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A matrix is nonnegative if all its entries are nonnegative. For a square nonnegative
matrix B, its spectral radius is the maximum modulus of its eigenvalues, denoted by ρ(B).
By the well known Perron-Frobenius theorem, ρ(B) is an eigenvalue of B, see [12].

For a connected graph G, the eigenvalues of Λ(G) are called the reverse distance eigen-
values of G. Note that the reverse distance matrix of a connected graph is symmetric and
nonnegative. The reverse distance eigenvalues of G are all real, and the spectral radius of
Λ(G) is the largest reverse distance eigenvalue of G, denoted by ρ(G), which we call the
reverse distance spectral radius of G. This parameter is found to be a structural descrip-
tor producing fair quantitative structure-property relationship models [10]. Bounds for the
reverse distance spectral radius were given in [16, 17]. Compared with the much studied
reverse Wiener index derived from the reverse distance matrix (see [15]), very little is known
about the reverse distance spectral radius of graphs. Here we study the extremal properties
of the reverse distance spectral radius.

Let G(n) be a class of connected graphs of order n. It is interesting to consider the
problem to determine

min{ρ(G) : G ∈ G(n)} and max{ρ(G) : G ∈ G(n)}

and characterize those graphs in G(n) that achieve the above minimum and maximum. In
this paper, we determine the unique trees that minimize and maximize the reverse dis-
tance spectral radius, respectively. We also determine the unique trees that for which the
complements minimize the reverse distance spectral radius, and the unique n-vertex trees
for which the complements achieve the i-th largest reverse distance spectral radius for all
i = 1, . . . , ⌊n−2

2 ⌋.

2 Preliminaries

Let Kn, Sn and Pn be the complete graph, the star and the path on n vertices, respectively.
Let Cn be the cycle on n ≥ 3 vertices.

As noted in [16], for a connected graph G on n ≥ 2 vertices, Λ(G) is irreducible if and
only if G is not complete. For completeness, we include a proof here.

Lemma 2.1. Let G be a connected graph with at least 2 vertices. Then Λ(G) is irreducible
if and only if G is not a complete graph.

Proof. If G is a complete graph, then Λ(G) = 0, and so it is reducible.
Suppose that Λ(G) is reducible. Then there is a nonempty V1 ⊂ V (G) such that d(G)−

dG(u, v) = rG(u, v) = 0 for any u ∈ V1 and any v ∈ V (G) \ V1. That is, d(G) = dG(u, v) for
any u ∈ V1 and any v ∈ V (G) \ V1. As G is connected, there is an edge join some vertex,
say u0, in V1 and some vertex, say v0, in V (G) \ V1. So d(G) = dG(u0, v0) = 1. That is, G
is a complete graph.

The adjacency matrix of a graph G, denoted by A(G), is the matrix (auv)u,v∈V (G), where
auv = 1 if u and v are adjacent and 0 otherwise. The largest eigenvalue of A(G) is denoted
by µ(G), which is known as the index or the spectral radius of G. It is well known that
µ(G) is less than or equal to the maximum degree of G.

We may restate Corollary 2.2 in [12, p. 38] as follows:

Lemma 2.2. Let B and C be n× n nonnegative matrices, where B is irreducible, B−C is
nonnegative and B ̸= C. Then ρ(B) > ρ(C).
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For an n × n nonnegative matrix M , it is known that µ(M) ≤ max{ri : i = 1, . . . , n}
with equality when M is irreducible if and only if r1 = · · · = rn, where ri is the i-th row
sum of M for i = 1, . . . , n, see [12].

Let G be a noncomplete connected graph with V (G) = {v1, . . . , vn}. A real column
vector x = (xv1 , . . . , xvn)

⊤ can be considered as a function defined on V (G) that maps
vertex vi to xvi , i.e., x(vi) = xvi for i = 1, . . . , n. Then

x⊤Λ(G)x =
∑

{u,v}⊆V (G)

2(d(G)− dG(u, v))xuxv.

As Λ(G) is a nonnegative irreducible matrix by Lemma 2.1, we have by the well known
Perron-Frobenius theorem that ρ(G) is simple and positive, and there is a unique positive
unit eigenvector corresponding to ρ(G), which we call the Λ-vector of G. If x is the Λ-vector
of G, then we have the Λ-eigenequation of G for any vertex u ∈ V (G),

ρ(G)xu =
∑

v∈V (G)\{u}

(d(G)− dG(u, v))xv.

