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TWO METHODS FOR FINDING A SPARSE SOLUTION OF
THE LINEAR COMPLEMENTARITY PROBLEM WITH
Z-MATRIX*

YU-FAN L1, ZHENG-HAI HuaNGT AND NANA DAl

Abstract: In this paper, we propose two numerical methods to find a sparse solution of the linear com-
plementarity problem (LCP) with a Z-matrix. The first one is an iterative method based on solving the
lower-dimensional linear equations by using Gaussian elimination, which terminates at a sparsest solution
of the LCP within a finite number of iterations, and the computational complexity of the method is O(u3)
where g is the number of non-zero elements in the sparsest solution of the LCP. The second one is a fixed
point iterative method starting from a feasible point of the LCP, which converges monotonically downward
to a solution of the LCP, and specially, it can be used to find a sparse solution of the LCP if the starting
point is sparse. Compared with several existing methods, the numerical results show the advantage and the
effectiveness of the proposed methods.
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Introduction

Given a matrix A € R™" and a vector q € R", the linear complementarity problem,
abbreviated as LCP(A, q), is to find a vector x € R™ such that

x>0, Ax+q>0, x'(4x+q)=0,

which has been extensively studied due to its wide applications in engineering and economics,
such as bimatrix game, market equilibrium, and so on [9, 11]. Moreover, as the optimality
conditions for quadratic programs, it plays a vital role in optimization research [6]. In this
paper, we denote the solution set of LCP(A, q) by SOL(A, q) and its feasible set by

FEA(A,q):={xe€R":x >0, Ax+q > 0}.

It is well known that sparsity often exists in many practical problems, such as compressed
sensing, signal processing, machine learning, sensor location, and so on [8]. Sparsity related
problems have attracted lots of attentions and obtained rapid developments in recent years
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[1, 7]. In the last decades, both the theory and numerical methods for finding a sparse
solution of a system of linear equations have been studied extensively [10]. In contrast with
the fast and great development in the sparse solution of linear equations, the study on the
sparse solution of LCP(A4, q) is few, from the perspective of both theory and algorithms.
Chen and Xiang [5] considered the characterization and computation of sparse solutions and
least-p-norm (0 < p < 1) solutions of LCP(A, q), and provided conditions on A such that
a sparse solution can be found by solving convex minimization. Shang et al. [19] proposed
an lp-norm (0 < p < 1) regularized minimization to approximate the sparse solution of
LCP(A,q) by sequentially decreasing the regularization parameter, and proposed a half
thresholding projection algorithm for I, , regularization model in [18]. Recently, Zhou et
al. [22] proposed a Newton hard thresholding pursuit to solve LCP(A, q) via a new merit
function.

When FEA(A,q) # 0 and A is a Z-matrix, FEA(A, q) contains a least element, which
is a sparsest solution of LCP(A, q) [6]. For LCP(A, q) with A being a Z-matrix, one of the
classic methods for finding the least solution is to solve the following linear program [16]:

min p'x
st. x>0, Ax+q>0

for any positive vector p € R"; and another classic method was proposed by Chandrasekaran
[2], which can be viewed as a special principal pivoting method (also see Chapter 4 in [6]).
Recently, Chen and Xiang [3] presented an implicit solution function for LCP(A, q) with Z-
matrix A, and apply it to find a sparsest solution of LCP(A, q). Luo et al. [15] showed that a
class of LCP(A4, q) can be exactly solved via a nonconvex [,-norm minimization (0 < p < 1).
Moreover, the least element solution has been used in the time stepping scheme to find stable
solutions of dynamic linear complementarity systems in [4, 20].

In this paper, we further study the numerical methods for finding a sparse solution of
LCP(A, q) with A being a Z-matrix. The contribution of this paper is as follows:

(i) Based on the discrimination of positive components in the sparsest solution of LCP(A4, q),
we propose an iterative method by solving lower-dimensional linear equations to find a
sparsest solution of LCP(A, q). The obtained solution is the least solution of LCP(A4, q).
In such a method, actually only a lower-dimensional linear system of no exceeding p
equations and p variables need to be solved, where p is the number of non-zero elements
in the sparsest solution to LCP(A4, q).

(ii) Based on a new fixed point equation reconstruction for LCP(A, q), we propose a fixed
point iterative method for solving LCP(A, q) starting from a feasible point, and prove
that the resulting sequence of iterations descends monotonically to a solution of the
problem. Combined with a strategy to find a sparse feasible solution, this method can
be used to find a sparse solution for LCP(A4, q).

(iii) The two methods are simple and easy to implement. Numerical simulation results
show that these two methods are superior to some classical methods [2, 16].

The rest of this paper is organized as follows. In Section 2, we give some basic symbols,
definitions and results. An iterative method based on lower-dimensional linear equations for
finding a sparsest solution of LCP(A4, q) is proposed in Section 3. In Section 4, we propose a
monotonically decreasing fixed point method to solve LCP(A4, q), and give a preconditioning
technique to find a feasible point for it. The convergence result is also established in this
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section. In Section 5, we show the numerical performances of the two proposed methods
compared to the classical ones. Conclusions are given in Section 6.

Preliminaries

For a positive integer n, we use [n] to denote {1,2,...,n}. Let index sets T,S C [n]. We
use |S| to denote the cardinality of the set S. For any x € R", xg denotes the subvector
of x containing components corresponding to the indices in S. For a matrix A € R™*",
a.; denotes the j-th column of A, A.s denotes the submatrix of A comprising columns
corresponding to the indices in S, and Apg denotes a matrix obtained by deleting from A
all rows except those of the indices in T and all columns except those of the indices in S.

Let R} := {x € R" : x > 0} and R}, := {x € R” : x > 0}. For any x,y € R", we use
x Ty to denote the Euclidean inner product, x oy to denote the Hadamard product, and
Ix|| to denote the 2-norm of x.

Definition 2.1 ([6]). A matrix A = (a;;) € R™*™ is said to be a Z-matrix if its off-diagonal
entries are non-positive.

Definition 2.2 ([6]). A subset S C R" is bounded below if there exists a vector u € R"
such that x > u for all vectors x € S. If such a vector u happens to belong to S, then u is
called a least element of S.

