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and the kernel. Because of its ill-posedness, the blind deconvolution problem is challenging
in both implementation and theory. To reduce its ill-posedness, priors for both clean image
and kernel are adopted in blind deconvolution models, see for example, [18, 9, 26, 28]. In [18],
Krishnan and Fergus proposed a statistical model with hyper-Laplacian prior. Dong et.al.
[9] put TV prior to the clean image and deblur the image in sparse representation. Wang
and Ng’s model [26] used TV prior and frame based prior for both clean image and blur.
Some researchers also focus on recovering an image from several blurred images. Ward and
Saleh [28] assumed the time correlation property to the blurs from Gaussian distributions,
and used maximum likelihood estimation to recover the image from multiple blurred images.

Because of the availability of multi-dimensional data, low rank tensor completion from
incomplete observed data is becoming more and more important in image processing [24,
32, 34, 15], machine learning [22, 33] and data science [2, 30]. CP rank [12] and Tucker rank
[25] are the two most popular methods describing tensor rank in low rank tensor completion.
Kilmer and Martin [16] proposed tubal rank based on the Fourier transform. Kernfield [14]
and Song [24] found that other mathematical transformations can also be implemented in
tensor tubal rank.

In our model, multiple blurred images (can be regarded as a tensor) are only partially
observed. The slices of the blurred tensor come from a single clean image but are blurred
by a sequence of continuously changing kernels. We aim to recover a clean image and a
sequence of unknown kernels from the incompletely observed blurred tensor. This model
is more challenging than classical blind deconvolution problems as only partial entries of
the blurred data are known. It does have applications in real world. Researchers usually
take several photos to a fixed scene with different camera settings for wider research use.
However, blurred images can be produced out of our control. Camera shake and long distance
between the scene and the camera can blur images [10]. In astronomy and remote sensing,
atmospheric turbulence can result in blurred images [31]. Lens aberrations will inevitably
create blur across images especially for wide apertures and slow adjustment of aperture
size leads to continuous changing blurs [8]. During images transmission and storage, there
usually exist data loss and corruption. Hence, our model has wide applications in real world.

To the best of our knowledge, it is the first model to do tensor based blind deconvolution
to restore a sharp image from multiple blurred images with missing values. Given several
incomplete blurred images, our model can be used for blind deconvolution: restoring the
clean image X and estimating kernels K, and tensor completion: recovering blurred images
Y.

The rest part of this paper is organized as follows. In section 2, some notations and
backgrounds mainly about tensor computation are introduced based on Song’s paper on
transformed tubal nuclear norm (TTNN) [24], a more general form of tubal nuclear norm
(TNN). The model is proposed in section 3 and corresponding PAM Iteration algorithm as
well as ADMM solvers are developed in section 4. Global convergence of the model with
inexact solutions is discussed in section 5. The inexact solution not only means the proximal
property of PAM iteration, but also implies errors of the output in each subproblem because
we inexactly solve subproblems by ADMM algorithms. Four numerical tests in section 6
show both the effectiveness and robustness of our model. Finally, some conclusions and
future works are given in section 7.

2 Notation and Preliminaries

In this section, we review some notations and background of tensor computation and basic
definition of semi-algebraic function for convergence analysis in section 5 . For more details
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about tensors, please refer to [24, 16]. Tensors are denoted by calligraphy letters, e.g.,
X . Matrices are denoted by capital letters, e.g., X and we use bold lowercase letters to
represent vectors, e.g., x. For a third-order tensor X ∈ Cn1×n2×n3 , we denote its (i, j, k)-th
entry as Xijk, and use the MATLAB notation X (i, :, :), X (:, i, :), X (:, :, i) to denote the i-th
horizontal, lateral, and frontal slices, respectively. And for more convenience, we denote the
t-th frontal slice of the tensor X as Xt, i.e., Xt = X (:, :, t). The Frobenius norm of a tensor,
||X ||2F =

∑
ijk |X (i, j, k)|2.