If y ∈ Rn is a unit column vector and y contains at least one positive entry, then we have
by Rayleigh’s principle that

ρ(G) ≥ y⊤Λ(G)y,

where the equality holds if and only if y is the Λ-vector of G.

Lemma 2.3. Suppose that G is a connected noncomplete graph. Let u and v be two distinct
vertices of G, and σ be an automorphism of G satisfying σ(u) = v. Then for the Λ-Perron
vector x of G, xu = xv.

Proof. Obviously, ρ(G) = x⊤Λ(G)x since x is the Λ-Perron vector of G. Let P be the
permutation matrix corresponding to the automorphism σ of G, i.e., the (u, v)-entry of
P is 1 if and only if σ(u) = v for u, v ∈ V (G). Then Λ(G) = PΛ(G)P⊤. As x⊤Λ(G)x =
x⊤PΛ(G)P⊤x, we have ρ(G) = (P⊤x)⊤Λ(G)P⊤x. Note that P⊤x is also unite and positive.
So P⊤x is also the Λ-vector of G. Therefore P⊤x = x. Hence, if σ(u) = v, then xu = xv.

Let G be a graph. For a vertex u ∈ V (G), the set of the vertices adjacent to u in G
is denoted by NG(u), the degree of u in G is denoted by degG(u), i.e., degG(u) = |NG(u)|.
Let G − u be the subgraph of G obtained by deleting u and all edges incident to u. For
∅ ̸= S ⊂ V (G), G[S] denotes the subgraph of G induced by S. For a graph G, G denotes
the complement of G. If E1 ⊆ E(G), then G+E1 = (V (G), E(G)∪E1), and if E1 ⊆ E(G),
then G−E1 = (V (G), E(G)\E1). If E1 = {uv}, then we write G+uv or G−uv for G+E1

or G− E1.
A diametral path in a connected graph G is any shortest path between vertices u and v

such that dG(u, v) is equal to the diameter of G. A caterpillar is a tree in which the removal
of each vertex of degree one outside a diametral path (if any exists) yields a path.

Let Dn,a be a double star obtained by adding an edge between the centers of Sa+1 and
Sn−a−1, where 1 ≤ a ≤ ⌊n−2

2 ⌋.

Lemma 2.4. For integers n and a with n ≥ 4 and 1 ≤ a ≤
⌊
n−2
2

⌋
, the following statements

are true.

(i) ρ(Dn,a) is the largest root of fn,a(t) = 0, where

fn,a(t) = t4 − (n− 4)t3 − (6n− an+ a2 + 2a− 9)t2

− (9n− 10an+ 10a2 + 20a− 10)t− 4n+ 21an− 21a2 − 42a+ 4.
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(ii) If a ≥ 2, then ρ(Dn,a−1) > ρ(Dn,a).

Proof. Let u1u2u3u4 be a path of length 3 in Dn,a, where u2 is of degree a + 1. Let x be
the Λ-vector of Dn,a and let ρn,a = ρ(Dn,a). By Lemma 2.3, the entry of x corresponding
to each vertex of NDn,a

(u2)\{u3} (NDn,a
(u3)\{u2}, respectively) is the same. Then by the

Λ-eigenequations of Dn,a for u1, u2, u3 and u4, we have
ρn,a − (a− 1) −2 −1 0

−2a ρn,a −2 −(n− a− 2)
−a −2 ρn,a −2(n− a− 2)
0 −1 −2 ρn,a − (n− a− 3)



xu1

xu2

xu3

xu4

 = 0.

As x ̸= 0, the above system of homogeneous linear equations in the variables xu1
, xu2

, xu3
, xu4

has a nontrivial solution. So the determinant of its coefficient matrix is zero. By direct cal-
culation, the determinant is equal to fn,a(ρn,a). Thus ρn,a is the largest root of fn,a(t) = 0.
This proves Item (i).

For a ≥ 2,we have

fn,a−1(t)− fn,a(t) = −(n− 2a− 1)(t+ 7)(t+ 3).

So fn,a−1(ρn,a) = fn,a−1(ρn,a) − fn,a(ρn,a) < 0. Together with the fact that fn,a−1(t) ≥ 0
for t ≥ ρn,a−1, it implies that ρn,a−1 > ρn,a. This proves Item (ii).