Theorem 2.3 ([6]). Let A € R™™™ be a Z-matriz and q € R™. If LCP(A,q) is feasible,
then FEA(A,q) contains a least element u. Moreover, u solves LCP(A,q).

Throughout the paper, we assume that FEA(A,q) # 0. Moreover, if u is the least
element of FEA(A, q), then u is said to be the least solution of LCP(A4, q).

An Iterative Method Based on Lower-Dimensional Equations

In this section, we propose an iterative method to find a sparsest solution of LCP(A, q) with
A being a Z-matrix by sequentially solving lower-dimensional linear equations, where the
lower-dimensional linear equations are solved by Gaussian elimination method.

We have the following two simple observations. First, if g € R”}, then it is easy to see
that 0 € R™ is the unique sparsest solution of LCP(A, q), which is also the least element
of FEA(A,q). Second, if q ¢ R, i.e., there exists at least an index ¢ € [n] such that
¢; < 0, then we have that a;; > 0 for all ¢ € [n] satisfying ¢; < 0, since A is a Z-matrix and
FEA(4,q) # 0.

In the following, without loss of generality, we assume that q ¢ R’}. We denote

T:={ie€n]:q¢ <0} and Q:={i€n]:ay >0},

and Y¢:=[n]\ T and Q° := [n] \ Q. Denote s := |T| and [ := |Q}]. Then, by § # 7T C Q, we
have 0 < s <1 < n.

Remark 3.1. It is obvious that T = QT and T = (Q\ T) Qe

Next, we construct a matrix B € R™*! satisfying B = A.q, and denote
FEA(B,q):={y € R': y > 0,By + q > 0}.

It is easy to see that B = A when Q¢ = (). We have the following result.



122 Y.-F. LI, Z-H. HUANG AND N. DAI

Theorem 3.2. Suppose that A = (a;;) € R"*" is a Z-matriz and q € R". Let B= A.q €
R™*! be the submatriz of A.

(i) Ifx € FEA(A,q), then y = xq € FEA(B, q).
(ii) Ify € FEA(B,q), then x € FEA(A, q) with Xq =y and Xq- = 0.

Proof. (i) Since x € FEA(A, q), we have that x > 0 and Ax + q > 0. Then,
y=%0>0 and By+q=AgXq+q>—AqgXq >0,

where the last inequality holds since A.q- < 0 by the fact that A is a Z-matrix and a; <0
for any ¢ € Q°. Thus, ¥ € FEA(B, q).
(ii) Since y € FEA(B, q), we have that y > 0 and By + q > 0. Then, we have

x>0 and AX+q= AoXq+ AqXoe+q=By+q2>0.

Thus, x € FEA(A, q). The proof is complete.

Theorem 3.2 demonstrates that in order to find a sparsest solution of LCP(A, q), we only
need to find the least element of FEA(B, q). This may reduce the number of variables to
be examined when Q¢ # (). In the following, instead of LCP(A, q), we consider FEA(B, q).

For convenience, we denote
Q= {i1,d0,..., 0 with 44 <ig <+ <y, (3.1)
and let the j-th column of B € R™ ! be the i;-th column of 4, i.e.,
b :=a,, forallj € [l] satisfying i; € Q. (3.2)
Then, we can obtain the following result.

Theorem 3.3. Suppose that A = (a;;) € R"*" is a Z-matriz and q € R". Let B= A.q €
R"*! and y € FEA(B,q). Then

g; >0, Vje][l] satisfying i; € Y.

Proof . Suppose that g;, = 0 for some jo € [I] with i;, € T, then there is a contradiction to
y € FEA(B, q), as we can show that for any y > 0,

(By +4a)i;, = b, joTjo + Z bi;,i¥; + iy, < 0. (3.3)
JEN\{do}
In fact, (3.3) holds since ¢;; < 0 and b;; ; < 0 for any j € [I] \ {jo} by (3.2) and the
assumption that A is a Z-matrix. The proof is complete.
Next, we design an iterative method to find a sparsest solution of LCP(A, q) based on
Theorems 3.2 and 3.3. For convenience, we denote

TE{hl,hg,...,hs} with hy < hy < --- < hg,

and (hy) := {h1,he,...,hi} for any k € [s]. Then, for any h, € T C Q with p € [s], there
exists some j, € [I] such that h, =i;,. We consider the following system of linear equalities
and inequalities with y € Rﬂ_:

Ohyip¥i, + [l%{_ }bhpjyj = —n,, YhpeT,
Jje J
y . 3.4
(—b,‘j)yj qi, Vi e Ye. ( )

IN

JE[l]
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For convenience, we will use (ji) := {j1,...,Jjr} for any k € [s].

Procedure 1: We use Gaussian elimination method to solve the equations in (3.4), and
update the inequalities in (3.4) meantime. Specifically, for any k € [s], (3.4) turns to

v, + X Wy = P vh, e () e k),
JENGr) v
> bg?)yj = ¢ vieT\(h), (3.5)
JeliNGE)
> (b < ¢, vier
JeliNGs)

where for k = 1:
bhyj . .
{ ' = = g (W),
otV =g — by, b = by — bil)jbijl (VjeI\{in}), Vi#hi,
and for any k € {2,...,s}:

(k—1) (k—1)

k qa, k by, . .
th, = g bl = gty (V3 € [\ (i),
kIk kik
k k— k k— k k— k k— . . .
g =Y = g b b = b = bl (e [\ ), Vi B

By Procedure 1, we finally obtain equivalently the following system of equations and
inequalities with nonnegative variables y; for all j € [I]:

(s) (s)

Yie + 2 by o= —a,, VhyeY (pels),
JENN\s)
(s) (s) . (3.6)
> (*bij Jy; < q; Vi e T
JE[NGs)

Lemma 3.4. In Procedure 1, for any h, € T with p € [s], we have the following re-
sults.

