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By using the fact that (f∗)∗ = f , see, e.g., [24], the bilinear saddle point problem (1.1)
can be equivalently reformulated as a primal minimization problem

inf P := min
x∈Rq
{P(x) := g(x) + f(Kx)}. (1.2)

Let K⊤ be the adjoint operator of K. The Fenchel dual of (1.2) is given by

supD := max
y∈Rp
{D(y) := −f∗(y)− g∗(−K⊤y)}. (1.3)

By introducing an auxiliary variable w ∈ Rp, the primal problem (1.2) can be rewritten as
a two-block separable optimization problem with linear equality constraint

min
x∈Rq, w∈Rp

{g(x) + f(w) s.t. Kx− w = 0}. (1.4)

Similarly, the dual problem (1.3) can be equivalently reformulated as

max
y∈Rp, u∈Rq

{−f∗(y)− g∗(u) s.t. K⊤y + u = 0}. (1.5)

It is apparent that the optimal values of (1.4) and (1.5) are equal to inf P and supD,
respectively.

Problem (1.1) and its reformulations (1.2)-(1.5) arise from numerous applications, in-
cluding signal and image processing, machine learning, statistics, mechanics and economics,
to name a few, see, e.g., [5, 4, 30, 16, 3] and the references therein. In many applications,
the component functions f and g admit simple structures in the sense that their proximal
point mappings (see definition in Section 1.1) can be evaluated efficiently. Examples of such
functions are abundant, see [2, Chapter 6]. We thus make the following assumption.

Assumption 1.1. Assume that the proximal point mappings of the component functions
f and g either have closed form formulas or can be evaluated efficiently.

In the rest of this section, we define some notation, review some of the most closely
related algorithms for solving (1.1)-(1.5), summarize our motivation and contributions and
present the organization of this paper.

1.1 Notation

Let h be any extended real-valued closed proper convex function defined on a finite dimen-
sional Euclidean space. The effective domain of h is denoted by dom(h) := {x : h(x) < +∞},
and its subdifferential at x is denoted by ∂h(x) := {ξ : h(y) ≥ h(x) + ⟨ξ, y − x⟩ for all y}.
Furthermore, the proximal point mapping of h is given by

Proxh(x) := arg min
y∈Rm

{
h(y) +

1

2
∥y − x∥2

}
, x ∈ Rm.

Since h is closed proper convex, Proxh is uniquely well defined everywhere. The relative
interior of a set C is denoted by ri(C).

Throughout this paper, we let ϕ =
√
5+1
2 be the golden ratio, which is a key parameter

of golden ratio type algorithms, N = {1, 2, 3, . . .} be the set of positive integers, and Sn+
(resp., Sn++) be the set of all n× n symmetric positive semidefinite (resp., positive definite)
matrices. The identity operator/matrix is denoted by I, whose domain/order is clear from
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the context, the composition of two operators is denoted by “◦”, and the operator norm of
K is denoted by L := ∥K∥ = sup{∥Kx∥ : ∥x∥ = 1}. Given H ∈ Sn+ and u, v, w ∈ Rn, we let

∆H(u, v, w) :=
1

2

(
∥u− v∥2H − ∥u− w∥2H

)
, (1.6)

where ∥ · ∥H :=
√
⟨·,H·⟩. When H = I, we omit the subscript H and simply write ∆(·) :=

∆I(·). Other notation will be specified later.

1.2 Related algorithms

For large scale applications, traditional optimization approaches such as interior point meth-
ods or second-order type methods are generally not suitable because a single iteration of
them is just too expensive to be implementable in practice. Moreover, nondifferentiability of
optimization problems naturally arises from many applications, especially when regulariza-
tion technique is adopted. Primal-dual full-splitting algorithms which do not rely on solving
any subproblems or linear system of equations iteratively are extremely popular, largely
because they are able to take full use of problem structures. The dominant computations at
each iteration of such algorithms are several matrix-vector multiplications and evaluations
of the proximal point mappings, which are basically the maximum computational burden
bearable for large scale problems.

Among others, alternating direction method of multipliers (ADMM, [14, 13, 20]) is a
popular primal-dual algorithm for solving (1.1)-(1.5) simultaneously. However, ADMM is
not full-splitting because, when applied to (1.4), the x-subproblem can be computationally
expensive due to a quadratic term ∥Kx − w∥2 appearing in the augmented Lagrangian
function. For this reason, ADMM was usually modified in practice, e.g., the variants of
proximal/linearized ADMM [10, 17, 12, 9]. One of the most simple primal-dual full-splitting
algorithms for solving (1.1)-(1.5) is probably the classical Arrow-Hurwicz method [28], which,
started at (x0, y0) ∈ Rq × Rp, iterates as{

xn+1 = Proxτg(xn − τK⊤yn),

yn+1 = Proxσf∗(yn + σKxn+1),

for n ≥ 0, where τ, σ > 0 are stepsize parameters. However, existing results indicate
that Arrow-Hurwicz method converges under restrictive conditions [11, 5, 23] and does not
converge in general, see [18] for a divergent example. By using an extrapolation technique,
Chambolle and Pock [5] proposed the following primal-dual algorithm (PDA)

xn+1 = Proxτg(xn − τK⊤yn),

x̄n+1 = xn+1 + δ(xn+1 − xn),
yn+1 = Proxσf∗(yn + σKx̄n+1),

(1.7)

where δ ∈ (0, 1] is an extrapolation/inertial constant. For the case of δ = 1, the convergence
of (1.7) was established in [5, 19] under the condition τσL2 < 1, see also [11, 26, 6, 27] for
further analysis of (1.7) and its variants.

Recently, by using a convex combination technique originally introduced by Malitsky
[21] for solving monotone variational inequality problems, Chang and Yang [7] presented a
golden ratio PDA (GRPDA), which iterates as

zn+1 = ψ−1
ψ xn + 1

ψ zn,

xn+1 = Proxτg(zn+1 − τK⊤yn),

yn+1 = Proxσf∗(yn + σKxn+1).

(1.8)
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Here ψ ∈ (1, ϕ] determines the weight of the convex combination. Compared with (1.7),
which converges when τσL2 < 1, an advantage of GRPDA is that it converges under the
relaxed condition τσL2 < ψ. Ergodic convergence rate results similar to those in [5] have
been established in [7].

1.3 Motivation and contributions

Let (x̄, ȳ) be a saddle point of (1.1), which exists under mild conditions (see Assumption
2.1). Then, there hold −K⊤ȳ ∈ ∂g(x̄) and Kx̄ ∈ ∂f∗(ȳ), implying that{

P (x) := g(x)− g(x̄) + ⟨K⊤ȳ, x− x̄⟩ ≥ 0, ∀x ∈ Rq,
D(y) := f∗(y)− f∗(ȳ)− ⟨Kx̄, y − ȳ⟩ ≥ 0, ∀y ∈ Rp.

The so-called “primal-dual gap function” frequently used in the literature, see, e.g., [5, 22, 6,
7] and references therein, is given by G(x, y) := P (x)+D(y) for (x, y) ∈ Rq×Rp. Apparently,
G(x, y) is nonnegative for any (x, y). On the other hand, it is easy to show that G(x̃, ỹ) = 0
for any saddle point (x̃, ỹ) of (1.1). Therefore, it seems reasonable to take G(·) as a merit
function to quantify the convergence rate of primal-dual algorithms. In particular, we have
shown in [7] that, measured by this primal-dual gap function, GRPDA converges in the
general convex case at the ergodic O(1/N) sublinear convergence rate, i.e., the sequence
{(xn, yn)} generated by (1.8) satisfies G(x̄N , ȳN ) ≤ C/N for all N ≥ 1, where (x̄N , ȳN ) is
a weighted average of {(xn, yn) : n = 1, . . . , N} and C > 0 is some constant. Moreover, by
modifying the algorithm properly, see [7] for details, this rate can be improved to O(1/N2)
when either g or f∗ is strongly convex.

Unfortunately, the above primal-dual gap function could vanish at nonstationary points,
which makes existing convergence rate results measured by this gap function less informa-
tive. In fact, it has been pointed out in [5] that this “vanishing at nonstationary point”
phenomenon can happen even to the following enhanced primal-dual gap function

GB1×B2
(x, y) := max

y′∈B2

{g(x) + ⟨y′,Kx⟩ − f∗(y′)} − min
x′∈B1

{g(x′) + ⟨y,Kx′⟩ − f∗(y)},

where B1 × B2 is any set containing any saddle point of (1.1). In fact, it is clear that
GB1×B2

(x, y) reduces to G(x, y) if B1 = {x̄} and B2 = {ȳ}. Furthermore, only when
B1 = Rq and B2 = Rp will GB1×B2

(x, y) reduce to P(x) − D(y), i.e., the true primal
and dual function value gap, which is a meaningful optimality measure in the sense that
GB1×B2(x, y) = P(x) − D(y) = 0 if and only if x and y are optimal solutions to (1.2) and
(1.3), respectively.

