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[1, 7]. In the last decades, both the theory and numerical methods for finding a sparse
solution of a system of linear equations have been studied extensively [10]. In contrast with
the fast and great development in the sparse solution of linear equations, the study on the
sparse solution of LCP(A,q) is few, from the perspective of both theory and algorithms.
Chen and Xiang [5] considered the characterization and computation of sparse solutions and
least-p-norm (0 < p < 1) solutions of LCP(A,q), and provided conditions on A such that
a sparse solution can be found by solving convex minimization. Shang et al. [19] proposed
an lp-norm (0 < p < 1) regularized minimization to approximate the sparse solution of
LCP(A,q) by sequentially decreasing the regularization parameter, and proposed a half
thresholding projection algorithm for l1/2 regularization model in [18]. Recently, Zhou et
al. [22] proposed a Newton hard thresholding pursuit to solve LCP(A,q) via a new merit
function.

When FEA(A,q) ̸= ∅ and A is a Z-matrix, FEA(A,q) contains a least element, which
is a sparsest solution of LCP(A,q) [6]. For LCP(A,q) with A being a Z-matrix, one of the
classic methods for finding the least solution is to solve the following linear program [16]:

min p⊤x
s.t. x ≥ 0, Ax+ q ≥ 0

for any positive vector p ∈ Rn; and another classic method was proposed by Chandrasekaran
[2], which can be viewed as a special principal pivoting method (also see Chapter 4 in [6]).
Recently, Chen and Xiang [3] presented an implicit solution function for LCP(A,q) with Z-
matrix A, and apply it to find a sparsest solution of LCP(A,q). Luo et al. [15] showed that a
class of LCP(A,q) can be exactly solved via a nonconvex lp-norm minimization (0 < p < 1).
Moreover, the least element solution has been used in the time stepping scheme to find stable
solutions of dynamic linear complementarity systems in [4, 20].

In this paper, we further study the numerical methods for finding a sparse solution of
LCP(A,q) with A being a Z-matrix. The contribution of this paper is as follows:

(i) Based on the discrimination of positive components in the sparsest solution of LCP(A,q),
we propose an iterative method by solving lower-dimensional linear equations to find a
sparsest solution of LCP(A,q). The obtained solution is the least solution of LCP(A,q).
In such a method, actually only a lower-dimensional linear system of no exceeding µ
equations and µ variables need to be solved, where µ is the number of non-zero elements
in the sparsest solution to LCP(A,q).

(ii) Based on a new fixed point equation reconstruction for LCP(A,q), we propose a fixed
point iterative method for solving LCP(A,q) starting from a feasible point, and prove
that the resulting sequence of iterations descends monotonically to a solution of the
problem. Combined with a strategy to find a sparse feasible solution, this method can
be used to find a sparse solution for LCP(A,q).

(iii) The two methods are simple and easy to implement. Numerical simulation results
show that these two methods are superior to some classical methods [2, 16].

The rest of this paper is organized as follows. In Section 2, we give some basic symbols,
definitions and results. An iterative method based on lower-dimensional linear equations for
finding a sparsest solution of LCP(A,q) is proposed in Section 3. In Section 4, we propose a
monotonically decreasing fixed point method to solve LCP(A,q), and give a preconditioning
technique to find a feasible point for it. The convergence result is also established in this
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section. In Section 5, we show the numerical performances of the two proposed methods
compared to the classical ones. Conclusions are given in Section 6.

2 Preliminaries

For a positive integer n, we use [n] to denote {1, 2, . . . , n}. Let index sets T, S ⊆ [n]. We
use |S| to denote the cardinality of the set S. For any x ∈ Rn, xS denotes the subvector
of x containing components corresponding to the indices in S. For a matrix A ∈ Rn×n,
a·j denotes the j-th column of A, A·S denotes the submatrix of A comprising columns
corresponding to the indices in S, and ATS denotes a matrix obtained by deleting from A
all rows except those of the indices in T and all columns except those of the indices in S.

Let Rn
+ := {x ∈ Rn : x ≥ 0} and Rn

++ := {x ∈ Rn : x > 0}. For any x,y ∈ Rn, we use
x⊤y to denote the Euclidean inner product, x ◦ y to denote the Hadamard product, and
∥x∥ to denote the 2-norm of x.

Definition 2.1 ([6]). A matrix A = (aij) ∈ Rn×n is said to be a Z-matrix if its off-diagonal
entries are non-positive.

Definition 2.2 ([6]). A subset S ⊆ Rn is bounded below if there exists a vector u ∈ Rn

such that x ≥ u for all vectors x ∈ S. If such a vector u happens to belong to S, then u is
called a least element of S.

Theorem 2.3 ([6]). Let A ∈ Rn×n be a Z-matrix and q ∈ Rn. If LCP(A,q) is feasible,
then FEA(A,q) contains a least element u. Moreover, u solves LCP(A,q).

Throughout the paper, we assume that FEA(A,q) ̸= ∅. Moreover, if u is the least
element of FEA(A,q), then u is said to be the least solution of LCP(A,q).

3 An Iterative Method Based on Lower-Dimensional Equations

In this section, we propose an iterative method to find a sparsest solution of LCP(A,q) with
A being a Z-matrix by sequentially solving lower-dimensional linear equations, where the
lower-dimensional linear equations are solved by Gaussian elimination method.

We have the following two simple observations. First, if q ∈ Rn
+, then it is easy to see

that 0 ∈ Rn is the unique sparsest solution of LCP(A,q), which is also the least element
of FEA(A,q). Second, if q /∈ Rn

+, i.e., there exists at least an index i ∈ [n] such that
qi < 0, then we have that aii > 0 for all i ∈ [n] satisfying qi < 0, since A is a Z-matrix and
FEA(A,q) ̸= ∅.

In the following, without loss of generality, we assume that q /∈ Rn
+. We denote

Υ := {i ∈ [n] : qi < 0} and Ω := {i ∈ [n] : aii > 0},

and Υc := [n] \Υ and Ωc := [n] \Ω. Denote s := |Υ| and l := |Ω|. Then, by ∅ ̸= Υ ⊆ Ω, we
have 0 < s ≤ l ≤ n.

Remark 3.1. It is obvious that Υ = Ω
∩

Υ and Υc = (Ω \Υ)
∪

Ωc.

Next, we construct a matrix B ∈ Rn×l satisfying B = A·Ω, and denote

FEA(B,q) := {y ∈ Rl : y ≥ 0, By + q ≥ 0}.

It is easy to see that B = A when Ωc = ∅. We have the following result.
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Theorem 3.2. Suppose that A = (aij) ∈ Rn×n is a Z-matrix and q ∈ Rn. Let B = A·Ω ∈
Rn×l be the submatrix of A.

(i) If x̂ ∈ FEA(A,q), then ŷ = x̂Ω ∈ FEA(B,q).

(ii) If ȳ ∈ FEA(B,q), then x̄ ∈ FEA(A,q) with x̄Ω = ȳ and x̄Ωc = 0.

Proof . (i) Since x̂ ∈ FEA(A,q), we have that x̂ ≥ 0 and Ax̂+ q ≥ 0. Then,

ŷ = x̂Ω ≥ 0 and Bŷ + q = A·Ωx̂Ω + q ≥ −A·Ωc x̂Ωc ≥ 0,

where the last inequality holds since A·Ωc ≤ 0 by the fact that A is a Z-matrix and aii ≤ 0
for any i ∈ Ωc. Thus, ŷ ∈ FEA(B,q).

