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frequency of the received signals, so it requires prior information of the signals. ED uses the
energy of the signals in a specific time to make judgment, which is simply implemented and
widely used, but does not take effect at low SNR. MED uses the correlation of the signals to
calculate the eigenvalue of the covariance matrix of the signals. When the signals are highly
correlated with each other, MED can get good results even in the case of low SNR. However,
ED and MED need to know noise power, so that they are semi-blind detection methods;
moreover, their actual detection performances are worse than theoretical performances due
to noise uncertainty [15]. The CAV detection does not require any prior information, which
belongs to the blind detection method. What’s more, this method will not be affected by
noise uncertainty. But it is difficult to determine the detection threshold accurately under
the non-progressive assumption.

With the advent of the era of artificial intelligence and big data, deep learning has
achieved good applications in image processing [3], natural language processing [21], sen-
timent analysis [5] and other fields. Of course, these methods have also been applied to
spectrum sensing. In [17], Vyas et al. proposed a hybrid spectrum sensing scheme based
on artificial neural network (ANN), which used energy values and likelihood ratio statistics
as the input of the network; In [16], Tang et al. combined time-domain and frequency-
domain information and put forward to use energy and cyclostationary features as the input
of ANN; In [9]−[19], the authors used the covariance matrix as the input and trained it
with the classical convolutional neural network (CNN) model. And Liu et al. [9] derived
the deep-neural-network-based likelihood ratio test (DNN-LRT) for spectrum sensing; In [2],
Cheng et al. used a stacked autoencoder to process the signal samples and logistic regression
to classify user activities. Overall, all of the above algorithms belong to supervised deep
learning, that is, they need to know the labels of training samples. But in actual situa-
tions, collecting large amounts of labeled training samples is costly and difficult. In order to
break through this limitation, Xie et al. [18] proposed an unsupervised deep learning spec-
trum sensing algorithm (UDSS), which used a variational autoencoder (VAE) [7] to extract
features from the sample covariance matrix, then clustered features by means of Gaussian
mixture model (GMM) [24], and finally used a small amount of label samples that the PU
does not presence for cluster identification.

In this paper, we present a spectrum sensing algorithm based on SSAAE. The adversarial
autoencoder (AAE) [11] combines a generative adversarial network (GAN) [6] and a varia-
tional autoencoder (VAE). Although both AAE and VAE match the posterior distribution
with the prior distribution through certain constraints, their process of matching is different.
The former uses adversarial training and the latter uses Kullback-Leibler divergence. AAE
has a wide range of applications, such as semi-supervised classification, style separation, un-
supervised clustering, data dimension reduction, etc. In [12], Sudhanshu Mittal researched
on semi-supervised learning of AAE and did simulation experiments on mixed national
institute of standards and technology (MNIST) dataset, and obtained some good results.
In SSAAE model, the label information is added to the AAE model for semi-supervised
classification tasks. The SSAAE model tries to utilize unlabeled samples to improve the
classification performance, which not only solves the shortage of labeled samples, but also
improves the generalization ability of the model.

The main contributions of this paper can be summarized as follows:

• We propose an SSAAE-based spectrum sensing algorithm, which is a semi-supervised
classification algorithm. So in the training phase, we use only a small number of labeled
samples. As we know, it is the first time that the SSAAE model is applied to spectrum
sensing.
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• In this algorithm, we use only the original received signals as the network input, that
is, we do not require other feature extraction methods. In addition, the algorithm does
not require any prior information about the signals and the noises. So it belongs to
blind detection methods.

• The proposed algorithm is simulated under white Gaussian noise and compared with
classical spectrum sensing methods. Experiments show that the proposed algorithm is
superior to classic methods (ED, MED and CAV) and two deep learning-based methods
(ANN-based and CM-CNN-based method).

The remainder of this paper is organized as follows. In Section 2, the binary classification
model of spectrum sensing is described. The idea and structure of the SSAAE model are
introduced in Section 3. The spectrum sensing algorithm based on SSAAE is given in
Section 4. In Section 5, the performance of the proposed algorithm is showed by simulation
experiments. A conclusion is presented in Section 6.