Aiming to fix this defectiveness and resorting to a framework recently proposed by Sabach
and Teboulle [25] for analyzing Lagrangian-based methods, we establish in this paper some
new convergence rate results of GRPDA based on the equivalent optimization problems
(1.2)-(1.5). Our contributions are summarized below.

• In the general convex case, we establish new ergodic O(1/N) convergence rate results
for GRPDA, i.e., the scheme given in (1.8), which are quantified by the conventional
measures of function value residual and constraint violation of (1.4).

• When either g or f∗ is strongly convex, an accelerated GRPDA is constructed by using
variable parameters. We show that the new algorithm converges at the faster O(1/N2)
ergodic rates, again, quantified by function value residual and constraint violation of
(1.4).
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• Under Lipschitz continuity assumption on f and g∗, we show that the proposed GRPDA
ensures that the function value residuals of the unconstrained optimization problems
(1.2) and (1.3), i.e., P(x)−inf P and supD−D(y), respectively, converge at the ergodic
convergence rate O(1/N) in the general convex case. Furthermore, it is shown that
this rate can be improved to O(1/N2) when either f or g∗ is strongly convex, leading
to a convergence rate guarantee of the true primal and dual function value gap, i.e.,
P(x)−D(y).

• We carry out numerical experiments on the least absolute deviation and the LASSO
problems, with comparisons to some state-of-the-art algorithms, to demonstrate the
favorable performance of the proposed algorithms.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we summarize some preliminary
results and make a technical assumption, which will be used in our analysis. Section 3 is
devoted to the accelerated GRPDA and its convergence analysis when g is strongly convex,
while the analysis for the general convex case is left to Section 4. Since the analysis for
the general convex case is similar and much simpler than the strongly convex case, we only
present the intermediate results and the main theorems, while their proofs will be omitted
to reduce redundancy. Numerical results are given in Section 5 and, finally, conclusions are
drawn in Section 6.

2 Preliminaries

In this section, we define more notation, make a technical assumption and summarize some
useful preliminary results, which will be useful in our analysis.

Let y ∈ Rp be the Lagrange multiplier and σ > 0 be a penalty parameter. The objective,
the Lagrangian and the augmented Lagrangian functions of (1.4) are denoted respectively
by

Φ(x,w) := g(x) + f(w), (2.1)

L(x,w, y) := Φ(x,w) + ⟨y,Kx− w⟩, (2.2)

Lσ(x,w, y) := L(x,w, y) +
σ

2
∥Kx− w∥2. (2.3)

Throughout this paper, we make the following blanket assumption.

Assumption 2.1. Assume that the set of solutions of (1.2) is nonempty and, in addition,
there exists x̃ ∈ ri(dom(g)) such that Kx̃ ∈ ri(dom(f)).

For simplicity, in the rest of this paper, we let X := Rq × Rp × Rp. Under Assumption
2.1, it follows from [24, Corollaries 28.2.2 and 28.3.1] that (x̄, w̄) ∈ Rq × Rp is a solution of
(1.4) if and only if there exists an optimal solution ȳ ∈ Rp to the dual problem (1.3) such
that (x̄, w̄, ȳ) is a saddle point of L(x,w, y), i.e.,

L(x̄, w̄, y) ≤ L(x̄, w̄, ȳ) ≤ L(x,w, ȳ) for all (x,w, y) ∈ X , (2.4)

or equivalently, −K⊤ȳ ∈ ∂g(x̄), ȳ ∈ ∂f(w̄) and Kx̄ = w̄. Furthermore, it holds that

inf P = Φ(x̄, w̄) = L(x̄, w̄, ȳ) = supD.

The following lemmas will be used in our analysis. Lemmas 2.1 can be proved via
elementary calculus, while Lemma 2.2 is well known as Fenchel’s inequality, see [24].
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Lemma 2.1. Let h : Rm → (−∞,+∞] be an extended real-valued closed proper and γ-
strongly convex function with modulus γ ≥ 0, i.e., it holds for all x, y ∈ Rm and u ∈ ∂h(x)
that

h(y) ≥ h(x) + ⟨u, y − x⟩+ γ

2
∥y − x∥2.

Then for any τ > 0 and x ∈ Rm, it holds that z = Proxτh(x) if and only if

h(y) ≥ h(z) + 1

τ
⟨x− z, y − z⟩+ γ

2
∥y − z∥2, ∀ y ∈ Rm.

Lemma 2.2 (Fenchel’s inequality). Let h : Rm → (−∞,∞] be an extended real-valued
closed proper convex function. Then, for any x, y ∈ Rm, it holds that h(x) + h∗(y) ≥ ⟨x, y⟩,
and equality holds if and only if x ∈ ∂h∗(y) or y ∈ ∂h(x).

3 An accelerated GRPDA and its analysis

In this section, we present an accelerated GRPDA and establish its convergence rate results
when either g or f∗ is strongly convex. Without loss of generality, we assume that g is
γ-strongly convex. We will present the algorithm and analysis for the primal problem (1.4).
When f∗ is strongly convex, one can apply the proposed method to the dual problem (1.5).

3.1 Accelerated GRPDA

Recall that ϕ represents the golden ratio and L = ∥K∥ is the operator norm of K. Below,
we introduce our accelerated GRPDA.

Algorithm 3.1 (Accelerated GRPDA).

Step 0. Let µ ∈ (0, 1), ψ ∈ (1, ϕ], σ0 = ρ = (1−µ)(ψ−1)γ
2L2 , τ0 = (1−µ)ψ

σ0L2 . Choose x0 ∈ Rq and
y0 ∈ Rp. Set z0 = x0, t0 = 1 and n = 0.

Step 1. Compute

zn+1 =
(
1− 1/ψ

)
xn + zn/ψ, (3.1a)

xn+1 = Proxτng(zn+1 − τnK⊤yn), (3.1b)

wn+1 = Proxf/σn

(
yn/σn +Kxn+1

)
, (3.1c)

yn+1 = yn + σn(Kxn+1 − wn+1). (3.1d)

Step 2. Update parameters by

tn+1 =
1 +

√
1 + 4t2n
2

, (3.2a)

σn+1 = ρtn+1, (3.2b)

τn+1 =


(1−µ)ψ

σn+1L2−(1−µ)γ , if σn+1L
2 > (1− µ)γ,

(1−µ)ψ
σn+1L2 , otherwise.

(3.2c)

Step 3. Set n← n+ 1 and go to Step 1.
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We give several remarks on Algorithm 3.1. First, the strong convexity parameter γ is
not only used in the analysis but also plays a role in the algorithm itself, which is different
from [31], where golden ratio type splitting methods were studied in the presence of an
extra smooth Lipschitzian term in (1.1). Second, by the definition of ρ and σn+1 = ρtn+1,
the condition σn+1L

2 > (1 − µ)γ is equivalent to tn+1 > 2/(ψ − 1), and thus we have

τn+1 = (1−µ)ψ
σn+1L2−(1−µ)γ for all n ≥ ⌈4/(ψ − 1) − 3⌉ since tn+1 > tn + 1/2 > (n + 3)/2.

