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the classical IPM for solving LO and some other extensions of this problem in which the
logarithmic barrier function is replaced by the so called Self-Regular (SR) barrier functions.
The iteration complexity of LO and its extensions, based on SR barrier functions, led them to
obtain the so far best known iteration bound for small and large update IPMs as O(

√
n log n

ε )
and O(

√
n log n log n

ε ), respectively. Note that, based on the logarithmic barrier functions,
these bounds are O(

√
n log n

ε ) and O(n log n
ε ), respectively [19]. Moreover, a class of primal-

dual interior-point algorithms for LO based on a new family of kernel functions which is fairly
general and includes the classical logarithmic function, the prototype self-regular function
and some non-self-regular kernel functions as its special case was proposed by Bai et al.
in [3]. Many researchers have proposed different interior point algorithms based on kernel
function for various optimization problems. Roos et al. [2] defined eligible kernel functions
and proposed a primal-dual IPM for LO and simplified the complexity analysis of Peng et
al. in [18]. EL Ghami et al. [10] proposed a primal-dual interior-point algorithm for LO
based on a kernel function with a trigonometric barrier term but they didn’t obtain the best
known complexity result for large update method. Bouafia et al. [5] proposed a primal-dual
interior point algorithm for LO based on a kernel function with a trigonometric barrier term
and they obtained the best known complexity result for small and large update method.

Several interior point methods (IPMs) for LO have been successfully extended to SDO.
Wang et al. [21] proposed a primal-dual IPM for SDO based on a generalized version of the
kernel function in [2] and obtained O(q2

√
n log n

ε ), q > 1, and O(
√
n log n log n

ε ) complexity
results for small and large update methods, respectively. EL Ghami et al. [9] extended the
IPM for LO in [2] to SDO and obtained the similar iteration bounds as analogue of LO. EL
Ghami et al. [12] proposed a primal dual IPM for SDO based on a generalized version of the
kernel function given in [1] and obtained O(

√
n log n log n

ε ) for large update method. Lee
et al. [15] defined a new class of kernel functions and obtained the best known complexity
results of the small and large update IPMs based on the kernel function for LO and SDO.
EL Ghami [8] generalize the analysis presented in [5] for SDO and obtained the best known
complexity results for the small and large update method. Motivated by their works, we
proposed a primal-dual interior point algorithm for SDO based on a new kernel function
and obtained the best known complexity results for small and large update methods.

This paper is organized as follows: In section 2, we start with some notations and
preliminaries. In section 3, we present the kernel function based on Nesterov-Todd direction
and describe the generic primal dual algorithm. In section 4, a new kernel function and its
growth properties for SDO are studied. In section 5, we present the growth behavior of the
proximity function based on this kernel function. Then, the estimate of the step size and the
decrease behavior of the new kernel function are discussed. Also, the inner iteration bound
and the iteration bound of the algorithm are given in this section. In section 6, we illustrate
the practical performance of the new proposed kernel function. Finally, a conclusion ends
section 7.

2 Notations and Preliminaries

2.1 Notions

We will make use of the following notations throughout the paper: Rn, Rn+ and Rn++ denote
the set of real, nonnegative real and positive real vectors with n components, respectively.
Sn, Sn+ and Sn++ denote the set of symmetric, symmetric positive semidefinite and symmetric
positive definite n× n matrices, respectively. ||.|| denotes the Frobenius norm for matrices.
⪰ denotes the nonnegativity in the Löwner partial order for symmetric matrices, i.e., A ⪰ B
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(A ≻ B) if A − B is symmetric positive semidefinite (positive definite). Given A ∈ Rn×n,
Tr(A) stands for the trace of the matrix A. For A,B ∈ Rm×n, the inner product is defined
by A • B = Tr(ABT ). For Q ∈ Sn++, Q

1/2 denotes the symmetric square root of Q. For
any V ∈ Sn, we denote by λ(V ) the vector of eigenvalues of V arranged in non-increasing
order, that is, λ1(V ) ≥ λ2(V ) ≥ ... ≥ λn(V ) and Λ = diag(λ(V )), i.e., the diagonal matrix
from a vector λ(V ). I denotes an n × n identity matrix. For f(x), g(x) : R++ → R++,
f(x) = O(g(x)) if f(x) ≤ c1g(x) for some positive constant c1 and f(x) = Θ(g(x)) if
c2g(x) ≤ f(x) ≤ c3g(x) for some positive constants c2 and c3.

2.2 Preliminaries

In this section, we recall some basic concepts and we drive the classical Nestrov-Todd search
direction for SDO. Consider the standard semidefinite programming (SDP ) problem:

min {C •X : Ai •X = bi, ∀i = 1, ...,m, X ⪰ 0} (P)

and its dual problem:

max{bT y : S = C −
m∑
i=1

yiAi, S ⪰ 0} (D)

where C,Ai ∈ Sn, i = 1, ...,m, b, y ∈ Rm.

