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leader in general has incomplete information about the followers, i.e., he may not know the
values of all parameters in the lower level problem. The leader would like to create a safety
margin to bound the damage resulting from undesirable selections of the followers. Finally, if
the leader can obtain a pessimistic solution, this result will provide him with a policy-making
reference that prompts him to make a rational decision to effectively control risk. Note that,
several studies has been contributed to pessimistic (weak) bilevel programming problems [18]
from different subjects: existing results of solutions [1, 2, 3, 4, 16, 20, 21, 26, 39], optimality
conditions [10, 13, 14], approximation algorithm [8, 15, 32], penalty method [2, 37], reduction
method [34, 40] and so on.

The above stated pessimistic bilevel programming problems are limited to a specific
situation with one-leader-and-one-follower. However, for the actual bilevel programming
problems, the lower level problem often involves multiple decision makers. Moreover, the
most basic situation is that these followers are uncooperative and they do cross reference
information by considering other followers’ decision results in each of their own decision
objectives and constraints. It is worthwhile noting that, Lu et al. [23] call this case as a
referential-uncooperative situation, and this paper will study the pessimistic linear bilevel
multi-follower programming problem on this situation. Note that several papers have been
devoted to bilevel multi-follower decision making problems dealing with different situations,
we cite, for example, Refs. [24, 38]. The reader is also referred to the book on bilevel
multi-follower decision making [35].

The remainder of the paper is organized as follows. The pessimistic linear bi-level
multi-followers programming problem is presented in a referential-uncooperative situation
(PLBMF-RU) in Section 2. Under some assumptions, the penalized problems of PLBMF-
RU are proposed in Section 3. A case study is given to illustrate the PLBMF-RU model
and its feasibility in Section 4. Finally, the conclusions are given.

2 PLBMF-RU

Under the bilevel optimizaiton framework, if the followers do not have any shared control
decision variable, it is called an uncooperative relationship. However, if either of them has a
reference or consideration of other followers’ decision information in their objective or con-
straint functions, the followers are defined having a referential-uncooperative relationship.
When there is a referential-uncooperative relationship in a bilevel optimization model, the
leader in general has incomplete information about the followers, e.g., he may not know
the values of all parameters of the followers or the relations among the followers. Then the
leader may be risk-averse, and would need a safety margin to bound the damage resulting
from the undesirable selections of the followers. This situation is called a pessimistic linear
bilevel multi-followers programming problem in a referential-uncooperative situation.

Consider the following pessimistic linear bilevel programming problem (P ) where k fol-
lowers are involved in a referential-uncooperative situation:

min
x,y1,...,yk

cTx+

k∑
i=1

sup
yi∈Ψi(x,y−i)

dTi yi

s.t. x ∈ X,

where y−i = (y1, . . . , yi−1, yi+1, . . . , yk) and Ψi(x, y−i) is the set of solutions of the ith



PLBMF-RU WITH APPLICATION 869

follower’s problem

min
yi≥0

uT
i yi

s.t. Aix+

k∑
j=1

Bijyj ≤ bi.

Here, x, c ∈ Rn, yi, di, ui ∈ Rmi , Ai ∈ Rqi×n, Bij ∈ Rqi×mj , bi ∈ Rqi , i, j = 1, 2, . . . , k, and
X is a closed subset of Rn.

Problem (P ) can be equivalently transformed into the following problem :

min
x,y1,...,yk

cTx+

k∑
i=1

dTi yi

s.t. x ∈ X,

where yi is a solution of the following problem (P (x, y−i)),

max
yi∈Ψi(x,y−i)

dTi yi.

In order to assure that the problem is well-posed, it will now be assumed that a solution
to problem (P ) exists.

Next, we give some definitions of problem (P ).

Definition 2.1. (a) Constraint region of problem (P ):

S = {(x, y1, . . . , yk) : x ∈ X,Aix+

k∑
j=1

Bijyj ≤ bi, yi ≥ 0, i = 1, 2, . . . , k}.

