(0)
k is feasible;

From the starting point v̂
(1)
k , use the active set method to solve

the convex subproblem (4.25) to obtain v̂k; dk = v̂k − vk.
Step 3 Return to dk.

r(x, y; t) as shown in (4.4) is applied to Algorithm 1 to find a sequence of ε-KKT points
satisfying (2.11).

In order to obtain the convergence results, two assumptions are given as follows.

Assumption 4.1. The sequence {xk} generated by Algorithm 1 is contained in a compact
set.

Assumption 4.2. The sequence {Ĥ(xk, yk; tj)} is chosen to satisfy

∥Ĥ(xk, yk; tj)∥ ≤ Ĥmax and λmin(Ĥ(xk, yk; tj) + (1/uRk )∇ck∇cTk )) ≥ λmin (4.33)

for some Ĥmax, λmin > 0 and all k ≥ 0.

Similarly, these assumptions are given in [5]. If steps 2 and 4 are omitted from Algo-
rithm 1, the infinite sequence vk = (xk, yk) is generated by Algorithm 1. Based on these
assumptions and the similar analysis from [5], we know that there exists an infinite set of
V-O-iterates or M-iterates and uRk → 0 for all fixed j ≥ 1. If the set of V-O-iterates is finite,
then the set of M-iterates is infinite. We denote the setM = {k : iterate k is an M−iterate}.
For each fixed j, the limit point xj of {xk}k∈M satisfies c(xj ; tj) ̸= 0 and it is a KKT point
for the problem

min
x

1

2
∥c(x; tj)∥2 s.t. xi ≥ 0, i = n+ 1, . . . , n+ p. (4.34)

In the following theorem we prove that, if Step 2 and Step 4 are present, the conditions
(4.27) or (4.30) hold in a finite number of iterates k for all fixed j.

Theorem 4.2. If Algorithm 1 is implemented with a positive value of εj in Step 2 and Step
4, then the conditions (4.27) or (4.30) hold in a finite number of iterates k.
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Proof. We suppose by contradiction that there is a j′ such that (4.27) and (4.30) fail to hold
for all k ≥ 0. It implies that the infinite sequence {vk} is generated by Algorithm 1 for fixed
j′. There are two case to be considered. Suppose that there are infinitely V-O-iterates given
by the sequence S. By the update used for V-O-iterates and uRk → 0, we obtain that (4.27)
will be satisfied for all k ∈ S sufficiently large. This implies that the conditions (4.27) hold
after a finite number of iterates. Next, we consider the case that the set of V-O-iterates is
finite. By Assumption 4.1 and the optimality conditions of problem (4.34), there exists a
subsequenceM1 ⊆M of M-iterates such that

lim
k∈M1

xk = xj
′
,

∥∥∥∥∥
(

[∇c(xj′ ; tj′)c(xj
′
; tj′)]E

min{[xj′ ]I , [∇c(xj
′
; tj′)c(xk; tj′)]I}

)∥∥∥∥∥ = 0 and c(xj
′
; tj′) ̸= 0.(4.35)

It also follows from uRk → 0, (4.35) and (4.19) that

min{η(xk; tj′), εj′} > uRk for all k ∈M sufficiently large. (4.36)

The combination of (4.35) and the definition of M mean that (4.30) must hold for k ∈ M
sufficiently large. Hence, the conditions (4.30) are satisfied in a finite number of iterates
k.

Hence, for all j ≥ 1, there must exist a k = k(j) such that (4.27) or (4.30) hold. The
result plays an important role in the convergence analysis. It is clear that Algorithm 1
will terminate after a finite number of iterations if the termination conditions (εj < ε′)
are present. In the subsequent analysis, we assume that termination conditions (εj < ε′)
of steps 2 and 4 are omitted, and set j ← j + 1. As a consequence, there are infinitely
many iterations j in Algorithm 1. We turn to consider the properties of limit points x∗ with
iteration j.