Third, Algorithm 3.1 can indeed be viewed as a variant of (1.8) with variable stepsizes
τn and σn determined by (3.2). This can be shown by using the Moreau’s decomposition
y = Proxf/σ(y) +

1
σProxσf∗(σy), for any σ > 0 and y ∈ Rp. In fact, by combining wn+1 =

Proxf/σn

(
yn/σn +Kxn+1

)
and yn+1 = yn + σn(Kxn+1 −wn+1) given in (3.1c) and (3.1d),

respectively, we obtain yn+1 = Proxσnf∗(yn + σnKxn+1). Then, the statement above is
clear by comparing (3.1) with (1.8). We will show that due to the strong convexity of g
and the adaptive choice of parameters in (3.2), Algorithm 3.1 achieves accelerated O(1/N2)
convergence rate on some auxiliary sequences, which we define next. In fact, one can always

set τn+1 = (1−µ)ψ
σn+1L2 for n ≥ 0 in Algorithm 3.1 and the accelerated O(1/N2) convergence

results given in Section 3.2 will remain valid. Only slight modifications to the analysis are
required. An advantage of this choice of τn+1 is that the strong convexity parameter γ does
not need to be known in advance. The adaptive choice of algorithmic parameters in (3.2)
is common in accelerating first order methods. Among others, see, e.g., [25]. The value of
τn+1 given in (3.2c) is larger when σn+1L

2 > (1− µ)γ, which is helpful in practice.
Let w̃0 ∈ Rp be arbitrarily chosen and set (x̃0, ỹ0, ŷ0) = (x0, y0, y0). For convergence

analysis, we define auxiliary sequences {(x̃n, w̃n, ỹn, ŷn) : n ≥ 0} recursively as follows:x̃n+1

w̃n+1

ŷn+1

 = (1− t−1
n )

x̃n
w̃n
ŷn

+ t−1
n

xn+1

wn+1

yn+1

 , (3.3)

ỹn+1 = ỹn + µσn(Kxn+1 − wn+1). (3.4)

We emphasize that the auxiliary sequences {(x̃n, w̃n, ỹn, ŷn) : n ≥ 0} are used only in
the convergence rate analysis and need not to be computed in practice. Apparently, their
computations only involve some scalar-vector multiplications and vector additions, which
are negligible compared to the dominant computations of the algorithm. We next establish
a useful relation.

Lemma 3.2. For all n ≥ 1, there holds

yn = ỹn + (1− µ)ρt2n−1(Kx̃n − w̃n). (3.5)

Proof. It follows from (3.1d), (3.2b) and (3.4) that

yn+1 = yn + ỹn+1 − ỹn + (1− µ)ρtn(Kxn+1 − wn+1), ∀n ≥ 0. (3.6)

Recall that t2n − tn = t2n−1 for n ≥ 1. Multiplying both sides of (3.3) by t2n and noting the
linearity of K, it is easy to deduce

tn(Kxn+1 − wn+1) = t2n(Kx̃n+1 − w̃n+1)− t2n−1(Kx̃n − w̃n), ∀n ≥ 0.

This together with (3.6) implies for all n ≥ 1 that

yn+1 − ỹn+1 − (1− µ)ρt2n(Kx̃n+1 − w̃n+1) = yn − ỹn − (1− µ)ρt2n−1(Kx̃n − w̃n). (3.7)
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Since t0 = 1, we have from (3.3) that (x̃1, w̃1) = (x1, w1). Furthermore, by noting σ0 = ρ,
ỹ0 = y0 and ỹ1 = ỹ0 + µσ0(Kx1 − w1), it follows from (3.1d) that

y1 − ỹ1 − (1− µ)ρt20(Kx̃1 − w̃1) = (1− µ)σ0(Kx1 − w1)− (1− µ)ρ(Kx1 − w1) = 0,

which, together with (3.7), implies that (3.5) holds for all n ≥ 1.

Before carrying out convergence analysis for Algorithm 3.1, we summarize some useful
properties of the sequence {tn : n ≥ 0} defined in (3.2a).

Lemma 3.3. Let t0 = 1 and tn =
1+
√

1+4t2n−1

2 for n ≥ 1. Then

(i) tn is monotonically increasing, in particular, tn ≥ tn−1 +
1
2 ≥

n+2
2 ,

(ii) t2n − t2n−1 = tn,

(iii) t2n ≤ t2n−1 + 2tn−1,

(iv) tn+1 = tn + tn+1

tn+tn+1
,

(v) tn/tn−1 ∈ (1, 1+
√
5

2 ] and tn − tn−1 are monotonically decreasing, and

(vi) for any κ > 1, if n ≥ ⌊2κ⌋, then tn−1 > κ and tn/tn−1 <
1+

√
1+4κ2

2κ .

Proof. Items (i) to (iv) are easy to verify either by direct calculation or reduction, see also

[25]. We omit the details. For (v), direct calculation shows that tn/tn−1 ∈ (1, 1+
√
5

2 ],

tn/tn−1 = (1 − 1/tn)
−1/2 and tn − tn−1 =

(
(tn/tn−1)

−1 + 1
)−1

. Since tn is monotonically
increasing, tn/tn−1 is monotonically decreasing, and so is tn − tn−1. Finally, if n ≥ ⌊2κ⌋,
then tn−1 ≥ n+1

2 > κ. Since tn/tn−1 > 1, tn/tn−1 <
1+

√
1+4κ2

2κ follows from κ(tn/tn−1−1) <
tn−1(tn/tn−1 − 1) =

(
(tn/tn−1)

−1 + 1
)−1

.

3.2 Convergence results

In this section, we establish convergence rate results for Algorithm 3.1. First, we present
some useful lemmas on the sequence {(zn, xn, wn, yn) : n ≥ 0} generated by Algorithm 3.1
and the auxiliary sequence {(x̃n, w̃n, ỹn, ŷn) : n ≥ 0} defined in (3.3)-(3.4). In the following,
we let δn := τn/τn−1.

Lemma 3.4. For any (x,w, y) ∈ X and n ≥ 1, we have

Lσn−1
(xn, wn, yn−1)− L(x,w, y)

≤ 1

τn
⟨xn+1 − zn+1, x− xn+1⟩+

ψδn
τn
⟨xn − zn+1, xn+1 − xn⟩

− γ

2
∥x− xn+1∥2 −

γ

2
∥xn − xn+1∥2 + ⟨yn − y,Kx− w⟩

+ σn−1⟨Kxn − wn, wn −Kxn+1⟩+
σn−1

2
∥Kxn − wn∥2. (3.8)
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Proof. Let (x,w, y) ∈ X and n ≥ 1 be arbitrarily fixed. It follows from (3.1b), Lemma 2.1
and the γ-strong convexity of g that

g(xn+1)− g(x) ≤
1

τn
⟨xn+1 − zn+1 + τnK

⊤yn, x− xn+1⟩ −
γ

2
∥x− xn+1∥2

=
1

τn
⟨xn+1 − zn+1, x− xn+1⟩ −

γ

2
∥x− xn+1∥2

+ ⟨yn−1 + σn−1(Kxn − wn), Kx−Kxn+1⟩, (3.9)

f(wn)− f(w) ≤−
〈
yn−1 + σn−1(Kxn − wn), w − wn

〉
. (3.10)

Similar to (3.9), we have

g(xn)− g(xn+1) ≤
1

τn−1
⟨xn − zn + τn−1K

⊤yn−1, xn+1 − xn⟩ −
γ

2
∥xn − xn+1∥2

= ⟨ψδn
τn

(xn − zn+1) +K⊤yn−1, xn+1 − xn⟩ −
γ

2
∥xn − xn+1∥2, (3.11)

where the equality follows from δn = τn/τn−1 and xn − zn = ψ(xn − zn+1) (follows from
(3.1a)). By the definitions of Lσ(·) and L(·) in (2.3) and (2.2), respectively, direct calcula-
tions show that the addition of (3.9), (3.10) and (3.11) gives

Lσn−1
(xn, wn, yn−1)− L(x,w, y)

=g(xn) + f(wn) + ⟨yn−1,Kxn − wn⟩+
σn−1

2
∥Kxn − wn∥2 − (g(x) + f(w) + ⟨y,Kx− w⟩)

≤⟨yn−1,Kx− w⟩ −
γ

2
∥x− xn+1∥2−

γ

2
∥xn − xn+1∥2

+
1

τn
⟨xn+1 − zn+1, x− xn+1⟩+

ψδn
τn
⟨xn − zn+1, xn+1 − xn⟩ − ⟨y,Kx− w⟩

+ σn−1⟨Kxn − wn, (Kx−Kxn+1)− (w − wn)⟩+
σn−1

2
∥Kxn − wn∥2

=
1

τn
⟨xn+1 − zn+1, x− xn+1⟩+

ψδn
τn
⟨xn − zn+1, xn+1 − xn⟩

− γ

2
∥x− xn+1∥2−

γ

2
∥xn − xn+1∥2 + σn−1⟨Kxn − wn, wn −Kxn+1⟩+

σn−1

2
∥Kxn − wn∥2

+ ⟨yn − y,Kx− w⟩,

where the last equality used yn = yn−1 + σn−1(Kxn − wn). This completes the proof.

