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is said to be compressible if x̄ has only a few large (in magnitude) components. The idea of
compressive sensing (CS) [4, 5, 8] in data acquisition and reconstruction is firstly projecting
ū onto a certain subspace via a linear operator Φ, i.e, b = Φū = ΦΨx̄ with b ∈ Cm and
m < n, and then reconstructing x̄ (or equivalently ū) from the undersampled measurement
b. For Φ, we focus on the partial (undersampled) Fourier transform in the form of Φ = PF ,
where F ∈ Cn×n is a specific two-dimensional Fourier transform matrix, and P ∈ Rm×n

be a selection matrix containing m rows of the identity matrix of order n. Besides, in the
process of acquiring, storing, transmitting, or displaying, the undersampled data may be
inevitably degenerated by noise, i.e.,

b = Φū+ ω, (1.1)

where ω ∈ Cm represents noise, e.g., the impulsive noise and white Gaussian noise.
It is noted that the MR images have piecewise continuous structures, which indicates

there exists a total finite difference operator D = [D1; . . . ;Dn] ∈ R2n×n with a local finite
difference operator Di ∈ R2×n such that Diu ∈ R2 is a discrete gradient of u at pixel i, and
Du ∈ R2n contains an overwhelming majority of zeros. Traditionally, the sum

∑n
i ∥Diu∥2 is

named the discrete isotropic total variation (TV) [29] of u under certain boundary conditions
if the ℓ2-norm ∥·∥2 (Euclidean norm) is used. In the early work, Candés et al. [5] minimized
the TV regularization to reconstruct ū from the undersampled measurement b at the noiseless
case. However, the TV regularization itself will not be a good sparse transformation because
the fact that the MR image itself is sparse under a certain basis is neglected. The pioneered
works of Lustig et al. [24] and He et al. [16] characterized the image reconstruction as a
linear combination of wavelet sparsity and TV regularization:

min
u

n∑
i

∥Diu∥2 + τ∥Ψ∗u∥1 +
µ

2
∥Φu− b∥22, (1.2)

where ∥ · ∥1 is the ℓ1-norm defined as the sum of absolute values of all entries of a vector,
and τ , µ > 0 are weighting parameters to balance each term for minimization. The problem
(1.2) is generally more difficult to solve than any of those with a single TV regularization
problem, e.g., [42, 34, 39, 1, 36, 37]. For solving (1.2), the method of He et al. [16] is a
nonlinear inverse scale space method, but its speeds are not impressive. The method of Ma
et al. [25] is actually an operator splitting approach to the inclusion problem resulting from
the first-order optimality condition of (1.2). The method of Yang et al. [41] is an alternating
direction multiplier method (ADMM), which is used to solve the equivalent form of problem
(1.2) containing some auxiliary variables. The method of Goldstein and Osher [15] is a
splitting Bregman method to solve a constrained optimization variant of (1.2). The method
of Li et al. [23] is a two-step fixed-point proximity algorithm to a noiseless variant of (1.2)
from a dual approach. The method of Ding et al. [9] is also taking a dual approach but
using an ADMM instead. All the reviewed methods are different in convergence speed, ease
of implementations, and practical applicabilities, but there is no evidence can verify that
which approach outperforms the others under all scenarios.

There are many works on the reconstruction of image which is only corrupted by white
Gaussian noise, while little is about the impulsive noises, such as the salt-and-pepper (resp.
random-valued) noise where the noisy pixels take only (resp. have random values uniformly
distributed) on the maximum and the minimum values in a range. The type of this noise is
often due to bit errors in transmission, faulty memory locations, errors in analog-to-digital
conversion, malfunctioning pixel elements in camera sensors. It has been highlighted in the
literature that using the ℓ1-norm as the measure of the data fidelity may exhibit enormous
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advantages, and this fact has been made clear by some impressive numerical results in
[26]. Indeed, the TV regularization with ℓ1-norm data fidelity was studied frequently in
the context of image denoising and deblurring, e.g., [3, 26, 6, 2, 40, 38, 30]. Inspired by
the favorable influence of the ℓ1-norm data fidelity under impulsive noise, in this paper,
we replace the ℓ2-norm in (1.2) with ℓ1-norm and restrict our attention to the following
reconstruction model:

min
u

n∑
i=1

∥Diu∥2 + τ∥Ψ∗u∥1 + µ∥Φu− b∥1. (1.3)

This model has latent capacity of eliminating the underlying sparse noise, and simultaneously
preserving sparsity with respect to discrete gradient transform and wavelet transform. More
than such attractive properties, though, solving (1.3) is really more challenging due to these
three non-differentiable terms. To the best of our knowledge, there is no algorithm available
to solve (1.3) in the field of CS. One might think that the ℓ1-regularized terms can be
combined together, and then solved by some existing solvers, such as [22, 27]. However, the
inherent separable-structures may not be fully utilized. Hence, efficient algorithms that make
full use of the favorable structure of each non-differentiable term are deserve investigating.

It should be noted that the main contribution of this paper is to propose a model (1.3)
to solve the image reconstruction problem with impulse noise from highly undersampled
data. We show that the proposed model can be solved by using existing algorithms from the
perspective of primal and dual. The first algorithm focuses the primal model by making the
best use of its separable structures. More accurately, problem (1.3) is firstly converted into an
equivalent convex constrained minimization problem consisting of four blocks of variables
and three blocks of non-differentiable functions, and then solved by ADMM directly. In
contrast, the second algorithm focuses on the dual problem whose objective function contains
three blocks of non-differentiable terms. We use ADMM to the dual problem and employ an
ingenious symmetric Gauss-Seidel (sGS) technique [19, 20] to split its augmented Lagrangian
function into some smaller parts. We show that each subproblem involved in both algorithms
is easily performed via the favourable structures of Fourier transforms, wavelet transforms,
and the Frenchel conjugate ℓ1-norm. Experiments using simulated phantom and clinical
images demonstrate that dual algorithm has superior numerical efficiency.