The next result establishes that, in the case that the iterations satisfying (4.27) is finite,
there exists an infeasible limit point, i.e., c(x∗; 0) ̸= 0.

Theorem 4.3. Assume that x∗ is a limit point of {xk(j)} and the sequence {xk(j)} satisfies
(4.27) is finite. Then c(x∗; 0) ̸= 0 and x∗ is a stationary point of the nonsmooth problem

min
x

1

2
∥c(x; 0)∥2 s.t. xi ≥ 0, i = n+ 1, . . . , n+ p. (4.37)

Proof. By Theorem 4.2, we have that, for all j sufficiently large, there exists a k(j) such
that min{∥c(xk(j); tj)∥, εj} > uRk(j) and∥∥∥∥∥

(
[∇c(xk(j); tj)c(xk(j); tj)]E

min{[xk(j)]I , [∇c(xk(j); tj)c(xk(j); tj)]I}

)∥∥∥∥∥ ≤ εj with k(j) an M−iterate. (4.38)

We have

lim
j→+∞

[∇c(xk(j); tj)c(xk(j); tj)]E = 0, (4.39)

lim
j→+∞

min{[xk(j)]I , [∇c(xk(j); tj)c(xk(j); tj)]I} = 0. (4.40)

According to (4.39) and [22, Theorem 2.1], it is obvious that, for i ∈ E ,

lim
j→+∞

dist{[∇c(xk(j); tj)]i, [∂c(x∗; 0)]i} = 0 and 0 ∈ [∂c(x∗; 0)c(x∗; 0)]i, (4.41)
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where ∂c(x∗; 0) = conv{ lim
v→+∞

∇c(xv; 0) | xv → x∗, xv /∈ Fc} and Fc denotes the set that

c(x; 0) fails to be differentiable.
For i ∈ I, there are two cases to consider. Firstly, the index i ∈ I such that [x∗]i = 0. In

this case, we have that lim
j→+∞

[∇c(xk(j); tj)c(xk(j); tj)]i is nonnegative. From [22, Theorem

2.1], there exist V ∈ ∂c(x∗; 0) such that min{[x∗]i, [V c(x∗; 0)]i}=0. Secondly, taking into
account that [x∗]i > 0, i ∈ I, we obtain that lim

j→+∞
[∇c(xk(j); tj)c(xk(j); tj)]i = 0. Similarly,

it is clear that 0 ∈ [∂c(x∗; 0)c(x∗; 0)]i. Hence, x
∗ is a stationary point of problem (4.37).

Since k(j) is an M-iterate, it means that xk(j) satisfies

∥[∇xM(xk(j), yk(j); y
E
k−1(j), u

R
k−1(j), tj)]E∥ ≤ τk−1(j),

∥[xk(j)]I · [∇xM(xk(j), yk(j); y
E
k−1(j), u

R
k−1(j), tj)]I∥ ≤ τk−1(j),

∥min{[xk(j)]I , [∇xM(xk(j), yk(j); y
E
k−1(j), u

R
k−1(j), tj)]I}∥ ≤ τk−1(j),

∥∇yM(xk(j), yk(j); y
E
k−1(j), u

R
k−1(j), tj)∥ ≤ τk−1(j)u

R
k−1(j), ξk(j) ≤ τk−1(j).

We have

lim
j→+∞

∥min{[xk(j)]I , [∇f̃(xk(j))−∇c(xk(j); tj)yEk−1(j)

+
1

uRk−1(j)

∇c(xk(j); tj)c(xk(j); tj)]I}∥ = 0,

lim
j→+∞

∥[xk(j)]I · [∇f̃(xk(j))−∇c(xk(j); tj)yEk−1(j)

+
1

uRk−1(j)

∇c(xk(j); tj)c(xk(j); tj)]I∥ = 0,

lim
j→+∞

∥[∇f̃(xk(j))−∇c(xk(j); tj)yEk−1(j)

+
1

uRk−1(j)