(i) For any k € [s], it holds that q,(llz) <0 and

b <0, Wi\ (). 5 # i (3.7)
Specially, we have that q,(;) <0 and
b <0, Vel Gy). (3.8)
(ii) It holds that
bgg;;y >0, Vhy#hi, jp# (3.9)

Proof. We first show that (i) and (ii) hold when k = 1. Firstly, we show that (i) holds.
After the first elimination, we have that

1 ._ 4
I = sy < 0 (3.10)
0 = an, — ) on,g <0, Vh, €T\ {I},
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since qn,,qn, <0 by hy € Y, b5, > 0 by hy € Q, and by, 5, < 0 by (3.2) and the fact that
A is a Z-matrix. Moreover, for any j € [I] \ {41}, we have that

(1) . bnyj
{ b?bj o S?ﬁ (3.11)
bhpj = bhpj - bh1jbhpj1 < 0’ Vhp eT \ {h’l}? ] 7é j;m

since by, j, > 0 and by, j,bn,5,bn,;, < 0 by (3.2) and the assumption that A is a Z-matrix.

Secondly, based on (i), we show that (ii) holds for p = 2, i.e.,

1
bgu)jz > 0.
Suppose by contradiction that bélz)jz < 0. We consider (3.5):
1 1 1
b+ D by =—a)y. (3.12)
JElNG2)

By (3.11), we have that b;llz)J <0 for any j € [I] \ (j2). This, together with y € R, implies
that the left-hand side of (3.12) is non-positive; while the right-hand side of (3.12) is positive
by (3.10). This is a contradiction.

Next, we apply the induction, and assume that (i) and (ii) holds for case of k — 1 with
ke{2,...,s}, ie., after the (k — 1)-th elimination, the following results hold:

g <0, Vh, e (3.13)
bET <0, Vhy € T\ {hea}, Vi € W\ Gio), G # i (3.14)
b > 0. (3.15)

In the following, we show that (i) and (ii) hold for case of k with k € {2,...,s}. Specifically,
after the k-th elimination, from (3.13)-(3.15), we can obtain that (i) holds, i.e.,

k—1
k)

Tt <O (3.16)
kIk .
g =g gD <0, Wiy, € T\ (),

and also for any j € [I] \ {jk), it holds that

(k—1)

(k) . Phy
hiej "= b;fﬁl) <0, (3.17)

kJk
b = oD D <0, Wby, € Y\ {li}, G # b

Based on (i), we show that (ii) holds for p € {3,...,s}. It is worth noting that after k = s,
Procedure 1 terminates. After the k-th elimination for k € {2,...,s — 1}, it holds that

(k)
bhk+1jk+1 > 0.

If not, from b;illj < 0 by (3.17) and y; > 0 for any j € [I] \ (jr+1), it follows that the

. . k k k) .
left-hand side of the hgy1-th equation bgk{ru-w:yjk+1 + EMZW >b§m)+1jyj = _QI(zk)_H In system
j Jk
(3.5) is non-positive, which contradicts to —q® . >0 by (3.16).

hpy
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The proof is complete.

Lemma 3.4 characterizes the property of the s equations in system (3.5) in Procedure
1. The next lemma discusses the property of inequalities in system (3.5) corresponding to
index Y€ after Procedure 1.

Lemma 3.5. In Procedure 1, for any k € [s], the following results hold.
(i) For any i€ Q\T, we have
b <0, Vje ]\ () withij # . (3.18)
(ii) For any i € Q°, we have
b <0, vie ]\ (i), (3.19)

(s) > 0.

i

and hence, q

Proof. (i) We first show (3.18) when k£ = 1. For any ¢ € Q \ T, it holds that

1 1 . ) oy .

b,E]) = bij — bgzl)jbijl S O, v_] S [l] \ {]1} with 15 7é 1,

since bglll)j <0 by (3.8) and b;;,b;;, <0 by (3.2) and the assumption that A is a Z-matrix.
Let us apply the induction. Suppose that for any k € {2,..., s}, it holds that

bV <0, Wie [\ (ror) with i; # .
Then, by using bé’i)] < 0 from (3.8), we can derive that
b =0 — o <0, Wi e [I]\ (i) with i # i.

(i) To show (3.19), for any i € Q¢ when k = 1, we have
by = by~ Bibi, <0, Vi€ [\ ),

since bglll)J < 0 by (3.8), and b;;, b;5, <0 by (3.2) and the assumption that A is a Z-matrix.

Then, for k € {2,..., s}, by using bg?ﬂ < 0 from (3.8) and applying recursion, we can further
obtain that
bl = bV D <0, vie 1]\ (i)

hij~ijk

Next, we show that qi(s) > 0 for any ¢ € Q°. By (3.19) and y; > 0, together with the

inequalities corresponding to ¢ € ¢ in system (3.6), i.e., Y. (—bl(-;))yj < qis), the result
JEMUNGs)
holds obviously. The proof is complete.
Recall Remark 3.1, we have T¢ = (Q\ T)UQ°. From Lemma 3.5 (ii), we can obtain the

following corollary.

Corollary 3.6. After Procedure 1, if there exists an index (or indices) i € Y° satisfying
ql(s) < 0, then it must belong to the set T¢\ Q¢ =Q\ T.
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Next, we continue the procedure in two cases.

Case 1: qi(s) >0forallie Q\T.

In this case, we have qgs) >0 for all i € T¢ by Lemma 3.5, and can obtain the following
theorem.

Theorem 3.7. Suppose that A = (ai;) € R"*™ is a Z-matriz and q € R". Let FEA(A,q) #
(). After Procedure 1, if qis) >0 foralli € Q\Y, then x € RY} satisfying Xy = _qg?) and
Xyve = 0 is a sparsest solution of LCP(A,q), which is also the least solution of LCP(A,q).

Proof . 1t is easy to verify that x € FEA(A,q). On one hand, x € R’} since Xy = —q%fs) €
R?%, by Lemma 3.4 (i). On the other hand, let y = Xq, then AX + q = By +q > 0 since
(By +q)r =0 and (By +q)y- > 0 by (3.6). Obviously, x € SOL(A, q). Furthermore, X is
a sparsest solution of LCP(A, q) by Theorems 3.2 and 3.3.

Suppose that x € FEA(A,q), let y = Xq, then y € FEA(B,q). By utilizing the
feasibility condition and applying Gaussian elimination, when the procedure terminates,
similar to (3.6), we have that

U, + > Wy > =g, Vh, €T withp e [s],
JE[N\(Is)

and then, from y € Ri and b*). < 0 by (3.7), we can further deduce that g, > —q,(;;).

Thus, it holds that "

Xy > —q%? ) = %,
which together with the fact that Xy > 0 = Xvye, implies that X is the least solution of
LCP(A, q). The proof is complete.