2 Formulation of the Problem

We assume that the SU has M receiving antennas, and the received signals are sampled
N times for each sensing period. Let xm(n) ∈ C (m = 1, . . . ,M, n = 1, . . . , N) denote
the n-th sampled signal received from the m-th antenna by the SU. If the primary user
does not presence in the target channel, each the received signal {xm(n)} contains only
one white noise vm(n) ∈ C, that is xm(n) = vm(n); otherwise it is equal to the sum of a
signal sm(n) ∈ C sent by the PU after channel fading and the white noise vm(n), that is
xm(n) = sm(n) + vm(n). Spectrum sensing is that the SU needs to detect, by the received
signals {xm(n)}, whether the PU is present in the target channel or not. Let H0 and
H1 represent the absence and presence of the PU in the target channel, respectively. The
spectrum sensing problem is just a binary hypothesis testing problem:

H0 : xm(n) = vm(n),
H1 : xm(n) = sm(n) + vm(n).

(2.1)

The performance of spectrum sensing can be portrayed by a detection probability Pd and a
false alarm probability Pf , which are respectively defined as:

Pd = P{H∗|H1}, Pf = P{H∗|H0}, (2.2)

where H∗ represents that the SU has detected the PU would be present in the target channel.
Obviously, we want the detection probability Pd to be as high as possible, and the false alarm
probability Pf to be as low as possible. Therefore, the key task of spectrum sensing is to
maximize detection probability Pd under a given tolerance of the false alarm probability Pf :

max Pd

Pf ≤ ∆,
(2.3)

where ∆ represents a given threshold of Pf .

3 The Semi-Supervised Adversarial Autoencoder

As shown in Fig. 3.1, the SSAAE model consists of three parts: an autoencoder in the middle
part, a categorical discriminator in the top part and a Gaussian distribution discriminator
in bottom part.
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Figure 3.1: Architecture of a semi-supervised adversarial autoencoder [11]. p(ŷul ∼ p(yul))
denotes the probability that the categorical discriminator determines that ŷul follows p(yul)
distribution, and p(ẑul ∼ N (0, I)) denotes the probability that the Gaussian distribution
discriminator determines that ẑul follows the Gaussian distribution.

Let x denote an input vector of the network (x includes xl and xul, which come from
labeled samples and unlabeled samples, respectively), and zul be a randomly generated
continuous variable vector subject to the Gaussian distribution N (0, I). In addition, let y
be a two-dimensional class variable vector. It takes two values: y = [1, 0]T or [0, 1]T . The
former value claims that the PU is absent, that is the current x consists only of noises,
while the latter asserts that x includes signals of the PU. And the entire training process of
SSAAE model includes one supervised phase and one unsupervised phase. In the supervised
phase, y identifies really whether the current xl contains signals of the PU or not, which
will be denoted as yl in remaining sections. However, for the unsupervised phases, since the
label of the input xul is unclear, y takes stochastically the two values [1, 0]T and [0, 1]T with
probabilities p and 1− p respectively, where p is the proportion of the pure noise samples in
all the unlabeled samples. In this case, the vector y will be denoted as yul. So, it may not
reflect the true label of the input sample xul.

The autoencoder consists of an encoder and a decoder. The encoder is a three-layer
neural network. When a sample xul is input into the encoder, its outputs will be two
vectors: one is a latent class variable vector ŷul, and the other is a latent style variable
vector ẑul. In addition, the encoder contains multiple activation functions: the activation
functions of the first two layers are both the rectified linear unit (ReLU) functions. In the
third layer, ẑul is output directly through a linear transformation, while ŷul is output by a
linear transformation and a Softmax activation function. The latent class variable ŷul can
obtain label information, which is used in classification tasks. The latent style variable ẑul
can obtain style information, forcing the outputs of the encoder to carry more information.
Since the network parameters of the first two layers corresponding to the two outputs are
shared, the training of ẑul will also affect ŷul during back propagation, which will improve
the classification performance of the SSAAE model. Then, ŷul and ẑul are combined as one
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input to the decoder, and the output of the decoder is a reconstructed sample x̂ul. This
decoder is also a three-layer neural network. The activation functions of its first two layers
are still both ReLU functions, and the last output layer uses a Tanh activation function.