Throughout the paper, we assume that the matrices Ai, i = 1, ...,m, are linearly inde-
pendent and the problems (P ) and (D) satisfy the interior-point condition (IPC), i.e., there
exist X ∈ FP , S ∈ FD with X ≻ 0, S ≻ 0, where FP and FD denote the feasible sets of the
problem (P ) and (D), respectively.

Finding an optimal solution of the problem (P ) and (D) is equivalent to solving the
following system: 

Ai •X = bi, i = 1, ...,m, X ⪰ 0,
m∑
i=1

yiAi + S = C, S ⪰ 0,

XS = 0.

(2.1)

The basic idea of primal dual IPMs is to replace the complementarity condition of (2.1),
XS = 0, by the parametrized equation XS = µI with X,S ≻ 0 and µ > 0. So we consider
the following system: 

Ai •X = bi, i = 1, ...,m, X ≻ 0,
m∑
i=1

yiAi + S = C, S ≻ 0,

XS = µI.

(2.2)

If IPC holds, then the system (2.2) has a unique solution (X(µ), y(µ), S(µ)) for each
µ > 0 called the µ− center of both problems (P ) and (D). The set of µ− center defines a
homotopy called the central path of (P ) and (D) which converge to the optimal solution of
the problem (P ) and (D) as µ goes to zero [23]. Now, to compute the search direction, we
apply Newton’s method to the system (2.2), we obtain the Newton system as follows:

Ai •∆X = 0, i = 1, ...,m,
m∑
i=1

∆yiAi +∆S = 0,

X∆S +∆XS = µI −XS.

(2.3)
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Since Ai are linearly independent and X ≻ 0, S ≻ 0, the system (2.3) has a unique search
direction (∆X,∆y,∆S). Note that ∆S is symmetric from the second equation of (2.3), but
∆X may not be symmetric. Various methods of symmetrizing the third equation of (2.3)
are proposed, so that the new system has a unique symmetric solution. In this paper, we
use the NT symmetrizing scheme [17].

Let
P = X1/2(X1/2SX1/2)−1/2X1/2 = S−1/2(S1/2XS1/2)1/2S−1/2

and D = P 1/2 where P 1/2 denotes the symmetric square root of P . The matrix D is used
to scale both matrices X and S to the same matrix V defined by

V =
1
√
µ
D−1XD−1 =

1
√
µ
DSD =

1
√
µ
(D−1XSD)1/2. (2.4)

Then, matrices D and V are symmetric positive definite. By using (2.4) the Newton
system (2.3) can be rewritten as follows:

Ai •DX = 0, i = 1, ...,m,
m∑
i=1

∆yiAi +DS = 0,

DX +DS = V −1 − V.

(2.5)

with

Ai =
1
√
µ
DAiD, i = 1,m, DX =

1
√
µ
D−1∆XD−1, DS =

1
√
µ
D∆SD. (2.6)

The system (2.5) determines a uniquely symmetric NT direction with the matrices DX

and DS be orthogonal, and it is evident to see

Tr(DXDS) = Tr(DSDX) = 0.

The above NT direction leads to the classical primal-dual IPM algorithms for SDO.

3 Generic Primal-Dual Algorithm for SDO

In this section, we recall the definition of a matrix function and we introduce our generic
primal-dual IPM algorithm for SDO.

First of all, we recall the definition of a kernel function.
We call ψ : R++ → R+ a kernel function if it is twice differentiable and satisfies the

following conditions:

ψ′(1) = ψ(1) = 0, ψ′′(t) > 0, t > 0, lim
t→0+

ψ(t) = lim
t→∞

ψ(t) = ∞. (3.1)

For V = QT diag(λ1(V ), λ2(V ), ..., λn(V ))Q, the spectral decomposition of V ∈ Sn++, we
generalize a function ψ(t) : R++ → R+ to the matrix function ψ(V ) : Sn++ → Sn as follows:

ψ(V ) = QT diag(ψ(λ1(V )), ψ(λ2(V )), ..., ψ(λn(V )))Q, (3.2)

ψ′(V ) = QT diag(ψ′(λ1(V )), ψ′(λ2(V )), ..., ψ′(λn(V )))Q.

Replacing the right hand side V −1 − V of the third equation of (2.5) by −ψ′(V ). Then
we have the linear system: 

Ai •DX = 0, i = 1, ...,m,
m∑
i=1

∆yiAi +DS = 0,

DX +DS = −ψ′(V ).

(3.3)
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where ψ(t) is a given kernel function, and ψ(V ), ψ′(V ) are the associated matrix functions
denote in (3.2), the system (3.3) has a unique symmetric solution.

For any kernel function ψ(t), we define the barrier function Ψ(V ) : Sn++ → R+ as follows

Ψ(V ) = Tr(ψ(V )) =

n∑
i=1

ψ(λi(V )). (3.4)

Then Ψ(V ) is strictly convex with respect to V ≻ 0 and vanishes at its global minimal
point V = I and Ψ(I) = 0. Since DX and DS are orthogonal, for µ > 0,

Ψ(V ) = 0 ⇔ V = I ⇔ DX = DS = 0 ⇔ X = X(µ), S = S(µ).