The remaining parts of this paper are organized as follows. In Section 2, we quickly
review the key ingredients needed to design for our subsequent developments. In Section 3,
we apply the ADMM to solve the model (1.3) and list its convergence result. In Section 4,
we turn our attention to the applications of sGS-ADMM to the dual formulation of (1.3). In
Section 5, we report numerical experiments to show the efficiency of all algorithms. Finally,
we conclude our paper in Section 6.

2 Preliminaries

2.1 Basic concepts

For a nonempty closed convex set C, we use the symbol δC(x) to represent the indicator
function over C such that δC(x) = 0 if x ∈ C and +∞ otherwise. A subset K of X is called a
cone if it is closed under positive scalar multiplication, i.e., λx ∈ K when x ∈ K and λ > 0
[28]. The normal cone of K at point x ∈ K is defined by NK(x) = {y ∈ X | ⟨y, z − x⟩ ≤
0, ∀z ∈ K}. Let f : X → (−∞,+∞] be a closed proper convex function. The subdifferential
of f at x ∈ dom(f) is defined as ∂f(x) = {x∗ | f(z) ≥ f(x)+⟨x∗, z−x⟩, ∀z ∈ X}. Obviously,
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∂f(x) is a closed convex set when it is not empty [28]. Let ∥ · ∥ be a norm function defined
on X . Then its dual norm ∥ · ∥∗ is defined as:

∥x∥∗ = sup
y
{x⊤y | ∥y∥ ≤ 1}.

It is easy to see that the dual norm of ℓ1-norm is ℓ∞-norm, and the dual norm of ℓ2-norm
is ℓ2-norm itself. The Fenchel conjugate of a convex f at x ∈ X is defined as

f⋆(y) := sup
x
{⟨x, y⟩ − f(x)} = − inf

x
{f(x)− ⟨x, y⟩}, ∀y ∈ X .

It is well known that the conjugate function f⋆(y) is always convex and closed, proper if
and only if f is proper [28]. For any x ∈ X , there exists a y ∈ X such that y ∈ ∂f(x) or
equivalently x ∈ ∂f⋆(y) due to a fact of f being closed and convex [28, Theorem 23.5].

Using the definition of the dual norm, it is easy to deduce that the Fenchel conjugate

of ∥x∥1 is ∥x∥⋆1 = δB(1)
∞
(x) where B(1)

∞ = {x | ∥x∥∞ ≤ 1} is a closed and convex set. Given

x ∈ X , it is known that the orthogonal projection onto the ℓ∞-norm ball B(r)
∞ (x) and ℓ2-norm

ball B(r)
2 (x) with radius r > 0 can be expressed explicitly. The Moreau-Yosida regularization

of a closed proper convex function f at x ∈ X with positive scalar β > 0 is defined by

φβ
f (x) := min

y∈X

{
f(y) +

1

2β
∥y − x∥22

}
. (2.1)

Moreover, the problem (2.1) has an unique optimal solution, which is known as the proximal
mapping of x associated with f , i.e.,

Pβ
f (x) := argmin

y∈X

{
f(y) +

1

2β
∥y − x∥22

}
.

It is shown that the proximal mapping of the ℓ1-norm function at point x obeys the following
form

Pβ
∥·∥1

(x) = sgn(x)⊙max
{
|x| − β, 0

}
,

where ⊙ is Hadamard product, and the operations of sign function “sgn(·)” and absolute

value function “| · |” are component-wises. It is also well known that Pβ
f (·) is firmly non-

expansive and globally Lipschitz continuous with modulus 1. For any x ∈ X , the Moreau
decomposition is expressed as x = Pβ

f (x) + Pβ
f⋆(x). Taking the ℓ1-norm function as an

example, its proximal mapping at x can be expressed as Pβ
∥·∥1

(x) = x − Pβ
δ
B(1)
∞

(x) = x −

ΠB(1)
∞
(x), which also indicates Pβ

∥·∥∞
(x) = x−ΠB(1)

1
(x).

2.2 Semi-proximal ADMM

Let X , Y, and Z be finite dimensional real Euclidian spaces. Consider the convex optimiza-
tion problem with the following two-block separable structure

min
y,z

f(y) + g(z)

s.t. A∗y + B∗z = c,
(2.2)

where f : Y → (−∞,+∞] and g : Z → (−∞,+∞] are closed proper convex functions,
A : X → Y and B : X → Z are given linear maps, and c ∈ X is given data. The Karush-
Kuhn-Tucker (KKT) system of problem (2.2) is given by

0 ∈ Ax+ ∂f(y), 0 ∈ Bx+ ∂g(z), and A∗y + B∗z = c.
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The augmented Lagrangian function associated with (2.2) is given by

Lσ(y, z;x) = f(y) + g(z) + ⟨x,A∗y + B∗z − c⟩+ σ

2
∥A∗y + B∗z − c∥2,

where x ∈ X is a multiplier, and σ > 0 be a given penalty parameter. Staring from an initial
point (x0, y0, z0) ∈ X × (dom f) × (dom g), the iterations of the semi-proximal ADMM of
Fazel, Pong, Sun & Tseng [11] for solving (2.2) is summarized as

yk+1 = argminy
{
Lσ(y, z

k;xk) + σ
2 ∥y − yk∥2Tf

}
,

zk+1 = argminz
{
Lσ(y

k+1, z;xk) + σ
2 ∥z − zk∥2Tg

}
,

xk+1 = xk + ξσ
(
A∗yk+1 + B∗zk+1 − c

)
,

(2.3)

where Tf and Tg are positive semi-definite and the step-length ξ is chosen in the interval
(0, (1 +

√
5)/2). When Tf = 0 and Tg = 0, the semi-proximal ADMM (2.3) reduces to the

classical ADMM in the mid-1970s. The following theorem is selected from the convergence
Theorem B.1 in [11]. For more details, one can refer to [11] and the references therein.