∇c(xk(j); tj)c(xk(j); tj)]E∥ = 0, (4.42)

lim
j→+∞

∥π(xk(j); yEk−1(j), u
R
k−1(j), tj)− yk(j)∥ = 0, lim

j→+∞
ξk(j) = 0,

where π(xk(j); y
E
k−1(j), u

R
k−1(j), tj) = yEk−1(j) − c(xk(j); tj)/u

R
k−1(j). These limits follow from

the definition of M-iterates and the fact lim
j→+∞

τk−1(j) = 0 is enforced by Algorithm 1. It

remains to show that ∥c(x∗; 0)∥ ̸= 0. This leads to a contradiction. If ∥c(x∗; 0)∥ = 0, then
it follows from (4.42) that xk(j) must satisfy (4.27) for j sufficiently large. This completes
the proof.

In Section 3, the constraint qualification is a crucial important requirement in the analysis
of convergence. Combining with MPCC-LICQ, we consider the relationship between the
approximate second order stationary points of (4.3) and (2.3). In what follows, we show
that the sequence of multipliers {yk(j)} is uniformly bounded, if there are infinite many
iterations satisfy (4.27) and MPCC-LICQ holds at the limit point. Then, we show that it
is reasonable to get the approximate second order stationary points of (2.3) by Algorithm
1. Hence, our method is realistic from a numerical point of view.

Theorem 4.4. Let J be the index set J = {j : vk(j) satisfies (4.27)}. Consider the infinitely
sequence {vk(j)} = {(xk(j), yk(j))}, where {vk(j)} is generated by Algorithm 1 and satisfies
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(4.27). Suppose that {xk(j)}
J−→ x∗ = (z∗, ẑ∗)T as j → +∞. If MPCC-LICQ holds at z∗,

then the sequence {yk(j)} is uniformly bounded.

Proof. Since infinitely many {vk(j)} = {(xk(j), yk(j))} satisfy the conditions (4.27), then we
have

r(xk(j), yk(j); tj) ≤ εj , ξk(j) ≤ εj and uRk−1(j) ≤ εj . (4.43)

It is clear that

lim
j→+∞

r(xk(j), yk(j); tj) = 0 and Ig(z∗) = I(ẑ∗), (4.44)

where x∗ = (z∗, ẑ∗) and I(ẑ∗) = {i ∈ I | [ẑ∗]i = 0}. If the sequence {yk(j)} is unbounded,
then there exists a subsequence J1 ⊆ J such that

yk(j)

∥yk(j)∥
J1−−→ y∗ ̸= 0. (4.45)

Let ϱj ∈ Rp denote a sequence such that ϱj = max{0, [∇f̃(xk(j))−∇c(xk(j); tj)yk(j)]I} ≥ 0.
According to the definition of ϱj , (4.44) and (4.45) imply that

lim
j→+∞

(
∇f̃(xk(j))−∇c(xk(j); tj)yk(j) −

(
0
ϱj

))
= 0 (4.46)

and {ϱj/∥yk(j)∥}j∈J1 is bounded. Without loss of generality, we suppose that ϱj

∥yk(j)∥
J1−−→

ỹ∗ and ỹ∗≥0. It is not hard to get from (4.46), (4.2), (3.3) and {xk(j)} → x∗ that

0 = lim
j∈J1

1

∥yk(j)∥

(
∇f̃(xk(j))−∇c(xk(j); tj)yk(j) −

(
0
ϱj

))

= lim
j∈J1

1

∥yk(j)∥
(4.47)∇f(zk(j))− q∑

i=1

[yhk(j)]i∇hi(zk(j))−
m∑
i=1

[yϕk(j)]i∇ϕi(zk(j); tj)−
p∑

i=1

[ygk(j)]i∇gi(zk(j))

−ygk(j) − ϱ
j

 ,

where yk(j) = (yhk(j), y
ϕ
k(j), y

g
k(j))