In the following, we let

n0 := min{n ∈ N : tn−1 > 2/(ψ − 1)}. (3.12)

Since tn is monotonically increasing, by (3.2c), ρ = (1−µ)(ψ−1)γ/(2L2) and the definition
of n0 in (3.12), we have τn−1 = (1− µ)ψ/

(
σn−1L

2 − (1− µ)γ
)
for all n ≥ n0.

Lemma 3.5. For any (x,w, y) ∈ X and n ≥ n0, we have

Lσn−1(xn, wn, y)− L(x,w, y) ≤
1

τn
∆Pn(x, zn+1, zn+2) +

1

µσn−1
∆(y, ỹn−1, ỹn)

+ ⟨yn − y,Kx− w⟩ −
γ

2
∥x− zn+2∥2 − (1− µ)ρt2n−2⟨Kx̃n−1 − w̃n−1,Kxn − wn⟩,

(3.13)
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where the notation ∆Pn
(·) is defined in (1.6) with

Pn =
ψ

ψ − 1
(1 +

γτn
ψ

)I ≻ 0. (3.14)

Proof. Let (x,w, y) ∈ X and n ≥ n0 be arbitrarily fixed, where n0 is defined in (3.12). First,
it follows from the Cauchy-Schwartz inequality that

⟨Kxn − wn, wn −Kxn+1⟩ =− ∥Kxn − wn∥2 + ⟨Kxn − wn,Kxn −Kxn+1⟩

≤ − ∥Kxn − wn∥2 +
1

2(1− µ)
∥xn+1 − xn∥2K⊤K

+
1− µ
2
∥Kxn − wn∥2

=
1

2(1− µ)
∥xn+1 − xn∥2K⊤K −

1 + µ

2
∥Kxn − wn∥2.

Plugging the above inequality into (3.8) and using the three-points identity

⟨u− v, u− w⟩ = 1

2
∥u− v∥2 + 1

2
∥u− w∥2 − 1

2
∥v − w∥2,

which holds for any vectors u, v and w of the same lengths, we obtain

Lσn−1(xn, wn, yn−1)− L(x,w, y)

≤ 1

2τn

(
∥zn+1 − x∥2 − ∥xn+1 − zn+1∥2 − ∥xn+1 − x∥2

)
+
ψδn
2τn

(
∥zn+1 − xn+1∥2 − ∥zn+1 − xn∥2 − ∥xn+1 − xn∥2

)
+ ⟨yn − y,Kx− w⟩

+
σn−1

2(1− µ)
∥xn+1 − xn∥2K⊤K −

µσn−1

2
∥Kxn − wn∥2 −

γ

2
∥x− xn+1∥2−

γ

2
∥xn − xn+1∥2

≤ 1

2τn

(
∥zn+1 − x∥2 − ∥xn+1 − zn+1∥2

)
− 1 + γτn

2τn
∥xn+1 − x∥2

+
ψδn
2τn

(
∥zn+1 − xn+1∥2 − ∥zn+1 − xn∥2

)
− µσn−1

2
∥Kxn − wn∥2 + ⟨yn − y,Kx− w⟩,

(3.15)

where the second inequality follows from

n ≥ n0 =⇒ τn−1 =
(1− µ)ψ

σn−1L2 − (1− µ)γ
=⇒

(ψδn
τn

+ γ
)
I − σn−1

1− µ
K⊤K ⪰ 0.

From (3.1a), we have xn+1 = ψ
ψ−1zn+2− 1

ψ−1zn+1 and zn+2− zn+1 = ψ−1
ψ (xn+1− zn+1). It

then follows from ∥αu+(1−α)v∥2 = α∥u∥2 +(1−α)∥v∥2−α(1−α)∥u− v∥2 for any scalar
α ∈ R and vectors u and v of the same lengths that

∥xn+1 − x∥2 =
ψ

ψ − 1
∥zn+2 − x∥2 −

1

ψ − 1
∥zn+1 − x∥2 +

ψ

(ψ − 1)2
∥zn+2 − zn+1∥2

=
ψ

ψ − 1
∥zn+2 − x∥2 −

1

ψ − 1
∥zn+1 − x∥2 +

1

ψ
∥xn+1 − zn+1∥2. (3.16)
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By plugging (3.16) into (3.15) and omitting the non-negative term ∥zn+1 − xn∥2, we obtain

Lσn−1(xn, wn, yn−1)− L(x,w, y)

≤ 1

2τn

ψ

ψ − 1

(
(1 + γτn/ψ)∥zn+1 − x∥2 − (1 + γτn)∥zn+2 − x∥2

)
+ ⟨yn − y,Kx− w⟩

− 1

2τn

(
(1 + γτn)/ψ − ψδn + 1

)
∥zn+1 − xn+1∥2 −

µσn−1

2
∥Kxn − wn∥2

≤ 1

τn
∆Pn

(x, zn+1, zn+2)−
µσn−1

2
∥Kxn − wn∥2 −

γ

2
∥x− zn+2∥2 + ⟨yn − y,Kx− w⟩,

(3.17)

where the second inequality follows from 1+ γτn = (1+ γτn/ψ)
(
1+ γτn(ψ− 1)/(ψ+ γτn)

)
,

the definition of Pn ≻ 0 in (3.14), (1+ γτn)/ψ−ψδn+1 > 1/ψ−ψ+1 ≥ 0 since for n ≥ n0
we have from (3.2c) that δn = τn/τn−1 =

(
σn−1L

2 − (1− µ)γ
)
/
(
σnL

2 − (1− µ)γ
)
< 1 and

ψ ∈ (1, ϕ], and the definition of the notation ∆Pn(·) in (1.6).

From (3.4) and the three-points identity ⟨u−v, u−w⟩ = 1
2∥u−v∥

2+ 1
2∥u−w∥

2− 1
2∥v−w∥

2

again, we obtain

⟨y − ỹn−1,Kxn − wn⟩ =
1

µσn−1
⟨y − ỹn−1, ỹn − ỹn−1⟩

=
1

µσn−1
∆(y, ỹn−1, ỹn) +

1

2µσn−1
∥ỹn − ỹn−1∥2

=
1

µσn−1
∆(y, ỹn−1, ỹn) +

µσn−1

2
∥Kxn − wn∥2. (3.18)

Here ∆(·) = ∆I(·). Considering (3.5), we deduce from (3.18) that

⟨y − yn−1,Kxn − wn⟩ =⟨y − ỹn−1,Kxn − wn⟩ − (1− µ)ρt2n−2⟨Kx̃n−1 − w̃n−1,Kxn − wn⟩

=
1

µσn−1
∆(y, ỹn−1, ỹn) +

µσn−1

2
∥Kxn − wn∥2

− (1− µ)ρt2n−2⟨Kx̃n−1 − w̃n−1,Kxn − wn⟩. (3.19)

By the definition of Lσ(·) in (2.3), we have

Lσn−1(xn, wn, yn−1) + ⟨y − yn−1,Kxn − wn⟩ = Lσn−1(xn, wn, y).

Then, the proof of (3.13) is completed by adding (3.19) to (3.17).

Lemma 3.6. For any (x,w, y) ∈ X and n ≥ n0, we have

t2n−1S
n
(1−µ)ρt2n−1

− t2n−2S
n−1
(1−µ)ρt2n−2

≤ tn−1

τn
∆Pn(x, zn+1, zn+2) +

1

µρ
∆(y, ỹn−1, ỹn)

− tn−1γ

2
∥x− zn+2∥2, (3.20)

where Pn is defined as in (3.14) and

Snβ := Snβ (x,w, y) = Lβ(x̃n, w̃n, y)− L(x,w, ŷn). (3.21)
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Proof. Let (x,w, y) ∈ X and n ≥ n0 be arbitrarily fixed and recall that Φ(·, ·) is defined in
(2.1). From the linearity of K and the convexity of Φ(·, ·), we derive from (3.3) that

⟨y,Kx̃n − w̃n⟩ = (1− t−1
n−1)⟨y,Kx̃n−1 − w̃n−1⟩+ t−1

n−1⟨y,Kxn − wn⟩, (3.22a)

Φ(x̃n, w̃n) ≤ (1− t−1
n−1)Φ(x̃n−1, w̃n−1) + t−1

n−1Φ(xn, wn). (3.22b)

Multiplying both sides of the above relations by t2n−1 and recalling that t2n−1− tn−1 = t2n−2,
we obtain

t2n−1⟨y,Kx̃n − w̃n⟩ − t2n−2⟨y,Kx̃n−1 − w̃n−1⟩ = tn−1⟨y,Kxn − wn⟩,
t2n−1

(
Φ(x̃n, w̃n)− Φ(x,w)

)
− t2n−2

(
Φ(x̃n−1, w̃n−1)− Φ(x,w)

)
≤ tn−1

(
Φ(xn, wn)− Φ(x,w)

)
.