For a tree T , if it is not a star, then T is connected, and if d(T ) ≥ 3, then d
(
T
)
≤ 3.

Lemma 2.5. For integers n and a with n ≥ 4 and 1 ≤ a ≤ ⌊n−2
2 ⌋, the following statements

are true.

(i) ρ
(
Dn,a

)
is the largest root of hn,a(t) = 0, where

hn,a(t) = t4 − (2n− 8)t3 − (9n− 22)t2 + (4an− 10n− 4a2 − 8a+ 20)t

+ 9an− 9a2 − 18a.

(ii) If a ≥ 2, then ρ
(
Dn,a−1

)
> ρ

(
Dn,a

)
.

(iii) ρ
(
Dn,⌊(n−2)/2⌋

)
> n.

Proof. Obviously, d
(
Dn,a

)
= 3. Let u1u2u3u4 be a path of length 3 in Dn,a, where u2 is of

degree a + 1. Let x be the Λ-vector of Dn,a and let µn,a = ρ
(
Dn,a

)
. By Lemma 2.3, the

entry of x corresponding to each vertex of NDn,a
(u2) \ {u3} (NDn,a

(u3) \ {u2}, respectively)
is the same. Then by the Λ-eigenequations of Dn,a for u1, u2, u3 and u4, we have

µn,a − 2(a− 1) −1 −2 −2(n− a− 2)
−a µn,a 0 −2(n− a− 2)
−2a 0 µn,a −(n− a− 2)
−2a −2 −1 µn,a − 2(n− a− 3)



xu1

xu2

xu3

xu4

 = 0.

As each entry of x is not zero, the above homogeneous linear system in the variables
xu1

, xu2
, xu3

, xu4
has a nontrivial solution. So the determinant of its coefficient matrix

is zero. By direct calculation, the determinant is equal to hn,a(µn,a). Thus µn,a is the
largest root of hn,a(t) = 0. This proves Item (i).
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For a ≥ 2, we have

hn,a−1(t)− hn,a(t) = −(n− 2a− 1)(4t+ 9).

So hn,a−1(µn,a) = hn,a−1(µn,a)− hn,a(µn,a) < 0. Together with the fact that hn,a−1(t) ≥ 0
for t ≥ µn,a−1, it implies that µn,a−1 > µn,a. This proves Item (ii).

As

hn,⌊(n−2)/2⌋(n) =

− (2n2−3n−18)(2n2+3n+2)
4 if n is even

− (20n4−201n2−272n−123)
20 if n is odd

< 0,

we have ρ
(
Dn,⌊(n−2)/2⌋

)
> n. This proves Item (iii).

3 Main results

If G is a connected graph on n vertices that is not complete, then, by Lemma 2.1, Λ(G) is
irreducible. We have by Lemma 2.2 that ρ(G) > ρ(Kn) = 0 as Λ(Kn) is an zero matrix.
That is, for a connected graph G of order n, ρ(G) ≥ 0 with equality if and only if G is the
complete graph.

Theorem 3.1. Let G be a connected graph of order n with diameter at least two. Then
ρ(G) ≥ µ(G) with equality if and only if the diameter of G is two.

Proof. Denote by d the diameter of G. Then d ≥ 2. By Lemma 2.1, Λ(G) is irreducible.
Note that the (u, v)-entry of Λ(G)−A(G) is

d− 2 if u ̸= v and uv ∈ E(G)

d− dG(u, v) if u ̸= v and uv /∈ E(G)

0 if u = v

for u, v ∈ V (G). So Λ(G) − A(G) is nonnegative and it is the zero matrix if and only if
d = 2. Thus, by Lemma 2.2, we have ρ(G) ≥ µ(G) with equality if and only if d = 2.

Let G be a connected graph of order n with diameter at least two. Then by [6, Corollary
2.9] and the remarks following [6, Corollary 2.6], we have ρ(G) = µ(G) ≥

√
n− 1 with

equality if and only if G is isomorphic to Sn or one of the Moore graphs of diameter two:
C5, the Petersen graph, the Hoffman-Singleton graph, and the putative 57-regular graphs
on 3250 nodes.

In what follows we determine the trees that minimize and maximize the reverse distance
spectral radius over all trees of fixed order.