T and y∗ = (yh,∗, yϕ,∗, yg,∗)T . It must hold that ỹ∗ = −yg,∗
and

q∑
i=1

[yh,∗]i∇hi(z∗) +
∑

i∈I0+∪I00

[yϕ,∗]iν
∗
i1∇Gi(z

∗)

+
∑

i∈I+0∪I00

[yϕ,∗]iν
∗
i2∇Hi(z

∗) +

p∑
i=1

[yg,∗]i∇gi(z∗) = 0,

where

ν∗i1 ∈ [0, 1], ν∗i2 ∈ [0, 1] and ν∗i1 + ν∗i2 = 1. (4.48)

According to (4.44) and (4.47), we have supp(yg,∗) = supp(ỹ∗) ⊆ I(ẑ∗) = Ig(z∗). Since
MPCC-LICQ holds at z∗, it implies that yh,∗ = 0, [yϕ,∗]iν

∗
i1 = 0 for i ∈ I0+∪I00, [yϕ,∗]iν∗i2 =

0 for i ∈ I+0 ∪ I00 and yg,∗ = 0. From (4.48), we have yϕ,∗ = 0. Therefore, it follows that
y∗ = 0, which contradicts that y∗ ̸= 0.
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Theorem 4.5. Assume that the infinite sequence {(xk(j), yk(j))} satisfies (4.27) generated
by Algorithm 1 and x∗ = (z∗, ẑ∗) is a limit point of {xk(j)}. If MPCC-LICQ holds at z∗,
then we get a sequence of the approximate second order stationary points of NLP (tj) for j
sufficiently large. Hence, z∗ is M-stationary of MPCC. In addition, if ULSC is satisfied at
z∗, then z∗ is S-stationary.

Proof. Let {(xk(j), yk(j))} be a sequence generated by Algorithm 1 and satisfy the conditions
of (4.27). It follows from (4.43) that

∥c(xk(j); tj)∥ =

∥∥∥∥∥
 h(zk(j))

Φ(zk(j); tj)
g(zk(j)) + ẑk(j)

∥∥∥∥∥ ≤ εj , (4.49)

which implies that

∥h(zk(j))∥∞ ≤ εj , |ϕi(zk(j); tj)| ≤ εj , i = 1, . . . ,m and (4.50)

|gi(zk(j)) + [ẑk(j)]i| ≤ εj , i = 1, . . . , p. (4.51)

We can rewrite (4.51) as

|gi(zk(j))| ≤ εj + |[ẑk(j)]i|, i = 1, . . . , p. (4.52)

From (4.43), we have ∥[∇f̃(xk(j))−∇c(xk(j); tj)yk(j)]E∥ ≤ εj and

∇f̃(xk(j))−∇c(xk(j); tj)yk(j) = ∇f(zk(j))− q∑
i=1

[yhk(j)]i∇hi(zk(j))−
m∑
i=1

[yϕk(j)]i∇ϕi(zk(j); tj)−
p∑

i=1

[ygk(j)]i∇gi(zk(j))

−ygk(j)

 ,

(4.53)

where yk(j) = (yhk(j), y
ϕ
k(j), y

g
k(j))

T . It is obvious that

∥ ∇f(zk(j))−
q∑

i=1

[yhk(j)]i∇hi(zk(j))

−
m∑
i=1

[yϕk(j)]i∇ϕi(zk(j); tj)−
p∑

i=1

[ygk(j)]i∇gi(zk(j)) ∥∞≤ εj . (4.54)

From (4.43) and (4.53), we obtain∥∥∥∥∥
(

−ẑk(j)ygk(j)
min{ẑk(j),−ygk(j)}

)∥∥∥∥∥ ≤ εj . (4.55)