3 ADMM Based on Primal Formulation

3.1 Iterative framework

This section is devoted to the first assignment of this paper, which aims to apply the ADMM
to solve the problem (1.3) from a primal perspective. In order to facilitate the analysis and
design, we introduce a triple of auxiliary variables wi ∈ R2, z ∈ Rn, and v ∈ Rm such
that wi = Diu, z = Ψ∗u, and v = Φu − b. Therefore, the problem (1.3) is equivalently
transformed into

min
w,z,u,v

∑n
i=1 ∥wi∥2 + τ∥z∥1 + µ∥v∥1

s.t. wi = Diu, i = 1, . . . , n,

z = Ψ∗u,

v = Φu− b,

(3.1)

which contains four separable blocks of variables with respect to w, z, u, and v, and three
non-smooth blocks of functions. The augmented Lagrangian function of (3.1) is given by

Lβ(w, z, u, v;λ1, λ2, λ3)

=
∑n

i=1 ∥wi∥2 + τ∥z∥1 + µ∥v∥1 −
∑

i⟨(λ1)i, wi −Diu⟩ − ⟨λ2, z −Ψ∗u⟩

−⟨λ3, v − (Φu− b)⟩+ β
2

∑
i ∥wi −Diu∥22 +

β
2 ∥z −Ψ∗u∥22 +

β
2 ∥v − (Φu− b)∥22,

(3.2)

where (λ1)i ∈ R2, λ2 ∈ Rn, and λ3 ∈ Rm are multipliers and β > 0 is a penalty parameter.
If we treat (w, z, v) as one group and u itself as another, then starting from (ω0, z0, u0, v0),

it is well known that the classical ADMM of Glowinski and Marroco [12] takes the following
form: 

(wk+1, zk+1, vk+1) = argmin
w,z,v

Lβ(w, z, u
k, v;λk1 , λ

k
2 , λ

k
3),

uk+1 = argmin
u

Lβ(w
k+1, zk+1, u, vk+1;λk1 , λ

k
2 , λ

k
3),

(λk+1
1 )i = (λk1)i − ξβ(wk+1

i −Diu
k+1), ∀i = 1, . . . , n,

λk+1
2 = λk2 − ξβ(zk+1 −Ψ∗uk+1),

λk+1
3 = λk3 − ξβ(vk+1 − Φuk+1 + b),

(3.3)
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where ξ ∈ (0, (1 +
√
5)/2). For more detail on the convergence of ADMM with the iterative

scheme (3.3), one may refer to Gabay [14] and Gabay & Mercier [13].

3.2 Subproblems’ solving

This subsection aims to solve the subproblems involved in iterative framework (3.3) by
making the best use of their favourable structures. We now show that simple closed-form
solutions are permitted for each subproblem which indicates that all the subproblems are
easily performed.

We first focus on the solving of the (w, z, v)-subproblems by utilizing its separable struc-
tures. With fixed uk, and λki for i = 1, 2, 3, the next iterates (wk+1, zk+1, vk+1) at the first
implementation of (3.3) with respect to (w, z, v) can be expressed as

(wk+1, zk+1, vk+1)

= argmin
w,z,v

{∑n
i=1 ∥wi∥2 + τ∥z∥1 −

∑n
i=1⟨(λ1)ki , wi −Diu

k⟩

−⟨λk2 , z −Ψ∗uk⟩+ β
2

∑n
i=1

∥∥wi −Diu
k
∥∥2
2
+ β

2

∥∥z −Ψ∗uk
∥∥2
2

+µ∥v∥1 − ⟨λk3 , v − (Φuk+1/2 − b)⟩+ β
2

∥∥v − (Φuk+1/2 − b)
∥∥2
2

}
=

(
argmin

w

{∑n
i=1(∥wi∥2 + β

2

∥∥wi −
(
Diu

k +
(λ1)

k
i

β

)∥∥2
2
)
}
,

argmin
z

{
τ∥z∥1 + β

2

∥∥z − (
Ψ∗uk +

λk
2

β

)∥∥2
2

}
,

argmin
v

{
µ∥v∥1 + β

2

∥∥v − (Φuk+1/2 − b+
λk
3

β )
∥∥2
2

})
.

(3.4)

From some simple calculations (see [39, 40, 41]), one may show that each subproblem
obeys the forms of proximal mapping, and hence, they can be expressed explicitly as follows

wk+1
i = max

{∥∥Diu
k + (λ1)

k
i /β

∥∥
2
− 1

β , 0
}
⊙ sgn(Diu

k + (λ1)
k
i /β), i = 1, . . . , n,

zk+1 = max
{∣∣Ψ∗uk + λk2/β

∣∣− τ
β , 0

}
⊙ sgn(Ψ∗uk + λk2/β),

vk+1 = max
{
|Φuk+1/2 − b+ λk3/β| −

µ
β , 0

}
⊙ sgn(Φuk+1/2 − b+ λk3/β),

(3.5)
where the operations “max” and ·/· are component-wises, and 0/0 = 0 is followed. This
calculation process indicates that the (w, z, v)-subproblems can be partitioned into a triple
of lower-dimensional subproblems concerning each variable in a parallel way to make it is
more easier to implement.