We use Ψ(V ) as a proximity function to measure the distance between the current iterate
and the µ−center for given µ > 0.

We can describe one step of the primal-dual interior-point algorithm for SDO based on
kernel functions as follow: Starting with a strictly feasible point (X0, y0, S0) which is in a
τ−neighborhood of the given µ−center. We begin the outer iteration which aims to increase
the value of Ψ(V ) above τ ; (i.e., Ψ(V ) > τ) by decreasing the parameter µ as µ = (1− θ)µ.
After that we begin the inner iterations which are performed to bring back the situation
where Ψ(V ) ≤ τ. In each inner iteration we compute a new candidate point by applying
Newton’s method, we repeat this process until Ψ(V ) ≤ τ. Then, the algorithm performs
outer iterations until µ is small enough; i.e., nµ < ε, at this stage, we have found an ε−
approximate solutions of SDO. The generic form of this algorithm is outlined as follow:

Primal-Dual Algorithm for SDO
Input
A threshold parameter τ ≥ 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
a strictly feasible (X0, S0) and µ0 = 1 such that Ψ(X0, S0, µ0) ≤ τ ;
begin

X = X0;S = S0;µ = µ0;
while nµ > ε do
begin (outer iteration)
µ = (1− θ)µ;
while Ψ(X,S, µ) > τ do
begin (inner iteration)

solve the system (3.3) and (2.6) to obtain ∆X, ∆y, ∆S;
determine a step size α; and take
X = X + α∆X;
y = y + α∆y;
S = S + α∆S;

end (inner iteration)
end (outer iteration)

end.

4 New Kernel Function and its Properties

In this section, we introduce our new kernel function and some useful properties for our
complexity analysis.



6 Z. AMINA, B. DJAMEL AND Y. ADNAN

For p ∈ R, q ∈ R, we define our new kernel function ψ(t) as follows:

ψ(t) =
p(t2 − 1)

2
+

p(t−pq+1 − 1)

(pq − 1)(q + 1)
− pq

(q + 1)
log t, p ≥ 1, q > 1, t > 0. (4.1)

It is easy to check that ψ(t) is indeed a barrier kernel function and its first, second and
third derivatives are as follows:

ψ′(t) = pt− p

q + 1
t−pq − pq

(q + 1)
t−1, (4.2)

ψ′′(t) = p+
p(pq)

q + 1
t−pq−1 +

pq

(q + 1)
t−2,

ψ′′′(t) = −p(pq)(pq + 1)

q + 1
t−pq−2 − 2pq

(q + 1)
t−3.

ψ(t) is expressed in term of its second derivative as follows:

ψ(t) =

t∫
1

ξ∫
1

ψ′′(ζ)dζdξ. (4.3)

From (4.2), we have
ψ′′(t) > p, ∀t > 0. (4.4)

Now, we provide some properties of our kernel function which are used in the complexity
analysis.

Lemma 4.1. Let ψ(t) be defined as in (4.1), then

(i) tψ′′(t) + ψ′(t) > 0, 0 < t < 1,

(ii) tψ′′(t)− ψ′(t) > 0, t > 1,

(iii) ψ′′′(t) < 0, t > 0.

Proof. For (i), using (4.2), it follows that tψ′′(t)+ψ′(t) = 2pt+ p(pq−1)t−pq

q+1 > 0, ∀p ≥ 1, q > 1
and t > 0.

For (ii), we have tψ′′(t)−ψ′(t) = p(pq+1)t−pq

q+1 + 2pq
(q+1)t > 0, for all p ≥ 1, q > 1 and t > 0.

For (iii), it is clear from (4.2) that ψ′′′(t) < 0, for t > 0.

Remark 4.2 (Lemma 2.4 in [2]). If ψ(t) satisfy (ii) and (iii) in Lemma 4.1, then

ψ′′(t)ψ′(βt)− βψ′(t)ψ′′(βt) > 0, t > 0, β > 1.

Lemma 4.3. For ψ(t), we have for p ≥ 1 and q > 1,

(i) p
2 (t− 1)2 ≤ ψ(t) ≤ 1

2p [ψ
′(t)]2, t > 0,

(ii) ψ(t) ≤ 1
2ψ

′′(1)(t− 1)2, t ≥ 1.

Proof. For (i), using the first condition of (3.1) and (4.4), we have

ψ(t) =

t∫
1

ξ∫
1

ψ′′(ζ)dζdξ ≥
t∫

1

ξ∫
1

pdζdξ =
p

2
(t− 1)2,
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the second inequality is obtained as follows:

ψ(t) =

t∫
1

ξ∫
1

ψ′′(ζ)dζdξ

≤ 1

p

t∫
1

ξ∫
1

ψ′′(ξ)ψ′′(ζ)dζdξ

=
1

p

t∫
1

ψ′′(ξ)ψ′(ξ)dξ

=
1

p

t∫
1

ψ′(ξ)dψ′(ξ) =
1

2p
[ψ′(t)]2.