The encoder and categorical discriminator together constitute the upper adversarial net-
work, in which the encoder plays the role of generator. Any class variable vector yul is
regarded as a real sample labeled by “true”; and any latent class variable vector ŷul is
regarded as a generated sample labeled by “false”. Then yul and ŷul are input into the
categorical discriminator, which is a three-layer neural network. Its first two layers use the
leaky ReLU activation function, and its last layer uses the Sigmoid activation function. The
categorical discriminator learns differences between real samples and generated samples to
identify them. At the same time, the encoder learns from training also, to try to make the
categorical discriminator regard the generated samples as labeled “true” as possible. The
output of the categorical discriminator is a probability of the current sample (yul or ŷul)
being a real sample inferred by the categorical discriminator. The upper adversarial network
try to have the aggregated posterior distribution of ŷul to match the categorical distribution
as far as possible.

Similarly, the encoder and Gaussian distribution discriminator constitute the lower ad-
versarial network to train the encoder. Any continuous variable vector zul is regarded as
a real sample labeled by ”true”; and any latent style variable vector ẑul is regarded as a
generated sample labeled by ”false”. The network structure of Gaussian distribution dis-
criminator is the same as that of categorical discriminator. The lower adversarial network
imposes a Gaussian distribution on the style representation which ensures the latent variable
ẑul obeys Gaussian distribution as far as possible.

The training of the SSAAE model consists of three phases: a reconstruction phase,
a regularization phase and a semi-supervised classification phase. In the reconstruction
phase, the autoencoder is used to reconstruct the input sample xul, and we hope that the
output of the decoder can perfectly or approximately restore the original input. In the
regularization phase, two adversarial networks are used to impose prior distributions on two
latent variables ŷul and ẑul. Finally, in the semi-supervised classification phase, the encoder
becomes a classifier, and the latent class variable vector ŷl is a class score vector. Obviously,
we hope that the class score vector ŷl is as close as possible to the label vector of the sample
xl.

4 The SSAAE-Based Spectrum Sensing Algorithm

In this section, we introduce the SSAAE model into spectrum sensing, and propose an
SSAAE-based spectrum sensing algorithm. This algorithm is mainly divided into four mod-
ules: data processing, network training, threshold setting and online test. The workflow of
each module is as follows:
i.) Data Processing

In general, the input of the SSAAE model is a picture pixel matrix, and then the matrix
is expanded into a vector. In this papar our input is directly a vector, and the reconstruction
sample is also a vector. Similar to [2], we divide the received signals into real and imaginary
parts. So, our input vector is as follows:

x = {R(x1(1)), I(x1(1)), . . . ,R(x1(N)), I(x1(N)), . . . ,R(xM (N)), I(xM (N))}, (4.1)

where R(xm(n)) and I(xm(n)) denote the real part and the imaginary part of xm(n), re-
spectively. Therefore, the size of an input x of the SSAAE model is (2MN, 1).
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The training set includes two subsets, one subset Ωl of all the labeled samples and the
other subset Ωul of all the unlabeled samples, which can be expressed as:

Ωl = {(x1
l , y

1
l ), (x

2
l , y

2
l ), . . . , (x

Kl

l , yKl

l )},
Ωul = {x1

ul, x
2
ul, . . . , x

Kul

ul },
(4.2)

where Kl and Kul represent the number of labeled samples and unlabeled samples, respec-
tively; xk

l (k = 1, 2, . . . ,Kl) and xk
ul(k = 1, 2, . . . ,Kul) are inputs of the SSAAE model, as

described in (4.1). The ykl ∈ {[1, 0]T , [0, 1]T }(k = 1, 2, . . . ,Kl) are sample labels, where
ykl = [1, 0]T and ykl = [0, 1]T represent the H0 and H1 hypotheses, respectively.
ii.) Network Training

As described in Section 3, the training of the SSAAE model includes three phases, and
the training process of each phase is as follows.