(b) Projection of S onto the leader’s decision space:

S(X) = {x ∈ X : (x, y1, . . . , yk) ∈ S}.

(c) Feasible set for the ith follower:

Si(x, y−i) = {yi : Aix+

k∑
j=1

Bijyj ≤ bi, yi ≥ 0}.

(d) The ith follower’s rational reaction set:

Ψi(x, y−i) = {yi : yi ∈ Argmin[uT
i yi : yi ∈ Si(x, y−i)]}.

(e) Inducible region or feasible region of the leader:

IR = {(x, y1, . . . , yk) : (x, y1, . . . , yk) ∈ S, yi ∈ Ψi(x, y−i), i = 1, 2, . . . , k}.

Note that, (x∗, y∗1 , . . . , y
∗
k) ∈ IR means that, ∀i = 1, 2, . . . , k,

uT
i yi ≥ uT

i y
∗
i

for any yi ∈ Si(x
∗, y∗−i) where y∗−i = (y∗1 , . . . , y

∗
i−1, y

∗
i+1, . . . , y

∗
k). Then, a popular solution

concept is the so-called Nash equilibrium defined as (y∗1 , . . . , y
∗
k) with respect to x∗. The

interested reader can refer to Refs. [5, 17].
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Definition 2.2. A point (x∗, y∗1 , . . . , y
∗
k) ∈ IR is called a pessimistic solution to problem

(P ), if

cTx∗ +

k∑
i=1

fi(x
∗, y∗−i) ≤ cTx+

k∑
i=1

fi(x, y−i), ∀ (x, y1, . . . , yk) ∈ IR,

where fi(x, y−i) = supyi∈Ψi(x,y−i) dTi yi for all i = 1, 2, . . . , k.

To illustrate these concepts, assume that k = 2 followers exist, and that for each i = 1, 2,
the ith follower controls over the vector yi = (y1i , y

2
i ) ∈ R2. Consider the following example

which is a pessimistic linear bilevel programming problem where two followers are involved
in a referential-uncooperative situation.

Example 2.3.

min
x,y1,y2

{−5x+ sup
y1∈Ψ1(x,y−1)

(y11 + 2y21) + sup
y2∈Ψ2(x,y−2)

(y12 + 2y22)}

s.t. 0 ≤ x ≤ 1,

where Ψ1(x, y−1) and Ψ2(x, y−2) are the sets of solutions of the followers’ problem respec-
tively,

min
y1≥0

−y11 − y21

s.t. y11 + y21 ≤ x,

y11 + y21 ≤ x+ y12 + y22 − 0.4,

min
y2≥0

−y12 − y22

s.t. y12 + y22 ≤ x,

y12 + y22 ≤ x+ y11 + y21 − 0.6.

Here, the constraint region is given by

S =
{
(x, y1, y2) : 0 ≤ x ≤ 1, y11 + y21 ≤ x, y11 + y21 ≤ x+ y12 + y22 − 0.4,

y12 + y22 ≤ x, y12 + y22 ≤ x+ y11 + y21 − 0.6, y1, y2 ≥ 0
}
.

The vector (0.6, 0, 0, 0, 0) ∈ S, but it is not a feasible point since, given x = 0.6 and y2 =
(0, 0), y1 = (0.2, 0) (rather than y1 = (0, 0)) minimizes the first follower’s problem. The
vector (0.5, 0.1, 0, 0, 0) is feasible, since (0.1, 0, 0, 0) is a Nash equilibrium point with respect
to x = 0.5. It is not difficult to show that the inducible region IR for this example is given
by

IR =

{
(x, y1, y2) :

y11 + y21 =

{
x, y12 + y22 ≥ 0.4;
x+ y12 + y22 − 0.4, y12 + y22 < 0.4;

y12 + y22 =

{
x, y11 + y21 ≥ 0.6;
x+ y11 + y21 − 0.6, y11 + y21 < 0.6;

(x, y1, y2) ∈ S

}
.