(ii) Since ȳ ∈ FEA(B,q), we have that ȳ ≥ 0 and Bȳ + q ≥ 0. Then, we have

x̄ ≥ 0 and Ax̄+ q = A·Ωx̄Ω +A·Ωc x̄Ωc + q = Bȳ + q ≥ 0.

Thus, x̄ ∈ FEA(A,q). The proof is complete.
Theorem 3.2 demonstrates that in order to find a sparsest solution of LCP(A,q), we only

need to find the least element of FEA(B,q). This may reduce the number of variables to
be examined when Ωc ̸= ∅. In the following, instead of LCP(A,q), we consider FEA(B,q).

For convenience, we denote

Ω ≡ {i1, i2, . . . , il} with i1 < i2 < · · · < il, (3.1)

and let the j-th column of B ∈ Rn×l be the ij-th column of A, i.e.,

b·j := a·ij for all j ∈ [l] satisfying ij ∈ Ω. (3.2)

Then, we can obtain the following result.

Theorem 3.3. Suppose that A = (aij) ∈ Rn×n is a Z-matrix and q ∈ Rn. Let B = A·Ω ∈
Rn×l and ȳ ∈ FEA(B,q). Then

ȳj > 0, ∀j ∈ [l] satisfying ij ∈ Υ.

Proof . Suppose that ȳj0 = 0 for some j0 ∈ [l] with ij0 ∈ Υ, then there is a contradiction to
ȳ ∈ FEA(B,q), as we can show that for any ȳ ≥ 0,

(Bȳ + q)ij0 = bij0 j0 ȳj0 +
∑

j∈[l]\{j0}

bij0 j ȳj + qij0 < 0. (3.3)

In fact, (3.3) holds since qij0 < 0 and bij0 j ≤ 0 for any j ∈ [l] \ {j0} by (3.2) and the
assumption that A is a Z-matrix. The proof is complete.

Next, we design an iterative method to find a sparsest solution of LCP(A,q) based on
Theorems 3.2 and 3.3. For convenience, we denote

Υ ≡ {h1, h2, . . . , hs} with h1 < h2 < · · · < hs,

and ⟨hk⟩ := {h1, h2, . . . , hk} for any k ∈ [s]. Then, for any hp ∈ Υ ⊆ Ω with p ∈ [s], there
exists some jp ∈ [l] such that hp = ijp . We consider the following system of linear equalities
and inequalities with y ∈ Rl

+:
bhpjpyjp +

∑
j∈[l]\{jp}

bhpjyj = −qhp
, ∀hp ∈ Υ,∑

j∈[l]

(−bij)yj ≤ qi, ∀i ∈ Υc.
(3.4)
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For convenience, we will use ⟨jk⟩ := {j1, . . . , jk} for any k ∈ [s].

Procedure 1: We use Gaussian elimination method to solve the equations in (3.4), and
update the inequalities in (3.4) meantime. Specifically, for any k ∈ [s], (3.4) turns to

yjp +
∑

j∈[l]\⟨jk⟩
b
(k)
hpj

yj = −q
(k)
hp

, ∀hp ∈ ⟨hk⟩ (p ∈ [k]),∑
j∈[l]\⟨jk⟩

b
(k)
ij yj = −q

(k)
i , ∀i ∈ Υ \ ⟨hk⟩,∑

j∈[l]\⟨jk⟩
(−b

(k)
ij )yj ≤ q

(k)
i , ∀i ∈ Υc,

(3.5)

where for k = 1:{
q
(1)
h1

:=
qh1

bh1j1
, b

(1)
h1j

:=
bh1j

bh1j1
(∀j ∈ [l] \ {j1}),

q
(1)
i := qi − q

(1)
h1

bij1 , b
(1)
ij := bij − b

(1)
h1j

bij1 (∀j ∈ [l] \ {j1}), ∀i ̸= h1,

and for any k ∈ {2, . . . , s}: q
(k)
hk

:=
q
(k−1)
hk

b
(k−1)
hkjk

, b
(k)
hkj

:=
b
(k−1)
hkj

b
(k−1)
hkjk

(∀j ∈ [l] \ ⟨jk⟩),

q
(k)
i := q

(k−1)
i − q

(k)
hk

b
(k−1)
ijk

, b
(k)
ij := b

(k−1)
ij − b

(k)
hkj

b
(k−1)
ijk

(∀j ∈ [l] \ ⟨jk⟩), ∀i ̸= hk.

By Procedure 1, we finally obtain equivalently the following system of equations and
inequalities with nonnegative variables yj for all j ∈ [l]:

yjp +
∑

j∈[l]\⟨js⟩
b
(s)
hpj

yj = −q
(s)
hp

, ∀hp ∈ Υ (p ∈ [s]),∑
j∈[l]\⟨js⟩

(−b
(s)
ij )yj ≤ q

(s)
i , ∀i ∈ Υc.

(3.6)

Lemma 3.4. In Procedure 1, for any hp ∈ Υ with p ∈ [s], we have the following re-
sults.

(i) For any k ∈ [s], it holds that q
(k)
hp

< 0 and

b
(k)
hpj

≤ 0, ∀j ∈ [l] \ ⟨jk⟩, j ̸= jp. (3.7)

Specially, we have that q
(s)
hp

< 0 and

b
(p)
hpj

≤ 0, ∀j ∈ [l] \ ⟨jp⟩. (3.8)

(ii) It holds that

b
(p−1)
hpjp

> 0, ∀hp ̸= h1, jp ̸= j1. (3.9)

Proof . We first show that (i) and (ii) hold when k = 1. Firstly, we show that (i) holds.
After the first elimination, we have that{

q
(1)
h1

:=
qh1

bh1j1
< 0,

q
(1)
hp

:= qhp
− q

(1)
h1

bhpj1 < 0, ∀hp ∈ Υ \ {h1},
(3.10)
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since qh1
, qhp

< 0 by h1 ∈ Υ, bh1j1 > 0 by h1 ∈ Ω, and bhpj1 ≤ 0 by (3.2) and the fact that
A is a Z-matrix. Moreover, for any j ∈ [l] \ {j1}, we have that{

b
(1)
h1j

:=
bh1j

bh1j1
≤ 0,

b
(1)
hpj

:= bhpj − b
(1)
h1j

bhpj1 ≤ 0, ∀hp ∈ Υ \ {h1}, j ̸= jp,
(3.11)

since bh1j1 > 0 and bh1j , bhpj , bhpj1 ≤ 0 by (3.2) and the assumption that A is a Z-matrix.
Secondly, based on (i), we show that (ii) holds for p = 2, i.e.,

b
(1)
h2j2

> 0.

Suppose by contradiction that b
(1)
h2j2

≤ 0. We consider (3.5):

b
(1)
h2j2

yj2 +
∑

j∈[l]\⟨j2⟩

b
(1)
h2j

yj = −q
(1)
h2

. (3.12)

By (3.11), we have that b
(1)
h2j

≤ 0 for any j ∈ [l] \ ⟨j2⟩. This, together with y ∈ Rl
+, implies

that the left-hand side of (3.12) is non-positive; while the right-hand side of (3.12) is positive
by (3.10). This is a contradiction.