Case 2: There exists some index ¢ € Q\ T such that qZ(S) < 0.
For this case, by using Lemma 3.5 (i), similar to the proof of Theorem 3.3, we have the
following result.

Theorem 3.8. Suppose that A = (a;;) € R"*" is a Z-matriz and q € R™. Let B= A.q €
R"*! andy € FEA(B,q). Then for any i € Q\ YT satisfying qgs) < 0, we have
g; >0, Vje[]\{js) withi; =i.
In the following, we denote

Q\TE{gS+17"'7gl}a

for convenience, then for any gs1+ € Q\Y with ¢ € [[—s], there must exist some js1+ € [[]\{js)
such that g, = 4;,,, by (3.1). Without loss of generality, we assume qg.hy < 0, and consider
the following linear system:

Yjp + [”Z\( )b;(;)jyj =—qy), Vh, €T (pels),
Jje Js
b!(Ji)Jrljs+1ij+1 + ‘e[l]%z‘ >b;z)+1jyj = _qégilla gs+1 € Q\T. (3.20)
J Js+1
W%WF%%w <, VieT\{gs1}
Je Js

From qéﬂl < 0, we have that y;, ., > 0 by Theorem 3.8, here js11 € [I] \ (js) satisfies

= ¢gs+1. Then, we can derive that

b(s)

gs+1Js+1

st+1

> 0. (3.21)
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If not, by b(é ' S0 forany j € [I]\ (js41) from (3.18), together with the fact that y; > 0,

the left- hand side of inequality w.r.t. index gsy1 in system (3.6) is nonnegative, which
contradicts to qéill < 0.
Based on (3.21), we can use Gaussian elimination on the equations in (3.20) while up-

(s)

dating the inequalities meantime, and let thl) be the variant of qy. after the elimination.

For gs11 € Q\ T, from qgs) <0 and b > 0 by (3.21), we have that

s+1 gs+1Js+1
(s,1) . 457
s s+1
qg o1 - b(é)i < O (322)
gs+1js+1

(1) -,

If §5 1) >0 for all i € T¢\ {gs+1}, we terminate the procedure. Otherwise, suppose that

éﬂ}g < 0 without loss of generality, then we continue to apply Gaussian elimination on the
equation corresponding to index gs42 as well as the previous obtained ones, while updating
the left inequalities of the variant system of (3.20) at the same time. This process is repeated

until the desired condition is met. Such a process is called Procedure 2.

Furthermore, we examine that if there exists index ¢ € T°\ {gs+1} such that g,

Procedure 2: We assume that Procedure 2 terminates after r-step elimination (r > 1).
For any k € [r], we denote (gs4+x) = {gs+1,---,s+k} for convenience. Then, system (3.20)
turns to the following form in turn:

e o+ X 6w =—an” Yk eX(pels),
JEMNGs+k)
s s Vgsit € (gs C(Q\TY),
IRV D S =i, g(“ c ik % ) ST, g
JENNGs+k) i i
Sy <a™ vie T (),
JEMNs+x)
where
(s.k) 4t (s,k) e . ,
99 vk = 1)‘*’“71)’ bgij =GR D (Vi €[]\ (Ustk))s gstr € A\,
k) TGRS s DE Ry S
qh : th’ QQS;.k h7js+k ) vh
sk: (s,k—1 s,k s,k—1 . . ET(pE[SD7
{ by = by Y b(s z]bzw ) (V5 € [0\ Gorn)), ’

{ q(s k:) (s Ig 1) gs k)b s, 71)

H NN Vi€ TN\ {gss+k}-
(s,k) (é k=1)  p(s.k) 7(5k— 1) . . s+k
bigs‘ = b;;’ bgs+kjbij5+k (V5 € [\ (s+r)),

Lemma 3.9. After the k-th elimination in Procedure 2 with k € [r], we have the following
results.

(1) qéfff) <0 for any ge+r € Q\ T with t € [k].
(ii) For any j € [I] \ (js+k), it holds that

k .
b% J?C)] <0, Vgsre € Q\ T with ¢ € [k],
stthj <0, Vgs+t EQ\TWithtE {k‘—l—l,...,l—s}7 i F# st
bt <0, viege
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(iii) qgs’k) > 0 for any i € Q°. Or to say, if there exists index gsyp+1 € Y\ (gstk)
satisfying qéf’f,zH <0, then gsyr+1 must belong to (QA\ T)\ (gs+k)-

(iv) For jsyrs1 € [\ (Jstr) satisfying i, .., = gs+rt1 with qf,jf,zﬂ < 0, it holds that
(2:k) >0 and y;,.,,, >0 for any y € FEA(B,q).

Is+k+1Js+k+1

Proof. We show that (i)-(iv) hold when k& = 1. Firstly, (i) holds by (3.22) obviously.
Secondly, we show that (ii) holds. For any gs4+ € Q\ Y with t € [ — s] and j € [I]\ (Js+1),
from b . b < 0 by Lemma 3.5 (i) and b’ > 0 by (3.21), we have

s+t " Gs+tis+1 gs+1Js+1
(s)
D) . bei g
JRY IRy ) > U,
oo _ B 2
s, (s I ACH s . .
bgs+tj T b95+tj b9s+1jbgs+tjs+1 <0, VEFL JF se-

Moreover, for any i € Q¢ and j € [I] \ (jot1), from (3.24) and b, 5% < 0 by Lemma 3.5

1j 7 Vs
(ii), we have

bl = &) —pD 4 <

J 9gs4+1J tJs+1 —

, (3.25)

Thirdly, based on (i) and (ii), we show that (iii) holds, i.e., if there exists gsy2 € T\ {gs+1}
satisfying qésg < 0, we must have that

9s+2 € (Q \ T) \ {gerl}'

Suppose by contradiction that gs12 € €¢, then by y; > 0, combining with the fact that
—bl(;-’l) >0 for any i € Q¢ and j € [I] \ (Js+1) by (3.25), the left-hand side of the inequality

w.r.t. index gs42 in system (3.23) is nonnegative, which contradicts to qésjz) < 0. Finally,

we show that (iv) holds. Since y € FEA(B, q), it follows that for jsy2 € [I]\ (js+1) satisfying