Adding the above two relations and using the definition of L(·) in (2.2), we arrive at

t2n−1

(
L(x̃n, w̃n, y)− L(x,w, y)

)
− t2n−2

(
L(x̃n−1, w̃n−1, y)− L(x,w, y)

)
≤ tn−1

(
L(xn, wn, y)− L(x,w, y)

)
. (3.23)

Using (3.3) again to obtain

∥Kx̃n − w̃n∥2 =(1− t−1
n−1)

2∥Kx̃n−1 − w̃n−1∥2 + t−2
n−1∥Kxn − wn∥2

+ 2t−1
n−1(1− t

−1
n−1)⟨Kx̃n−1 − w̃n−1,Kxn − wn⟩. (3.24)

Multiplying both sides of the above equality by ρt4n−1/2 and recalling t2n−1 − tn−1 = t2n−2

yield

ρt4n−1/2∥Kx̃n−w̃n∥2 − ρt4n−2/2∥Kx̃n−1 − w̃n−1∥2

=ρt2n−1/2∥Kxn − wn∥2 + ρtn−1t
2
n−2⟨Kx̃n−1 − w̃n−1,Kxn − wn⟩. (3.25)

Therefore, by adding (3.23) to (3.25), using the definition of Snβ in (3.21) and

t2n−1⟨ŷn − y,Kx− w⟩ − t2n−2⟨ŷn−1 − y,Kx− w⟩ = tn−1⟨yn − y,Kx− w⟩, (3.26)

we deduce that

t2n−1S
n
ρt2n−1

− t2n−2S
n−1
ρt2n−2

≤tn−1(Lσn−1(xn, wn, y)− L(x,w, y))− tn−1⟨yn − y,Kx− w⟩

+ ρtn−1t
2
n−2⟨Kx̃n−1 − w̃n−1,Kxn − wn⟩.

Finally, multiplying both sides of the above inequality by (1 − µ) and adding to (3.13)
multiplied by tn−1 yield

(1− µ)
(
t2n−1S

n
ρt2n−1

− t2n−2S
n−1
ρt2n−2

)
≤tn−1(Lσn−1(xn, wn, y)− L(x,w, y))− (1− µ)tn−1⟨yn − y,Kx− w⟩
+ (1− µ)ρtn−1t

2
n−2⟨Kx̃n−1 − w̃n−1,Kxn − wn⟩ − µtn−1(Lσn−1

(xn, wn, y)− L(x,w, y))

≤ tn−1

τn
∆Pn

(x, zn+1, zn+2) +
tn−1

µσn−1
∆(y, ỹn−1, ỹn)−

tn−1γ

2
∥x− zn+2∥2

− µtn−1

(
Lσn−1

(xn, wn, y)− L(x,w, y)− ⟨yn − y,Kx− w⟩
)
. (3.27)
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Note that

tn−1

(
Lσn−1

(xn, wn, y)− L(x,w, y)− ⟨yn − y,Kx− w⟩
)

≥tn−1

(
L(xn, wn, y)− L(x,w, y)− ⟨yn − y,Kx− w⟩

)
≥t2n−1

(
L(x̃n, w̃n, y)− L(x,w, ŷn)

)
− t2n−2

(
L(x̃n−1, w̃n−1, y)− L(x,w, ŷn−1)

)
,

where the last inequality follows from (3.23) and (3.26). Combining the above inequality
with (3.27) and considering σn−1 = ρtn−1 and the definition of Snβ in (3.21), we obtain
(3.20). Note that compared to (3.27), the subindex of Sn in (3.20) has been multiplied by
(1− µ). This completes the proof.

Now, we are ready to establish the main convergence result of the accelerated GRPDA.

Theorem 3.7. Let (x̄, w̄, ȳ) be a saddle point of L(·) satisfying (2.4) and c > 0 be a constant
such that c ≥ 2∥ȳ∥. Then, there exist constants C1, C2 > 0 such that for any N ≥ n0 there
hold

|Φ(x̃N , w̃N )− Φ(x̄, w̄)| ≤ C1

(N + 1)2
, ∥Kx̃N − w̃N∥ ≤

2C1

c(N + 1)2

and ∥xN+1 − x̄∥ ≤
C2

N + 2
.

Proof. Let n ≥ n0. Then, we have τi =
(1−µ)ψ

σiL2−(1−µ)γ for i = n, n+ 1. Define

ln :=
1

2τn

ψ + γτn
ψ − 1

≥ 0 and hn :=
ψ + ψγτn
ψ + γτn+1

τn+1

τn
=
ρL2tn + (1− µ)(ψ − 1)γ

ρL2tn+1
. (3.28)

Then, it is easy to verify from the notation ∆Pn
(·) defined in (1.6) and Pn defined in (3.14)

that

1

τn
∆Pn

(x̄, zn+1, zn+2)−
γ

2
∥x̄− zn+2∥2 = ln∥x̄− zn+1∥2 − ln+1hn∥x̄− zn+2∥2. (3.29)

Let π(n) = tn(tn+1−tn−1)
tn−1

for all n ≥ 1. It follows from (v) of Lemma 3.3 that π(n) is

nonincreasing. Thus, π(n) ≤ π(1) = t1(t2 − 1) ≈ 1.9312 < 2, and by further considering the
definition of ρ, we deduce

ρL2

1− µ
tn(tn+1 − tn−1)

(ψ − 1)tn−1
< γ. (3.30)

Then, it is elementary to show from (3.30) and the definition of hn in (3.28) that hn ≥
tn/tn−1. As a result, it follows directly from (3.20) and (3.29) that

t2n−1S
n
(1−µ)ρt2n−1

− t2n−2S
n−1
(1−µ)ρt2n−2

≤tn−1ln∥x̄− zn+1∥2 − tnln+1∥x̄− zn+2∥2 +
1

2µρ

(
∥y − ỹn−1∥2 − ∥y − ỹn∥2

)
. (3.31)

By the monotonicity of {tn} and the definition of n0 in (3.12), we can verify via computer
that n0 ≥ 5. Summing (3.31) for all n = n0, . . . , N and dropping some negative terms, we
obtain

t2N−1S
N
(1−µ)ρt2N−1

− t2n0−2S
n0−1
(1−µ)ρt2n0−2

≤ tn0−1ln0
∥x̄− zn0+1∥2 − tN lN+1∥x̄− zN+2∥2 +

1

2µρ
∥y − ỹn0−1∥2.

(3.32)
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Set (x,w) = (x̄, w̄) in Sn
(1−µ)ρt2n−1

defined as in (3.21). Then, by noting Kx̄ = w̄ we obtain

SN(1−µ)ρt2N−1
= SN(1−µ)ρt2N−1

(x̄, w̄, y) = L(1−µ)ρt2N−1
(x̃N , w̃N , y)− L(x̄, w̄, ŷN )

≥ Φ(x̃N , w̃N ) + ⟨y,Kx̃N − w̃N ⟩ − Φ(x̄, w̄).

Recall that Φ(·, ·) is defined in (2.1). Therefore, (3.32) implies

t2N−1

(
Φ(x̃N , w̃N ) + ⟨y,Kx̃N − w̃N ⟩ − Φ(x̄, w̄)

)
≤tn0−1ln0

∥x̄− zn0+1∥2 − tN lN+1∥x̄− zN+2∥2 +
1

2µρ
∥y − ỹn0−1∥2 + t2n0−2S

n0−1
(1−µ)ρt2n0−2

(3.33)

≤tn0−1ln0
∥x̄− zn0+1∥2 +

1

2µρ
∥y − ỹn0−1∥2 + t2n0−2S

n0−1
(1−µ)ρt2n0−2

. (3.34)

Note that Sn0−1
(1−µ)ρt2n0−2

= Sn0−1
(1−µ)ρt2n0−2

(x̄, w̄, y) also depends on y and is given by

Sn0−1
(1−µ)ρt2n0−2

= L(1−µ)ρt2n0−2
(x̃n0−1, w̃n0−1, y)− L(x̄, w̄, ŷn) = ⟨y,Kx̃n0−1 − w̃n0−1⟩+ C,

with C := Φ(x̃n0−1, w̃n0−1) +
(1−µ)ρt2n0−2

2 ∥Kx̃n0−1 − w̃n0−1∥2 − Φ(x̄, w̄) is a constant. By
taking the maximum of both sides of (3.34) over ∥y∥ ≤ c and noting that t2N−1 > (N+1)2/4
(see (i) of Lemma 3.3), we obtain

Φ(x̃N , w̃N )− Φ(x̄, w̄) + c∥Kx̃N − w̃N∥ ≤ C1/(N + 1)2, (3.35)

where C1 := 4C ′ with C ′ > 0 given by

C ′ := tn0−1ln0∥x̄− zn0+1∥2 +
1

2µρ
(c+ ∥ỹn0−1∥)2 + t2n0−2

(
c∥Kx̃n0−1 − w̃n0−1∥+ |C|

)
.