Let G be a connected graph with u ∈ V (G). The eccentricity of u in G, denoted by
eG(u) is the maximum distance from u to any other vertex in G. A center of a tree is a
vertex with minimum eccentricity.

Lemma 3.2. Let T be a tree of order n with diameter d ≥ 4. Then there is a tree T ′ with
diameter d− 2 such that ρ(T ′) < ρ(T ).
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Proof. Let u be a center of T , and let NT (u) = {u1, . . . , us}, where s = degT (u). For
1 ≤ i ≤ s, let Ti be the component of T − u containing ui, and let Vi = V (Ti) \ {ui} and
Ni = NG(ui) \ {u}, where i = 1, . . . , s. As d ≥ 4, there are two nonempty sets among the
sets N1, . . . , Ns. It is evident that Ni ⊆ Vi for i = 1, . . . , s. Let

T ′ = T − ∪s
i=1{uiw : w ∈ Ni}+ {uw : w ∈ ∪s

i=1Ni}.

As u is a center of T , it lies on any diametral path of T , so u is a center of T ′ and T ′ is
a tree of order n with diameter d − 2. As we pass from T to T ′, the distance between a
vertex of Vi and a vertex of Vj with 1 ≤ i < j ≤ s is decreased by 2, the distance between
a vertex of Vi with 1 ≤ i ≤ s and u is decreased by 1, the distance between a vertex of Vi

with 1 ≤ i ≤ s and ui is increased by 1, the distance between a vertex of Vi with 1 ≤ i ≤ s
and uj with 1 ≤ j ≤ s and j ̸= i is decreased by 1, and the distances between other vertex
pairs remain unchanged. Correspondingly, we have

(Λ(T ))w,z − (Λ(T ′))w,z = 2− (dT (w, z)− dT ′(w, z))

=



0 if w ∈ Vi, z ∈ Vj , 1 ≤ i < j ≤ s,

1 if w ∈ Vi, z = u, 1 ≤ i ≤ s,

3 if w ∈ Vi, z = ui, 1 ≤ i ≤ s,

1 if w ∈ Vi, z = uj , 1 ≤ i, j ≤ s, j ̸= i,

2 otherwise.

Therefore ρ(T ) > ρ(T ′) by Lemma 2.2.

Theorem 3.3. Let T be a tree of order n. Then ρ(T ) ≥
√
n− 1 with equality if and only if

T ∼= Sn.

Proof. It is known that ρ(Sn) = µ(Sn) =
√
n− 1. The result is trivial if n ≤ 3. If n = 4,

then T ∈ {Sn, Pn}, and by calculation, ρ(Sn) =
√
3 ≈ 1.732 < 4.162 ≈ ρ(Pn). So the result

follows for n = 4.
Suppose that n ≥ 5. Let T be the tree on n vertices that minimizes the reverse distance

spectral radius. Let d be the diameter of T . Then by Lemma 3.2, d = 2, 3. Suppose that
d = 3. Then T ∼= Dn,a, where 1 ≤ a ≤

⌊
n−2
2

⌋
. By Lemma 2.4 (ii), T ∼= Dn,⌊(n−2)/2⌋. From

the expression for fn,⌊(n−2)/2⌋(t) given in Lemma 2.4 (i), we have

fn,⌊(n−2)/2⌋

(
n− 1

2

)
=

{
−(n+ 13)(n− 1) if n is odd

− 3
16 (n+ 13)(5n− 7) if n is even

< 0.

From this, together with the fact that fn,⌊(n−2)/2⌋(λ) ≥ 0 for λ ≥ ρ
(
Dn,⌊(n−2)/2⌋

)
, we have

ρ(T ) = ρ
(
Dn,⌊(n−2)/2⌋

)
> n−1

2 ≥ ρ(Sn), a contradiction. Therefore d = 2, i.e., T ∼= Sn.

Next, we propose a local transformation on a connected graph that increases the reverse
distance spectral radius.

Lemma 3.4. Let G be a graph with three induced subgraphs G1, G2 and G3 such that
|V (Gi)| ≥ 2 for i = 1, 2, 3, V (Gi)∩V (Gj) = {u} for 1 ≤ i < j ≤ 3 and ∪3

i=1V (Gi) = V (G),
see Fig. 1. Suppose that v is the unique neighbor of u in G3. Let G′ = G − {uw : w ∈
NG2(u) \ {v}}+ {vw : w ∈ NG2(u) \ {v}}. If d(G′) = d(G) + 1, then ρ(G) < ρ(G′).
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Fig. 1. The graphs G and G′ in Lemma 3.4.