Since MPCC-LICQ holds at z∗, in view of Theorem 4.4, we know that the sequence
{yk(j)} is uniformly bounded. There exists a positive constant C1 such that ∥yk(j)∥∞ ≤ C1

for j sufficiently large. If [−ygk(j)]i > [ẑk(j)]i, then |[ẑk(j)]i| ≤ εj . It follows from (4.52) that

|gi(zk(j))| ≤ 2εj , [−ygk(j)]i ≥ −εj and |[−ygk(j)]igi(zk(j))| ≤ 2C1εj . (4.56)
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If [−ygk(j)]i ≤ [ẑk(j)]i, then |[−ygk(j)]i| ≤ εj and [ẑk(j)]i ≥ −εj . According to Assumption 4.1,

there exists a positive constant C2 such that ∥ẑk(j)∥∞ ≤ C2 for j sufficiently large. From
(4.51) and (4.52), we have gi(zk(j)) ≤ 2εj and |gi(zk(j))| ≤ εj + C2. It is clear that

gi(zk(j)) ≤ 2εj , [−ygk(j)]i ≥ −εj and |[−ygk(j)]igi(zk(j))| ≤ (εj + C2)εj . (4.57)

From (4.50), (4.54), (4.56) and (4.57), we obtain that zk(j) is an ε̃j-KKT point of NLP (tj),
where ε̃j = max{ 2εj , (εj + C2)εj , 2C1εj }.

Furthermore, we focus on the condition (2.11). From (4.49), we have uRk−1(j) → 0 as

j → +∞ and I(ẑ∗) = Ig(z∗). Consider the set

Ĉ(xk(j), yk(j); tj) =


∇c(xk(j); tj)T p = 0,

p ∈ Rn+p|
pi = 0 i ∈ Aϵ(xk(j), yk(j);u

R
k−1(j), tj)

 (4.58)

and the definition of ϵ-active set (4.17). It implies that, for j sufficiently large,

Aϵ(xk(j), yk(j);u
R
k−1(j), tj) ⊆ A(x

∗). (4.59)

Hence, we have C̃(xk(j); tj) ⊆ Ĉ(xk(j), yk(j); tj) for j sufficiently large, where

C̃(xk(j); tj)
= {p ∈ Rn+p| ∇c(xk(j); tj)T p = 0, pi = 0 i ∈ A(x∗)}

=

{(
pE
pI

)
| ∇hi(zk(j))

T pE = 0 i = 1, . . . , q, ∇ϕi(zk(j); tj)T pE = 0 i = 1, . . . ,m,
∇gi(zk(j))T pE + [pI ]i = 0 i = 1, . . . , p, [pI ]i = 0 i ∈ Ig(z∗)

}
and pE = (p1, . . . , pn)

T , pI = (pn+1, . . . , pn+p)
T . Let d denote any vector such that d ∈

T̄ (zk(j); tj), where

T̄ (zk(j); tj) =

 ∇gi(zk(j))T d = 0 i ∈ Ig(z∗), ∇hi(zk(j))T d = 0 i ∈ Ih,
d ∈ Rn|

∇ϕi(zk(j); tj)T d = 0 i = 1, . . . ,m

 .

There exists a

(
pE
pI

)
such that d = pE and

(
pE
pI

)
∈ C̃(xk(j); tj) with ∥p∥ =

∥
(
pE
pI

)
∥ = 1. If pF̄ϵ

is the vector of components of p associated with the set F̄ϵ =

Fϵ(xk(j), yk(j);u
R
k−1(j), tj) ∩ {1, . . . , n + p}, then the definition of p as a vector of unit

norm in the set C̃(xk(j); tj) ⊆ Ĉ(xk(j), yk(j); tj) implies that ∥pF̄ϵ
∥ = 1. Furthermore,

∇c(xk(j); tj)p = 0 and ξk(j) ≤ εj imply that

dT∇2
zL(zk(j),−y

g
k(j),−y

h
k(j), y

ϕ
k(j); tj)d

∥d∥2
= pTH(xk(j), yk(j); tj)p

= pT (H(xk(j), yk(j); tj) + (1/uRk−1)∇c(xk(j); tj)∇c(xk(j); tj)T )p
= pTF̄ϵ

(HF̄ϵ,k(j) + (1/uRk−1)∇cF̄ϵ,k(j)∇c
T
F̄ϵ,k(j)