(3.36)

Then we obviously have Φ(x̃N , w̃N )− Φ(x̄, w̄) ≤ C1/(N + 1)2. Furthermore, since (x̄, w̄, ȳ)
is a saddle point of L(·) and ∥ȳ∥ ≤ c/2, we have

Φ(x̄, w̄)− Φ(x̃N , w̃N ) ≤ ⟨ȳ, Kx̃N − w̃N ⟩ ≤
c

2
∥Kx̃N − w̃N∥, (3.37)

which together with (3.35) implies

c∥Kx̃N − w̃N∥ ≤ Φ(x̄, w̄)− Φ(x̃N , w̃N ) +
C1

(N + 1)2
≤ c

2
∥Kx̃N − w̃N∥+

C1

(N + 1)2
.

As a result, we obtain ∥Kx̃N − w̃N∥ ≤ 2C1

c(N+1)2 . It then follows from (3.37) that Φ(x̄, w̄)−
Φ(x̃N , w̃N ) ≤ C1/(N +1)2, and thus |Φ(x̃N , w̃N )−Φ(x̄, w̄)| ≤ C1/(N +1)2. Finally, setting
y = ȳ in (3.33) and using the first inequality in (3.37) to obtain tN lN+1∥x̄ − zN+2∥2 ≤ C ′,
where C ′ is given by (3.36). Furthermore, it is elementary to verify that

2tN lN+1 =
tN
τN+1

ψ + γτN+1

ψ − 1
≥ tN
τN+1

ψ

ψ − 1
≥ C ′′tN tN+1 ≥

C ′′(N + 2)2

4
,

where C ′′ :=
ρL2tn0+1−(1−µ)γ
(1−µ)(ψ−1)tn0+1

> 0. Then, we have ∥zN+1 − x̄∥ ≤ C2/(N + 2) with C2 :=√
8C ′/C ′′, and therefore, by noting (3.1a), ∥xN+1 − x̄∥ ≤ C2/(N + 2). This completes the

proof.
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We next show that the function value residuals for the unconstrained optimization prob-
lems (1.2) and (1.3) also converge at the order O(1/n2) under additional assumptions that
f and g∗ are Lipschitz continuous. Similar results have been achieved in [32].

Theorem 3.8. Let {(xn, wn, yn, zn)} be generated by Algorithm 3.1, {(x̃n, w̃n, ỹn, ŷn)} be
given by (3.3) and (3.4). Assume that f is Mf -Lipschitz continuous, i.e., |f(u) − f(v)| ≤
Mf∥u − v∥ for all u, v ∈ dom(f). Then, there exists C3 > 0 such that P(x̃n) − inf P ≤
C3/(n + 1)2 for all n ≥ n0. If in addition g∗ is Mg∗-Lipschitz continuous and dom(g∗)
is open, then there exists C4 > 0 such that supD − D(ŷn) ≤ C4/(n + 1)2, and hence
P(x̃n)−D(ŷn) ≤ (C3 + C4)/(n+ 1)2, for all n ≥ n0.

Proof. For any (x,w, y) ∈ X , we define An(x,w, y) := L(1−µ)ρt2n−1
(x̃n, w̃n, y) − L(x,w, ŷn)

and

an(x,w, y) := t2n−1An(x,w, y) + tnln+1∥x− zn+2∥2 +
1

2µρ
∥y − ỹn∥2. (3.38)

Then, the key result (3.31) can be rewritten as an(x,w, y) ≤ an−1(x,w, y), which holds for
any n ≥ n0. As a result, we have

t2n−1(L(x̃n, w̃n, y)− L(x,w, ŷn)) ≤ t2n−1An(x,w, y) ≤ an(x,w, y) ≤ . . . ≤ an0
(x,w, y).(3.39)

Here the first inequality holds because Lσ(·) ≥ L(·), see (2.2) and (2.3). On the other hand,
the Mf -Lipschitz continuity of f implies that

f(Kx̃n) ≤ f(w̃n) +Mf∥Kx̃n − w̃n∥ = f(w̃n) + ⟨y̆n,Kx̃n − w̃n⟩,

where y̆n := Mf (Kx̃n − w̃n)/∥Kx̃n − w̃n∥ if Kx̃n ̸= w̃n and y̆n := 0 otherwise. Then, we
have

P(x̃n)− inf P ≤g(x̃n) + f(w̃n) + ⟨y̆n,Kx̃n − w̃n⟩ − Φ(x̄, w̄)

=L(x̃n, w̃n, y̆n)− L(x̄, w̄, ŷn) ≤ an0
(x̄, w̄, y̆n)/t

2
n−1,

where the second inequality follows from (3.39). Since ∥y̆n∥ ≤Mf , it is clear that

An0(x̄, w̄, y̆n) = L(1−µ)ρt2n0−1
(x̃n0 , w̃n0 , y̆n)− L(x̄, w̄, ŷn0)

≤ C ′ := |Φ(x̃n0
, w̃n0

)− Φ(x̄, w̄)|+Mf∥Kx̃n0
− w̃n0

∥+
(1− µ)ρt2n0−1

2
∥Kx̃n0

− w̃n0
∥2.

It then follows from the definition of an(x̄, w̄, y̆n) in (3.38) that

an0
(x̄, w̄, y̆n) = t2n0−1An0

(x̄, w̄, y̆n) + tn0
ln0+1∥x̄− zn0+2∥2 +

1

2µρ
∥y̆n − ỹn0

∥2 ≤ C ′′,

where C ′′ := t2n0−1C
′ + tn0

ln0+1∥x̄ − zn0+2∥2 + 1
2µρ (Mf + ∥ỹn0

∥)2 > 0. Then, by setting

C3 = 4C ′′ and noting tn−1 ≥ (n + 1)/2, we obtain P(x̃n) − inf P ≤ C3/(n + 1)2 for all
n ≥ n0.

Now, assume in addition that g∗ is Lipschitz continuous with constant Mg∗ and dom(g∗)
is open. Let x̆n ∈ ∂g∗(−K⊤ŷn) and w̆n ∈ ∂f∗(ŷn). Then, Lemma 2.2 and (1.3) imply that

D(ŷn) = g(x̆n) + ⟨Kx̆n, ŷn⟩ − f∗(ŷn) = L(x̆n, w̆n, ŷn).
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It follows from (2.4) that supD = inf P = Φ(x̄, w̄) = L(x̄, w̄, ȳ) ≤ L(x̃n, w̃n, ȳ), where
(x̄, w̄, ȳ) is any saddle point of L(·). Thus, it follows from (3.39) that

supD −D(ŷn) ≤ L(x̃n, w̃n, ȳ)− L(x̆n, w̆n, ŷn) ≤ an0
(x̆n, w̆n, ȳ)/t

2
n−1.

Since tn−1 ≥ (n+ 1)/2, it remains to show that an0
(x̆n, w̆n, ȳ) is uniformly bounded above.

Since x̆n ∈ ∂g∗(−K⊤ŷn) and g
∗ is Mg∗ -Lipschitz continuous, we have from [2, Theorem

3.61] that ∥x̆n∥ ≤Mg∗ for all n, which together with the fact that g is lower semicontinuous

implies that g(x̆n) ≥ C̃ for all n and some constant C̃, see [1, Corollary 9.20]. Since
yn ∈ dom(f∗), it follows from (3.3) that ŷn ∈ dom(f∗) for all n. Then, Lemma 2.2,
∥Kx̆n∥ ≤ LMg∗ and f∗(ŷn0

) <∞ imply that

L(x̆n, w̆n, ŷn0
) ≥ g(x̆n) + ⟨Kx̆n, ŷn0

⟩ − f∗(ŷn0
) ≥ C̃ − LMg∗∥ŷn0

∥ − f∗(ŷn0
) > −∞.