With the latest values of wk+1, zk+1 and vk+1, and λki for i = 1, 2, 3, the uk+1 in (3.3)
coincides with the following form

uk+1 =argmin
u

{
−

n∑
i=1

⟨((λ1)ki , wk+1
i −Diu⟩ − ⟨λk2 , zk+1 −Ψ∗u⟩ − ⟨λk3 , vk+1 − (Φu− b)⟩

+
β

2

n∑
i=1

∥wk+1
i −Diu∥22 +

β

2
∥zk+1 −Ψ∗u∥22 +

β

2
∥vk+1 − (Φu− b)∥22

}
. (3.6)

To simplify presentation, we denote D := (D(1);D(2)) ∈ R2n×n, where D(1) ∈ Rn×n and
D(2) ∈ Rn×n contains, respectively, the first and second rows of Di for all i. Correspondingly,
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we also denote w := (w(1);w(2)) ∈ R2n, where w(1) := D(1)u ∈ Rn and w(2) := D(2)u ∈ Rn,
that is, w(1) (resp. w(2)) is a vector constructed by the first (resp. second) component of
wi ∈ R2 for i = 1, . . . , n. Meanwhile, λ1 ∈ R2n is also reformulated as (λ1(1);λ1(2)) ∈ R2n

with λ1(1) ∈ Rn and λ1(2) ∈ Rn corresponding to the structure of w. With these notations,
the u-subproblem can be rewritten as

argmin
u

{
− (λk1)

⊤(wk+1 −Du) +
β

2
∥wk+1 −Du∥22 − (λk2)

⊤(zk+1 −Ψ∗u) +
β

2
∥zk+1 −Ψ∗u∥22

− ⟨λk3 , vk+1 − (Φu− b)⟩+ β

2
∥vk+1 − (Φu− b)∥22

}
,

which is an unconstrained quadratic programming. Therefore, from the first-order optimality
condition and the orthonormality of Ψ, we know that solving this problem is equivalent to
finding a solution to the following normal equation:

Au = yk, (3.7)

where

A = D⊤
(1)D(1) +D⊤

(2)D(2) + I +Φ∗Φ,

and

yk = D⊤
(1)

(
wk+1

(1) −
λk1(1)

β

)
+D⊤

(2)

(
wk+1

(2) −
λk1(2)

β

)
+Ψ

(
zk+1 − λk2

β

)
+Φ∗

(
(vk+1 + b)− λk3

β

)
.

Since D(1) and D(2) are finite difference operators, under the periodic boundary conditions
for u, they are circulant matrices and can be diagonalized by the Fourier transform F . It
is worth pointing out that if T is a discrete cosine transform, the same result holds under
the symmetric boundary conditions. The attractive feature indicates that the linear system
(3.7) is easily solved by taking a fast Fourier transform to both sides, and then taking an
inverse version. It should be noted that these techniques are from [39, 40, 41], and they
appeared here is to make this part more easier to follow.

In light of all above derivations, we summarize the steps of ADMM for solving problem
(3.1) as follows. The implemented details concerning on stopping criterion will be stated in
the numerical parts later.

Algorithm: ADMM

Step 0. Input problem data b; choose model parameters τ , µ > 0, and constants β > 0,
ξ ∈ (0, (1 +

√
5)/2). Initialize w0

i , z
0, u0, v0, λ01, λ

0
2, and λ03. For k = 0, 1, . . ., do the

following operations iteratively.
Step 1. Compute wk+1, zk+1 and vk+1 via (3.5), respectively.
Step 2. Compute uk+1 via (3.7) with fixed wk+1, zk+1, vk+1 and λki for i = 1, 2, 3.
Step 3. Update multipliers λk+1

i for i = 1, 2, 3 separately via (3.7) with fixed wk+1, zk+1,
vk+1 and uk+1.

Step 4. Set k := k + 1, go to Step 1.
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4 sGS-ADMM Based on Dual Formulation

4.1 Lagrangian dual problem and optimality condition

This section aims to construct a sGS-ADMM frame algorithm to solve the problem (3.1)
from a dual perspective. The Lagrangian function associated with (3.1) is defined by

L(w, z, u, v;λ1, λ2, λ3) =
n∑

i=1

∥wi∥2 + τ∥z∥1 + µ∥v∥1 −
n∑

i=1

⟨(λ1)i, wi −Diu⟩

− ⟨λ2, z −Ψ∗u⟩ − ⟨λ3, v − (Φu− b)⟩,

where the vectors (λ1)i ∈ R2, λ2 ∈ Rn, λ3 ∈ Rm are multipliers or dual variables associated
with the constraints in (3.1). It is not a hard work to deduce that the Lagrangian dual
problem of the original problem (3.1) takes the following equivalent form:

min
λ1,λ2,λ3

⟨λ3, b⟩

s.t. D⊤λ1 +Ψλ2 +Φ⊤λ3 = 0,

(λ1)i ∈ B(1)
2 , λ2 ∈ B(τ)

∞ , λ3 ∈ B(µ)
∞ , i = 1, . . . , n,

(4.1)

where B(1)
2 := {(λ1)i ∈ R2 | ∥(λ1)i∥2 ≤ 1}, B(τ)

∞ := {λ2 ∈ Rn | ∥λ2∥∞ ≤ τ}, and B(µ)
∞ :=

{λ3 ∈ Rm | ∥λ3∥∞ ≤ µ}. Assuming that both the optimal solutions to the primal problem

(1.3) and its dual problem (4.1) exist, then (λ̂1, λ̂2, λ̂3) is said to be an optimal solution
of problem (4.1) if there exists a (ŵi, ẑ, û, v̂) be an optimal solution of (1.3) such that the
following system is satisfied

wi −Diu = 0, z −Ψ∗u = 0, v − (Φu− b) = 0,

D⊤λ1 +Ψλ2 +Φ⊤λ3 = 0,

(λ1)i ∈ ∂∥wi∥2, λ2 ∈ τ∂∥z∥1, λ3 ∈ µ∂∥v∥1.