Next, we apply the induction, and assume that (i) and (ii) holds for case of k − 1 with
k ∈ {2, . . . , s}, i.e., after the (k − 1)-th elimination, the following results hold:

q
(k−1)
hp

< 0, ∀hp ∈ Υ; (3.13)

b
(k−1)
hpj

≤ 0, ∀hp ∈ Υ \ {hk−1}, ∀j ∈ [l] \ ⟨jk−1⟩, j ̸= jp; (3.14)

b
(k−1)
hkjk

> 0. (3.15)

In the following, we show that (i) and (ii) hold for case of k with k ∈ {2, . . . , s}. Specifically,
after the k-th elimination, from (3.13)-(3.15), we can obtain that (i) holds, i.e., q

(k)
hk

:=
q
(k−1)
hk

b
(k−1)
hkjk

< 0,

q
(k)
hp

:= q
(k−1)
hp

− q
(k)
hk

b
(k−1)
hpjk

< 0, ∀hp ∈ Υ \ {hk},
(3.16)

and also for any j ∈ [l] \ ⟨jk⟩, it holds that b
(k)
hkj

:=
b
(k−1)
hkj

b
(k−1)
hkjk

≤ 0,

b
(k)
hpj

:= b
(k−1)
hpj

− b
(k)
hkj

b
(k−1)
hpjk

≤ 0, ∀hp ∈ Υ \ {hk}, j ̸= jp.
(3.17)

Based on (i), we show that (ii) holds for p ∈ {3, . . . , s}. It is worth noting that after k = s,
Procedure 1 terminates. After the k-th elimination for k ∈ {2, . . . , s− 1}, it holds that

b
(k)
hk+1jk+1

> 0.

If not, from b
(k)
hk+1j

≤ 0 by (3.17) and yj ≥ 0 for any j ∈ [l] \ ⟨jk+1⟩, it follows that the

left-hand side of the hk+1-th equation b
(k)
hk+1jk+1

yjk+1
+

∑
j∈[l]\⟨jk⟩

b
(k)
hk+1j

yj = −q
(k)
hk+1

in system

(3.5) is non-positive, which contradicts to −q
(k)
hk+1

> 0 by (3.16).
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The proof is complete.
Lemma 3.4 characterizes the property of the s equations in system (3.5) in Procedure

1. The next lemma discusses the property of inequalities in system (3.5) corresponding to
index Υc after Procedure 1.

Lemma 3.5. In Procedure 1, for any k ∈ [s], the following results hold.

(i) For any i ∈ Ω \Υ, we have

b
(k)
ij ≤ 0, ∀j ∈ [l] \ ⟨jk⟩ with ij ̸= i. (3.18)

(ii) For any i ∈ Ωc, we have

b
(k)
ij ≤ 0, ∀j ∈ [l] \ ⟨jk⟩, (3.19)

and hence, q
(s)
i ≥ 0.

Proof . (i) We first show (3.18) when k = 1. For any i ∈ Ω \Υ, it holds that

b
(1)
ij = bij − b

(1)
h1j

bij1 ≤ 0, ∀j ∈ [l] \ {j1} with ij ̸= i,

since b
(1)
h1j

≤ 0 by (3.8) and bij , bij1 ≤ 0 by (3.2) and the assumption that A is a Z-matrix.
Let us apply the induction. Suppose that for any k ∈ {2, . . . , s}, it holds that

b
(k−1)
ij ≤ 0, ∀j ∈ [l] \ ⟨jk−1⟩ with ij ̸= i.

Then, by using b
(k)
hkj

≤ 0 from (3.8), we can derive that

b
(k)
ij = b

(k−1)
ij − b

(k)
hkj

b
(k−1)
ijk

≤ 0, ∀j ∈ [l] \ ⟨jk⟩ with ij ̸= i.

(ii) To show (3.19), for any i ∈ Ωc when k = 1, we have

b
(1)
ij := bij − b

(1)
h1j

bij1 ≤ 0, ∀j ∈ [l] \ {j1},

since b
(1)
h1j

≤ 0 by (3.8), and bij , bij1 ≤ 0 by (3.2) and the assumption that A is a Z-matrix.

Then, for k ∈ {2, . . . , s}, by using b
(k)
hkj

≤ 0 from (3.8) and applying recursion, we can further
obtain that

b
(k)
ij := b

(k−1)
ij − b

(k)
hkj

b
(k−1)
ijk

≤ 0, ∀j ∈ [l] \ ⟨jk⟩.

Next, we show that q
(s)
i ≥ 0 for any i ∈ Ωc. By (3.19) and yj ≥ 0, together with the

inequalities corresponding to i ∈ Ωc in system (3.6), i.e.,
∑

j∈[l]\⟨js⟩
(−b

(s)
ij )yj ≤ q

(s)
i , the result

holds obviously. The proof is complete.
Recall Remark 3.1, we have Υc = (Ω \Υ)∪Ωc. From Lemma 3.5 (ii), we can obtain the

following corollary.

Corollary 3.6. After Procedure 1, if there exists an index (or indices) i ∈ Υc satisfying

q
(s)
i < 0, then it must belong to the set Υc \ Ωc = Ω \Υ.
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Next, we continue the procedure in two cases.

Case 1: q
(s)
i ≥ 0 for all i ∈ Ω \Υ.

In this case, we have q
(s)
i ≥ 0 for all i ∈ Υc by Lemma 3.5, and can obtain the following

theorem.

Theorem 3.7. Suppose that A = (aij) ∈ Rn×n is a Z-matrix and q ∈ Rn. Let FEA(A,q) ̸=
∅. After Procedure 1, if q

(s)
i ≥ 0 for all i ∈ Ω \Υ, then x̄ ∈ Rn

+ satisfying x̄Υ = −q
(s)
Υ and

x̄Υc = 0 is a sparsest solution of LCP(A,q), which is also the least solution of LCP(A,q).

Proof . It is easy to verify that x̄ ∈ FEA(A,q). On one hand, x̄ ∈ Rn
+ since x̄Υ = −q

(s)
Υ ∈

Rs
++ by Lemma 3.4 (i). On the other hand, let ȳ = x̄Ω, then Ax̄ + q = Bȳ + q ≥ 0 since

(Bȳ+ q)Υ = 0 and (Bȳ+ q)Υc ≥ 0 by (3.6). Obviously, x̄ ∈ SOL(A,q). Furthermore, x̄ is
a sparsest solution of LCP(A,q) by Theorems 3.2 and 3.3.

Suppose that x̂ ∈ FEA(A,q), let ŷ = x̂Ω, then ŷ ∈ FEA(B,q). By utilizing the
feasibility condition and applying Gaussian elimination, when the procedure terminates,
similar to (3.6), we have that

ŷjp +
∑

j∈[l]\⟨js⟩

b
(s)
hpj

ŷj ≥ −q
(s)
hp

, ∀hp ∈ Υ with p ∈ [s],

and then, from ŷ ∈ Rl
+ and b

(s)
hpj

≤ 0 by (3.7), we can further deduce that ŷjp ≥ −q
(s)
hp

.
Thus, it holds that

x̂Υ ≥ −q
(s)
Υ = x̄Υ,

which together with the fact that x̂Υc ≥ 0 = x̄Υc , implies that x̄ is the least solution of
LCP(A,q). The proof is complete.

Case 2: There exists some index i ∈ Ω \Υ such that q
(s)
i < 0.

For this case, by using Lemma 3.5 (i), similar to the proof of Theorem 3.3, we have the
following result.

Theorem 3.8. Suppose that A = (aij) ∈ Rn×n is a Z-matrix and q ∈ Rn. Let B = A·Ω ∈
Rn×l and ȳ ∈ FEA(B,q). Then for any i ∈ Ω \Υ satisfying q

(s)
i < 0, we have

ȳj > 0, ∀j ∈ [l] \ ⟨js⟩ with ij = i.