2.1 Tensor Product and TTNN

Let Φ ∈ Cn3×n3 be a unitary matrix with ΦΦH = ΦHΦ = In3 . Denote X̂Φ = Φ[X ] as a
tensor obtained via multiplying all tubes of the tensor X ∈ Cn1×n2×n3 by the unitary matrix
Φ along the third dimension, i.e.,

vec(X̂Φ(i, j, :)) = Φ ∗ vec(X (i, j, :)),

where vec is the vectorization operation and * denotes matrix-vector product. Moreover,
we can return the tensor X̂Φ back to X by multiplying all tubes of X̂Φ by ΦH along the
third dimension, that is X = ΦH [X̂Φ]. Let X̄Φ be the block diagonal matrix of the tensor
X̂Φ, where diagonals of the matrix are slices of the tensor X̂Φ, i.e.,

X̄Φ = blockdiag(X̂Φ) =


X̂Φ(1)

X̂Φ(2)

. . .

X̂Φ(n3)

 .

Meanwhile, we can also fold the block diagonal matrix to a tensor by ’fold’ operation:

fold(blockdiag(X̂Φ)) = fold(X̄Φ) = X̂Φ.

Definition 2.1 (Φ-product [24]). The Φ-product of two tensors X ∈ Cn1×n2×n3 and Y ∈
Cn2×n4×n3 , denoted by X ⋄Φ Y, is an n1 × n4 × n3 tensor given by

Z = X ⋄Φ Y = ΦH [fold(blockdiag(X̂Φ) · blockdiag(ŶΦ))].

This definition is actually compatible with t-product in [16] and t-product can be seen as
a special case of the Φ- product because it’s actually equivalent to let Φ = 1√

n3
Fn3

, where

Fn3
is the discrete Fourier transform matrix.

Definition 2.2 (conjugate transpose of tensor [24]). The conjugate transpose of the tensor
X ∈ Cn1×n2×n3 is the tensor XH ∈ Cn2×n1×n3 obtained by

XH = ΦH [fold(blockdiag(X̂Φ)H)].

Definition 2.3 (identity tensor [16, 24]). The indentity tensor IΦ ∈ Cn×n×n3 with respect
to Φ, is defined as IΦ = Φ[T ], with each frontal slice of T ∈ Rn×n×n3 being the n × n
identity matrix.

Definition 2.4 (unitary tensor [14, 24]). A tensor Q ∈ Cn×n×n3 is unitary with respect to
Φ-product if it satisfies the following:

QH ⋄Φ Q = Q ⋄Φ QH = IΦ,

where IΦ is the identity tensor.
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Theorem 2.5 (transformed tensor SVD [14, 24]). Suppose that X ∈ Cn1×n2×n3 , then X
can be factorized as

X = U ⋄Φ S ⋄Φ VH ,

where U ∈ Cn1×n1×n3 , V ∈ Cn2×n2×n3 are unitary tensors with respect to Φ-product, and
S ∈ Cn1×n2×n3 is a diagonal tensor (non-zero entries only appear at (i, i, :)-entry).

Definition 2.6 (transformed tubal nuclear norm [24]). The transformed tubal nuclear norm
(TTNN) of a tensor X ∈ Cn1×n2×n3 , denoted as ||X ||TTNN , is the sum of nuclear norms of
all frontal slices of X̂Φ, that is

||X ||TTNN =

n3∑
i=1

||X̂Φ(i)||∗ =

n3∑
i=1

||ŜΦ(i)||∗ =

n3∑
i=1

sum(diag(ŜΦ(i))),

where sum operation is the summation of all elements of a vector, and diag extracts the
diagonal elements of a matrix.

Song et.al. [24] also defined a transformed multirank function of a tensor X , denoted
as ranksum(X ) =

∑n3

i=1 rank(X̂Φ(i)). Lemma 1 in [24] states that ||X ||TTNN is the convex
envelope of the rank function ranksum(X ) on the unit ball {X | ||X ||Φ ≤ 1}, where ||X ||Φ is
the spectral norm of the matrix X̄Φ. The proof can be found in Appendix A of [24].

2.2 Semi-algebraic Function

Definition 2.7 (semi-algebraic function [13]). Let V be a finite dimensional real vector
space and let φ : V → Rn be a linear isomorphism.

(a) A subset S ⊂ Rn is a semi-algebraic set if and only if there exists a finite number of
real polynomial functions Pij and Qij , satisfying

S =

p∪
j=1

q∩
i=1

{x ∈ Rn|Pij(x) = 0, Qij(x) < 0}.

(b) A subset W ⊂ Rn is semi-algebraic if and only if φ(W) is a semi-algebraic set in Rn.