Given IR, it is easy to check that the feasible point (0.5, 0.1, 0, 0, 0) of S is the pessimistic
solution for this example and that the leader’s objective value is −2.3.
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3 Penalty Problems

In this section, the penalized problems of PLBMF-RU are proposed under some suitable
conditions. To establish theoretical results, we need the following assumptions throughout
the paper.

Assumption A:

(A1) For any x ∈ X, the sets Si(x, y−i) are non-empty, and there exists compact subsets
Wi such that Si(x, y−i) ⊂ Wi for all x ∈ X, i = 1, 2, . . . , k.

(A2) The set X is a bounded non-empty polyhedron.

Then we have the following lemma which provides the existence of solutions to problem
(P ).

Lemma 3.1. If assumptions (A1) and (A2) are satisfied, then problem (P ) has at least one
solution.

Proof. Under assumptions (A1) and (A2), for each i = 1, 2, . . . , k, it follows from [11, Theo-
rem 4.3] that fi(x, y−i) is continuous. Using the results of [28, Lemma 1], we have that IR is
a non-empty compact set. Therefore, the proof follows from the Weierstrass’s Theorem.

The dual problem of the lower level problem in (P ) can be written as:

max
zi≥0

−(bi −Aix−
k∑

j=1,j ̸=i

Bijyj)
T zi

s.t. −BT
iizi ≤ ui.

Let Zi := {zi : −BT
iizi ≤ ui, zi ≥ 0}, and denote the ith follower’s duality gap by

πi(x, y1, . . . , yk, zi) := uT
i yi + (bi −Aix−

∑k
j=1,j ̸=i Bijyj)

T zi.
It follows from the dual theory that problem (P (x, y−i)) is written as follows:

max
yi,zi

dTi yi

s.t. πi(x, y1, . . . , yk, zi) = 0,

yi ∈ Si(x, y−i),

zi ∈ Zi.

For ρi > 0 (i = 1, 2, . . . , k), we consider the following penalized problem (Pρi
(x, y−i)):

max
yi,zi

dTi yi − ρiπi(x, y1, . . . , yk, zi)

s.t. yi ∈ Si(x, y−i),

zi ∈ Zi.

Let V (·) represent the set of vertices of the set to be concerned.

Lemma 3.2. Under assumption (A1), for ρi > 0, problem (Pρi(x, y−i)) has at least one
solution in V (Si(x, y−i)× V (Zi).
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Proof. For ρi > 0, we have

sup
yi ∈ Si(x, y−i)

zi ∈ Zi

[dTi yi − ρiπi(x, y1, . . . , yk, zi)] ≤ sup
yi∈Si(x,y−i)

dTi yi

= max
yi∈Si(x,y−i)

dTi yi.

Then, it follows from (A1) that the objective function of the linear programming problem
(Pρi

(x, y−i)) is bounded from above. Hence, the latter problem has at least one solution in
V (Si(x, y−i))× V (Zi).

The dual of problem (Pρi
(x, y−i)) is written as:

min
ti,vi≥0

(bi −Aix−
k∑

j=1,j ̸=i

Bijyj)
T ti + uT

i vi

s.t. −BT
ii ti ≤ −di + ρiui,

Biivi ≤ ρi(bi −Aix−
k∑

j=1,j ̸=i

Bijyj).

Then, we can get the following intermediate penalized problem (P̄ ):

min
x,yi,zi,ti,vi,i=1,2,...,k

cTx+

k∑
i=1

[(bi −Aix−
k∑

j=1,j ̸=i

Bijyj)
T ti + uT

i vi]

s.t. −BT
ii ti ≤ −di + ρiui,

Biivi ≤ ρi(bi −Aix−
k∑

j=1,j ̸=i

Bijyj),

(x, y1, . . . , yk) ∈ S, zi ∈ Zi,

ti, vi ≥ 0, i = 1, 2, . . . , k.