In the following, we denote

Ω \Υ ≡ {gs+1, . . . , gl},

for convenience, then for any gs+t ∈ Ω\Υ with t ∈ [l−s], there must exist some js+t ∈ [l]\⟨js⟩
such that gs+t = ijs+t by (3.1). Without loss of generality, we assume q

(s)
gs+1 < 0, and consider

the following linear system:

yjp +
∑

j∈[l]\⟨js⟩
b
(s)
hpj

yj = −q
(s)
hp

, ∀hp ∈ Υ (p ∈ [s]),

b
(s)
gs+1js+1

yjs+1 +
∑

j∈[l]\⟨js+1⟩
b
(s)
gs+1j

yj = −q
(s)
gs+1 , gs+1 ∈ Ω \Υ.∑

j∈[l]\⟨js⟩
(−b

(s)
ij )yj ≤ q

(s)
i , ∀i ∈ Υc \ {gs+1}.

(3.20)

From q
(s)
gs+1 < 0, we have that yjs+1 > 0 by Theorem 3.8, here js+1 ∈ [l] \ ⟨js⟩ satisfies

ijs+1
= gs+1. Then, we can derive that

b
(s)
gs+1js+1

> 0. (3.21)
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If not, by b
(s)
gs+1j

≤ 0 for any j ∈ [l] \ ⟨js+1⟩ from (3.18), together with the fact that yj ≥ 0,

the left-hand side of inequality w.r.t. index gs+1 in system (3.6) is nonnegative, which

contradicts to q
(s)
gs+1 < 0.

Based on (3.21), we can use Gaussian elimination on the equations in (3.20) while up-

dating the inequalities meantime, and let q
(s,1)
Υc be the variant of q

(s)
Υc after the elimination.

For gs+1 ∈ Ω \Υ, from q
(s)
gs+1 < 0 and b

(s)
gs+1js+1

> 0 by (3.21), we have that

q(s,1)gs+1
:=

q
(s)
gs+1

b
(s)
gs+1js+1

< 0. (3.22)

Furthermore, we examine that if there exists index i ∈ Υc \ {gs+1} such that q
(s,1)
i < 0.

If q
(s,1)
i ≥ 0 for all i ∈ Υc \ {gs+1}, we terminate the procedure. Otherwise, suppose that

q
(s,1)
gs+2 < 0 without loss of generality, then we continue to apply Gaussian elimination on the
equation corresponding to index gs+2 as well as the previous obtained ones, while updating
the left inequalities of the variant system of (3.20) at the same time. This process is repeated
until the desired condition is met. Such a process is called Procedure 2.

Procedure 2: We assume that Procedure 2 terminates after r-step elimination (r ≥ 1).
For any k ∈ [r], we denote ⟨gs+k⟩ = {gs+1, . . . , gs+k} for convenience. Then, system (3.20)
turns to the following form in turn:

yjp +
∑

j∈[l]\⟨js+k⟩
b
(s,k)
hpj

yj = −q
(s,k)
hp

, ∀hp ∈ Υ(p ∈ [s]),

yjs+t
+

∑
j∈[l]\⟨js+k⟩

b
(s,k)
gs+tj

yj = −q
(s,k)
gs+t ,

∀gs+t ∈ ⟨gs+k⟩ ⊆ (Ω \Υ),
(t ∈ [k])∑

j∈[l]\⟨js+k⟩
(−b

(s,k)
ij )yj ≤ q

(s,k)
i , ∀i ∈ Υc \ ⟨gs+k⟩,

(3.23)

where

q
(s,k)
gs+k =

q(s,k−1)
gs+k

b
(s,k−1)
gs+kjs+k

, b
(s,k)
gs+kj

=
b
(s,k−1)
gs+kj

b
(s,k−1)
gs+kjs+k

(∀j ∈ [l] \ ⟨js+k⟩), gs+k ∈ Ω \Υ,{
q
(s,k)
hp

:= q
(s,k−1)
hp

− q
(s,k)
gs+k b

(s,k−1)
hpjs+k

,

b
(s,k)
hpj

:= b
(s,k−1)
hpj

− b
(s,k)
gs+kj

b
(s,k−1)
hpjs+k

(∀j ∈ [l] \ ⟨js+k⟩),
∀hp ∈ Υ(p ∈ [s]),{

q
(s,k)
i = q

(s,k−1)
i − q

(s,k)
gs+k b

(s,k−1)
ijs+k

,

b
(s,k)
ij := b

(s,k−1)
ij − b

(s,k)
gs+kj

b
(s,k−1)
ijs+k

(∀j ∈ [l] \ ⟨js+k⟩),
∀i ∈ Υc \ {gs+k}.

Lemma 3.9. After the k-th elimination in Procedure 2 with k ∈ [r], we have the following
results.

(i) q
(s,k)
gs+t < 0 for any gs+t ∈ Ω \Υ with t ∈ [k].

(ii) For any j ∈ [l] \ ⟨js+k⟩, it holds that
b
(s,k)
gs+tj

≤ 0, ∀gs+t ∈ Ω \Υ with t ∈ [k],

b
(s,k)
gs+tj

≤ 0, ∀gs+t ∈ Ω \Υ with t ∈ {k + 1, . . . , l − s}, ij ̸= gs+t

b
(s,k)
ij ≤ 0, ∀i ∈ Ωc.
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(iii) q
(s,k)
i ≥ 0 for any i ∈ Ωc. Or to say, if there exists index gs+k+1 ∈ Υc \ ⟨gs+k⟩

satisfying q
(s,k)
gs+k+1 < 0, then gs+k+1 must belong to (Ω \Υ) \ ⟨gs+k⟩.

(iv) For js+k+1 ∈ [l] \ ⟨js+k⟩ satisfying ijs+k+1
= gs+k+1 with q

(s,k)
gs+k+1 < 0, it holds that

b
(s,k)
gs+k+1js+k+1

> 0 and ȳjs+k+1
> 0 for any ȳ ∈ FEA(B,q).

Proof . We show that (i)-(iv) hold when k = 1. Firstly, (i) holds by (3.22) obviously.
Secondly, we show that (ii) holds. For any gs+t ∈ Ω \Υ with t ∈ [l − s] and j ∈ [l] \ ⟨js+1⟩,
from b

(s)
gs+tj

, b
(s)
gs+tjs+1

≤ 0 by Lemma 3.5 (i) and b
(s)
gs+1js+1

> 0 by (3.21), we have b
(s,1)
gs+1j

:=
b
(s)
gs+1j

b
(s)
gs+1js+1

≤ 0,

b
(s,1)
gs+tj

:= b
(s)
gs+tj

− b
(s,1)
gs+1j

b
(s)
gs+tjs+1

≤ 0, ∀t ̸= 1, j ̸= js+t.

(3.24)

Moreover, for any i ∈ Ωc and j ∈ [l] \ ⟨js+1⟩, from (3.24) and b
(s)
ij , b

(s)
ijs+1

≤ 0 by Lemma 3.5

(ii), we have

b
(s,1)
ij = b

(s)
ij − b

(s,1)
gs+1j

b
(s)
ijs+1

≤ 0, (3.25)

Thirdly, based on (i) and (ii), we show that (iii) holds, i.e., if there exists gs+2 ∈ Υc \{gs+1}
satisfying q

(s,1)
gs+2 < 0, we must have that

gs+2 ∈ (Ω \Υ) \ {gs+1}.