. . 1
1j, s = Jst2 with qéerz) <0,

(s,1) _ (s,1) — s,1).
bgs+2js+zyjs+2 + Z b9s+2jyj = _qésw)’
JE[MN\(Fs+2)

while, by (3.24), we have that q!(ysjz) < 0 and b;i’;)j < 0for any j € [I]\ (js+2). These as well
(s,1)

93+2.js+2

Then, similar to the proof in the case of k = 1, we can obtain that (i)-(iv) hold after the
k-th elimination with k € {2,...,r} by applying the induction. The proof is complete.
After Procedure 2, (3.20) turns to the system as follows:

as y > 0 imply that we must have g;,,, >0 and b

Vi + Y by =—q0",  Vh,eT(pes),
je[l]\<js+T> ( ) ( )
Yiee T 2 byl =05\, Vg EQ\T(E]), (320
JEMN(Fstr) (o)
> (_bij"r )Y; < Q§S’T)a Vi € TN (gstr)-
JEMN(Fstr)
(s,k)

Next, we show that gy’ < 0 for any k € [r] in Procedure 2.
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Lemma 3.10. In Procedure 2, for any h, € T with p € [s], the following results hold for
any k € [r].

. k
(i) g <o,

(i) by <0 for any j € [\ (agr)-

Proof. After the first elimination in Procedure 2, for any h, € T with p € [s], we have

s,1 s 1) pls
{ an )) =g - qgs“))bglp)ml <0,
s,1 s 5,1 s / '
i’ = s = Uy tlibiosn <0 ¥ € W\ Gora),

where the first inequality holds since q,(;) < 0 by Lemma 3.4 (i), qs(ffl) < 0 by (3.22) and
b <o by (3.7), and the second inequality holds since b bgf) < 0 by (3.7) and

?ijj+1 - hpj? pJs+1
s,1
by 1 <0 by (3.24).
Now, let us apply the induction. Suppose that after the (k — 1)-th elimination with

ke {2,...,r}, we have that for any h, € T with p € [s],

qgs,k—l) <0,
bERD <00 vie [\ G
hpj <0, Viell]\ (Jstr-1)

then, after the k-th elimination, from qégfk) < 0 by Lemma 3.4 (i) and bégfgj < 0 by Lemma
3.4 (ii), it holds that for any h, € T with p € [s],

s,k s,k— s,k) . (s,k—
{ ap =t — gt <o,

P Js+k

by = by = bt libisy <00 Vi € [\ Gark):

Is+kJ hpJstk

The proof is complete.
After Procedure 2, we can obtain the following theorem.

Theorem 3.11. Suppose that A = (a;;) € R™*™ is a Z-matriz and q € R". Let FEA(A, q) #
(0. When Procedure 2 terminates, X € R’ with

= _ (s,m) = -
XTU<95+1~> - 7qTU<gS+T) and XTC\(Qer'r) =0

is a sparsest solution of LCP(A,q), which is also the least solution of LCP(A,q).

Proof. First, we show that x € FEA(A,q). On one hand, by Lemma 3.9 (i) and Lemma
3.10 (i), we have that Xyy,.,) = —qgﬁ&gsm > 0, which implies that x € R’}. On the
other hand, let y = Xq, then AXx +q = By + q > 0 since (By + q)yu(g,,,) = 0 and
(BY + d)re\(g.4,) = 0 by (3.26). Second, it is obvious that x € SOL(A4,q). Finally, by
Theorems 3.2, 3.3 and 3.8 and Lemma 3.9 (iv), we obtain that X is a sparsest solution of
LCP(A,q).

Suppose that x € FEA(A,q), let y = Xq, then y € FEA(B,q). By utilizing the
feasibility condition and applying Gaussian elimination, when the procedure terminates,
similar to (3.26), for any h, € T with p € [s] and go1¢ € Q\ T with ¢ € [r], we have that

TR VRN W TR
FEMNGstr) -

~ (s,7) ~
Yjsye + Z b ortiYi > —dgsii
T e\ G
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and then, from y € R}, and bgi’;), bt(zz;)y < 0 by Lemma 3.10 (ii) and Lemma 3.9 (ii), we can
further deduce that g;, > —q}({:T) and ¢j,,, > —qéfft) . Thus, it holds that

~ (s,r) =
XYU(garr) 2 “Ar0{gey,) = XTU(gasr)

which together with the fact that Xye\(g, ) = 0 = Xye\(g,,,), implies that x is the least
solution of LCP(A, q). The proof is complete.

Remark 3.12. In the whole procedure, when Gaussian elimination is executed for the con-
cerned equations, it can be seen from Corollary 3.6 and Lemma 3.9 (iii) that the concerned
inequalities corresponding to index set 2¢ hold automatically. So, in the practical algorithm,
we only deal with a lower-dimensional linear system with no more than ! equations and [
variables, and do not need to execute any updates for inequalities corresponding to index
Q°. When |Q°| is large, this strategy could greatly decrease the computation cost in the
iterations compared to Chandrasekaran’s method [2].

In the following, we propose an iterative method based on lower-dimensional equations
to find a sparsest solution of LCP(A4, q).

Algorithm 3.13. (An iterative method based on lower-dimensional equations (iLD))

(S0) Given A € R™*"™ and q € R™. If g > 0, then set x := 0 € R™ and stop. Otherwise,
let T:={ie[n]:¢q <0}and Q:={i € [n]:a; >0} Set xqe :=0.

(S1) Gaussian elimination method is used to solve equations:
Axrxy = —qr.

Compute qo\r := A@\r)rXr + 9o\

(S82) If go\r > 0, then set xo\y := 0, and stop. Otherwise, choose i; € Q\ T satisfying
¢, <0, and set

Y= i}

and go to (S1).

Remark 3.14. We use p to denote the number of non-zero elements in the sparsest solution
to LCP(4, q).

(i) In Algorithm 3.13, we first need to solve a system of linear equations with s equations
and s variables; and then, we need to solve successively u — s systems of linear equa-
tions where the numbers of variables and equations are gradually increasing. It should
be emphasized that solving the first system of linear equations requires s-step elimi-
nation, while solving each subsequent system of linear equations requires only 1-step
elimination, so the entire algorithm actually requires only p-step elimination.