For (ii), using Taylor’s theorem, the first condition of (3.1) and Lemma 4.1 (iii), we have

ψ(t) = ψ(1) + ψ′(1)(t− 1) +
1

2
ψ′′(1)(t− 1)2 +

1

3!
ψ′′′(c)(t− 1)3

=
1

2
ψ′′(1)(t− 1)2 +

1

3!
ψ′′′(c)(t− 1)3

<
1

2
ψ′′(1)(t− 1)2,

for some c, such that 1 ≤ c ≤ t. This completes the proof.

Lemma 4.4. Let ϱ : [0,∞) → [1,∞) be the inverse function of ψ(t) for t ≥ 1. Then we
have

1 +

√
2s

ψ′′(1)
≤ ϱ(s) ≤ 1 +

√
2s

p
, p ≥ 1, q > 1, s ≥ 0.

Proof. Let s = ψ(t) for t ≥ 1, i.e., ϱ(s) = t. By the definition of ψ(t), s = p(t2−1)
2 + t−pq+1−1

q(q+1) −
pq

(q+1) log t, p ≥ 1, q > 1, t > 0. Using Lemma 4.3 (i), we have s = ψ(t) ≥ p
2 (t− 1)2, which

implies that t = ϱ(s) ≤ 1 +
√

2s
p .

For the second inequality, using Lemma 4.3 (ii), then

s = ψ(t) ≤ 1
2ψ

′′(1)(t− 1)2, t ≥ 1. It follows that t = ϱ(s) ≥ 1+
√

2s
ψ′′(1) . This completes

the proof.

Lemma 4.5. Let ρ : [0,∞) → (0, 1] be the inverse function of − 1
2ψ

′(t) for 0 < t ≤ 1. Then
we have

ρ(z) ≥
(

p

2(q + 1)z + p

) 1
pq

, p ≥ 1, q > 1, z ≥ 0.

Proof. Let z = − 1
2ψ

′(t) for 0 < t ≤ 1. By the definition of ρ, ρ(z) = t, for z ≥ 0. So, we have

z = 1
2 (

p
q+1 t

−pq − pt + pq
(q+1) t

−1) ≥ 1
2 (

p
q+1 t

−pq − p + pq
q+1 ), it follows that t−pq ≤ 2(q+1)z+p

p .

Hence, we obtain t = ρ(z) ≥
(

p
2(q+1)z+p

) 1
pq

. This completes the proof.
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To derive some other properties of our new kernel function, we define the norm-based
proximity measure δ(V ) as below:

δ(V ) =
1

2
||ψ′(V )|| = 1

2

√√√√ n∑
i=1

(ψ′(λi(V )))2 =
1

2
||DX +DS ||, V ∈ Sn++. (4.5)

In the following lemma, we drive a lower bound for δ(V ) in term of Ψ(V ).

Lemma 4.6. Let δ(V ) and Ψ(V ) be defined as in (4.5) and (3.4), respectively. Then, we
have

δ(V ) ≥
√
p

2
Ψ(V ), V ∈ Sn++.

Proof. Using (4.5) and the second inequality of Lemma 4.3 (i),

δ2(V ) =
1

4

n∑
i=1

(ψ′(λi(V )))2 ≥ p

2

n∑
i=1

ψ(λi(V )) =
p

2
Ψ(V ).

Hence, we have δ(V ) ≥
√

p
2Ψ(V ). This completes the proof.

Remark 4.7. Throughout the paper, we assume that τ ≥ 1. Using Lemma 4.6 and the
assumption that Ψ(V ) ≥ τ, we have δ(V ) ≥ 1√

2
.

5 Complexity Analysis

This section presents the growth behavior of the proximity function after a µ−update. Then
we compute a default step size α and the resulting decrease of the barrier function after an
inner iteration.

The following lemmas provide an upper bound for the growth of the proximity after a
µ−update.

Lemma 5.1 (Lemma 4.16 in [22]). Let ϱ be defined as in Lemma 4.4. Then we have

Ψ(βV ) ≤ nψ

(
βϱ

(
Ψ(V )

n

))
, V ∈ Sn++, β ≥ 1.

Lemma 5.2. Let 0 ≤ θ < 1 and V+ = V√
1−θ . If Ψ(V ) ≤ τ, then for q > 1 we have

Ψ(V+) ≤
npθ + 2τ + 2

√
2τnp

2(1− θ)
.