1) Reconstruction phase: Train the encoder and the decoder. Put unlabeled sam-
ples {xki

ul}mi=1 into the encoder to obtain {ŷki

ul}mi=1 and {ẑki

ul}mi=1, then reconstructed sam-

ples {x̂ki

ul}mi=1 are obtained through the decoder, where m is the size of mini-batch and
ki(i = 1, . . . ,m) ∈ {1, . . . ,Kul} . The encoder and the decoder are trained using reconstruc-
tion loss function:

LR =
1

m

m∑
i=1

∥ xki

ul − x̂ki

ul ∥
2, (4.3)

where ∥ · ∥ is the Euclidean norm. Minimize LR to update the encoder and the decoder
network parameters θ and φ.

2) Regularization phase: Train the discriminators and the encoder. The encoder plays
the role of generator in this phase. First, the categorical discriminator and the Gaussian
distribution discriminator are trained. The real samples {yki

ul}mi=1 and the generated samples

{ŷki

ul}mi=1 are input into the categorical discriminator Dϕy
, where ϕy represents the categorical

discriminator network parameters. And the categorical discriminator is trained using the
following loss function:

LDy = − 1

m

m∑
i=1

[log(Dϕy
(yki

ul)) + log(1−Dϕy
(ŷki

ul))], (4.4)

where Dϕy
(yki

ul) and Dϕy
(ŷki

ul) represent the outputs of the real sample yki

ul and the generated

sample ŷki

ul in the discriminator Dϕy respectively. Minimize LDy to update ϕy.

Similarly, the real samples {zki

ul}mi=1 and the generated samples {ẑki

ul}mi=1 are input into
the Gaussian distribution discriminator Dϕz

, where ϕz represents the Gaussian distribution
discriminator network parameters. And the Gaussian distribution discriminator is trained
using the following loss function:

LDz = − 1

m

m∑
i=1

[log(Dϕz
(zki

ul)) + log(1−Dϕz
(ẑki

ul))]. (4.5)

where Dϕz
(zki

ul) and Dϕz
(ẑki

ul) represent the outputs of the real sample zki

ul and the generated

sample ẑki

ul in the discriminator Dϕz respectively. Minimize LDz to update ϕz.
Then we update the generator to confuse two discriminators. The generator’s loss func-

tion LG can be combined for two adversarial networks:

LG =
1

m

[ m∑
i=1

log(1−Dϕy
(ŷki

ul)) +

m∑
i=1

log(1−Dϕz
(ẑki

ul))
]
. (4.6)
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Minimize LG to update the encoder network parameters θ.
3) Semi-supervised classification phase: Train the encoder. For labeled samples Ωl, the

encoder acts as a classifier. At this phase, we only use the latent class variable vector ŷ. The
labeled samples {xki

l }mi=1 are sent to the classifier Cθ, and corresponding outputs {ŷki

l }mi=1

are class score vectors. We use the cross-entropy loss function to train the classifier network:

LC = − 1

m

m∑
i=1

[ŷki

l log(yki

l ) + (1− ŷki

l )log(1− yki

l )]. (4.7)

Minimize LC to update the encoder network parameters θ.
The above three phases are cyclically trained until the maximum number of iterations is

reached. Finally, an optimized classifier Cθ∗ is obtained, where θ∗ is the network parameters
of the optimized classifier. The class score vector ŷ of a sample x can be expressed as

ŷ = Cθ∗(x) =

[
CH0|θ∗(x)
CH1|θ∗(x)

]
, (4.8)

where Cθ∗(x) denotes the output of the sample x in the optimized classifier, CHi|θ∗(x)
represent the class score of Hi (i = 0, 1), and CH0|θ∗(x) + CH1|θ∗(x) = 1.
iii.) Threshold Setting

In general, CH1|θ∗(x) ⩽ 0.5 signifies the predicted result is H0, while CH1|θ∗(x) > 0.5
signifies the predicted result is H1. However, in order to control the false alarm probability
Pf and the detection probability Pd, we need to set a decision threshold γ, namely:

H0 : CH1|θ∗(x) ⩽ γ,
H1 : CH1|θ∗(x) > γ.