)pF̄ϵ

≥ λmin(HF̄ϵ,k(j) + (1/uRk−1)∇cF̄ϵ,k(j)∇c
T
F̄ϵ,k(j)

)∥pF̄ϵ
∥2

≥
µT
F̄ϵ,k(j)

(HF̄ϵ,k(j) + (1/uRk−1(j))∇cF̄ϵ,k(j)∇c
T
F̄ϵ,k(j)

)µF̄ϵ,k(j)

θ∥µF̄ϵ,k(j)∥2

= −1

θ
ξk(j) ≥ −

1

θ
εj ,
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where

HF̄ϵ,k(j) + (1/uRk−1)∇cF̄ϵ,k(j)∇c
T
F̄ϵ,k(j)

= [H(xk(j), yk(j); tj) + (1/uRk−1)∇c(xk(j); tj)∇c(xk(j); tj)T ]F̄ϵ
.

Denote ε̄j = max{ 1
θ εj , ε̃j }, we obtain a sequence of the approximate second order sta-

tionary points of NLP (tj) for j sufficiently large. Therefore, the desired results can be
obtained from Theorem 3.1.

According to Theorem 4.5, we note that the sequence generated by Algorithm 1 satisfies
the approximate second order stationary conditions for j sufficiently large under suitable
conditions. Our feasible strategy shows the advantages of approximate stationary conditions
as termination criteria from a numerical point of view.

5 Numerical Results

In this section, we concern a numerical implementation of Algorithm 1 described in the
previous section. We apply Algorithm 1 to compute an approximate optimal solution of (1.1).
To investigate the numerical behavior of Algorithm 1 for MPCC, we write an experimental
code and test some problems in MacMPEC database available at https://wiki.mcs.anl.gov/
leyffer/index.php/MacMPEC. These problems are transformed in the form (4.3) and coded
in Matlab 2014b. In our experiments, we chose the values for the parameters as: γ =
0.5, ϵ1 = 10−5, γs = 10−3, θ = 10−5, ε′ = 10−5, τ0 = 1, γ̃ = 0.2, β = 10−5, ψmax

v,0 =

103, ψmax
o,0 = 103, ymax = 106, uR0 = 10−4, u1 = 1. Table 5.1 summarizes the results, where

fgen is the recommended function value in MacMPEC database, f∗ denotes the final value
and z∗ is the final solution. The maximal degree of constraint violation from [6] is usually
used to measure the feasibility of the final iterate z∗, which is defined by

maxvio(z∗) = max{∥max{g(z∗), 0}∥, ∥h(z∗)∥, ∥min{G(z∗),H(z∗)}∥}.

The objective function value and maxvio(z∗) can measure the accuracy of the solutions for
MPCC.

From Table 5.1, we notice that Algorithm 1 does well on almost test problems of relatively
small and medium sizes. Algorithm 1 can obtain the same optimal value for these test
problems as the recommended function value in MacMPEC database except for ex 9.1.2
and ex 9.2.5. Actually, the final objective values of ex 9.1.2 and ex 9.2.5 are similar to the
numerical results in [8]. We discuss the numerical results of ex 9.1.2 and ex 9.2.5 in more
detail. By our algorithm, we obtain that the final iterates z∗ of ex 9.1.2 and ex 9.2.5 tend
to (3, 0, 6, 9, 0, 0, 0, 0, 1, 0) and (3, 5, 2, 9, 1, 0, 0, 0) respectively. By verification,
these limit points are M-stationary points of MPCC and satisfy MPCC-LICQ. Hence, these
numerical results confirm our theoretical convergence properties, which implies Algorithm 1
is reasonable. Furthermore, the maximum violation of all constraints is less than 10−4 for
all test instances. Numerical results of these test problems indicate the applicability of our
algorithm.