(c) A function f : S ⊂ Rn → W ⊂ Rm is semi-algebraic if and only if the graph
{(x, f(x)) ∈ Rn+m|x ∈ S} is a semi-algebraic set in Rn+m.

(d) A function f : S ⊂ V → W ⊂ Rm is semi-algebraic if and only if the composition
f ◦ φ−1 : φ(S) → W is semi-algebraic.

Proposition 2.8 (properties for semi-algebraic functions [4, 13, 14, 29]). The followings
are some properties of semi-algebraic functions:

(a) A subset of R is semi-algebraic if it is a finite union of points and open intervals
(bounded or unbounded).

(b) Complements, finite unions, finite intersections, finite Cartesian products of semi-
algebraic sets are semi-algebraic.

(c) Finite sums and finite products of semi-algebraic functions are semi-algebraic.

(d) The composition f ◦ g of semi-algebraic mappings f : S → W and g : Z → S is
semi-algebraic.
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(e) If f : S → W is semi-algebraic and Z ⊆ S is a semi-algebraic subset, then f(Z) is
semi-algebraic subset.

(f) Polynomials defined on Rn are semi-algebraic.

(g) The absolute value function f(x) = |x| is a semi-algebraic function defined on R.

(h) If fi : S → R is semi-algebraic for each i = 1, ..., n, then the function f : x ∈ S →
(f1(x), ..., fn(x)) ∈ Rn is also semi-algebraic.

(i) The nuclear norm function f∗ : x ∈ Rn → ||V−1(x)||∗ is semi-algebraic, where V−1

defined in Definition 5.1 is a reshape operation from a vector to a matrix.

It is easy to prove the following Proposition by Definition 2.7 and Proposition 2.8.

Proposition 2.9. If f : S → W is a semi-algebraic function, and Z is a semi-algebraic
subset of S, then f is also a semi-algebraic function on Z.

3 The Proposed Model

In this paper, we are given several blurred images Y ∈ Rnv×nh×nb that are only partially
observed (Y(Ω) is observed), and we aim to recover the corresponding single sharp image
X ∈ Rnv×nh , blurred images Y and blur kernels K ∈ R(2∗kv+1)×(2∗kh+1)×kb . Y is a tensor
and its frontal slices are blurred images; K is a tensor and similarly, the frontal slices of it
are the kernels to blurred images; matrix X is the sharp image. Here, we assume that the
kernel is shift-invariant, meaning that one blurred image corresponds to one kernel, and the
blurred image is the result of the convolution of a kernel and a sharp image. Therefore, for
each t = 1, ..., nb,

Yt = Kt ⋆ X,

where the operation ’⋆’ is the convolution product. For a simpler representation, we can
rewrite it into a tensor form,

Y = K ⋆ X.

Then, ||Y − K ⋆ X||2F is used as a data fitting term. Here, we adopt periodic boundary
condition and FFTs for fast computation in convolution [21, 7]. Other boundary conditions
such as Neumann boundary condition can also be used [21].

Zhou et.al. [35] showed the low rank property of blurred image compared with its sharp
image. A blurred image can be regarded as local averaging of a sharp image, thus the values
of neighboring pixels tend to have more similarities, resulting in the low rank property. For
multiple blurred images (the tensor Y), similar to low rank property of a single blurred image
(a matrix), it is also of low tensor rank (we adopt transformed tubal rank in Definition 5).
However, the optimization of tubal rank is NP-hard. Lu [20] and Zhang [32] et.al. used
TNN as a regularization term for low rank of a tensor. The transformed tubal nuclear norm
(TTNN) is adopted in our model because it is the convex envelope of transformed multirank
function of a tensor [24] and it is more general than TNN. Therefore, we introduce ||Y||TTNN

as a regularization term for the low tubal rank of multiple blurred images.
Blurred images are usually regarded as local averaging of the sharp image and the kernel

acts as weights. Based on this, we add two widely accepted constraints [1] to the kernel:
Kt ≥ 0 and

∑
i,j Kt(i, j) = 1. For each kernel (denoted as Kt), we do not expect them

to be delta kernel which has one value on its central entry and others are zero. Tikhonov
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regularization term [11] is considered for K to be away from delta kernel. That is, for each
t = 1, ..., nb,

Tik(Kt) = ||Kt||2F =
∑
i,j

Kt(i, j)
2 ≤

∑
i,j

Kt(i, j) = 1 = ||δ||2F .