(4.9)

We put samples of H0 labeled into the classifier Cθ∗ to get the class score vectors, and then
use Monte Carlo method to calculate the threshold γ corresponding to a fixed false alarm
probability Pf .
iv.) Online Test

In the testing phase, we need only the classifier Cθ∗ . The sampled signals {xm(n)} are
converted into the input xtest according to the equation (4.1). Then we input xtest into the
classifier Cθ∗ to get the class score vector Cθ∗(xtest). And by comparing CH1|θ∗(xtest) with
the set threshold γ, we can get a final classification result.

5 Simulation Results

In our numerical experiments, we use the orthogonal frequency division multiplexing (OFDM)
signals modulated by the binary phase shift keying (BPSK) as the PU signals. The OFDM
signals are the dominant signals in communications because, they make use of the orthogo-
nality between subcarriers and can send a large amount of data even in a narrow bandwidth.
The key parameters are set as follows: the sampling frequency and the carrier frequency
are 300 MHz and 100 MHz, respectively; the propagation channel is a frequency selective
Rayleigh fading channel and the maximum carrier frequency offset is 250. The SNR is
defined as follows:

SNR =
E(∥ sm(n) ∥2)
E(∥ vm(n) ∥2)

. (5.1)

We assume that the variances of the signals and the noises are σ2
s and σ2

v respectively.
According to the formula (5.1), we have SNR = σ2

s/σ
2
v . In simulations, the number M of
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detection antennas of the SU is set to 4, and in each sensing period the SU samples 100
times (N = 100). Then the input size of the SSAAE model is 800 × 1.

In implementation, we use tensorflow to build and train the SSAAE model. The numbers
of labeled samples and unlabeled samples are Kl = 2× 103 and Kul = 4× 104, respectively.
In the labeled samples, half of them are “the PU is present” samples, and the other half are
“the PU is absent” samples, and the same is true for the unlabeled samples. The setting of
the network hyperparameters are shown in Table 5.1. In Table 5.1, lr1 refers to the learning
rate of the encoder and the decoder, lr2 refers to the learning rate of two discriminators, β
represents the exponential decay rate of first-order moment estimation, and the number of
epochs represents the maximum number of iterations. For testing the detection performance
of our proposed algorithm, we put 104 labeled samples into the well-trained SSAAE model,
one half belongs to “the PU is absent”, and the other half is of “the PU is present”. In
order to determine the threshold γ corresponding to any given false alarm probability Pf ,
we arrange all the output values CH1|θ∗(xi) (i = k1, . . . , k5×103) corresponding to “the PU is
absent” samples in descending order and write them as a vector v. Then we set the threshold
γ with the Pf as follows:

γ = v(⌈5× 103Pf⌉), (5.2)

where ⌈·⌉ represents the round up to the nearest integer, and v(i) denotes the i − th com-
ponent of v. Anyway, the above threshold γ is reasonable at least for the 104 test samples
because, by the formula (4.9), the false alarm rate of these samples under the given threshold
(5.2) is as follows:

Cardinality of the set {i | v(i) > γ}
5× 103

≤ ⌈5× 103Pf⌉
5× 103

≤ Pf . (5.3)

Table 5.1: Network Hyperparameter

Hyperparameter Value

Learning rate lr1=0.002; lr2=0.001;β=0.9
Batch size 100
Number of epochs 100
Optimizer Adam