(4.2)

The above system is the well-known Karush-Kuhn-Tucker (KKT) condition in optimization
community.

4.2 Algorithm’s construction and convergence result

We now focus on the applications of sGS-ADMM for solving of the dual problem (4.1).
For the convenience of calculation, we introduce an auxiliary variable x ∈ Rn to make an
equivalent formulation:

min
λ1,λ2,λ3,x

⟨λ3, b⟩+ δ
B

(1)
2

(λ1) + δ
B

(τ)
∞

(x) + δ
B

(µ)
∞

(λ3)

s.t. D⊤λ1 +Ψλ2 +Φ⊤λ3 = 0,

λ2 − x = 0,

(4.3)
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where δC(·) represents an indicator function on a closed and convex set C. Given β > 0, the
augmented Lagrangian function associated with (4.3) is defined by

Lβ(λ1, λ2, λ3, x;u, z)

= ⟨λ3, b⟩+ δ
B

(1)
2

(λ1) + δ
B

(τ)
∞

(x) + δ
B

(µ)
∞

(λ3)− ⟨u,D⊤λ1 +Ψλ2 +Φ⊤λ3⟩ − ⟨z, λ2 − x⟩

+β
2 ∥D

⊤λ1 +Ψλ2 +Φ⊤λ3∥22 +
β
2 ∥λ2 − x∥22,

(4.4)
where u and z are multipliers, or the primal variables in problem (3.1). To apply sGS-
ADMM, we view (λ1, λ2) as one group and (λ3, x) as another. Noting that λ1 and λ2 are
coupled together while λ3 and x are separated from each other, we adapt the sGS technique
in the (λ1, λ2) group with order λ2 → λ1 → λ2, and take a parallel manner in the group
(λ3, x). More precisely, the (λ1, λ2, λ3, x)-subproblems can be solved individually via the
following scheme:

λ
k+1/2
2 = argminλ2

{
Lβ(λ

k
1 , λ2, λ

k
3 , x

k;uk, zk) + 1
2∥λ2 − λk2∥T2

}
,

λk+1
1 = argminλ1

{
Lβ(λ1, λ

k+1/2
2 , λk3 , x

k;uk, zk) + 1
2∥λ1 − λk1∥T1

}
,

λk+1
2 = argminλ2

{
Lβ(λ

k+1
1 , λ2, λ

k
3 , x

k;uk, zk) + 1
2∥λ2 − λ

k+1/2
2 ∥T2

}
,

λk+1
3 = argminλ3

{
Lβ(λ

k+1
1 , λk+1

2 , λ3, x
k;uk, zk) + 1

2∥λ3 − λk3∥T3

}
,

xk+1 = argminx
{
Lβ(λ

k+1
1 , λk+1

2 , λk+1
3 , x;uk, zk) + 1

2∥x− xk∥Tx

}
,

(4.5)

where Tx and Ti for i = 1, 2, 3 are self-adjoint positive semi-definite linear operators.
To enjoy closed-form solution for each subproblem, we set T2 ≡ Tx ≡ 0, T1 := β(αI −

DD⊤) and T3 := β(ηI − ΦΦ⊤) where the positive scalars α and η are chosen particularly
to ensure that T1 and T3 are positive semi-definite. Generally, we can choose α and η such
that α ≥ ρ(DD⊤) and η ≥ ρ(ΦΦ⊤), where ρ(·) denotes a spectral radius of a given matrix.
The following lemma plays a key role in convergence analysis, which is just an application
of [20, Theorem 1] to a special practical problem.

Lemma 4.1. ([20, Theorem 1]) Suppose that T2 ≡ Tx ≡ 0, and T1 := β(αI − DD⊤) and
T3 := β(ηI−ΦΦ⊤) are self-adjoint positive semi-definite linear operators with positive scalars
α and η. Then the iterative scheme (4.5) is equivalent to

(
λk+1
1

λk+1
2

)
= argmin

λ1,λ2

Lβ

(
(λ1, λ2), (λ

k
3 , x

k);uk, zk
)
+

1

2

∥∥∥ λ1 − λk1
λ2 − λk2

∥∥∥2
Q1

,

(
λk+1
3

xk+1

)
= argmin

λ3,x
Lβ

(
(λk+1

1 , λk+1
2 ), (λ3, x);u

k, xk
)
+

1

2

∥∥∥ λ3 − λk3
x− xk

∥∥∥2
Q2

,

where Q1 and Q2 are defined as, respectively,

Q1 =
β

2

(
DD⊤ 0
0 0

)
, and Q2 = β

(
ηI − ΦΦ⊤ 0

0 0

)
.

Proof. The augmented Lagrangian function given in (4.4) with regard to variables λ1 and
λ2 is a quadratic function with quadratic term

H1 = β
(
DD⊤ DΨ
Ψ∗D⊤ 2I

)
.
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Define

H2 =
( T1 0

0 T2

)
= β

(
αI −DD⊤ 0

0 0

)
,

and denote

H := H1 +H2 = β
( αI DΨ

Ψ∗D⊤ 2I

)
.