In the tensor form,

Tik(K) = ||K||2F =

T∑
t=1

||Kt||2F ≤ nb.

If the kernel is close to the delta kernel, the blurred image will be clean enough so that
we do not need to deblur. For example, for a Gaussian kernel, if its standard deviation is
large, then the kernel should be smooth, leading to small Tikhonov values and more blurry
images.

For a clean image, edges are much more clear and sharper than blurred image. Blurred
images are usually with more noise and leading to the values of zigzag forms. To avoid
the fluctuating values of the image, we introduce the TV regularization term [23] for sharp
image X as many other similar deconvolution work. Moreover, we scale the values of image
data Y and X to [0, 1].

Based on the analysis above, our proposed model is as follows:

arg min
Y,K,X

1

2
||Y − K ⋆ X||2F + α||Y||TTNN +

β

2
||K||2F + γ(||D1X||1 + ||XDT

2 ||1),

s.t. 0 ≤ X,Y ≤ 1, PΩ(Y −M) = 0, K ≥ 0,
∑
i,j

Kt(i, j) = 1, (3.1)

where α, β and γ are given positive parameters of regularization terms and M is the partially
observed tensor (blurred images) . Blurred images are given in Y ∈ Rnv×nh×nb , and X ∈
Rnv×nh is the clean image. PΩ is a projection operation that preserves the entries of the
tensor inside Ω and projects the entries outside Ω to 0, meaning that Y(Ω) = M(Ω). Here,
’⋆’ is the convolution product with periodic boundary condition. K ∈ R(2∗kv+1)×(2∗kh+1)×kb

denotes the kernels, and kb = nb because each blurred image corresponds to one kernel.
(i, j, t) ∈ {−kv, ..., kv} × {−kh, ..., kh} × {1, ..., nb} is the support of the kernel. The fourth
term is the TV regularization term, where D1 ∈ Rnv×nv and D2 ∈ Rnh×nh denote backward
partial difference operators with periodic boundary conditions along vertical and horizontal
directions, respectively. More specifically, the periodic boundary condition for sharp image
X is that

X(i, j) = X(i, j + nh) = X(i + nv, j) = X(i + nv, j + nh).

Therefore, the backward partial difference operators D1 and D2 are as follows:

D1 =


1 −1
−1 1

. . .
. . .

−1 1


nv×nv

, D2 =


1 −1
−1 1

. . .
. . .

−1 1


nh×nh

.

For the implementation, we rewrite the problem (3.1):

arg min
Y,K,X

F (Y,K, X), (3.2)
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where

F (Y,K, X) =
1

2
||Y − K ⋆ X||2F + α||Y||TTNN +

β

2
||K||2F + δS(Y,K, X)

+γ(||D1X||1 + ||XDT
2 ||1),

S = {(Y,K, X) ∈ Rnv×nh×nb × R(2∗kv+1)×(2∗kh+1)×kb × Rnv×nh : 0 ≤ Y , X ≤ 1,

PΩ(Y −M) = 0, K ≥ 0,

kv∑
i=−kv

kh∑
j=−kh

Kt(i, j) = 1, for each t = 1, .., kb}

and δS is an indicator function defined on the whole space that

δS(Y,K, X) =

{
0, if (Y,K, X) ∈ S,

+ ∞, otherwise.

4 PAM Iteration and the Gauss-Seidel based ADMM

It is difficult to obtain direct solutions to Problem (3.2). Instead, we adopt an inexact
iterative method: Proximal Alternating Minimization (PAM) [3] to solve the problem. PAM
applied to the problem at hand involves iteratively solving three subproblems, and that each
of these subproblems is solved by an iterative scheme based on ADMM. The PAM iterations
are indexed by i while the ADMM iterations are indexed by j.

At the (i+ 1)-th iteration step, the initial value of (Y,K, X) is the solution from the i-th
step:

Yi+1 = arg min
Y

F (Y,Ki, Xi) +
ρ1
2
||Y − Y i||2F , (4.1)

Ki+1 = arg min
K

F (Yi+1,K, Xi) +
ρ2
2
||K − Ki||2F , (4.2)

Xi+1 = arg min
X

F (Yi+1,Ki+1, X) +
ρ3
2
||X −Xi||2F , (4.3)

where ρi (i = 1, 2, 3) are given positive parameters to constrain large changes of (Y,K, X)
between two steps.