Suppose by contradiction that gs+2 ∈ Ωc, then by yj ≥ 0, combining with the fact that

−b
(s,1)
ij ≥ 0 for any i ∈ Ωc and j ∈ [l] \ ⟨js+1⟩ by (3.25), the left-hand side of the inequality

w.r.t. index gs+2 in system (3.23) is nonnegative, which contradicts to q
(s,1)
gs+2 < 0. Finally,

we show that (iv) holds. Since ȳ ∈ FEA(B,q), it follows that for js+2 ∈ [l]\⟨js+1⟩ satisfying
ijs+2

= gs+2 with q
(s,1)
gs+2 < 0,

b
(s,1)
gs+2js+2

ȳjs+2
+

∑
j∈[l]\⟨js+2⟩

b
(s,1)
gs+2j

ȳj ≥ −q(s,1)gs+2
;

while, by (3.24), we have that q
(s,1)
gs+2 < 0 and b

(s,1)
gs+2j

≤ 0 for any j ∈ [l] \ ⟨js+2⟩. These as well
as ȳ ≥ 0 imply that we must have ȳjs+2 > 0 and b

(s,1)
gs+2js+2

> 0.

Then, similar to the proof in the case of k = 1, we can obtain that (i)-(iv) hold after the
k-th elimination with k ∈ {2, . . . , r} by applying the induction. The proof is complete.

After Procedure 2, (3.20) turns to the system as follows:

yjp +
∑

j∈[l]\⟨js+r⟩
b
(s,r)
hpj

yj = −q
(s,r)
hp

, ∀hp ∈ Υ(p ∈ [s]),

yjs+t +
∑

j∈[l]\⟨js+r⟩
b
(s,r)
gs+tj

yj = −q
(s,r)
gs+t , ∀gs+t ∈ Ω \Υ(t ∈ [r]),∑

j∈[l]\⟨js+r⟩
(−b

(s,r)
ij )yj ≤ q

(s,r)
i , ∀i ∈ Υc \ ⟨gs+r⟩.

(3.26)

Next, we show that q
(s,k)
Υ < 0 for any k ∈ [r] in Procedure 2.
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Lemma 3.10. In Procedure 2, for any hp ∈ Υ with p ∈ [s], the following results hold for
any k ∈ [r].

(i) q
(s,k)
hp

< 0,

(ii) b
(s,k)
hpj

≤ 0 for any j ∈ [l] \ ⟨js+k⟩.

Proof . After the first elimination in Procedure 2, for any hp ∈ Υ with p ∈ [s], we have{
q
(s,1)
hp

= q
(s)
hp

− q
(s,1)
gs+1 b

(s)
hpjs+1

< 0,

b
(s,1)
hpj

= b
(s)
hpj

− b
(s,1)
gs+1j

b
(s)
hpjs+1

≤ 0, ∀j ∈ [l] \ ⟨js+1⟩,

where the first inequality holds since q
(s)
hp

< 0 by Lemma 3.4 (i), q
(s,1)
gs+1 < 0 by (3.22) and

b
(s)
hpjs+1

≤ 0 by (3.7), and the second inequality holds since b
(s)
hpj

, b
(s)
hpjs+1

≤ 0 by (3.7) and

b
(s,1)
gs+1j

≤ 0 by (3.24).

Now, let us apply the induction. Suppose that after the (k − 1)-th elimination with
k ∈ {2, . . . , r}, we have that for any hp ∈ Υ with p ∈ [s],{

q
(s,k−1)
hp

< 0,

b
(s,k−1)
hpj

≤ 0, ∀j ∈ [l] \ ⟨js+k−1⟩,

then, after the k-th elimination, from q
(s,k)
gs+k < 0 by Lemma 3.4 (i) and b

(s,k)
gs+kj

≤ 0 by Lemma

3.4 (ii), it holds that for any hp ∈ Υ with p ∈ [s],{
q
(s,k)
hp

= q
(s,k−1)
hp

− q
(s,k)
gs+k b

(s,k−1)
hpjs+k

< 0,

b
(s,k)
hpj

= b
(s,k−1)
hpj

− b
(s,k)
gs+kj

b
(s,k−1)
hpjs+k

≤ 0, ∀j ∈ [l] \ ⟨js+k⟩.

The proof is complete.
After Procedure 2, we can obtain the following theorem.

Theorem 3.11. Suppose that A = (aij) ∈ Rn×n is a Z-matrix and q ∈ Rn. Let FEA(A,q) ̸=
∅. When Procedure 2 terminates, x̄ ∈ Rn

+ with

x̄Υ∪⟨gs+r⟩ = −q
(s,r)
Υ∪⟨gs+r⟩ and x̄Υc\⟨gs+r⟩ = 0

is a sparsest solution of LCP(A,q), which is also the least solution of LCP(A,q).

Proof . First, we show that x̄ ∈ FEA(A,q). On one hand, by Lemma 3.9 (i) and Lemma

3.10 (i), we have that x̄Υ∪⟨gs+r⟩ = −q
(s)
Υ∪⟨gs+r⟩ > 0, which implies that x̄ ∈ Rn

+. On the

other hand, let ȳ = x̄Ω, then Ax̄ + q = Bȳ + q ≥ 0 since (Bȳ + q)Υ∪⟨gs+r⟩ = 0 and
(Bȳ + q)Υc\⟨gs+r⟩ ≥ 0 by (3.26). Second, it is obvious that x̄ ∈ SOL(A,q). Finally, by
Theorems 3.2, 3.3 and 3.8 and Lemma 3.9 (iv), we obtain that x̄ is a sparsest solution of
LCP(A,q).

Suppose that x̂ ∈ FEA(A,q), let ŷ = x̂Ω, then ŷ ∈ FEA(B,q). By utilizing the
feasibility condition and applying Gaussian elimination, when the procedure terminates,
similar to (3.26), for any hp ∈ Υ with p ∈ [s] and gs+t ∈ Ω \Υ with t ∈ [r], we have that

ŷjp +
∑

j∈[l]\⟨js+r⟩
b
(s,r)
hpj

ŷj ≥ −q
(s,r)
hp

,

ŷjs+t +
∑

j∈[l]\⟨js+r⟩
b
(s,r)
gs+tj

ŷj ≥ −q
(s,r)
gs+t ,



130 Y.-F. LI, Z.-H. HUANG AND N. DAI

and then, from ŷ ∈ Rl
+ and b

(s,r)
hpj

, b
(s,r)
gs+tj

≤ 0 by Lemma 3.10 (ii) and Lemma 3.9 (ii), we can

further deduce that ŷjp ≥ −q
(s,r)
hp

and ŷjs+t ≥ −q
(s,r)
gs+t . Thus, it holds that

x̂Υ∪⟨gs+r⟩ ≥ −q
(s,r)
Υ∪⟨gs+r⟩ = x̄Υ∪⟨gs+r⟩,

which together with the fact that x̂Υc\⟨gs+r⟩ ≥ 0 = x̄Υc\⟨gs+r⟩, implies that x̄ is the least
solution of LCP(A,q). The proof is complete.

Remark 3.12. In the whole procedure, when Gaussian elimination is executed for the con-
cerned equations, it can be seen from Corollary 3.6 and Lemma 3.9 (iii) that the concerned
inequalities corresponding to index set Ωc hold automatically. So, in the practical algorithm,
we only deal with a lower-dimensional linear system with no more than l equations and l
variables, and do not need to execute any updates for inequalities corresponding to index
Ωc. When |Ωc| is large, this strategy could greatly decrease the computation cost in the
iterations compared to Chandrasekaran’s method [2].

In the following, we propose an iterative method based on lower-dimensional equations
to find a sparsest solution of LCP(A,q).