Proof. For t ≥ 1, we have

ψ(t) ≤ p(t2 − 1)

2
.
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Using Lemma 5.1 with β = 1√
1−θ , Lemma 4.4 and Ψ(V ) ≤ τ , we obtain

Ψ(V+) ≤ nψ

(
1√
1− θ

ϱ

(
Ψ(V )

n

))
≤ np

2

([
1√
1− θ

ϱ

(
Ψ(V )

n

)]2
− 1

)

=
np

2(1− θ)

(
ϱ

(
Ψ(V )

n

)2

− (1− θ)

)

≤ np

2(1− θ)

[1 +√2Ψ(V )

np

]2
− (1− θ)


≤ np

2(1− θ)

(
θ + 2

τ

np
+ 2

√
2τ

np

)
=
npθ + 2τ + 2

√
2τnp

2(1− θ)
,

This completes the proof.

Denote

Ψ0 =
npθ + 2τ + 2

√
2τnp

2(1− θ)
. (5.1)

Then Ψ0 is an upper bound of Ψ(V+).
After a damped step we have

X+ = X + α∆X, y+ = y + α∆y, S+ = S + α∆S, α > 0.

Using (2.6), we have:

X+ =
√
µD(V + αDX)D, S+ =

√
µD−1(V + αDS)D

−1. (5.2)

From (2.5), we have

V+ =
1
√
µ
(D−1X+S+D)1/2.

It is easily to see that the matrix V 2
+ is unitarily similar to the matrix X

1
2
+S+X

1
2
+ and therefore

to the matrix V
2

+ = (V + αDX)
1
2 (V + αDS)(V + αDX)

1
2 . This implies that both of the

matrices have the same eigenvalues. Then, we have

Ψ(V+) = Ψ
(
V +

)
. (5.3)

Lemma 5.3 (Proposition 5.2.6 in [18]). Suppose that matrices V1 and V2 are symmetric
positive definite and Ψ is the real valued matrix function induced by the matrix function ψ.
Then we have

Ψ

([
V

1
2
1 V2V

1
2
1

] 1
2

)
≤ 1

2
(Ψ(V1) + Ψ(V2)).

Based on Lemma 5.3, we obtain

Ψ(V+) ≤
1

2
(Ψ(V + αDX) + Ψ(V + αDS)). (5.4)
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which implies from (5.3) that

Ψ(V +) ≤
1

2
(Ψ(V + αDX) + Ψ(V + αDS)).

Define for α > 0, the following univariante functions

f(α) = Ψ(V+)−Ψ(V ) = Ψ(V +)−Ψ(V ),

f1(α) =
1

2
(Ψ(V + αDX) + Ψ(V + αDS))−Ψ(V ).

From (5.4), f(α) ≤ f1(α) and f(0) = f1(0) = 0.

Now, to estimate the decrease of the proximity during one step, we need the two succes-
sive derivatives of f1(α) with respect to α. We have

f ′1(α) =
1

2
Tr(ψ′(V + αDX)DX + ψ′(V + αDS)DS),

f
′′

1 (α) =
1

2
Tr(ψ′′(V + αDX)D2

X + ψ′′(V + αDS)D
2
S).

It is obvious that f
′′

1 (α) > 0, unless DX = DS = 0.

From the third equation of the system (3.3) and (4.5), we have

f ′1(0) =
1

2
Tr(ψ′(V )(DX +DS)) =

1

2
Tr(−(ψ′(V ))2) = −2δ2(V ).

For notational convenience, let δ = δ(V ) and Ψ = Ψ(V ).

In what follows, we are going to introduce conditions on the step size α in which the
function f(α) is a decreasing function. We need the following lemmas.

Lemma 5.4 (Lemma 5.19 in [22]). Let δ be defined as in (4.5). Then we have

f ′′1 (α) ≤ 2δ2ψ′′(λn(V )− 2αδ).

Lemma 5.5 (Lemma 4.2 in [2]). If the step size α satisfies

−ψ′(λn(V )− 2αδ) + ψ′(λn(V )) ≤ 2δ,

then

f ′1(α) ≤ 0.

Lemma 5.6 (Lemma 4.4 in [2]). Let ρ and α be defined as in Lemma 4.5 and Lemma 5.5
,respectively. Then

α ≥ 1

ψ′′(ρ(2δ))
.

Lemma 5.7. Let ρ and α be defined as in Lemma 5.6. If 1 ≤ τ ≤ Ψ(V ), then we have

α ≥ 1

p+
(
pq(p+1)
q+1

)(
4(q+1)δ

p + 1
) pq+1

pq

.
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Proof. Using Lemma 5.6, Lemma 4.5 and (4.2) we have

α ≥ 1

ψ′′(ρ(2δ))

≥ 1

ψ′′(( p
4(q+1)δ+p )

1
pq )

=
1

p+ p(pq)
(q+1) (

p
4(q+1)δ+p )

−pq−1
pq + pq

q+1 (
p

4(q+1)δ+p )
−2
pq

≥ 1

p+
(
pq(p+1)
q+1

)(
4(q+1)δ

p + 1
) pq+1

pq

.

This completes the proof.

Define the default step size α̃ as follows:

α̃ =
1

p+
(
pq(p+1)
q+1

)(
4(q+1)δ

p + 1
) pq+1

pq

, (5.5)

with α̃ ≤ α.
The next lemma provides the amount of decrease in the proximity function after an inner

iteration.