In the following part, we consider numerical methods to solve subproblems (4.1)-(4.3)
within PAM Iteration. Fast Fourier Transforms (FFTs) are used to reduce computational
costs.

4.1 Solving Y

For the subproblem (4.1) of Y,

Yi+1 = arg min
Y

F (Y,Ki, Xi) +
ρ1
2
||Y − Y i||2F

= arg min
0≤Y≤1,PΩ(Y−M)=0

1

2
||Y − Ki ⋆ Xi||2F + α||Y||TTNN +

ρ1
2
||Y − Y i||2F

is equivalent to

arg min
0≤Y≤1,PΩ(Y−M)=0

1

2
||Y − Ki ⋆ Xi||2F + α||QY ||TTNN +

ρ1
2
||Y − Y i||2F ,
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s.t. QY = Y. (4.4)

Let ZY be the Lagrange multiplier for the Lagrangian function of the constrained optimiza-
tion problem (4.4). The augmented Lagrangian function is

LY =
1

2
||Y − Ki ⋆ Xi||2F + α||QY ||TTNN +

ρ1
2
||Y − Y i||2F

+⟨ZY ,Y −QY⟩ +
µ1

2
||Y − QY ||2F .

Then, ADMM iteration steps for (4.4) are as follows:

Qj+1
Y = arg min

QY

α||QY ||TTNN +
µ1

2
||Yi,j −QY +

Zj
Y

µ1
||2F , (4.5)

Yi,j+1 = arg min
0≤Y≤1,PΩ(Y−M)=0

1

2
||Y − Ki ⋆ Xi||2F +

ρ1
2
||Y − Y i||2F +

µ1

2
||Y − Qj+1

Y +
Zj

Y
µ1

||2F ,

(4.6)

Zj+1
Y = Zj

Y + µ1(Yi,j+1 −Qj+1
Y ). (4.7)

Initial values Yi,0 and Z0
Y are set as Yi and 0 respectively; µ1 is a given parameter. After

repeating κ1 times, Yi,κ1 is the approximate solution of the subproblem, denoted as Yi+1.
To solve (4.5), theorem 3 in [24] provides a method using transformed tensor SVD (2.5) for
third-order tensors. For more details, please refer to theorem 1, theorem 3 and algorithm 1
in [24]. In this step, the major computational cost is from SVDs of nv × nh matrix for nb

times.
For (4.6), it’s actually a single variable component-wise minimization problem, which

can be easily solved with little computational costs. (4.7) is a gradient ascent procedure,
which just involves elementary computation of tensors, and thus the computation is cheap.
In summary, the main computational cost for solving Y is transformed tensor SVD, which
means that we need to do SVDs of nv × nh matrix for nb times.

4.2 Solving K

For subproblem (4.2) of K,

Ki+1 = arg min
K

F (Yi+1,K, Xi) +
ρ2
2
||K − Ki||2F

= arg min
K≥0,1TKt(:)=1

1

2
||Yi+1 −K ⋆ Xi||2F +

β

2
||K||2F +

ρ2
2
||K − Ki||2F

is equivalent to

arg min
K≥0,1TKt(:)=1

1

2
||Yi+1 −QK ⋆ Xi||2F +

β

2
||K||2F +

ρ2
2
||K − Ki||2F ,

s.t. QK = K. (4.8)

Let ZK be the Lagrangian multiplier for the Lagrangian function of the constrained opti-
mization problem (4.8). The augmented Lagrangian function is

LK =
1

2
||Yi+1 −QK ⋆ Xi||2F +

β

2
||K||2F +

ρ2
2
||K − Ki||2F
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+⟨ZY ,K −QK⟩ +
µ2

2
||K − QK||2F .