6 Conclusion

In this paper, we focus on an inexact log-exponential regularization method for MPCC. Due
to the fact that the KKT points are not useful from a practical standpoint. We consider
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Table 5.1: Numerical results on some problems from MacMPEC.
Problem fgen f∗ maxvio(z∗)

1 bard1 17.000 17.000 6.750e-14
2 bard1m 17.000 17.000 5.695e-05
3 dempe 28.250 28.250 1.870e-09
4 desilva -1.000 -1.000 5.598e-05
5 df1 0.000 2.000e-08 2.082e-06
6 ex 9.1.1 -13.000 13.000 5.112e-05
7 ex 9.1.2 -6.250 -3.004 2.138e-05
8 ex 9.1.4 -37.000 -37.000 3.803e-05
9 ex 9.1.5 -1.000 -1.000 7.919e-05
10 ex 9.1.6 -49.000 -49.000 5.798e-06
11 ex 9.1.8 -3.250 -3.248 1.428e-05
12 ex 9.2.1 17.000 17.000 9.318e-05
13 ex 9.2.2 100.000 100.000 7.145e-05
14 ex 9.2.4 0.500 0.500 5.758e-08
15 ex 9.2.5 6.000 9.000 1.320e-05
16 ex 9.2.6 -1.000 -1.000 2.403e-06
17 ex 9.2.9 2.000 2.001 2.549e-05
18 gauvin 20.000 20.000 4.169e-06
19 flp2 0.000 2.603e-12 8.721e-09
20 gnash10 -230.823 -230.823 8.215e-08
21 gnash11 -129.912 -129.912 2.261e-06
22 gnash12 -36.933 -36.933 1.053e-07
23 gnash13 -7.062 -7.062 8.609e-08
24 gnash14 -0.179 -0.179 4.406e-05
25 gnash15 -354.699 -354.699 8.000e-05
26 gnash16 -241.442 -241.442 3.886e-07
27 gnash17 -90.749 -90.749 1.137e-06
28 gnash18 -25.698 -25.698 1.736e-07
29 gnash19 -6.117 -6.117 1.303e-05
30 jr1 0.500 0.500 0
31 jr2 0.500 0.500 5.194e-10
32 kth1 0.000 2.787e-08 1.999e-05
33 kth2 0.000 0.000 0
34 kth3 0.500 0.500 2.912e-07
35 nash1a 0.000 1.652e-13 1.098e-05
36 nash1b 0.000 3.638e-15 2.323e-05
37 nash1c 0.000 5.902e-13 1.769e-05
38 nash1d 0.000 1.093e-09 7.784e-06
39 nash1e 0.000 1.977e-13 1.125e-05
40 outrata31 3.208 3.208 8.966e-05
41 outrata32 3.449 3.449 5.704e-06
42 outrata33 4.604 4.604 5.573e-07
43 outrata34 6.593 6.593 7.463e-06
44 qpec1 80.000 80.000 2.167e-08
45 qpec2 45.000 45.000 8.860e-07
46 ralph2 0.000 -2.243e-13 3.484e-08
47 scholtes1 2.000 2.000 2.694e-08
48 scholtes3 0.500 0.500 1.253e-12
49 scholtes4 0.000 -6.286e-09 3.248e-09
50 scholtes5 1.000 1.000 2.186e-09
51 scale1 1.000 1.000 2.802e-11
52 scale2 1.000 1.000 2.737e-08
53 scale3 1.000 1.000 3.320e-07
54 scale4 1.000 1.000 1.629e-08
55 scale5 100.000 100.000 4.971e-09
56 stackelberg1 -3266.670 -3266.670 5.555e-09
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a sequence of the approximate second order stationary points of the regularized problems
and the limit point is M-stationary of MPCC. In addition, we propose a second order
primal-dual stabilized SQP method to solve MPCC, where the regularized subproblems are
solved inexactly. It is shown that the approximate conditions are appropriate choices of the
termination criteria. Furthermore, the experiments illustrate that the approach is effective
to solve MPCC from a practical point of view.
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