(i) The computational complexity of Algorithm 3.13 is O(x?®). Thus, the smaller the
number of non-zero elements in the sparsest solution to LCP(A,q), the lower the
computational cost of Algorithm 3.13.
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A Fixed Point Iterative Method

In this section, we propose a fixed point method to solve LCP(A, q), which monotonically
decreasing converges to a solution of LCP(A, q) from any given feasible point. Moreover,
if the starting point is sparse, the proposed algorithm could quickly converge to a sparse
solution of LCP(A, q).

For any A € R™*™ and q € R", we denote

F(x) :=x— D(x0(Ax +q)), Vx € R", (4.1)
Then, we have the following result.
Proposition 4.1. If x € FEA(A, q), then x € SOL(A, q) if and only if x = F(x).
Inspired by Proposition 4.1, we design the following method to solve LCP(A, q).
Algorithm 4.2. (A fixed point (FP) iterative method)
(SO0) Given A € R™*™ and q € R™. If q > 0, then set x := 0 € R™ and stop. Otherwise,

if there exists ¢ € [n] such that ¢; > 0, then set gmax := max{q; : ¢; > 0}; if not, set
Gmax := 1. Choose v € (0,1) such that ygmax < 1, and x° € FEA(A, q). Set k := 0.

(S1) Let D* be a diagonal matrix with its i-diagonal entry being

—1
k._ (aiixf + 1) if a;; > 0, . 4.9
di: { 1 otherwise, Vi € [nl (4.2)
(S2) Set
xFt = x* — yDF (xk o (Axk +4q)). (4.3)

(S3) If min{x**1, Ax**! + q} = 0, stop. Otherwise, set k := k + 1, and go to step (S1).

In the following, we assume q ¢ R} without loss of generality, and denote K := {0,1,...}.
Lemma 4.3. Suppose that A = (a;;) € R™*™ is a Z-matriz and q € R™. Let the sequence
{x*} be generated by Algorithm 4.2. Then, we have the following results.

(i) x* € FEA(A,q) for all k € K,

(i) x**tt <xF for all k € K.
Proof. (i) From the step (S0) of Algorithm 4.2, it follows that x° € FEA(A,q). In the
following, we prove the conclusion in (i) by mathematical induction. That is, we assume that

x! € FEA(A, q) for some [ € K, and show that x'*! € FEA(4, q). Note that x' € FEA(4, q)
means that

x'>0 and Ax'4+q>0. (4.4)

To show x!*1 € FEA(A, q), we divide the proof into the following two parts.
Part 1. We show that x'*! > 0. It follows from (4.3) that for any i € [n],

it = 2f —ydii(Ax + q)i = [1 - ydi(Ax' + q)Ja]. (4.5)
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For any 4 € [n], it is obvious that

(Ax' 4+ q); = aguz! + Z aijxé- + i, (4.6)
J#i
Since A is a Z-matrix, it follows that for any ¢ € [n], a;; < 0 for all j # i. We consider the
following two cases.
Case 1. Suppose that a;; < 0 for some ¢ € [n]. In this case, combining the fact that a,; <0
for all j # i with (4.4) and (4.6), we can obtain that (Ax'); < 0 and ¢; > 0. Moreover, by
(4.2) we have d! = 1. Thus, it follows from (4.5) that

2t = [1 — ydi(Ax' + q)i]at > [1 - ygi]zt > 0,

where the last inequality holds due to v¢; < Ygmax < 1.
Case 2. Suppose that a;; > 0 for some i € [n]. In this case, we have that d. = (aiq;osé + 1)71
by (4.2).

By the fact that a;; < 0 for all j # 4, combing with (4.4) and (4.6), we have that

Yayh + g yagah+1
a“xi +1 aiimé +1

ydi(Ax' + q); < <1

)

and hence, by (4.5), we have that

Tl + 1
= 1= (Ax' + )l > [1 - H] 7 2 0.

Thus, we obtain that /™ >0 for all i € [n]. So x!*! > 0.
Part 2. We show that Ax*1 4+ q > 0. For any i € [n], it follows from (4.3) that

(Ax"T! +q); = (Ax' + q); — [A(vD'(x' o (AX' + q)))];. (4.7)

If a;; < 0, by the step (S1) of Algorithm 4.2, we have that D¥ is a diagonal matrix with
positive diagonal entries, and then yD*(x' o (Ax' + q)) € R%}. Thus, from the fact that
ai; <0 for all j # i, it follows that [A(yD!(x! o (Ax! + q)))™~]; < 0, and hence, by (4.7),
it holds that

(AxlJrl +q); > (Axl +q); > 0.

In the following, we assume that a;; > 0. In this case, by using the the fact that a;; < 0 for
all j # i and vD'(x' o (Ax' + q)) € R, we have that

(Ax* +q)i > (Ax' 4 q)i — au[ydizl(Ax' + q)i]
= [1 = yaydiz{](Ax' + q);.

Recall that d} = (a;;z} + 1)71 by (4.2) in this case, we have that

l

it
Yagdir; = vdj(agz}) = y—5—— <7,
;i T; +1
and hence,
1-— Waiidi»xé >1—7.
So,

(Ax" +q)i > (1 —7)(Ax' +q); > 0.
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Thus, we can obtain that Ax'*' +q > 0.

Combining Part 1 with Part 2, x'*! € FEA(A, q). Then, it holds that x* € FEA(4, q)
for all k£ € K by induction.

(ii) From the proof of (i), as well as (4.2) and (4.3), it holds that x*** < x* for all k € K.
The proof is complete.

Theorem 4.4. Suppose that A = (a;;) € R™*" is a Z-matriz and q € R™. Let the sequence
{x*} be generated by Algorithm 4.2. Then, the sequence {x*} descends monotonically, and
it converges to a solution of LCP(A,q).

Proof. By Lemma 4.3, we obtain that the sequence {x*} descends monotonically and has
a lower bound of zero. In the following, we show convergence of {x*}. Without loss of
generality, we assume that {x*} is an infinite sequence. Then, by the monotone bounded
convergence theorem, we have that {x*} must converge. We use x* to denote its limit point.
Then,

klim AxF 4+ q = Ax* +q,
—00
klim xF o (AxF 4 q) = x* o (Ax* + q).
—00

For any i € [n], we denote the limit point of sequence {d¥} by d?, then

d* =

« -1 o
: { (aiizy +1) if a;; > 0, Vi € [n].