Moreover, we decompose H into three pars with form

J = β
(
αI 0
0 2I

)
, U = β

(
0 DΨ
0 0

)
, and U∗ = β

( 0 0
Ψ∗D⊤ 0

)
.

It follows from [20, Theorem 1], that, the desired Q1 obeys the following form

Q1 = UJ−1U∗ =
β

2

(
DD⊤ 0
0 0

)
.

The explicit form of Q2 is easily from the fact that the variables λ3 and x are separated
from each other.

This equivalence property is enough to ensure the convergence theory from [11, Theorem
B.1] which can be reported as follows.

Theorem 4.2. Suppose that T2 ≡ Tx ≡ 0, and T1 ≜ β(αI − DD⊤) and T3 ≜ β(ηI −
ΦΦ⊤) are self-adjoint positive semi-definite linear operators with positive scalars α and η.
Let {λk1 , λk2 , λk3 , xk} be the sequence generated by the algorithm associated with the iterative
scheme (4.5), then it converges to the optimal solution of problem (3.1).

4.3 Subproblems’ solving and algorithm’s steps

We now pay our attention on the solving of the subproblems involved in scheme (4.5). Firstly,
fix the values of other variables and notice that T2 ≡ 0, the λ2-subproblem is expressed as

λ
k+1/2
2 = argmin

λ2

{
− ⟨uk, D⊤λk1 +Ψλ2 +Φ⊤λk3⟩ − ⟨zk, λ2 − xk⟩}

+
β

2
∥D⊤λk1 +Ψλ2 +Φ⊤λk3∥22 +

β

2
∥λ2 − xk∥2

}
.

Finding the minimizer λ
k+1/2
2 is equivalent to finding the solution of the following system

Ψ∗uk + zk = βΨ∗(D⊤λk1 +Ψλ2 +Φ⊤λk3) + β(λ2 − xk).

Hence, the solution λ
k+1/2
2 is given explicitly by

λ
k+1/2
2 =

1

2β

(
(Ψ∗uk + zk) + βxk − βΨ∗(D⊤λk1 +Φ⊤λk3)

)
. (4.6)

Secondly, choose α > 0 such that T1 = β(αI −DD⊤) is positive semi-definite, it is easy
to deduce that the λ1-subproblem reduces to

λk+1
1 = argmin

λ1

{
δB(1)

2
(λ1)− ⟨uk, D⊤λ1⟩+

β

2
∥D⊤λ1

+Ψλ
k+1/2
2 +Φ⊤λk3∥22 +

1

2
∥λ1 − λk1∥2β(αI−DD⊤)

}
= ΠB(1)

2

(
λk1 − Gk

α
+
Duk

αβ

)
, (4.7)
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where Gk = D(D⊤λk1+Ψλ
k+1/2
2 +Φ⊤λk3), and ΠB(1)

2
(·) is a metric projection onto the closed

convex set B
(1)
2 . Thirdly, choose η > 0 such that T3 = β(ηI−ΦΦ⊤) is positive semi-definite,

the λ3-subproblem can be solved as follows:

λk+1
3 = argmin

λ3

{
⟨λ3, b⟩+ δ

B
(µ)
∞

(λ3)− ⟨uk,Φ⊤λ3⟩+
β

2

∥∥D⊤λk+1
1 +Ψλk+1

2 +Φ⊤λ3
∥∥2

+
1

2
∥λ3 − λk3∥2β(ηI−ΦΦ⊤)

}
= ΠB(µ)

∞

(
λk3 − Mk

η
+

Φuk − b

ηβ

)
, (4.8)

where Mk = Φ(D⊤λk+1
1 +Ψλk+1

2 +Φ⊤λk3). Finally, choosing Tx ≡ 0, the x-subproblem can
be reorganized as

xk+1 = argmin
x

{
δB(τ)

∞
(x)− ⟨zk, λk+1

2 − x⟩+ β

2
∥λk+1

2 − x∥2
}
= ΠB(τ)

∞

(
λk+1
2 − zk

β

)
. (4.9)

In light of the above analysis, we summarize the steps of the sGS-ADMM for solving the
dual problem (4.1) as follows:

Algorithm: sGS-ADMM d

Step 0. Input problem data b; input positive parameters τ , µ > 0, and constants β > 0,
ξ ∈ (0, (1 +

√
5)/2); input α ≥ ρ(DD⊤) and η ≥ ρ(ΦΦ⊤). Initialize z0, u0, λ01, λ

0
2, and

λ03. For k = 0, 1, . . ., do the following operations iteratively.
Step 1. Compute λk+1

2 and λk+1
1 :

- Compute λ
k+1/2
2 via (4.6);

- Compute λk+1
1 via (4.7);

- Compute λk+1
2 via solving (4.6) with the newest λk+1

1 .

Step 2. Compute λk+1
3 and xk+1:

- Fixed λk+1
3 via solving (4.8);

- Fixed xk+1 via solving (4.9).

Step 3. Updating multipliers uk+1 and zk+1:

uk+1 = uk − ξβ(D⊤λk+1
1 +Ψλk+1

2 +Φ⊤λk+1
3 );

zk+1 = zk − ξβ(λk+1
2 − xk+1).

Step 4. Set k := k + 1, go to Step 1.

5 Numerical Experiments

In this section, we present MR image reconstruction results to evaluate the practical perfor-
mances of all the presented algorithms for solving (1.3) from the primal and dual respects.
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All the experiments are performed with Microsoft Windows 10 and MATLAB R2018a, and
run on a PC with an Intel Core i7 CPU at 1.80 GHz and 8 GB of memory.