Then, the ADMM iteration steps for (4.8) is as follows:

Qj+1
K = arg min

QK

1

2
||Yi+1 −QK ⋆ Xi||2F +

µ2

2
||Ki,j −QK +

Zj
K

µ2
||2F , (4.9)

Ki,j+1 = arg min
K≥0,1TKt(:)=1

β

2
||K||2F +

ρ2
2
||K − Ki||2F +

µ2

2
||K − Qj+1

K +
Zj

K
µ2

||2F , (4.10)

Zj+1
K = Zj

K + µ2(Ki,j+1 −Qj+1
K ). (4.11)

Initial values Ki,0 and Z0
K are set as Ki and 0 respectively; µ2 is a given parameter. After

κ2 times, Ki,κ2 is taken as the output of the subproblem, denoted as Ki+1. For (4.9), it’s
easy to find that, for each slice, each element of QKt ⋆X is a linear combination of elements
of QKt , meaning that

[QKt
⋆ X](:) = AQKt

(:),

where QKt
is the t-th frontal slice of tensor QK and A is a (nv ∗nh)×((2∗kv +1)∗(2∗kh+1))

matrix, depending on X. The matrix A can be cheaply calculated in the Fourier domain that
positions of K and X in the convolution can be exchanged. After obtaining the matrix A,
letting the first derivative of the objective function with respect to QY(:) to be zero, where
the objective function has the similar form with a simple linear problem arg minx ||Ax −
b||22 + ||x − y||22. Then the problem transfers to an equivalent linear system of QY(:). The
scale of the linear system is only ((2 ∗ kv + 1) ∗ (2 ∗ kh + 1)) × ((2 ∗ kv + 1) ∗ (2 ∗ kh + 1)),
which is much smaller compared to (nv ∗nh). Hence, it is still very fast to directly solve the
((2 ∗kv + 1) ∗ (2 ∗kh + 1))× ((2 ∗kv + 1) ∗ (2 ∗kh + 1)) linear system by Gaussian elimination
or Cholesky decomposition (the coefficient matrix is symmetric and positive semi-definite).
And we need to solve this kind of linear systems for kb times. To solve (4.10), we can simplify
it to

Ki,j+1 = arg min
K≥0,1TKt(:)=1

β

2
||K||2F +

ρ2
2
||K − Ki||2F +

µ2

2
||K − Qj+1

K +
Zj

K
µ2

||2F

= arg min
K≥0,1TKt(:)=1

||K − 1

β + ρ2 + µ2
(ρ2Ki + µ2Qj+1

K −Zj
K)||2F

= arg min
K≥0,1TKt(:)=1

||K −W||2F ,

(4.12)

where W = 1
β+ρ2+µ2

(ρ2Ki + µ2Qj+1
K − Zj

K). [27] provides a fast and direct algorithm for

solving (4.12), which requires a sorting of each slice of W. And this step is cheap for only
O(D ∗ log(D) ∗ kb), where D = (2 ∗ kv + 1) ∗ (2 ∗ kh + 1). (4.11) is merely an element-
wise computation of a (2 ∗ kv + 1) × (2 ∗ kh + 1) × kb tensor. In summary, the dominant
computational cost is solving ((2 ∗ kv + 1) ∗ (2 ∗ kh + 1)) × ((2 ∗ kv + 1) ∗ (2 ∗ kh + 1)) linear
system for kb times.
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4.3 Solving X

For subproblem (4.3) of X,

Xi+1 = arg min
X

F (Yi+1,Ki+1, X) +
ρ3
2
||X −Xi||2F

= arg min
0≤X≤1

1

2
||Yi+1 −Ki+1 ⋆ X||2F + γ(||D1X||1 + ||XDT

2 ||1)

+
ρ3
2
||X −Xi||2F

is equivalent to

arg min
0≤X≤1

1

2
||Yi+1 −Ki+1 ⋆ QX ||2F + γ(||Q1||1 + ||Q2||1) +

ρ3
2
||X −Xi||2F ,

s.t. QX = X, Q1 = D1QX , Q2 = QXDT
2 , −1 ≤ Q1, Q2 ≤ 1. (4.13)

Let ZX , Z1 and Z2 be the Lagrangian multiplier for the Lagrangian function of the con-
strained optimization problem (4.13). The augmented Lagrangian function is

LX =
1

2
||Yi+1 −Ki+1 ⋆ QX ||2F + γ(||Q1||l1 + ||Q2||l1) +

ρ3
2
||X −Xi||2F

+⟨ZX , X −QX⟩ + ⟨Z1, D1QX −Q1⟩ + ⟨Z2, QXDT
2 −Q2⟩

+
µ3

2
||X −QX ||2F +

µ3

2
||D1QX −Q1||2F +

µ3

2
||QXDT

2 −Q2||2F .