For simplicity, let

Zk+1(ρ1, . . . , ρk) :=
{
(x, y1, . . . , yk, v1, . . . , vk) : (x, y1, . . . , yk) ∈ S,

Biivi ≤ ρi(bi −Aix−
k∑

j=1,j ̸=i

Bijyj), vi ≥ 0, i = 1, 2, . . . , k
}
,

Zk+2(ρ1, . . . , ρk) :=
{
(z1, . . . , zk, t1, . . . , tk) : zi ∈ Zi,−BT

ii ti ≤ −di + ρiui,

ti ≥ 0, i = 1, . . . , k
}
.

Then, we have the following results which provide the existence of solutions to problem
(P̄ ).

Theorem 3.3. Under Assumption A, for fixed values of ρi > 0 (i = 1, 2, . . . , k), problem
(P̄ ) has at least one solution in V (Zk+1(ρ1, . . . , ρk))× V (Zk+2(ρ1, . . . , ρk)).

Proof. Note that problem (P̄ ) is a disjoint bilinear programming problem for fixed values
of ρi > 0 (i = 1, 2, . . . , k). Similar the proof of Theorem 3.2 in [2], we can conclude that
problem (P̄ ) has at least one solution in V (Zk+1(ρ1, . . . , ρk))× V (Zk+2(ρ1, . . . , ρk)).
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For any η > 0, let Wη = {(α, β) : Bβ ≤ η(b−Aα)} and W = {(α, ξ) : Bξ ≤ b−Aα}.

Lemma 3.4. If (α∗
η, β

∗
η) ∈ V (Wη), then there exists (α∗, ξ∗) ∈ V (W) such that α∗

η = α∗.

Proof. By the definition of W, we have
(
α∗
η,

β∗
η

η

)
∈ W . Let (α1, ξ1), . . . , (αr, ξr) be the

distinct vertices of W. Since any point in W can be written as a convex combination of

these vertices, let
(
α∗
η,

β∗
η

η

)
=

∑r̂
i=1 κ

i(αi, ξi), where
∑r̂

i=1 κ
i = 1, κi > 0, i = 1, . . . , r̂, and

r̂ ≤ r. Then, it follows that

(α∗
η, β

∗
η) =

r̂∑
i=1

κi(αi, ηξi).

Note that (αi, ηξi) ∈ Wη. Hence, the last equality implies that r̂ = 1. Because (α∗
η, β

∗
η) is a

vertex of Wη, a contradiction results unless r̂ = 1. Thus, there exists (α∗, ξ∗) ∈ V (W) such
that α∗ = α∗

η and β∗
η = ηξ∗.

Let

Zk+3 :=
{
(x, y1, . . . , yk, v1, . . . , vk) : (x, y1, . . . , yk) ∈ S, vi ≥ 0,

Biivi ≤ bi −Aix−
k∑

j=1,j ̸=i

Bijyj , i = 1, 2, . . . , k
}
.

The following result follows from Theorem 3.3 and Lemma 3.4 directly.

Corollary 3.5. Under Assumption A, for fixed values of ρi > 0 (i = 1, 2, . . . , k), problem
(P̄ ) has at least one solution in V (Zk+3)× V (Zk+2(ρ1, . . . , ρk)).

Obviously, if a solution of problem (P̄ ) satisfies πi(x, y1, . . . , yk, zi) = 0 (i = 1, 2, . . . , k),
it is also a solution of problem (P̂ ). We may add the duality gap πi(x, y1, . . . , yk, zi) = 0
(i = 1, 2, . . . , k) in problem (P̄ ) by considering the following problem (P̂ ):

min
x,yi,zi,ti,vi,i=1,2,...,k

cTx+

k∑
i=1

[(bi −Aix−
k∑

j=1,j ̸=i

Bijyj)
T ti + uT

i vi]

s.t. −BT
ii ti ≤ −di + ρiui,

Biivi ≤ ρi(bi −Aix−
k∑

j=1,j ̸=i

Bijyj),

(x, y1, . . . , yk) ∈ S, zi ∈ Zi,

πi(x, y1, . . . , yk, zi) = 0,

ti, vi ≥ 0, i = 1, 2, . . . , k,

The constraints πi(x, y1, . . . , yk, zi) = 0, i = 1, 2, . . . , k, ensure that, whatever the values ρi
selected, we have (x, y1, . . . , yk) ∈ IR.