According to the IEEE802.22 standard (the Pd of the SU should be greater than 0.9
and the Pf should not exceed 0.1 [14]), we choose Pf = 0.1 and Pf = 0.01 respectively,
and then compare the performance of the SSAAE-based method with the performances of
other methods (ED [4], MED [22], CAV [23], ANN-based method [17] and CM-CNN-based
method [9]). ED, MED and CAV are three classical spectrum sensing methods, and ANN-
based method and CM-CNN-based method are deep learning-based methods, which all have
been introduced in Section 1. For the CM-CNN-based method, due to the small number
of detection antennas in our experimental scenario, we adopt the definition method of the
covariance matrix in [22], in which the smoothing factor L is set to 7. Both deep learning-
based methods use 2 × 103 labeled samples for training, and their experimental results are
shown in Fig. 5.2 and Fig. 5.3. From Fig. 5.2 and Fig. 5.3, it can be seen that the detection
results obtained by the deep learning-based methods are better than the results obtained
by the classical detection methods. And among the given deep learning-based methods, the
SSAAE-based method is the best. For example, when Pf = 0.1 and SNR=−15dB, the Pd

of the SSAAE-based method, CM-CNN-based method, ANN-based method, ED, MED and
CAV are 0.832, 0.5696, 0.2634, 0.255 and 0.1528, respectively.
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Figure 5.2: Pd vs SNR curves of different al-
gorithms, M=4, N=100, Pf = 0.1.
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Figure 5.3: Pd vs SNR curves of different al-
gorithms, M=4, N=100, Pf = 0.01.
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Figure 5.4: ROC curves of different methods, M=4, N=100, SNR=−14dB.

In addition, receiver operating characteristics (ROC) curves are shown in Fig. 5.4 for
all the six methods at SNR=−14dB. It can be seen that our proposed method performs
significantly better than other methods at low Pf . When the Pf increases from 0 to 0.1,
the Pd of the SSAAE-based method increases rapidly from 0.214 to 0.9216, while the Pd of
other methods grow slowly.

In order to observe the effectiveness of the unlabeled samples, we train the SSAAE model
with zero unlabeled samples, whose experimental results are shown in Fig. 5.5. Obviously,
unlabeled samples play an important role in our method performance. For example, when
Pf = 0.1 and SNR=−15dB, the Pd of the SSAAE-based method can reach 0.832, while the
Pd of SSAAE-based method using only the labeled samples can only reach 0.638. By the
way, Fig. 5.5, combined with Fig. 5.2, shows that even if we do not use unlabeled samples,
our detection results are comparable to that of the CM-CNN-based method, which was the
best among all supervised methods.

In order to explore the influence of the number of antennas and sampled signals on the
performance of the SSAAE-based spectrum sensing method, we do numerical experiments
under different SNR (set Pf = 0.1) and the results are shown in Fig. 5.6. When the number
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Figure 5.5: Pd vs SNR curves of different input samples, M=4, N=100, Pf = 0.1.
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Figure 5.6: Pd vs SNR curves with different
numbers of M and N, Pf = 0.1.
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Figure 5.7: Detection probability curve under
different N, SNR=−18dB, M=4, Pf = 0.1.

of sampled signals N is fixed, it is clearly observed that M = 4 performs better than M = 2.
On the other hand, we can see that as the number of sampled signals N increases, the
Pd also increases, but it doesn’t go up all the time. As shown in Fig. 5.7, in the case of
SNR=−18dB, the Pd of the SSAAE-based method increases rapidly when N increases from
50 to 300, and then the Pd improves slowly until it reaches the upper limit at N = 400.
The larger the number of sampled signals, the longer the corresponding sensing time, which
means that the time for the SU to access target channel for transmission will decrease. So in
actual application, the size of N requires a certain trade-off. For example, when the Pd has
a minimum requirement, on the premise of meeting this requirement, N should be taken as
small as possible to reduce the sensing time.

6 Conclusion

In this paper, an SSAAE-based spectrum sensing algorithm is proposed to detect the ac-
tivity states of the PU, which is a semi-supervised classification algorithm. Different from
supervised spectrum sensing algorithms, the SSAAE-based algorithm requires only a small
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amount of labeled samples, which greatly reduces the difficulty of collecting training samples.
Moreover, it is a blind detection method, that is, it does not require any prior information
about the signals and the noises. At the end of this paper, OFDM signals are used to
do our simulation experiments under white Gaussian noises. The simulation results show
that the SSAAE-based method is significantly better than classical and supervised deep
learning-based spectrum sensing methods under low SNR.
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