Then, the ADMM iteration steps for (4.13) is as follows:

Qj+1
1 = arg min

−1≤Q1≤1
γ||Q1||l1 +

µ3

2
||D1Q

j
X −Q1 +

Zj
1

µ3
||2F , (4.14)

Qj+1
2 = arg min

−1≤Q2≤1
γ||Q2||l1 +

µ3

2
||Qj

XDT
2 −Q2 +

Zj
2

µ3
||2F , (4.15)

Qj+1
X = arg min

QX

1

2
||Yi+1 −Ki+1 ⋆ QX ||2F +

µ3

2

[
||Xi,j −QX +

Zj
X

µ3
||2F (4.16)

+ ||D1QX −Qj+1
1 +

Zj
1

µ3
||2F + ||QXDT

2 −Qj+1
2 +

Zj
2

µ3
||2F

]
,

Xi,j+1 = arg min
0≤X≤1

ρ3
2
||X −Xi||2F +

µ3

2
||X −Qj+1

X +
Zj
X

µ3
||2F , (4.17)

Zj+1
1 = Zj

1 + µ3(D1Q
j+1
X −Qj+1

1 ), (4.18)

Zj+1
2 = Zj

2 + µ3(Qj+1
X DT

2 −Qj+1
2 ), (4.19)

Zj+1
X = Zj

X + µ3(Xi,j+1 −Qj+1
X ). (4.20)

Initial values Xi,0 and QX are both set to Xi; Z0
1 , Z0

2 , and Z0
X are all set as 0; µ3 is a given

parameter. After repeating the iteration for κ3 times, Xi,κ3 is close to the real solution
of the subproblem, and thus outputting it as Xj+1. Problem (4.14) is the element-wise
minimization problem of the form arg min−1≤x≤1 |x|+λ(x− y)2, which can be easily solved
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and the solution is x∗ = min{max{x̄,−1}, 1}, where x̄ = sign(y) max{|y| − 1
2λ , 0}. (4.15) is

the similar to (4.14), and thus can be solved by the same way. In the Fourier domain, (4.16)
becomes an element-wise quadratic problem without any constraints, which can be easily
solved and inverse FFTs can return solution from the Fourier domain back to real space.
(4.17) is actually a component-wise minimization for each element of the matrix X. (4.18)-
(4.20) are just simple matrix multiplication and elementary computation. Noting that D1

and D2 are circulant matrix, so for faster computation, D1QX and QXDT
2 are calculated in

Fourier domain, avoiding loop operation.

In the next section, we will discuss about the convergence of inexact solutions of sub-
problems (4.1)-(4.3). Inexact solutions of each subproblem of PAM iteration converge to a
critical point of the objective function F . Although F is convex separately in Y, K and X,
it’s nonconvex jointly for those 3 variables. It’s hard to achieve global minima in nonconvex
optimization and convergence to critical points is within our expectation. Repeating κ1,
κ2 and κ3 times respectively in the above ADMM iteration processes will definitely lead
to inexact solutions with errors to (4.1)-(4.3). That’s the reason for Assumption 5.2 in the
convergence analysis.

5 Convergence of PAM Iteration with Inexact Solutions

For convergence analysis, we first rewrite the PAM Iteration (4.1)-(4.3) as a vector-form.

Definition 5.1 (some projections of tensors and vectors). For a positive integer n, define
χ(n) = {1, ..., n},

1. For positive integers n1, n2 and n3, define bijections V[n1, n2, n3] : X ∈ Rn1×n2×n3 →
X (:) ∈ Rn1n2n3×1 and P[n1, n2, n3] : (i, j, t) ∈ χ(n1) × χ(n2) × χ(n3) → χ(n1n2n3)
satisfying that X (i, j, t) = [V(X )](P(i, j, t)). V projects a tensor to its corresponding
vector, and P project entries of the tensor to the vector.

2. The inverse projection V−1 and P−1 project a vector to its corresponding tensor.

We denote V1 = V[nv, nh, nb] and P1 = P[nv, nh, nb] for tensor Y ∈ Rnv×nh×nb that

V1(Y) = Y(:)

and

Y(i, j, t) = [Y(:)](P1(i, j, t)).