Now, for γi > 0 (i = 1, 2, . . . , k), we consider the following problem (P̃ ) which is a
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penalized problem of (P̂ ):

min
x,yi,zi,ti,vi,i=1,2,...,k

cTx+

k∑
i=1

[(bi −Aix−
k∑

j=1,j ̸=i

Bijyj)
T ti + uT

i vi]

+

k∑
i=1

γiπi(x, y1, . . . , yk, zi)

s.t. −BT
ii ti ≤ −di + ρiui,

Biivi ≤ ρi(bi −Aix−
k∑

j=1,j ̸=i

Bijyj),

(x, y1, . . . , yk) ∈ S, zi ∈ Zi,

ti, vi ≥ 0, i = 1, 2, . . . , k.

We can characterize the relations between problems (P̃ ) and (P̂ ).

Theorem 3.6. Let Assumption A hold, ρi > 0 and γi > 0 (i = 1, 2, . . . , k). Assume that
(x, y1, . . . , yk, z1, . . . , zk, t1, . . . , tk, v1, . . . , vk) be a solution of problem (P̃ ). Then, there
exist finite values γ∗

i > 0 such that it is also a solution of problem (P̂ ) for all γi ≥ γ∗
i

(i = 1, 2, . . . , k).

Proof. Let (x∗, y∗1 , . . . , y
∗
k, z

∗
1 , . . . , z

∗
k, t

∗
1, . . . , t

∗
k, v

∗
1 , . . . , v

∗
k) solve problem (P̂ ). Then,

(x∗, y∗1 , . . . , y
∗
k, v

∗
1 , . . . , v

∗
k) =

M∑
m=1

lm(xm, ym1 , . . . , ymk , vm1 , . . . , vmk )

for lm > 0 with
∑M

m=1 lm = 1 where {(xm, ym1 , . . . , ymk , vm1 , . . . , vmk )} are vertices of Zk+3.
Note that, for i = 1, 2, . . . , k,

0 = πi(x
∗, y∗1 , . . . , y

∗
k, z

∗
i ) =

M∑
m=1

lmπi(x
m, ym1 , . . . , ymk , z∗i ).

Since (xm, ym1 , . . . , ymk , vm1 , . . . , vmk , z∗1 , . . . , z
∗
k, t

∗
1, . . . , t

∗
k) ∈ Zk+3 and

πi(x
m, ym1 , . . . , ymk , z∗i ) ≥ 0, we have

πi(x
m, ym1 , . . . , ymk , z∗i ) = 0, 1 ≤ m ≤ M.

Let Q(x, y1, . . . , yk, v1, . . . , vk, z1, . . . , zk, t1, . . . , tk) be the objective function of problem
(P̂ ). Then, we have

0 =

M∑
m=1

lm

[
Q(xm, ym1 , . . . , ymk , vm1 , . . . , vmk , z∗1 , . . . , z

∗
k, t

∗
1, . . . , t

∗
k)

−Q(x∗, y∗1 , . . . , y
∗
k, v

∗
1 , . . . , v

∗
k, z

∗
1 , . . . , z

∗
k, t

∗
1, . . . , t

∗
k)

]
≥ 0

which implies that

Q(xm, ym1 , . . . , ymk , vm1 , . . . , vmk , z∗1 , . . . , z
∗
k, t

∗
1, . . . , t

∗
k)

= Q(x∗, y∗1 , . . . , y
∗
k, v

∗
1 , . . . , v

∗
k, z

∗
1 , . . . , z

∗
k, t

∗
1, . . . , t

∗
k).
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That is, {(xm, ym1 , . . . , ymk , vm1 , . . . , vmk , z∗1 , . . . , z
∗
k, t

∗
1, . . . , t

∗
k)} solve problem (P̂ ).