Algorithm 3.13. (An iterative method based on lower-dimensional equations (iLD))

(S0) Given A ∈ Rn×n and q ∈ Rn. If q ≥ 0, then set x := 0 ∈ Rn and stop. Otherwise,
let Υ := {i ∈ [n] : qi < 0} and Ω := {i ∈ [n] : aii > 0}. Set xΩc := 0.

(S1) Gaussian elimination method is used to solve equations:

AΥΥxΥ = −qΥ.

Compute qΩ\Υ := A(Ω\Υ)ΥxΥ + qΩ\Υ.

(S2) If qΩ\Υ ≥ 0, then set xΩ\Υ := 0, and stop. Otherwise, choose it ∈ Ω \ Υ satisfying
qit < 0, and set

Υ := Υ
∪

{it},

and go to (S1).

Remark 3.14. We use µ to denote the number of non-zero elements in the sparsest solution
to LCP(A,q).

(i) In Algorithm 3.13, we first need to solve a system of linear equations with s equations
and s variables; and then, we need to solve successively µ − s systems of linear equa-
tions where the numbers of variables and equations are gradually increasing. It should
be emphasized that solving the first system of linear equations requires s-step elimi-
nation, while solving each subsequent system of linear equations requires only 1-step
elimination, so the entire algorithm actually requires only µ-step elimination.

(ii) The computational complexity of Algorithm 3.13 is O(µ3). Thus, the smaller the
number of non-zero elements in the sparsest solution to LCP(A,q), the lower the
computational cost of Algorithm 3.13.
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4 A Fixed Point Iterative Method

In this section, we propose a fixed point method to solve LCP(A,q), which monotonically
decreasing converges to a solution of LCP(A,q) from any given feasible point. Moreover,
if the starting point is sparse, the proposed algorithm could quickly converge to a sparse
solution of LCP(A,q).

For any A ∈ Rn×n and q ∈ Rn, we denote

F (x) := x−D(x ◦ (Ax+ q)), ∀x ∈ Rn, (4.1)

Then, we have the following result.

Proposition 4.1. If x ∈ FEA(A,q), then x ∈ SOL(A,q) if and only if x = F (x).

Inspired by Proposition 4.1, we design the following method to solve LCP(A,q).

Algorithm 4.2. (A fixed point (FP) iterative method)

(S0) Given A ∈ Rn×n and q ∈ Rn. If q ≥ 0, then set x := 0 ∈ Rn and stop. Otherwise,
if there exists i ∈ [n] such that qi > 0, then set qmax := max{qi : qi > 0}; if not, set
qmax := 1. Choose γ ∈ (0, 1) such that γqmax < 1, and x0 ∈ FEA(A,q). Set k := 0.

(S1) Let Dk be a diagonal matrix with its i-diagonal entry being

dki :=

{ (
aiix

k
i + 1

)−1
if aii > 0,

1 otherwise,
∀i ∈ [n]. (4.2)

(S2) Set

xk+1 := xk − γDk
(
xk ◦

(
Axk + q

))
. (4.3)

(S3) If min{xk+1, Axk+1 + q} = 0, stop. Otherwise, set k := k + 1, and go to step (S1).

In the following, we assume q /∈ Rn
+ without loss of generality, and denote K := {0, 1, . . .}.

Lemma 4.3. Suppose that A = (aij) ∈ Rn×n is a Z-matrix and q ∈ Rn. Let the sequence
{xk} be generated by Algorithm 4.2. Then, we have the following results.

(i) xk ∈ FEA(A,q) for all k ∈ K,

(ii) xk+1 ≤ xk for all k ∈ K.

Proof . (i) From the step (S0) of Algorithm 4.2, it follows that x0 ∈ FEA(A,q). In the
following, we prove the conclusion in (i) by mathematical induction. That is, we assume that
xl ∈ FEA(A,q) for some l ∈ K, and show that xl+1 ∈ FEA(A,q). Note that xl ∈ FEA(A,q)
means that

xl ≥ 0 and Axl + q ≥ 0. (4.4)

To show xl+1 ∈ FEA(A,q), we divide the proof into the following two parts.
Part 1. We show that xl+1 ≥ 0. It follows from (4.3) that for any i ∈ [n],

xl+1
i = xl

i − γdlix
l
i(Axl + q)i = [1− γdli(Axl + q)i]x

l
i. (4.5)
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For any i ∈ [n], it is obvious that

(Axl + q)i = aiix
l
i +

∑
j ̸=i

aijx
l
j + qi, (4.6)

Since A is a Z-matrix, it follows that for any i ∈ [n], aij ≤ 0 for all j ̸= i. We consider the
following two cases.
Case 1. Suppose that aii ≤ 0 for some i ∈ [n]. In this case, combining the fact that aij ≤ 0
for all j ̸= i with (4.4) and (4.6), we can obtain that (Axl)i ≤ 0 and qi ≥ 0. Moreover, by
(4.2) we have dli = 1. Thus, it follows from (4.5) that

xl+1
i = [1− γdli(Axl + q)i]x

l
i ≥ [1− γqi]x

l
i ≥ 0,

where the last inequality holds due to γqi ≤ γqmax < 1.

Case 2. Suppose that aii > 0 for some i ∈ [n]. In this case, we have that dli =
(
aiix

l
i + 1

)−1

by (4.2).
By the fact that aij ≤ 0 for all j ̸= i, combing with (4.4) and (4.6), we have that

γdli(Axl + q)i ≤
γaiix

l
i + γqi

aiixl
i + 1

<
γaiix

l
i + 1

aiixl
i + 1

< 1,

and hence, by (4.5), we have that

xl+1
i = [1− γdli(Axl + q)i]x

l
i ≥

[
1− γaiix

l
i + 1

aiixl
i + 1

]
xl
i ≥ 0.

Thus, we obtain that xl+1
i ≥ 0 for all i ∈ [n]. So xl+1 ≥ 0.

Part 2. We show that Axl+1 + q ≥ 0. For any i ∈ [n], it follows from (4.3) that

(Axl+1 + q)i = (Axl + q)i − [A(γDl(xl ◦ (Axl + q)))]i. (4.7)

If aii ≤ 0, by the step (S1) of Algorithm 4.2, we have that Dk is a diagonal matrix with
positive diagonal entries, and then γDk(xl ◦ (Axl + q)) ∈ Rn

+. Thus, from the fact that
aij ≤ 0 for all j ̸= i, it follows that [A(γDl(xl ◦ (Axl + q)))m−1]i ≤ 0, and hence, by (4.7),
it holds that

(Axl+1 + q)i ≥ (Axl + q)i ≥ 0.

In the following, we assume that aii > 0. In this case, by using the the fact that aij ≤ 0 for
all j ̸= i and γDl(xl ◦ (Axl + q)) ∈ Rn

+, we have that

(Axl+1 + q)i ≥ (Axl + q)i − aii[γd
l
ix

l
i(Axl + q)i]

= [1− γaiid
l
ix

l
i](Axl + q)i.

Recall that dli =
(
aiix

l
i + 1

)−1
by (4.2) in this case, we have that

γaiid
l
ix

l
i = γdli(aiix

l
i) = γ

aiix
l
i

aiixl
i + 1

< γ,

and hence,
1− γaiid

l
ix

l
i > 1− γ.

So,
(Axl+1 + q)i ≥ (1− γ)(Axl + q)i ≥ 0.
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Thus, we can obtain that Axl+1 + q ≥ 0.
Combining Part 1 with Part 2, xl+1 ∈ FEA(A,q). Then, it holds that xk ∈ FEA(A,q)

for all k ∈ K by induction.
(ii) From the proof of (i), as well as (4.2) and (4.3), it holds that xk+1 ≤ xk for all k ∈ K.