Lemma 5.8 (Lemma 4.5 in [2]). If the step size α is chosen such that α ≤ α, then

f(α) ≤ −αδ2.

Lemma 5.9. Let α̃ be defined as in (5.5). Then we have

f(α̃) ≤ − 1

26
√
2pq(p+ 1)(q + 1)

1
pq

Ψ
pq−1
2pq .

Proof. Using Lemma 5.8 with α = α̃ and (5.5), we have

f(α̃) ≤ −α̃δ2

= − δ2

p+
(
pq(p+1)
q+1

)(
4(q+1)δ

p + 1
) pq+1

pq

≤ − δ2

p(2δ)
pq+1
pq + pq(p+ 1)(q + 1)

1
pq ( 4δp + 2δ

q+1 )
pq+1
pq

= − δ2

4p+ 25pq(p+ 1)(q + 1)
1
pq δ

pq+1
pq

≤ − δ
pq−1
pq

26pq(p+ 1)(q + 1)
1
pq

≤ − Ψ
pq−1
2pq

26
√
2pq(p+ 1)(q + 1)

1
pq

.

This completes the proof.



12 Z. AMINA, B. DJAMEL AND Y. ADNAN

5.1 Complexity of the algorithm

5.1.1 Inner iteration bound

Lemma 5.10. (Proposition 1.3.2 in [18]) Suppose that a sequence
{tk > 0, k = 0, 1, 2, ...,K} satisfy the following inequality:

tk+1 ≤ tk − ηtγk , η > 0, γ ∈ [0, 1[, k = 0, 1, 2, ...,K.

Then

K ≤

[
t1−γ0

η(1− γ)

]
.

After the update of µ to (1− θ)µ, we have

Ψ(V+) ≤ Ψ0 =
npθ + 2τ + 2

√
2τnp

2(1− θ)
.

We need to count how many inner iterations are required to return to the situation where
Ψ(V ) ≤ τ. We denote the value of Ψ after µ−update as Ψ0, the subsequent values in the
same outer iteration are denoted as Ψk, k = 1, 2, ...,K, where K denotes the total number
of inner iterations per an outer iteration. The decrease in each inner iteration is given by
Lemma 5.9.

Theorem 5.11. Let K be the total number of inner iterations per an outer iteration and Ψ0

be defined as in (5.1). Then for q ≥ 1, we have

K ≤
[
26
√
2pq(p+ 1)(q + 1)

1
pq Ψ

pq+1
2pq

0

]
.

Proof. Combining Lemma 5.9 and Lemma 5.10 withη = 1

26
√
2pq(p+1)(q+1)

1
pq

and γ = pq−1
2pq ,

we have

K ≤
[
26
√
2pq(p+ 1)(q + 1)

1
pq Ψ

pq+1
2pq

0

]
.

This completes the proof.

5.1.2 Total iteration bound

The number of outer iterations is bounded above by
[
1
θ log

n
ε

]
(see [19]). By multiplying the

number of outer iterations by the number of inner iterations, we get an upper bound for the
total number of iterations, namely,

26
√
2pq(p+ 1)(q + 1)

1
pq Ψ

pq+1
2pq

0

1

θ
log

n

ε
(5.6)

1. For large update methods, with τ = O(n) and θ = Θ(1), we get Ψ0 = O(np), and
by choosing p = 1, q = log n, we obtain

O(
√
n log n log

n

ε
) iterations complexity.

2. For small update methods, with τ = O(1) and θ = Θ( 1√
n
), substitution of these

values into (5.6) does not give the best possible bound. A better bound is obtained as follows
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Since 1√
1−θ ≥ 1 and ϱ

(
Ψ(V )
n

)
≥ 1, we have

ϱ(Ψ(V )
n )√

1−θ ≥ 1. Using Lemma 5.1 with β =
1√
1−θ , Lemma 4.3 (ii), Lemma 4.4 and Ψ(V ) ≤ τ , we have

Ψ(V+) ≤ nψ

(
1√
1− θ

ϱ

(
Ψ(V )

n

))

≤ np

2

(
2pq + q + 1

q + 1

)ϱ
(

Ψ(V )
n

)
√
1− θ

− 1

2

≤ np(2pq + q + 1)

2(q + 1)

1 +
√

2τ
np −

√
1− θ

√
1− θ

2

≤ np(2pq + q + 1)

2(q + 1)

θ +
√

2τ
np

√
1− θ

2

=
p(2pq + q + 1)

2(q + 1)(1− θ)

(√
nθ +

√
2τ

p

)2

= Ψ0,

where the last inequality holds from 1 −
√
1− θ = θ

1+
√
1−θ < θ, 0 ≤ θ < 1. Using this

upper bound for Ψ0, we get Ψ0 = O(p(2pq+q+1)
(q+1) ) and by choosing p = 1, q = any constant

we obtain
O(

√
n log

n

ε
) iterations complexity.