Now, we may fix (xm, ym1 , . . . , ymk , vm1 , . . . , vmk ) and similarly show that {(zq1 , . . . , z
q
k,

tq1, . . . , t
q
k)}, 1 ≤ q ≤ q̄, of Zk+2(ρ1, . . . , ρk) such that (xm, ym1 , . . . , ymk , vm1 , . . . , vmk , zq1 , . . . , z

q
k,

tq1, . . . , t
q
k) solves problem (P̂ ) for all 1 ≤ m ≤ M, 1 ≤ q ≤ q̄. Therefore, following a similar

line of analysis to that in Zangwill [33], restricting the optimization problem to the finite
set of vertices only, the result follows immediately.

Theorem 3.7. Let Assumption A hold. For the fixed values of ρi > 0 (i = 1, 2, . . . , k),
let (x∗, y∗1 , . . . , y

∗
k, z∗1 , . . . , z

∗
k, t∗1, . . . , t

∗
k, v

∗
1 , . . . , v

∗
k) be a solution of problem (P̂ ). Then,

(x∗, y∗1 , . . . , y
∗
k) is a solution of problem (P ).

Proof. It follows from [2, Theorem 3.3] that if a solution of problem (P̄ ) satisfies
πi(x, y1, . . . , yk, zi) = 0 (i = 1, 2, . . . , k), it is also a solution of problem (P ). Therefore,
it is easy to conclude that (x∗, y∗1 , . . . , y

∗
k) is a solution of problem (P ) .

To summarise, there are two ways to solve problem (P ). One of them is to solve problem
(P̃ ), increasing γi until a solution is obtained for which these duality gap are equal to
zero. The other one is to solve problem (P̂ ) via solvers (e.g. BARON, MSNLP) which are
popularly used for mathematical programming models. Clearly, these allow us to use the
constrained nonlinear programming tools to solve PLBMF-RU. Therefore, these may provide
us with a new way to discuss the pessimistic linear bilevel multi-follower programming
problem in a referential-uncooperative situation.

4 PLBMF-RU for Water Resources Optimal Allocation

In this section, a water resources optimal allocation problem will be solved by constructing
a pessimistic referential-uncooperative linear bilevel multi-follower decision making model.

It is well-known that fresh water is very crucial and precious resources of our living
and production. With the accelerating promotion of economic globalization, one of the
biggest problems is that fresh water is in increasingly high demand and is in a growingly
short supply. The conflict between increasing demand and the relative shortage of fresh
water becomes current difficulties faced by China and the world. Particularly, in China,
the limited available water is unable to meet the growing demand for such water. The
contradiction between supply and demand of water resources has become an important
factor restricting China’s booming economy. Therefore, the higher requirements to the
water resources optimal allocation are put forward.

Note that the water resources are public welfare. In addition to meeting the water de-
mand of individual user, the water management department also need to allocate a certain
public water rights to ensure the public interest (Ecological protection, environmental purifi-
cation and other social welfare). Without loss of generality, suppose that the total amount
of water allocated to the water management department is denoted by Q. The public water
right is w, and the water resources rate is κ. The initial water rights for the ith water user
is qi (i = 1, 2, . . . , n). Clearly, the total amount of public water rights and all water users is
not more than Q. That is to say,

w +

n∑
i=1

qi ⩽ Q.

Furthermore, suppose that the revenue function of ith water user is fi(qi) where fi(0) = 0
and f

′

i (qi) > 0, and the ith user has a minimum water demand δi respectively. Because an
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individual water user is rational, the purpose of user is to maximize his own interests. Then,
maximizing the ith water user’s revenue function is deemed to be the ith follower problem
of pessimistic bilevel problem, i.e.,

max
qi≥0

gi(qi) = fi(qi)− κqi

s.t. w +

n∑
i=1

qi ⩽ Q,

qi ⩾ δi.