5.1 General descriptions

We conduct experiments on two types of MRI data: a simulated “Shepp-Logan” phantom,
and some clinical MR images. The pixels values of all tested images are all re-scaled into
[0, 1] for convenience. We generate the data b by the undersampling Fourier coefficients of
these images followed by an adding impulsive noise. The k-space undersampling is simulated
by using the masks of pseudo radial sampling [32], which sampled the Fourier domain along
a number of radial lines spread out from the center. The orthogonal transform Ψ and
its inverse Ψ∗ is generated by using the the Rice Wavelet Toolbox which is available at
https://github.com/ricedsp/rwt. The Toolbox is a collection of functions for 1D and
2D wavelet and filter bank design, analysis, and processing. The undersampled data Φū
in (1.1) is assumed to be corrupted, with different noisy densities, by two types of impulse
noise, i.e., the random valued noise and salt-and-pepper noise. More precisely, let “min” and
“max” be the minimum and the maximum element values of vector Φū, respectively. In salt-
and-pepper noise, the corrupted pixels take the “min” vale or the “max” value randomly,
while in random valued noise the corrupted pixels take the random values at the range
of [“min”, “max”] uniformly. We conduct the following experiments on data corroded by
salt-and-pepper noise and its level of impulse noise in each test is set as 0.1.

Figure 5.1: (a) The test 256 × 256 Shepp-Logan phantom; (b) Fourier domain sampling
positions with 22 radial lines; (c) corrupted by impulsive noise phantom image.

For comparison in a relatively fair way, we measure the reconstruction solutions using
the relative error (RLNE) defined as

RLNE :=
∥û− ū∥2
∥ū∥2

,

where û and ū are the reconstructed and ground truth images, respectively. Besides, we also
use the peak signal-to-noise ratio (PSNR) in the unit of dB defined as follows to measure
the quality of the re-solutions

PSNR := 10 log10
255

√
n

∥û− ū∥2
(dB).

The iterative process of each algorithm is terminated if RLNE is sufficiently small or the
maximum iteration number is achieved. The parameter is tuned as ξ = 1.618 in each tested
algorithm. For the sGS-ADMM d, the values of the parameters α = 8 and η = 10/9 are
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fixed. The values of β and weighting parameters µ and τ will be determined adaptively with
respect to each experiment. We also try different starting points for each algorithm and find
that all of them are insensitive towards starting points. Therefore, we initialize the starting
points by zero in all experiments.

5.2 Test on “Shepp-Logan” phantom image

In this part, we test against the state-of-the-art solver RecPF [41] on phantom data. The
Matlab package of RecPF is provided by the authors of [41] where the parameters including
µ and τ are left to be its default settings. Before conducting numerical experiments, we must
emphasize once again that RecPF [41], the most advanced solver, is only designed for under-
sampled data corrupted by white Gaussian noise, but not the impulsive noise considered in
this paper. We used RecPF for comparison because no solver available to solve the proposed
model (1.3) at present. We choose the regularization parameters τ = 7E-6 and µ = 7E+2
which are suitable for three algorithms and β = 20 in this part. A “Shepp-Logan” phantom
image and corrupted by impulsive noise phantom image with size 256 × 256 is shown in
Figure 5.1 (a) and (c), and the Fourier domain sampling positions with 22 radial lines
(sampling rate 9.36%) is listed in Figure 5.1 (b). Figure 5.2 displays the results within
3000 iterations derived by algorithms ADMM, sGS-ADMM d and RecPF, respectively. At
first glance, we see that tested algorithms work successfully except for RecPF which fails to
produce acceptable reconstructions. More accurately, the RLNE value abstained by RecPF
is 29.07% which is more than 1E+6 times larger than the one obtained by sGS-ADMM d.
To further visibly illustrate the superiority of all the proposed algorithms, we draw the 5

Figure 5.2: Reconstructing results of the 256 × 256 Shepp-Logan phantom image using 22
lines: (a) the reconstructed image by ADMM; (b) the reconstructed image by sGS-ADMM d;
(c) the reconstructed image by RecPF.

times scaled difference images of Figure 5.2 to the ground true image. The compared heat
images are listed in Figure 5.3. We observe from these figures that sGS-ADMM d is the
best one, followed by ADMM, and then sGS-ADMM p, but RecPF is a loser.

To more visually examine the algorithms’ performance, we also draw the curves of PSNR
values and RLNE values with the increases of the running time and the iteration numbers
in Figure 5.4. The stopping criteria in this test is chosen as the condition RLNE ≤ 1E-8 is
achieved or the maximum iteration number 6000 is reached. As can be seen from the two
plots at the lefthand side of this figure that, the curves derived by RecPF are always at
the bottom after a certain number of iterations, which indicates that RecPF is the inferior
among these algorithms. While we shift our attention to the both plots of the right hand
sides, we see that the RLNE derived by sGS-ADMM d decreases faster than that derived by
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Figure 5.3: The 5× scaled difference images of reconstructed images of ADMM, sGS-
ADMM d and RecPF to the ground truth image.

other algorithms. Moreover, we also see that the curve derived by RecPF always at the top
of both plots, which once again indicates that RecPF is the loser. From this simple test, we
conclude that our proposed algorithms are effective in rebuilding phantom images corrupted
by impulsive norse and perform better than RecPF significantly. It is worth mentioning that
the dual algorithm has obvious advantages in both time and iteration number compared with
the other two algorithms.

Figure 5.4: Reconstruction results of the phantom image using 22 sampled lines: (a) PSNR
versus the computational time; (b) RLNE versus the computational time; (c) PSNR versus
the number of iterations; (e) RLNE versus the number of iterations.