1 otherwise,
Denote D* := diag{d} : i € [n]}. Since
xMt = xF —yDF(x¥ o (A" + q)), VEEK,

it follows that D*(x* o (Ax* + q)) = 0, i.e., x* o (Ax* + q) = 0. Moreover, by x* > 0 and
AxF 4+ q > 0 for all k € K, we have that x* > 0 and Ax* +q > 0. Therefore, x* is a solution
to LCP(A4,q). The proof is complete.

Note that Algorithm 4.2 converges monotonically downward to a solution of LCP(A4, q)
from a given feasible point. Obviously, if the starting point is sparse, then we can obtain a
sparse solution of LCP(A, q) by Algorithm 4.2. In general, it is difficult to obtain a sparse
feasible solution for LCP(A, q). Here, we have the following remark.

Remark 4.5. (i) Since the matrix in LCP(A, q) is required to be a Z-matrix, the sparse
feasible solutions of some of these problems can be directly observed by using the
properties of Z-matrices. For example, we can use the following result:

(R) Suppose that x € FEA(A, q) is a sparest solution of LCP(A4,q). If ¢; = 0 and
a; < 0 for some ¢ € [n], then z; = 0 for any j € [n] satisfying a;; # 0.

To illustrate this point, let’s consider LCP(A, q), where

2 0 -1 0 0
0 2 -3 0 1
A= 9 5 1 ¢ and q=|
3 0 0 1 )

It is clear that A is a Z-matrix. Let X € FEA(A, q) be a sparest solution of LCP(A4, q).
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(a) Since ¢; = 0 and a1 < 0, it follows from the above result (R) that ; =23 =0
since ajl,a13 7é 0.

(b) Since g3 = 0 and Z3 = 0, it follows from ass < 0 that z2 = 0.

Thus, x = (0,0,0,a) " with a > 2 is a sparse feasible solution of LCP(A, q).

(ii) For large-scale or complex problems, however, it is difficult to directly observe their
sparse feasible solutions. Therefore, how to systematically give a sparse feasible solu-
tion of such a class of problems is important. Next, we consider how to find a spare
feasible solution of LCP(A,q). By Theorem 3.2, instead of FEA(A, q), we may con-
sider FEA(B, q) to reduce computing cost. For system of inequalities in FEA(B, q),
by introducing slack variables and/or artificial variables, we can obtain the following
system of equalities and inequalities:

> by — vy twi = —q, vieT,

Jell] .

> bijYj — Yiti = —q, Vi e 1€, (4.8)
Jel]

y>0,u; >0, w;, >0Vi€([s], v, >0Vi € [n—s],

where each y;1; (i € [n]) is a slack variable, and each w; (i € T) is an artificial variable.
It is not difficult to see that FEA(B, q) # 0 if and only if (4.8) has at least one solution
such that w; = 0 for all i € T. We denote the set of all points satisfying (4.8) by O,
and consider the following linear programming with w = (w;)iey and y; := (Y144)ic[n):

min Y w;
i€T . (4.9)
st. ul = (yT v WT> € 0.

Suppose that u* satisfying (u*)" := ((y*) " (y;) " (W*)T)T is an optimal solution to
the linear programming (4.9). Then, if FEA(B,q) # (), we have w; = 0 for all s € T,
and y* € FEA(B, q).

In equalities in (4.8), all the numbers on the right-hand sides are nonnegative, the
matrix of the coefficients on the left-hand sides contains a unit matrix, and all variables
are nonnegative, then simplex algorithm can be directly applied to solve the linear
programming (4.9).

(iii) It should be noted that the proposed method in (ii) for finding sparse feasible solutions
is somewhat expensive. In practice, we can make use of the properties of Z-matrix and
inequality to reduce the size of the problem, and then use this method to find the
sparse feasible solutions to the problem.

Numerical Experiments

In this section, we implement the two proposed iterative methods to solve LCP(A, q), includ-
ing Algorithm 3.13 (iLD) and Algorithm 4.2 (FP). We compare the two proposed methods
with Chandrasekaran’s method (Pivot) [2] and a single linear program (LP) method by
Mangasarian [16] for finding a sparse solution of LCP(A, q) with given different Z-matrices
A and vectors q.
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Experiment settings

All the experiments were performed on a Macbook Pro (2.3 GHz, 8 GB of RAM) using
MATLAB 2021a.

For Algorithm 4.2, we take v = min{1, 1 /gmax } — (2¢ —2). Moreover, we use the stopping
criteria || min{x**1, Ax**14q}|| < le—14in (S3), and set the maximum number of iterations
to be 200.

For all the compared algorithms, we show the numerical results in the perspective of
the CPU time (CPU) and recovery error (Rel.Err := ||(x**1, Ax¥*1 4 q)||), as well as the
sparsity of output ||x*||o := |{i € [n] : ¥ # 0}|. Here, we think z¥ # 0 if 2% > le — 4.

Numerical results

In this subsection, we illustrate the numerical results of different methods for solving LCP(A, q)
with different matrices A € R™*™ and vectors q € R".

Example 5.1 ([22]). Let us consider LCP(A, q), where

La o o
1 S S T _1 1

n n n n

A=1,— ~ee' = . . ) ) and q= :
n : : K : :

1 1 1 1

“w o Tw o =g "

Here I,, is the identity matrix of order n, and e = (1,1,...,1)T € R, Clearly A4 is a
positive semidefinite Z-matrix, which is widely used in statistics. It is easy to verify that
for any scalar o > 0, x = (a + 1,a,...,a)" € R" are solutions to LCP(A,q). Among all
the solutions, x = (1,0, ... 70)—'— € R™ is the unique sparsest solution.

Table 5.1: Numerical performances for Example 5.1.

[ n [ Algo. [ CPU (s) [ Sparsity [ Output ]
1000 | Pivot 0.17 1 (1,0,...,0)T
1000 | iLD 0.05 1 (1,0,...,0)T
1000 LP 2.15 1 (1,0,...,0)T
1000 | FP 1.07 1 (1,0,...,0)T

Example 5.2. Let us consider LCP(A4, q), where

1 q r s q
0
s —1 T s
7 1
q S 1 q ,%
A=, 0 q roos | ER™ and q= (1) €R"
1
q s 1 q r 6
q -1 ¢
r s 1

with ¢ = -2, r = — 2= and s = — 25 for any p > 0.
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Table 5.2: Numerical performances for Example 5.2 with p = 1.