On the other hand, the total social benefits contain the gains from the public water
consumption and the interest from all water users. Note that, the water management
department regulates the water market by distributing the initial water rights, and then
maximizes the total social benefits. The mathematical formulation of the upper level model
is given by

max
w≥0

h(w) +

n∑
i=1

gi(qi)

where h(0) = 0 and h
′
(w) > 0.

Stated thus, based on problem (P ), a pessimistic referential-uncooperative bilevel multi-
follower water resources optimal allocation is constructed as follows:

max
w,q1,...,qn

h(w) +

n∑
i=1

min
qi

gi(qi)

s.t. w ≥ 0, (4.1)

where qi is a solution of the ith follower’s problem,

max
qi≥0

gi(qi) = fi(qi)− κqi

s.t. w +

n∑
i=1

qi ⩽ Q,

qi ⩾ δi.

In order to easily show the application for the proposed PLBMF-RU model, we can assign
a value to a variable respectively. The experimental data employed for the model (4.1) is
provided as follows: n = 2, h(w) = 1.5w, κ = 0.2, Q = 1, f1(q1) = 0.6q1, f2(q2) = 0.4q2,
δ1 = 0.25, and δ2 = 0.15. Therefore, a water resources optimal allocation problem is
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Table 4.1: Numerical results of problem (4.3) via Algorithm 1
ρ1 ρ2 γ1 γ2 x y1 y2 f π1 π2

1 1 1 1 0.6 0.25 0.15 -1.03 0 0
10 10 10 10 0.6 0.25 0.15 -1.03 0 0
100 100 100 100 0.6 0.25 0.15 -1.03 0 0

established by simplifying it into the following linear PLBMF-RU decision making model:

max
w,q1,q2

1.5w +

2∑
i=1

min
qi

gi(qi)

s.t. w ≥ 0,

max
q1≥0

g1(q1) = 0.4q1

s.t. w + q1 + q2 ⩽ 1, (4.2)

q1 ⩾ 0.25,

max
q2≥0

g2(q2) = 0.2q2

s.t. w + q1 + q2 ⩽ 1,

q2 ⩾ 0.15.

To simply solve problem (4.2), we transform it into the following problem:

min
x,y1,y2

−1.5x+

2∑
i=1

max
yi

gi(yi)

s.t. x ≥ 0,

min
y1≥0

g1(y1) = −0.4y1

s.t. x+ y1 + y2 ⩽ 1, (4.3)

y1 ⩾ 0.25,

min
y2≥0

g2(y2) = −0.2y2

s.t. x+ y1 + y2 ⩽ 1,

y2 ⩾ 0.15.

The numerical results of problem (4.3) are listed as in Table 4.1 where f = −1.5x +∑2
i=1 gi(yi). It follows from Table 4.1 that a solution of problem (4.2) occurs at the point

(w, q1, q2) = (0.6, 0.25, 0.15). The result shows that an optimal solution for the water man-
agement department, who is risk-averse, is to take the public water right variable as 0.6
through anticipating all possible responses of the water users from the worst-case point of
view. Each user is assumed to execute simultaneously his individually optimal choice after
decisions of the water management department. That is, the two users will take values of
their decision making variables 0.25 and 0.15 respectively as their response for the water
management department.

5 Conclusions

A pessimistic linear bilevel multi-follower programming problem in a referential-
uncooperative situation (PLBMF-RU) occurs commonly in management and planning of



878 Y. ZHENG, Z. WAN AND J. CHEN

many organizations. In this paper, the model and the solution definitions of PLBMF-RU
decision problem are proposed. Moreover, for solving such a problem, the penalized problems
are presented which extends the general penalty function method from dealing with opti-
mistic one-leader-and-one-follower situation to complex pessimistic referential-uncooperative
multiple followers situation. This paper further illustrates an application example of water
resources optimal allocation. For the future research, some meta-heuristic search methods
to solve the large-scale pessimistic referential-uncooperative bilevel multi-follower problems
will be considered. Furthermore, it will be interesting to use the objective penalty method
[19] or smoothing method [27] to solve PLBMF-RU.
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