The proof is complete.

Theorem 4.4. Suppose that A = (aij) ∈ Rn×n is a Z-matrix and q ∈ Rn. Let the sequence
{xk} be generated by Algorithm 4.2. Then, the sequence {xk} descends monotonically, and
it converges to a solution of LCP(A,q).

Proof . By Lemma 4.3, we obtain that the sequence {xk} descends monotonically and has
a lower bound of zero. In the following, we show convergence of {xk}. Without loss of
generality, we assume that {xk} is an infinite sequence. Then, by the monotone bounded
convergence theorem, we have that {xk} must converge. We use x∗ to denote its limit point.
Then, {

lim
k→∞

Axk + q = Ax∗ + q,

lim
k→∞

xk ◦ (Axk + q) = x∗ ◦ (Ax∗ + q).

For any i ∈ [n], we denote the limit point of sequence {dki } by d∗i , then

d∗i :=

{
(aiix

∗
i + 1)

−1
if aii > 0,

1 otherwise,
∀i ∈ [n].

Denote D∗ := diag{d∗i : i ∈ [n]}. Since

xk+1 = xk − γDk(xk ◦ (Axk + q)), ∀k ∈ K,

it follows that D∗(x∗ ◦ (Ax∗ + q)) = 0, i.e., x∗ ◦ (Ax∗ + q) = 0. Moreover, by xk ≥ 0 and
Axk+q ≥ 0 for all k ∈ K, we have that x∗ ≥ 0 and Ax∗+q ≥ 0. Therefore, x∗ is a solution
to LCP(A,q). The proof is complete.

Note that Algorithm 4.2 converges monotonically downward to a solution of LCP(A,q)
from a given feasible point. Obviously, if the starting point is sparse, then we can obtain a
sparse solution of LCP(A,q) by Algorithm 4.2. In general, it is difficult to obtain a sparse
feasible solution for LCP(A,q). Here, we have the following remark.

Remark 4.5. (i) Since the matrix in LCP(A,q) is required to be a Z-matrix, the sparse
feasible solutions of some of these problems can be directly observed by using the
properties of Z-matrices. For example, we can use the following result:

(R) Suppose that x̄ ∈ FEA(A,q) is a sparest solution of LCP(A,q). If qi = 0 and
aii ≤ 0 for some i ∈ [n], then x̄j = 0 for any j ∈ [n] satisfying aij ̸= 0.

To illustrate this point, let’s consider LCP(A,q), where

A =


−2 0 −1 0
0 2 −3 0
0 −2 1 0
−3 0 0 1

 and q =


0
1
0
−2

 .

It is clear that A is a Z-matrix. Let x̄ ∈ FEA(A,q) be a sparest solution of LCP(A,q).
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(a) Since q1 = 0 and a11 < 0, it follows from the above result (R) that x̄1 = x̄3 = 0
since a11, a13 ̸= 0.

(b) Since q3 = 0 and x̄3 = 0, it follows from a32 < 0 that x̄2 = 0.

Thus, x̄ = (0, 0, 0, α)⊤ with α ≥ 2 is a sparse feasible solution of LCP(A,q).

(ii) For large-scale or complex problems, however, it is difficult to directly observe their
sparse feasible solutions. Therefore, how to systematically give a sparse feasible solu-
tion of such a class of problems is important. Next, we consider how to find a spare
feasible solution of LCP(A,q). By Theorem 3.2, instead of FEA(A,q), we may con-
sider FEA(B,q) to reduce computing cost. For system of inequalities in FEA(B,q),
by introducing slack variables and/or artificial variables, we can obtain the following
system of equalities and inequalities:

∑
j∈[l]

bijyj − yl+i +wi = −qi, ∀i ∈ Υ,∑
j∈[l]

bijyj − yl+i = −qi, ∀i ∈ Υc,

y ≥ 0, ui ≥ 0, wi ≥ 0 ∀i ∈ [s], vi ≥ 0 ∀i ∈ [n− s],

(4.8)

where each yl+i (i ∈ [n]) is a slack variable, and each wi (i ∈ Υ) is an artificial variable.
It is not difficult to see that FEA(B,q) ̸= ∅ if and only if (4.8) has at least one solution
such that wi = 0 for all i ∈ Υ. We denote the set of all points satisfying (4.8) by Θ,
and consider the following linear programming with w = (wi)i∈Υ and yl := (yl+i)i∈[n]:

min
∑
i∈Υ

wi

s.t. u⊤ :=
(
y⊤ y⊤

l w⊤)⊤ ∈ Θ.
(4.9)

Suppose that u∗ satisfying (u∗)⊤ :=
(
(y∗)⊤ (y∗

l )
⊤ (w∗)⊤

)⊤
is an optimal solution to

the linear programming (4.9). Then, if FEA(B,q) ̸= ∅, we have w∗
i = 0 for all i ∈ Υ,

and y∗ ∈ FEA(B,q).
In equalities in (4.8), all the numbers on the right-hand sides are nonnegative, the
matrix of the coefficients on the left-hand sides contains a unit matrix, and all variables
are nonnegative, then simplex algorithm can be directly applied to solve the linear
programming (4.9).

(iii) It should be noted that the proposed method in (ii) for finding sparse feasible solutions
is somewhat expensive. In practice, we can make use of the properties of Z-matrix and
inequality to reduce the size of the problem, and then use this method to find the
sparse feasible solutions to the problem.

5 Numerical Experiments

In this section, we implement the two proposed iterative methods to solve LCP(A,q), includ-
ing Algorithm 3.13 (iLD) and Algorithm 4.2 (FP). We compare the two proposed methods
with Chandrasekaran’s method (Pivot) [2] and a single linear program (LP) method by
Mangasarian [16] for finding a sparse solution of LCP(A,q) with given different Z-matrices
A and vectors q.
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5.1 Experiment settings

All the experiments were performed on a Macbook Pro (2.3 GHz, 8 GB of RAM) using
MATLAB 2021a.

For Algorithm 4.2, we take γ = min{1, 1/qmax}−(2e−2). Moreover, we use the stopping
criteria ∥min{xk+1, Axk+1+q}∥ ≤ 1e−14 in (S3), and set the maximum number of iterations
to be 200.

For all the compared algorithms, we show the numerical results in the perspective of
the CPU time (CPU) and recovery error (Rel.Err := ∥⟨xk+1, Axk+1 + q⟩∥), as well as the
sparsity of output ∥xk∥0 := |{i ∈ [n] : xk

i ̸= 0}|. Here, we think xk
i ̸= 0 if xk

i > 1e− 4.

5.2 Numerical results

In this subsection, we illustrate the numerical results of different methods for solving LCP(A,q)
with different matrices A ∈ Rn×n and vectors q ∈ Rn.

Example 5.1 ([22]). Let us consider LCP(A,q), where

A = In − 1

n
ee⊤ =


1− 1

n − 1
n · · · − 1

n
− 1

n 1− 1
n · · · − 1

n
...

...
. . .

...
− 1

n − 1
n · · · 1− 1

n

 and q =


1
n − 1

1
n
...
1
n

 .

Here In is the identity matrix of order n, and e = (1, 1, . . . , 1)⊤ ∈ Rn. Clearly A is a
positive semidefinite Z-matrix, which is widely used in statistics. It is easy to verify that
for any scalar α ≥ 0, x = (α + 1, α, . . . , α)⊤ ∈ Rn are solutions to LCP(A,q). Among all
the solutions, x̂ = (1, 0, . . . , 0)⊤ ∈ Rn is the unique sparsest solution.