Further considering the definition of An(x,w, y), we have

An0(x̆n, w̆n, ȳ) ≤
∣∣L(1−µ)ρt2n0−1

(x̃n0 , w̃n0 , ȳ)
∣∣+ ∣∣C̃ − LMg∗∥ŷn0∥ − f∗(ŷn0)

∣∣ =: Ĉ <∞.

Substituting the above inequality into the definition of an0(x̆n, w̆n, ȳ) yields

an0(x̆n, w̆n, ȳ) ≤t2n0−1An0(x̆n, w̆n, ȳ) + tn0 ln0+1∥x̆n − zn0+2∥2 +
1

2µρ
∥ȳ − ỹn0∥2 (3.40)

≤t2n0−1Ĉ + tn0
ln0+1(Mg∗ + ∥zn0+2∥)2 +

1

2µρ
∥ȳ − ỹn0

∥2. (3.41)

Therefore, an0
(x̆n, w̆n, ȳ) is indeed bounded above uniformly with respect to n. As a result,

there exists a constant C4 > 0 such that supD − D(ŷn) ≤ C4/(n + 1)2, and, since inf P =
supD, P(x̃n)−D(ŷn) ≤ (C3 + C4)/(n+ 1)2 for all n ≥ n0. This completes the proof.

The analysis of Theorem 3.7 is largely motivated by the unified analytic framework
given in [25] for analyzing Lagrangian type splitting methods, while that of Theorem 3.8
is inspired by the recent work [32]. It might be interesting to explore the possibility of a
unified analysis. Finally, we note that linear convergence results can generally be established
for primal-dual type splitting methods when both g and f∗ are strongly convex, see, e.g.,
[5] and also our recent analysis of GRPDA with line search [8]. If only one of the objective
function is strongly convex, linear convergence results are also attainable in the presence of
some error bound or smoothness conditions, see, e.g., [29] for details.

4 Analysis of GRPDA — Convex case

In this section, we study the convergence of GRPDA for solving the general convex case
of the bilinear saddle point problem (1.1) and its equivalent problems. In this case, the
algorithm appears to be much simpler than Algorithm 3.1 since the stepsize parameters
τn and σn keep constants. We choose to present algorithm and its detailed analysis for
the strongly convex case first, followed by the much simpler general convex case, because
this way the proofs of results for the later case can be omitted since they are completely
analogous to those of the former.

In the following, we first restate the complete algorithm for clearness, and then present
the intermediate results and the main theorems, while their proofs will be omitted for
simplicity.
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Algorithm 4.1 (GRPDA).

Step 0. Let τ, σ > 0, µ ∈ (0, 1) and ψ ∈ (1, ϕ] be such that τσL2 = (1 − µ)ψ. Choose
x0 ∈ Rq and y0 ∈ Rp. Set z0 = x0 and n = 0.

Step 1. Compute

zn+1 =
(
1− 1/ψ

)
xn + zn/ψ,

xn+1 = Proxτg(zn+1 − τK⊤yn),

wn+1 = Proxf/σ(yn/σ +Kxn+1),

yn+1 = yn + σ(Kxn+1 − wn+1).

Step 2. Set n← n+ 1 and return to Step 1.

In the rest of this section, we let t−1 = 0 and tn+1 = tn+1 for n ≥ 0, i.e., tn = n+1 for
n ≥ −1. Let w̃0 ∈ Rp be arbitrarily chosen and set (x̃0, ỹ0, ŷ0) = (x0, y0, y0). Exactly the
same as for the strongly convex case, we define the auxiliary sequence {(x̃n, w̃n, ŷn) : n ≥ 0}
recursively as in (3.3) with tn = n+ 1. Similar to (3.4), we define

ỹn+1 = ỹn + µσ(Kxn+1 − wn+1) for n ≥ 0. (4.1)

Again, the auxiliary sequences {(x̃n, w̃n, ỹn, ŷn) : n ≥ 0} are used only in the convergence
rate analysis and need not to be computed in practice. In the following, without repeatedly
mentioning, we let {(zn, xn, yn, wn) : n ≥ 0} be the sequence generated by Algorithm 4.1
and {(x̃n, w̃n, ŷn, ỹn) : n ≥ 0} be defined in (3.3) and (4.1). Similar to Lemmas 3.2, 3.4-3.6,
we have the following results.

Lemma 4.2. For all n ≥ 1, there holds yn = ỹn + (1− µ)ρtn−1(Kx̃n − w̃n).

Lemma 4.3. For any (x,w, y) ∈ X and n ≥ 1, we have

Lσ(xn, wn, yn−1)− L(x,w, y) ≤
1

τ
⟨xn+1 − zn+1, x− xn+1⟩+

ψ

τ
⟨xn − zn+1, xn+1 − xn⟩

+ σ⟨Kxn − wn, wn −Kxn+1⟩+
σ

2
∥Kxn − wn∥2 + ⟨yn − y,Kx− w⟩.

Lemma 4.4. Let P = ψ
ψ−1I ⪰ 0. For any (x,w, y) ∈ X and n ≥ 1, we have

Lσ(xn, wn, y)− L(x,w, y) ≤
1

τ
∆P (x, zn+1, zn+2) +

1

µσ
∆(y, ỹn−1, ỹn) + ⟨yn − y,Kx− w⟩

− (1− µ)σtn−2⟨Kx̃n−1 − w̃n−1,Kxn − wn⟩.

Lemma 4.5. For any (x,w, y) ∈ X and n ≥ 1, we have

tn−1S
n
(1−µ)σtn−1

− tn−2S
n−1
(1−µ)σtn−2

≤ 1

τ
∆P (x, zn+1, zn+2) +

1

µσ
∆(y, ỹn−1, ỹn), (4.2)

where P = ψ
ψ−1I ⪰ 0 and Snβ is identically defined as in (3.21)

The proofs of Lemmas 4.2-4.5 are completely analogous to those of Lemmas 3.2 and
3.4-3.6, respectively. The only differences are to replace the relation t2n−1 − tn−1 = t2n−2 by
tn−1 − 1 = tn−2 and to multiply (3.22) and (3.24) by tn−1 and σt2n−1/2, respectively. To
reduce redundancy, we omit the details. Based on the lemmas above, we can now establish
the convergence rate of GRPDA.
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Theorem 4.6. Let (x̄, w̄, ȳ) be a saddle point of L(·) satisfying (2.4) and c > 0 be a constant
such that c ≥ 2∥ȳ∥. Then, there exists a constant C5 > 0 such that for any N ≥ 1 we have

|Φ(x̃N−1, w̃N−1)− Φ(x̄, w̄)| ≤ C5

N
and ∥Kx̃N−1 − w̃N−1∥ ≤

2C5

cN
.

Theorem 4.6 can be proved by taking the sum of (4.2) over n = 1, . . . , N and following
the same line of proofs as Theorem 3.7. Again, we omit the details for succinctness.

Similarly to Theorem 3.8, we can quantify the convergence rate of the auxiliary sequence
{(x̃n, ŷn) : n ≥ 1} via the function value residual of the unconstrained problems (1.2) and
(1.3) under the Lipschitz continuity conditions on f and g∗, whose proofs are completely
analogous to Theorem 3.8 and, again, are omitted.

Theorem 4.7. Assume that f is Mf -Lipschitz continuous. Then, there exists C6 > 0 such
that P(x̃n) − inf P ≤ C6/n for all n ≥ 1. If in addition g∗ is Mg∗-Lipschitz continuous
and dom(g∗) is open, then there exists C7 > 0 such that supD −D(ŷn) ≤ C7/n, and hence
P(x̃n)−D(ŷn) ≤ (C6 + C7)/n, for all n ≥ 1.

5 Numerical Experiments

In this section, we demonstrate the performance of the proposed Algorithm 4.1 (GRPDA)
and its accelerated variant Algorithm 3.1 (A-GRPDA) via preliminary numerical results on
the least absolute deviation (LAD) and the LASSO problems, both of which are popular in
recovering sparse signals. Comparison results with Chambolle and Pock’s and Tran-Dinh
and Zhu’s PDAs [5, 6, 27], denoted respectively by CP and TDZ, and their accelerated
counterparts, denoted respectively by A-CP and A-TDZ, will be given. All the algorithms
were implemented in Matlab (R2019b), running on a Laptop with an Intel(R) Core(TM)
i5-4590 CPU@3.30 GHz and 8GB of RAM within Microsoft Windows. All the experimental
results presented in this section are reproducible by specifying the random number generator
seed in our code.