5.3 Test on a real foot MR image

In this subsection, we further investigate the validness of proposed algorithms by using a
real foot MR image. The true image located at the leftmost side of Figure 5.5 is one slice
of sagittal T1-weighted foot MR image with size 512 × 512 which is available at http:

//www.mr-tip.com. The impulsive noise corrupted image is listed in Figure 5.5 (c). In
this test, we use the measurements from 84 radial sampling lines (sampling rate 17.74%)
as shown at the middle plot in Figure 5.5. We choose the regularization parameters as
µ=1E+3, τ=1E-3 and β = 5 which are better choices for these algorithms.

In this test, we choose the stopping criteria RLNE ≤ 1E-3, and set the maximum itera-
tion number as 300. We run ADMM, sGS-ADMM d and RecPF again and list the recovering
images derived by each algorithm in Figure 5.6. From these figures, we clearly see that only
the sGS-ADMM d achieved acceptable reconstruction while ADMM is a complete failure.
Moreover, the RLNE value derived by sGS-ADMM d is RLNE = 6.23%, which is much
smaller than that derived by other two algorithms. To further investigate the algorithms’
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Figure 5.5: (a) Real foot MR image with size 512 × 512 ; (b) Fourier domain sampling
positions with 84 radial lines; (c) corrupted by impulsive noise foot image.

convergence behavior, we also draw some curves regrading PSNR and RLNE as the comput-
ing time and iteration numbers increase in Figure 5.7. From the plots (a) and (b) of Figure
5.7, we clearly see that sGS-ADMM d is the fastest to increase the PSNR and decrease
RLNE, while ADMM and RecPF are the slowest. Similarly, from the remaining two plots,
we see that sGS-ADMM d is also the winner in sense of requiring fewer number of itera-
tions. From this test, we conclude that all the implemented algorithms are really efficient
in recovering the foot MR image and sGS-ADMM d is the most promising.

Figure 5.6: Reconstructing results of the 512 × 512 real foot MR image using 84 lines: (a)
reconstructed image by ADMM; (b) reconstructed image by sGS-ADMM d; (c) reconstructed
image by RecPF.

6 Conclusions

The compressive sensing theories offered the possibility to reconstruct the MR images from
highly undersampled data accurately. If the undersampled data is corrupted by the Gaussian
noise, the reconverting task can be accomplished preferably and efficiently by the famous
solver RecPF [41]. However, for the impulsive noise case, as far as we know, no solver
can be employed in this literature. To remedy this slight neglect, this paper proposed
a reconstruction model of being the sum of three non-differentiable terms. However, these
non-differentiable terms caused more challenges for using some traditional algorithms. Based
on the primal and dual problem’s formulations, this paper employed a pair of ADMMs, gave
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Figure 5.7: Reconstruction results of a 512 × 512 real foot MR image using 84 lines: (a)
PSNR versus computational time; (b) RLNE versus computational time; (c) PSNR versus
number of iterations; (e) RLNE versus number of iterations.

their convergence, and tested their numerical performance. The numerical experiments
on MR images demonstrated that the sGS-ADMM d based on dual formulation performed
better than ADMM and RecPF. Last but not least, the enhancement of sGS-ADMM d make
us to believe that the dual approach is valid for MR image reconstructing and possibility it
may have its own extraordinary potency in other related problems.

Acknowledgements

We would like to thank the editor and two anonymous referees for their useful comments
and suggestions which improved this paper greatly.

References

[1] M.V. Afonso, J.M. Bioucas-Dias and M.A. T. Figueiredo, An augmented Lagrangian
approach to the constrained optimization formulation of imaging inverse problems,
IEEE Trans. Image Process. 20 (2011) 681–695.

[2] M.R. Bai, X.J. Zhang and Q.Q. Shao, Adaptive correction procedure for TVL1 image
debluring under impulse noise, Inverse Problems 32 (2016): 085004.

[3] J.F. Cai, R.H. Chan and M. Nikolova, Fast two-phase image deblurring under impulse
noise, J. Math. Imaging Vision 36 (2010) 46–53.

[4] E. Candés, J. Romberg and T. Tao, Stable signal recovery from incomplete and inac-
curate information, Commun. Pure Appl. Math. 59 (2005) 1207–1233.

[5] E. Candés, J. Romberg and T. Tao, Robust uncertainty principles: exact signal recon-
struction from highly incomplete frequency information, IEEE Trans. Inform. Theory
52 (2006) 489–509.

[6] T. F. Chan and S. Esedoglu, Aspects of total variation regularized L1 function approx-
imation, SIAM J. Appl. Math. 65 (2005) 1817–1837.

[7] L. Chen, D.F. Sun and K.-C. Toh, An efficient inexact symmetric Gauss-Seidel based
majorized ADMM for high-dimensional convex composite conic programming, Math.
Program. 161 (2017) 237–270.

[8] D. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (2006) 1289–1306.



ALTERNATING DIRECTION METHODS OF MULTIPLIERS FOR IR 157

[9] Y. Ding, P. Li, Y. Xiao and H. Zhang, Symmetric Gauss-Seidel alternating direction
methods of multipliers for sparse compressive sensing magnetic resonance imaging re-
construction based on dual formulation, submitted.

[10] Y. Ding and Y. Xiao, Symmetric Gauss-Seidel technique-based alternating direction
methods of multipliers for transform invariant low-rank textures problem, J. Math.
Imaging Vision 60 (2018) 1220–1230.

[11] M. Fazel, T.K. Pong, D.F. Sun and P. Tseng, Hankel matrix rank minimization with
applications in system identification and realization, SIAM J. Matrix Anal. Appl. 34
(2013) 946–977.

[12] R. Glowinski and A. Marroco, Sur l’approximation, par éléments finis d’ordre un,
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