Proof. Let Ai = V (Gi) \ {u} for i = 1, 2, 3. As we pass from G to G′, the distance between
a vertex of A2 and a vertex of A3 is decreased by 1, the distance between a vertex of A2 and
a vertex of A1 ∪ {u} is increased by 1, and the distances between other vertex pairs remain
unchanged. As d(G′) = d(G) + 1, we have

(Λ(G′))wz − (Λ(G))wz = 1− (dG′(w, z)− dG(w, z))

=


2 if w ∈ A2, z ∈ A3,

0 if w ∈ A2, z ∈ A1 ∪ {u},
1 otherwise.

Therefore ρ(G′) > ρ(G) by Lemma 2.2.

Corollary 3.5. Let T be a caterpillar of order n with diameter d ≥ 3. If T ≇ Pn, then
there is a tree T ′ with diameter d+ 1 such that ρ(T ′) > ρ(T ).

Proof. Let P = v0v1 . . . vd be a path of length d in T . Suppose that i with 1 ≤ i ≤ d− 1 is
the smallest index such that degT (vi) ≥ 3. Let v′i be a neighbor of vi outside the path P .
Construct a tree T ′ = T −{viw : w ∈ NT (vi) \ {v′i, vi−1}}+ {v′iw : w ∈ NT (vi) \ {v′i, vi−1}}.
Obviously, the diameter of T ′ is d+ 1. Then by Lemma 3.4, ρ(T ′) > ρ(T ).

Theorem 3.6. For integer n ≥ 5, let T be a tree of order n. Then ρ(T ) ≤ ρ(Pn) with
equality if and only if T ∼= Pn.

Proof. Let T be the tree on n vertices with maximum reverse distance spectral radius. Let
P = u0u1 . . . ud be a diametral path of T , where d ≥ 3. Assume that i with 1 ≤ i ≤ d − 1
is the maximum number such that degT (ui) ≥ 3. Let v be a neighbor of ui outside P .
Let T ′ = T − {uiw : w ∈ NT (ui) \ {ui−1, v}} + {vw : w ∈ NT (ui) \ {ui−1, v}}. Note that
d(T ′) = d(T ) + 1. By Lemma 3.4, ρ(T ′) > ρ(T ), a contradiction. Thus the degree of ui for
each 1 ≤ i ≤ d− 1 is 2. Therefore T ∼= Pn.

For integers n, i with n ≥ 3 and 1 ≤ i ≤ ⌊n
2 ⌋, let Pn,i be the tree obtained from a path

u1u2 . . . un−1 by adding a new edge incident to ui. Obviously, Pn,1 = Pn.
For integer n ≥ 5, let T be a tree that maximizes the reverse distance spectral radius

over all trees of order n that is not the path. By the same argument as in the proof of
Theorem 3.6, T is a caterpillar. Let d be the diameter of T . Since T ≇ Pn, we have
d ≤ n − 2. By Lemma 3.4 or Corollary 3.5, we have d = n − 2, implying that T ∼= Pn,i for
some i with 2 ≤ i ≤ ⌈n−1

2 ⌉. For n = 6, ρ(Pn,2) ≈ 10.0496, ρ(Pn,3) ≈ 9.7374; for n = 7,
ρ(Pn,2) ≈ 15.3187, ρ(Pn,3) ≈ 15.6637; for n = 8, ρ(Pn,2) ≈ 22.9053, ρ(Pn,3) ≈ 23.6338,
ρ(Pn,4) ≈ 23.8893; for n = 9, ρ(Pn,2) ≈ 31.4756, ρ(Pn,3) ≈ 32.3361, ρ(Pn,4) ≈ 32.7955. So,
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we conjecture that Pn,⌊n/2⌋ is the only tree with the second largest reverse distance spectral
radius over all trees on n ≥ 5 vertices.

Now we turn to consider the reverse distance spectral radius of the complement of a
non-star tree.