S

[ Algo. [ CPU (s) [ Sparsity [ Rel.Err [ Output

10 | Pivot 0.11 3 2.02e-17 | (0,0,0.3648,0,0,0.2134, 0,0, 0.1637, 0) |
10 | iLD 0.05 3 2.02e-17 | (0,0,0.3648,0,0,0.2134,0,0,0.1637, 0)
10 LP 0.65 3 1.05e-17 | (0,0,0.3648,0,0,0.2134,0,0,0.1637,0) "
10 FP 0.17 3 1.38e-18 | (0,0,0.3648,0,0,0.2134, 0,0, 0.1637,0) |
100 | Pivot 0.67 33 1.20e-17 | (0,0,0.3494, ...,0.0298, 0,0, 0.0295,0) |
100 | iLD 0.1 33 1.20e-17 | (0,0,0.3494, ...,0.0298, 0,0, 0.0295,0) |
100 | LP 0.64 33 1.70e-17 | (0,0,0.3494, ...,0.0298,0,0, 0.0295, 0) "
100 | FP 0.18 33 1.94¢-17 | (0,0,0.3494, ...,0.0298,0,0,0.0295, 0) "
500 | Pivot 5.16 166 5.68e-18 | (0,0,0.3383,...,0.0077,0,0,0.0076,0,0) "
500 | iLD 0.33 166 5.68e-18 | (0,0,0.3383,...,0.0077,0,0,0.0076,0,0) "
500 | LP 0.87 166 4.38¢-17 | (0,0,0.3383,...,0.0077,0,0,0.0076,0,0) "
500 | FP 0.35 166 3.72e-17 | (0,0,0.3383,...,0.0077,0,0,0.0076, 0, 0) |
1000 | Pivot | 24.19 333 3.02e-17 | (0,0,0.3362,...,0.0042,0,0,0.0042,0) "
1000 | iLD 1.35 333 3.02e-17 | (0,0,0.3362,...,0.0042,0,0,0.0042,0) "
1000 | LP 3.66 333 1.28¢-16 | (0,0,0.3362,...,0.0042,0,0,0.0042,0) "
1000 | FP 1.44 333 9.95e-17 | (0,0,0.3362, ...,0.0042,0,0,0.0042,0) "

Example 5.3. Consider LCP(A4, q), where

a=(qa),, --.q,) €R
with q,, = (=1,1,...,1)T € R™ and

c -1
-1 C -I
-1 C -I
-1 C

with I € R™*™ to be an identity matrix and

4 -1
-1 -4 -1

C: .. .. .. ERnlxnl.

Here, n = mn;.
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Table 5.3: Numerical performances for Example 5.3.
[ (m,n1) [ Algo. [ CPU (s) [ Sparsity [ Rel.Err [ Output ]

(2,50 | Pivot 0.79 50 3.22e-15 | (0.3660,0,0.4641,0,...,0.3660,0) |
(2,50) | iLD 0.08 50 3.22e-15 | (0.3660,0,0.4641,0,...,0.3660,0) "
(2,50) LP 0.58 50 9.06e-16 | (0.3660,0,0.4641,0, ...,0.3660,0) "
(2,50) FP 0.17 50 8.29e-16 | (0.3660,0,0.4641,0,...,0.3660,0)
(20,50) | Pivot 4.84 50 3.22e-15 | (0.3660,0,...,0,0.3660,0,...,0)"
(20,50) | iLD 0.2 50 3.22e-15 | (0.3660,0,...,0,0.3660,0,...,0)"
(20,50) | LP 0.49 50 9.96e-16 | (0.3660,0,...,0,0.3660,0,...,0)"
(20,50) | FP 0.2 50 8.29e-16 | (0.3660,0,...,0,0.3660,0,...,0) "
(50,100) | Pivot | 206.33 100 1.33¢e-14 | (0.3660,0,...,0,0.3660,0,...,0)"
(50,100) | iLD 14.84 100 1.33e-14 | (0.3660,0,...,0,0.3660,0,...,0) "
(50,100) | LP 1.16 100 7.18e-16 | (0.3660,0,...,0,0.3660,0,...,0)"
(50,100) | FP 0.54 100 1.10e-15 | (0.3660,0,...,0,0.3660,0,...,0)"

From Tables 5.1-5.3, we can observe the following facts. Firstly, the proposed iL.LD method
always cost fewer times compared with Pivot method, and FP method always cost fewer
times compared with LP method. The gap is more pronounced for the large scale problems.
Furthermore, the two proposed methods almost always cost fewer time compared to the
others. Secondly, the FP method could always converge to the least solution of LCP(A, q),
which further shows the convergence property of the method numerically. Thirdly, the iLD
method seems to have more superiority compared to the others for LCP(A, q) with smaller
dimensionality, and the FP method seems to have a stronger performance compared to
others for LCP(A, q) with larger dimensionality.

In conclusion, the experimental results further demonstrate the advantages of the pro-
posed methods in numerical calculation.

(6] Conclusions

In this paper, we proposed two numerical iterative methods for finding a sparse solution
of LCP(A4, q) with A being a Z-matrix, and they are an iterative method based on lower-
dimensional linear equations and a fixed point iterative method. The first iterative method
terminates at the unique least solution of LCP(A, q). The computational cost of this method
depends not on the size of the problem but on the sparsity of the solution. Therefore,
when the sparsity of the solution is smaller, the calculation cost of the method is lower.
The advantage of the second method is that it has the property of monotone descending
convergence, while the disadvantage is that a feasible starting point is required. Obviously,
the sparser the starting points, the sparser the solutions obtained by this method.

The tensor complementarity problem, which is generalized as a linear complementarity
problem, has been actively studied in recent years [12, 13, 17]. In particular, the problem
of finding sparse solutions of the tensor complementarity problem has been studied [14, 21].
We believe that the analytical method in this paper can be extended to find sparse solutions
for tensor complementarity problems and improve the existing methods.
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