These are the best known complexity results for such methods.

6 Numerical Results

In this section, our main focus is to provide a numerical experiences regarding the practical
performance of the new proposed kernel function in comparison with:

1. The kernel function which has been proposed in [13]

ψf (t) =
t2 − 1

2
−
∫ t

1

(
e− 1

ex − 1

)p
dx, p ≥ 1;

and showed that it is well promising in practice in comparison with other eight famous kernel
functions including two logarithmic kernel functions, namely,

ψ(t) =
t2 − 1

2
− log(t),

ψ(t) =
t2 − 1

2
− log(t) +

1

8
tan2(h(t)), h(t) =

1− t

2 + 4t
π.

2. the generalized logarithmic kernel function proposed in [11]

ψg(t) =
1

1 + p
(t1+p − 1)− log(t), p ∈ [0, 1]

In all tables we denote by ”iter” and ”CPU” the total number of iterations and the time
required in second, respectively. Furthermore, ψnew stands for our new proposed kernel
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function. We used the following parameters:

ε = 10−8, τ = 1, µ0 = 1,

θ ∈ {0.1, 0.5, 0.9}, p = 1, q = log n.

Example 6.1. [22]: Consider the following (SDO) problem:

A1 =


0 1 0 0 0
1 2 0 0 −1
0 0 0 0 1
0 0 0 −2 −1
0 −1 1 −1 −2

 , A2 =


0 0 −2 2 0
0 2 1 0 2
−2 1 −2 0 1
2 0 0 0 0
0 2 1 0 2

 ,

A3 =


2 2 −1 −1 1
2 0 2 1 1
−1 2 0 1 0
−1 1 1 −2 0
1 1 0 0 −2

 , C =


3 3 −3 1 1
3 5 3 1 2
−3 3 −1 1 2
1 1 1 −3 −1
1 2 2 −1 −1

 ,

b =

−2
2
−2

 , X0 = I, S0 = I, y0 = (1, 1, 1)T .

The following table summarize the obtained results

ψf ψg ψnew
θ iter CPU iter CPU iter CPU
0.1 207 22.1097 310 8.3845 200 0.4766
0.5 45 4.8909 60 2.9874 43 0.1545
0.9 26 2.9296 33 2.0674 23 1.0956

Example 6.2. (Example 1 in [20]): Consider the following (SDO) problem:

A1 =

[
1 −1
−1 1

]
, A2 = I, Cij = −1, ∀i, j ∈ {1, 2}

b =

[
1
1

]
, X0 = diag(0.5, 0.5), S0 =

[
2 −1
−1 2

]
, y0 =

[
0
−3

]
.

The following table summarize the obtained results

ψf ψg ψnew
θ iter CPU iter CPU iter CPU
0.1 199 14.3190 308 10.6425 197 0.2147
0.5 43 3.4335 58 5.9818 40 0.1623
0.9 25 1.8708 36 2.0877 24 0.1059
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Example 6.3. (Example 2 in [20]): In this example, we have

C = diag(5, 8, 8, 5), A4 = I, b = (1, 1, 1, 2)T and for k = 1, 2, 3:

Ak(i, j) =

 1 if i = j = k or i = j = k + 1;
−1 if i = k, j = k + 1 or i = k + 1, j = k;
0 otherwise.

X0 =
1

2
I, S0 =


2 1.5 0 0
1.5 3.5 1.5 0
0 1.5 3.5 1.5
0 0 1.5 2

 , y0 = (1.5, 1.5, 1.5, 1.5)T .

The following table summarize the obtained results

ψf ψg ψnew
θ iter CPU iter CPU iter CPU
0.1 203 18.8729 290 28.7452 203 0.3841
0.5 44 4.1067 60 12.8451 44 0.1323
0.9 25 2.3846 33 1.6855 21 0.1120

Now, we pass to two examples that have variant size.

Example 6.4. (Example 4 in [20]): This (SDO) problem is defined as follow:

C = −I, b(i) = 2, i = 1, ...,m.

Ak(i, j) =

 1 if i = j = k;
1 if i = j and i = k +m;
0 otherwise.

k = 1, ...,m,

X0 =

{
1.5 i ≤ j;
0.5 i > j;

, S0 = I, y0(i) = −2, i = 1, ...,m.