Lemma 3.7. Suppose that ℓ is a positive integer and T1 and T2 are vertex disjoint nontrivial
trees with ui ∈ V (Ti) for i = 1, 2. Denote by Fu1,u2;ℓ the tree obtained from T1 and T2 by
connecting u1 and u2 with a path of length ℓ, and Hu1,u2;ℓ the tree obtained from T1, T2 and
a path P of length ℓ with V (P )∩V (Ti) = ∅ for i = 1, 2 by identifying u1, u2 and a terminal
vertex of P , which is denoted by u1, and the other terminal vertex is denoted by u2, see Fig.
2. If d(Fu1,u2;ℓ) ≥ 4 and d(Hu1,u2;ℓ) ≥ 3, then ρ

(
Fu1,u2;ℓ

)
< ρ

(
Hu1,u2;ℓ

)
.

s s s sHHH

���

A
A

A

�
�
�
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· · ·T1

T2

u2

Hu1,u2;ℓ

lengthℓ︷ ︸︸ ︷s s s sHHH

���

���

HHHu1

· · ·
u2

T1 T2

Fu1,u2;ℓ

lengthℓ︷ ︸︸ ︷

Fig. 2. The trees F and H in Lemma 3.7.

Proof. Let F = Fu1,u2;ℓ and H = Hu1,u2;ℓ. Let x be the Λ-vector of F . Suppose that
xu1

≤ xu2
. Let T = F − {u2w : w ∈ NT2

(u2)}+ {u1w : w ∈ NT2
(u2)}. Then T ∼= H.

Suppose that d (T ) = 3. Then T is a double star, and by Lemma 2.5 (iii), |V (F )| < ρ
(
T
)
.

As d(F ) ≥ 4, we have d
(
F
)
= 2. Since ρ

(
F
)
is bounded above by the maximum row sum

of Λ(T ), we have ρ
(
F
)
≤ |V (F )| − 2 < ρ

(
T
)
, as desired.

Suppose that d(T ) ≥ 4. Obviously, d
(
F
)
= d

(
T
)
= 2. It is easy to see that

1

2

(
ρ
(
T
)
− ρ

(
F
))

≥ 1

2
x⊤ (

Λ
(
T
)
− Λ

(
F
))

x =
∑

w∈NT2
(u2)

xw(xu2
− xu1

) ≥ 0,

so ρ
(
T
)
≥ ρ

(
F
)
. If ρ

(
T
)
= ρ

(
F
)
, then ρ

(
T
)
= x⊤Λ

(
T
)
x, and thus x is also the Λ-Perron

vector of T . Then

0 = ρ
(
T
)
xu1

− ρ
(
F
)
xu1

= −
∑

w∈NT2
(u2)

xw < 0,

which is a contradiction. Therefore ρ
(
F
)
< ρ

(
T
)
= ρ

(
H
)
.

Let G be a nontrivial graph with a vertex u, and ℓ a positive integer. Let P be a path of
length ℓ such that G and P are vertex disjoint. Denote by Gu(ℓ) the graph obtained from G
by identifying u and a terminal vertex of P . In this case, we say that Gu(ℓ) is obtained from
G by adding a hanging path of length ℓ at u. For integers ℓ, s ≥ 1, let Gu(ℓ, s) = (Gu(ℓ))u(s).

Corollary 3.8. Let G be a nontrivial tree with u ∈ V (G), and ℓ, s be positive integers. If

d(Gu(ℓ, s)) ≥ 3, then ρ
(
Gu(ℓ+ s)

)
< ρ

(
Gu(ℓ, s)

)
.
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Proof. We use the notations of Lemma 3.7. Let T1 = G, u1 = u, T2 = Ps+1 with u2 being
a terminal vertex. Then Fu1,u2;ℓ

∼= Gu(ℓ + s), and Hu1,u2;ℓ
∼= Gu(ℓ, s). As d(Gu(ℓ, s)) ≥ 3,

we have d(Gu(ℓ+ s)) ≥ 4. The result follows from Lemma 3.7.

Theorem 3.9. For integer n ≥ 5, let T be a non-star tree on n vertices for which the
complement minimizes the reverse distance spectral radius. Then T is the path.

Proof. Let d be the diameter of T . Obviously, d ≥ 3. Suppose that d = 3. Then T ∼= Dn,a

for some a with 1 ≤ a ≤ ⌊n−2
2 ⌋. So, by Lemma 2.5 (ii), a = ⌊n−2

2 ⌋, i.e., T ∼= Dn,⌊(n−2)/2⌋.