5.1 LAD problem

Let K ∈ Rp×q be a sensing matrix, x♭ ∈ Rq be an s-sparse signal and b = N(Kx♭) ∈ Rp
be an observation of x♭, where N(·) denotes an impulsive noise corruption procedure. To
recover x♭ from b, we consider the following regularized LAD problem

minx P(x) := ∥Kx− b∥1 + g(x),

where g serves as a regularizer. We consider the following two cases.
General convex case. For this case, we set g(x) = η∥x∥1. The entries of K were

generated from N (0, 1), the normal distribution with mean 0 and standard deviation 1. x♭

is an s-sparse vector with components randomly generated via the Matlab built-in function
randn, and the impulsive noise corruption procedure was simulated by replacing 5% ran-
domly chosen entries of Kx♭ with ∥Kx♭∥∞ or −∥Kx♭∥∞, both with probability 0.5. In this
experiment, we set (p, q, s) = (2000, 640, 200) and η = 0.05.

Strongly convex case. For this case, we set g(x) := η∥x∥1 +
γg
2 ∥x∥

2, which is also
known as the elastic net regularization. In this experiment, we first generate {ϱj ∈ Rp : j =

Codes available at https://github.com/quoctd/PrimalDualCvxOpt.
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1, . . . , q} independently from the Gaussian distribution with mean 0 and covariance I, and
then define the j-th column of K, denoted by Kj , recursively as follows

K1 = ϱ1
√

(1− υ)2/(1− υ2) and Kj = υKj−1 + (1− υ)ϱj , j = 2, . . . , q,

where υ = 0.5. This way of generating K has been frequently tested in the literature, see,
e.g., [27]. In fact, K becomes more ill-conditioned as υ increases from 0 to 1. Other data
was generated in the same way as for the general convex case. For this experiment, we set
(p, q, s) = (4000, 1280, 400), η = 0.05 and γg = 0.1.

In both cases, we set f(·) = ∥ · −b∥1, and thus the proximal point mappings of both f
and g can be represented by the soft-thresholding operator. We omit the details since it is
well known. In the general convex case, the algorithms to be compared are GRPDA, CP
and TDZ, while in the strongly convex case their accelerated counterparts, i.e., A-GRPDA,
A-CP and A-TDZ, will be compared. All the algorithms were initialized at the origin. For

A-GRPDA, we set τ0 = (1−µ)ψ
σ0∥K∥2 with σ0 =

(1−µ)(ψ−1)γg
2∥K∥2 , ψ = 1.6 and µ = 0.01. For A-CP, we

set τ0 = 1/∥K∥, and for A-TDZ we chose c = 4, γ = 0.75, Γ = 2− 1/γ and ρ20 :=
c(c−1)Γγg
(2c−1)∥K∥2

as in [27].

Figure 5.1: Comparison results of GRPDA, CP, TZD and their accelerated counterparts
on the regularized LAD problem. Left: general convex case; Middle: strongly convex case;
Right: stepsize parameters generated by the three accelerated algorithms throughout the
execution.

The relative function value residuals, which decreased as the CPU time proceeded, were
plotted in Figure 5.1 for both the general convex case (plot on the left-hand-side) and the
strongly convex case (plot in the middle). In both cases, the true optimal function value
inf P was computed by CVX [15]. In the general convex case, all the compared algorithms
achieve the O(1/n) sublinear rate. It can be seen from Figure 5.1 (left) that GRPDA and
CP perform closely and TDZ falls behind slightly. It is also worth noting that all the
three nonaccelerated algorithms only achieved relatively lower accuracy compared to inf P
computed by CVX. On the other hand, all the three accelerated algorithms use different
ways to update stepsizes and achieve the faster O(1/n2) sublinear rate. It can be seen
from Figure 5.1 (middle) that A-GRPDA performs the best, followed by A-CP and A-
TDZ. In fact, A-GRPDA converges much faster than the other two algorithms, and A-CP
is only slightly faster than A-TDZ. A possible reason for the slower convergence of A-TDZ
might be that it needs to compute x-subproblems twice at each iteration. Furthermore, our
observation shows that the stepsizes generated by A-TDZ shrunk to 0 the fastest, followed
by A-CP, and A-GRPDA adopted the largest stepsize parameters and shrunk to 0 at the
slowest speed among the three algorithms, see Figure 5.1 (plot on the right). The larger
stepsize of A-GRPDA is due to the way of computing τn in (3.2c). Since larger stepsizes
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usually results in better performance, this might be a possible explanation of the faster
convergence of A-GRPDA.

5.2 LASSO problem

In the case of Gaussian noise, it is desirable to recover the sparse signal x♭ via solving the
LASSO problem

minx P(x) := η∥x∥1 +
1

2
∥Kx− b∥2, (5.1)

where K and b are the same as in LAD except that b = Kx♭ + ν and ν is a Gaussian noise.
It is easy to verify that the LASSO problem (5.1) fits into (1.1) with g(x) = η∥x∥1 and
f∗(y) = 1

2∥y∥
2+ ⟨b, y⟩. Then, by swapping “maxx∈Rq” with ”miny∈Rp” and (g,K, x, q) with

(f∗,−KT , y, p), the strong convexity of 1
2∥y∥

2 + ⟨b, y⟩ (previously f∗) can be transferred to
g, which enables applications of the accelerated algorithms A-GRPDA, A-CP and A-TDZ.

In this experiment, the values of the nonzero components of x♭ were drawn from the
uniform distribution in [−10, 10], while their positions were determined uniformly at random.
The additive noise ν ∈ Rp was generated from N (0, 0.1I). Furthermore, two types of K were
tested, i.e., partial discrete cosine transform (DCT) and partial discrete Fourier transform
(DFT), where the rows of the DCT and the DFT matrices were selected uniformly at random.
Note that partial fast transforms were frequently used in compressive sensing, see e.g., [30].
We tested partial DCT with (p, q) = (4000, 1280) and partial DFT with (p, q) = (8000, 2560).
In both cases, we set s = p/10 and η = 0.1. For these two sensing matrices, we have
KK⊤ = I and thus L = ∥K∥ = 1. In this experiment, we computed inf P by running
A-GRPDA to a sufficiently high accuracy, instead of calling CVX as it cannot be used since
K is not explicitly saved in memory. The same as before, all the compared algorithms were
initialized at the origin and adopted the same set of parameters as specified in the strongly
convex case of the LAD problem.

Figure 5.2: Comparison results of A-GRPDA, A-CP and A-TDZ on the LASSO problem.
Left: partial DCT with (p, q, s) = (4000, 1280, 400). Right: partial DFT with (p, q, s) =
(8000, 2560, 800).

Similar comparison results of A-GRPDA, A-CP and A-TDZ as in the case for the LAD
problem are given in Figure 5.2, from which roughly the same conclusion can be drawn, i.e.,
A-GRPDA performs the best and much better than the other two algorithms, and A-CP
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follows next, which is slightly faster than A-TDZ. We attribute the faster convergence of A-
GRPDA to its larger stepsizes, as shown in Figure 5.1 (right). Again, A-TDZ appears to be
the slowest due to the fact that it adopted the smallest stepsizes and solved x-subproblems
twice per iteration.

6 Conclusions

Golden ratio primal-dual algorithm (GRPDA) is an efficient new variant of the classical
Arrow-Hurwicz method for solving the bilinear saddle point problem. At present, existing
convergence rate results of GRPDA are defective because they are based on the so-called
“primal-dual gap function”, which could vanish at nonstationary points. In this paper,
based on equivalent reformulations as optimization problems, we have established some new
convergence rate results for GRPDA and an accelerated variant of it. These new results
are based on function value residual and constraint violation, which are conventional opti-
mality measures for constrained optimization problems. Specifically, in the general convex
case, some auxiliary sequences generated by GRPDA enjoy O(1/N) sublinear convergence
rate, while in the strongly convex case we have constructed an accelerated GRPDA, which
achieves the faster O(1/N2) sublinear rate. Moreover, we have shown that the same sublin-
ear rates measured by function value residual for the unconstrained optimization problems
(1.2) and (1.3) can be achieved in both the convex and the strongly convex cases if f and
g∗ are Lipschitz continuous, leading to a convergence rate guarantee on the true primal and
dual function value gap. These new convergence rate results have definitely enriched the
convergence theory of GRPDAs. Our preliminary numerical results on the least absolute
deviation and the LASSO problems also show the superior performance of the accelerated
GRPDA. Finally, it is believed that the analysis presented in this paper can be extended to
other augmented Lagrangian related splitting algorithms, which are interesting to explore
further.
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