The obtained results for m ∈ {10, 25, 50, 100} , are shown in the following tables:

for m = 10
ψf ψg ψnew

θ iter CPU iter CPU iter CPU
0.1 244 66.6537 389 30.8754 242 1.4856
0.5 61 16.8074 70 16.9895 61 0.6697
0.9 33 9.0325 45 10.0258 33 0.5430

for m = 25
ψf ψg ψnew

θ iter CPU iter CPU iter CPU
0.1 264 169.4989 356 120.8988 259 11.8889
0.5 64 38.3909 70 40.9858 61 4.8082
0.9 35 25.2266 47 29.6545 30 4.5558
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for m = 50
ψf ψg ψnew

θ iter CPU iter CPU iter CPU
0.1 275 481.4549 364 458.6987 273 152.8225
0.5 65 174.0386 78 180.6959 62 79.8312
0.9 37 127.1565 54 130.9125 35 70.5128

for m = 100
ψf ψg ψnew

θ iter CPU iter CPU iter CPU
0.1 301 6.7508e+3 330 7.8561e+3 294 4.7225e+3

0.5 67 2.8665e+3 75 3.2551e+3 61 2.4653e+3

0.9 44 2.9516e+3 60 2.9525e+3 42 2.4652e+3

Example 6.5. (Example cube in [6]): Consider the following (SDO) problem:

Ak(i, j) =


1 if i = j = k or i = j = k +m;
25 if i = j = k + 1 or i = j = k +m+ 1;
−5 if i = k, j = k + 1 or i = k +m, j = k +m+ 1;
−5 if i = k + 1, j = k or i = k +m+ 1, j = k +m;
0 otherwise.

, k = 1, ...,m.

C = −2I, b(i) = 2, i = 1, ...,m, X0 = S0 = I, y0 = (0, 0, ..., 0)T .

The algorithm is executed with m ∈ {100, 170, 250} and θ = 0.9, the following table
summarize the obtained results

ψf ψg ψnew
m iter CPU iter CPU iter CPU
100 44 2.3945e+3 56 3.0548 43 1.9658e+3

170 45 3.7642e+4 53 3.8952 40 2.6814e+4

250 50 2.1550e+5 52 2.3688 51 1.9942e+5

Example 6.6. (Test problems from SDPLIB [4]): The algorithm has been tested on ref-
erence problems from the SDPLIB test problem library. It is started with initial point
X0 = S0 = I and y0 = 0 and with θ = 0.9.
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The following table summarize the obtained results

ψf ψg ψnew
m n iter CPU iter CPU iter CPU

control1 21 15 27 6.1521 38 8.9645 25 0.5439
control2 66 30 27 17.3590 38 20.8744 25 7.6585
control3 136 45 27 84.3097 39 90.8421 25 74.1237
control4 231 60 27 423.7427 37 587.681 24 356.1534
control5 351 75 27 1.4224e+3 38 1.9984e+3 26 1.2821e+3

gpp100 101 100 28 232.8007 39 333.8521 26 204.1248
hinf1 13 16 29 11.5243 39 18.9254 27 0.2655
hinf2 13 16 30 11.7002 40 17.5741 30 0.2843
hinf3 13 16 32 8.8578 44 10.9854 32 0.2993
hinf4 13 16 30 8.4722 39 12.8512 28 0.2828
hinf5 13 16 32 9.8052 40 12.6845 30 0.3148
hinf6 13 16 31 9.2530 45 13.0257 31 0.3049
hinf7 13 16 30 8.0903 47 11.0285 29 0.3229
hinf8 13 16 33 9.5336 48 12.8451 30 0.2958
hinf9 13 16 32 8.7731 40 10.9841 31 0.3122
hinf10 21 18 30 8.6530 45 10.4557 28 0.5635
hinf11 31 22 30 12.0619 45 17.6521 29 1.4668
hinf12 43 24 30 12.6508 43 15.9812 27 2.6228
hinf13 57 30 35 22.0333 50 30.8512 30 8.0645
hinf14 73 34 30 26.9598 41 36.0581 30 14.3958
hinf15 91 37 32 44.1425 47 57.8954 32 28.4352
mcp100 100 100 34 322.1379 46 368.2854 30 246.0535
qap5 136 26 27 34.2571 40 56.6524 25 24.6527
theta1 104 50 32 79.2318 41 90.8544 30 54.4034
truss1 6 13 28 6.0656 36 7.9541 28 0.0695
truss2 58 133 28 171.3178 35 203.8545 28 125.5758
truss3 27 31 30 12.2743 40 15.9845 27 1.5593
truss4 12 19 28 7.3415 39 9.6985 26 0.1798

From the obtained results, the following remarks are concluded:

• Our new kernel function produces better execution time than the others kernel func-
tions.

• In most of cases, our new kernel function reduces the iteration number than the others
kernel functions.

• The iteration number of the algorithm depend on the value of parameter θ, in most
cases the larger θ gives better iteration number.

• The results show a very slow growth as n increasing which is precisely what is hoped
for IPMs.
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7 Conclusion

In this paper, we proposed a new efficient parametrized logarithmic kernel function. We
have shown that the best result of iteration bounds for large and small update methods can
be achieved, namely O(

√
n log n log n

ε ) for large update and O(
√
n log n

ε ) for small update
methods. The results obtained in this paper represent an important contributions to improve
the convergence and the complexity analysis of primal-dual IPMs for SDO, and in our
knowledge, these results are one of the best known complexity bound for large update with
a logarithmic barrier term for SDO. Moreover, the numerical results were presented to
illustrate the advantage of our kernel function.
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