By Lemma 2.5 (iii), ρ(T ) > n. Let T0 be any tree of order n with diameter at least 4. It is
evident that the maximum degree of T0 is n − 2. So ρ(T0) = µ(T0) ≤ n − 2 < n < ρ(T ), a
contradiction. It thus follows that d ≥ 4.

Let u be a vertex of maximum degree in T . Suppose that degT (u) ≥ 3. Suppose that
there is at least two vertices of degree at least 3 in T . Choose a vertex, say v of degree
at least 3, such that dT (u, v) is as large as possible. It follows that there are two hanging
paths P and Q at v. Let ℓ and s be the lengths of P and Q, respectively, where ℓ, s ≥ 1.
Then T ∼= Gv(ℓ, s), where G = T [V (T ) \ (V (P ∪Q) \ {v})]. Evidently, d(Gv(ℓ, s)) ≥ 4. By
Corollary 3.8, we have ρ

(
Gv(ℓ+ s)

)
< ρ

(
Gv(ℓ, s)

)
= ρ(T ), a contradiction. Thus there is

exactly one vertex of degree at least 3 in T . That is, T consists of degT (u) hanging paths at
u. Let P ′ and Q′ be two hanging paths at u, say of lengths ℓ′ and s′, respectively such that
ℓ′ is as long as possible. Then T ∼= Gu(ℓ

′, s′), where G = T [V (T ) \ (V (P ′ ∪Q′) \ {u})]. Note
that d(Gu(ℓ

′, s′)) ≥ 4. By Corollary 3.8, we have ρ
(
Gu(ℓ′ + s′)

)
< ρ

(
Gu(ℓ′, s′)

)
= ρ(T ), a

contradiction. Thus degT (u) = 2. Therefore T ∼= Pn.

Theorem 3.10. For n ≥ 4 and k = 1, . . . , ⌊n−2
2 ⌋, Dn,k is the unique tree on n vertices for

which the complement achieves the k-th largest reverse distance spectral radius.

Proof. Let d be the diameter of T . Obviously, d ≥ 3. If d = 3, then T ∼= Dn,k, where
1 ≤ k ≤

⌊
n−2
2

⌋
. Suppose that d ≥ 4. Then the diameter of T is two, so ρ

(
T
)
= µ

(
T
)
≤ n−2

as the maximum degree of T is n−2. So, by Lemma 2.5 (iii), ρ
(
T
)
< ρ

(
Dn,⌊(n−2)/2⌋

)
. Now

the result follows from Lemma 2.5 (ii).

4 Concluding remarks

In this article, we study the reverse distance spectral radius (i.e., the largest eigenvalue of
the reverse distance matrix) of a connected graph, which is a molecular descriptor with
applications [14]. Among others, we show that, over all n-vertex trees, the star is the unique
one with the smallest reverse distance spectral radius, while the path is the unique one with
the largest reverse distance spectral radius. So, the reverse distance spectral radius satisfies
the most important requirement being a branching index [9] used to measure the structural
branching of molecules [13].

As next step work, one may study the extremal problems over other classes of graphs
or other reverse distance eigenvalues, and also the relationship between the reverse dis-
tance eigenvalues and other distance based graph invariants such as reverse Wiener index,
proximity, and remoteness [17, 2].

There is a matrix called the complementary distance matrix in chemistry that is formed
similarly as the reversed Wiener matrix, see, e.g. [11]. For a connected graph G, the
complementary distance matrix C(G) is an n × n matrix (C(G))ij such that (C(G))ij =
d(G) + 1 − dG(i, j) if i ̸= j, and 0 otherwise. That is, C(G) = Λ(G) + Jn − In with
n = |V (G)|. Note that each non-diagonal entry of C(G) is positive. By similar argument as
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above, quite similar results (on the extremal graphs) follow for the largest eigenvalue of the
complementary distance matrix.
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[9] I. Gutman and J. Žerovnik, Corroborating a modification of the Wiener index, Croat.
Chem. Acta 75 (2002) 603–612.

[10] O. Ivanciuc, T. Ivanciuc and A.T. Balaban, Quantitative structure-property relation-
ship evaluation of structural descriptors derived from the distance and reverse Wiener
matrices, Internet Electron. J. Mol. Des. 1 (2002) 467–487.
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