Table 5.1: Numerical performances for Example 5.1.
n Algo. CPU (s) Sparsity Output

1000 Pivot 0.17 1 (1, 0, . . . , 0)⊤

1000 iLD 0.05 1 (1, 0, . . . , 0)⊤

1000 LP 2.15 1 (1, 0, . . . , 0)⊤

1000 FP 1.07 1 (1, 0, . . . , 0)⊤

Example 5.2. Let us consider LCP(A,q), where

A =



1 q r s q · · ·

s −1 q r s
. . .

q s 1
. . .

. . .
. . .

. . . q

r
. . .

. . .
. . . q r s

. . . q s 1 q r

. . . r q s −1 q
· · · s r q s 1


∈ Rn×n and q =



0
1
− 1

3

0
1
− 1

6
...


∈ Rn

with q = − p
n , r = − p

n+1 and s = − p
n+2 for any p > 0.
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Table 5.2: Numerical performances for Example 5.2 with p = 1.
n Algo. CPU (s) Sparsity Rel.Err Output

10 Pivot 0.11 3 2.02e-17 (0, 0, 0.3648, 0, 0, 0.2134, 0, 0, 0.1637, 0)⊤

10 iLD 0.05 3 2.02e-17 (0, 0, 0.3648, 0, 0, 0.2134, 0, 0, 0.1637, 0)⊤

10 LP 0.65 3 1.05e-17 (0, 0, 0.3648, 0, 0, 0.2134, 0, 0, 0.1637, 0)⊤

10 FP 0.17 3 1.38e-18 (0, 0, 0.3648, 0, 0, 0.2134, 0, 0, 0.1637, 0)⊤

100 Pivot 0.67 33 1.20e-17 (0, 0, 0.3494, . . . , 0.0298, 0, 0, 0.0295, 0)⊤

100 iLD 0.1 33 1.20e-17 (0, 0, 0.3494, . . . , 0.0298, 0, 0, 0.0295, 0)⊤

100 LP 0.64 33 1.70e-17 (0, 0, 0.3494, . . . , 0.0298, 0, 0, 0.0295, 0)⊤

100 FP 0.18 33 1.94e-17 (0, 0, 0.3494, . . . , 0.0298, 0, 0, 0.0295, 0)⊤

500 Pivot 5.16 166 5.68e-18 (0, 0, 0.3383, . . . , 0.0077, 0, 0, 0.0076, 0, 0)⊤

500 iLD 0.33 166 5.68e-18 (0, 0, 0.3383, . . . , 0.0077, 0, 0, 0.0076, 0, 0)⊤

500 LP 0.87 166 4.38e-17 (0, 0, 0.3383, . . . , 0.0077, 0, 0, 0.0076, 0, 0)⊤

500 FP 0.35 166 3.72e-17 (0, 0, 0.3383, . . . , 0.0077, 0, 0, 0.0076, 0, 0)⊤

1000 Pivot 24.19 333 3.02e-17 (0, 0, 0.3362, . . . , 0.0042, 0, 0, 0.0042, 0)⊤

1000 iLD 1.35 333 3.02e-17 (0, 0, 0.3362, . . . , 0.0042, 0, 0, 0.0042, 0)⊤

1000 LP 3.66 333 1.28e-16 (0, 0, 0.3362, . . . , 0.0042, 0, 0, 0.0042, 0)⊤

1000 FP 1.44 333 9.95e-17 (0, 0, 0.3362, . . . , 0.0042, 0, 0, 0.0042, 0)⊤

Example 5.3. Consider LCP(A,q), where

q = (q⊤
n1
, . . . ,q⊤

n1
)⊤ ∈ Rn

with qn1
= (−1, 1, . . . , 1)⊤ ∈ Rn1 , and

A =


C −I
−I C −I

. . .
. . .

. . .

−I C −I
−I C

 ∈ Rn×n

with I ∈ Rn1×n1 to be an identity matrix and

C =


4 −1
−1 −4 −1

. . .
. . .

. . .

−1 4 −1
−1 −4

 ∈ Rn1×n1 .

Here, n = mn1.
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Table 5.3: Numerical performances for Example 5.3.
(m,n1) Algo. CPU (s) Sparsity Rel.Err Output

(2,50) Pivot 0.79 50 3.22e-15 (0.3660, 0, 0.4641, 0, . . . , 0.3660, 0)⊤

(2,50) iLD 0.08 50 3.22e-15 (0.3660, 0, 0.4641, 0, . . . , 0.3660, 0)⊤

(2,50) LP 0.58 50 9.96e-16 (0.3660, 0, 0.4641, 0, . . . , 0.3660, 0)⊤

(2,50) FP 0.17 50 8.29e-16 (0.3660, 0, 0.4641, 0, . . . , 0.3660, 0)⊤

(20,50) Pivot 4.84 50 3.22e-15 (0.3660, 0, . . . , 0, 0.3660, 0, . . . , 0)⊤

(20,50) iLD 0.2 50 3.22e-15 (0.3660, 0, . . . , 0, 0.3660, 0, . . . , 0)⊤

(20,50) LP 0.49 50 9.96e-16 (0.3660, 0, . . . , 0, 0.3660, 0, . . . , 0)⊤

(20,50) FP 0.2 50 8.29e-16 (0.3660, 0, . . . , 0, 0.3660, 0, . . . , 0)⊤

(50,100) Pivot 206.33 100 1.33e-14 (0.3660, 0, . . . , 0, 0.3660, 0, . . . , 0)⊤

(50,100) iLD 14.84 100 1.33e-14 (0.3660, 0, . . . , 0, 0.3660, 0, . . . , 0)⊤

(50,100) LP 1.16 100 7.18e-16 (0.3660, 0, . . . , 0, 0.3660, 0, . . . , 0)⊤

(50,100) FP 0.54 100 1.10e-15 (0.3660, 0, . . . , 0, 0.3660, 0, . . . , 0)⊤

From Tables 5.1-5.3, we can observe the following facts. Firstly, the proposed iLD method
always cost fewer times compared with Pivot method, and FP method always cost fewer
times compared with LP method. The gap is more pronounced for the large scale problems.
Furthermore, the two proposed methods almost always cost fewer time compared to the
others. Secondly, the FP method could always converge to the least solution of LCP(A,q),
which further shows the convergence property of the method numerically. Thirdly, the iLD
method seems to have more superiority compared to the others for LCP(A,q) with smaller
dimensionality, and the FP method seems to have a stronger performance compared to
others for LCP(A,q) with larger dimensionality.

In conclusion, the experimental results further demonstrate the advantages of the pro-
posed methods in numerical calculation.

6 Conclusions

In this paper, we proposed two numerical iterative methods for finding a sparse solution
of LCP(A,q) with A being a Z-matrix, and they are an iterative method based on lower-
dimensional linear equations and a fixed point iterative method. The first iterative method
terminates at the unique least solution of LCP(A,q). The computational cost of this method
depends not on the size of the problem but on the sparsity of the solution. Therefore,
when the sparsity of the solution is smaller, the calculation cost of the method is lower.
The advantage of the second method is that it has the property of monotone descending
convergence, while the disadvantage is that a feasible starting point is required. Obviously,
the sparser the starting points, the sparser the solutions obtained by this method.

The tensor complementarity problem, which is generalized as a linear complementarity
problem, has been actively studied in recent years [12, 13, 17]. In particular, the problem
of finding sparse solutions of the tensor complementarity problem has been studied [14, 21].
We believe that the analytical method in this paper can be extended to find sparse solutions
for tensor complementarity problems and improve the existing methods.
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