Similarly, we define V2 = V[(2∗kv +1), (2∗kh +1), kb] and P2 = P[(2∗kv +1), (2∗kh +1), kb]
for kernels K ∈ R(2∗kv+1)×(2∗kh+1)×kb ; and projection function V3 = V[nv, nh] and P3 =
P[nv, nh] for matrix X ∈ Rnv×nh . Let V1(Y) = y, V2(K) = k and V3(X) = x; and
N1 = nv ∗ nh ∗ nb, N2 = (2 ∗ kv + 1) ∗ (2 ∗ kh + 1) ∗ kb, N3 = nv ∗ nh.

Using these projection functions and corresponding inverse functions, we can rewrite the
problem (3.2) to a model of vectors.

arg min
v

F̃ (v), (5.1)
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where v = (y,k,x) and

F̃ (v) = Ψ(v) + g1(y) + g3(x) + δŜ(v),

Ψ(v) =
1

2
||V−1

1 (y) − V−1
2 (k) ⋆ V−1

3 (x)||2F +
β

2
||k||22,

g1(y) = α||V−1
1 (y)||TTNN ,

g3(x) = γ(||h1(x)||1 + ||h2(x)||1),

h1(x) = D1(V−1
3 (x)),

h2(x) = (V−1
3 (x))DT

2 ,

Ŝ = {(y,k,x) ∈ RN1×N2×N3 : y ∈ RN1 , y(P1(Ω)) = [V1(M)](P1(Ω)), 0 ≤ y ≤ 1,

k ∈ RN2 , k ≥ 0, 1Tkt = 1, k = [k1, ...,kkb
], x ∈ RN3 , 0 ≤ x ≤ 1}.

It’s easy to verify that the problem (3.2) is equivalent to problem (5.1). Therefore, in
the convergence analysis, we mainly focus on the vectorized problem (5.1). And the PAM
Iteration procedure (4.1)-(4.3) can also be rewritten in form of vectors:

yi+1 = arg min
y

F̃ (y,ki,xi) +
ρ1
2
||y − yi||22, (5.2)

ki+1 = arg min
k

F̃ (yi+1,k,xi) +
ρ2
2
||k− ki||22, (5.3)

xi+1 = arg min
x

F̃ (yi+1,ki+1,x) +
ρ3
2
||x− xi||22. (5.4)

It’s not difficult to verify the following Proposition by the Definition of PLSC function
in [17].

Proposition 5.2. F̃ (v) is a Proper Lower Semi-Continuous (PLSC) function.

A necessary condition [3] for x to be the minimizer of a PLSC function is that

0 ∈ ∂f(x),

and a point satisfying the above condition is called the critical point of f , where ∂ is sub-
differential operation.

We first make some assumptions for inexact solutions. If (yi+1,ki+1,xi+1) is the solution
to subproblems (5.2)-(5.4), then

F̃ (yi+1,ki,xi) +
ρ1
2
||yi+1 − yi||22 ≤ F̃ (yi,ki,xi), (5.5)

F̃ (yi+1,ki+1,xi) +
ρ2
2
||ki+1 − ki||22 ≤ F̃ (yi+1,ki,xi), (5.6)

F̃ (yi+1,ki+1,xi+1) +
ρ3
2
||xi+1 − xi||22 ≤ F̃ (yi+1,ki+1,xi), (5.7)

and

0 ∈ ∂yF̃ (yi+1,ki,xi) + ρ1(yi+1 − yi), (5.8)

0 ∈ ∂kF̃ (yi+1,ki+1,xi) + ρ2(ki+1 − ki), (5.9)

0 ∈ ∂xF̃ (yi+1,ki+1,xi+1) + ρ3(xi+1 − xi), (5.10)
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where ∂ is sub-differential. In real applications, our obtained solutions of (5.2)-(5.4) usually
do not satisfy conditions (5.5)-(5.10), i.e., our solutions may have errors with respect to
exact solutions, due to the fact that we solve subproblems inexactly by ADMM algorithm.
So we further assume that the solutions satisfy the following conditions.

Assumption 5.1. There exists non-negative constants ϵ1 ∈ (0, ρ1), ϵ2 ∈ (0, ρ2), ϵ3 ∈ (0, ρ3),
and b1, b2, b3, such that for each iteration,

F̃ (yi+1,ki,xi) +
ρ1
2
||yi+1 − yi||22 − F̃ (yi,ki,xi) ≤ ϵ1

2
||yi+1 − yi||22, (5.11)

F̃ (yi+1,ki+1,xi) +
ρ2
2
||ki+1 − ki||22 − F̃ (yi+1,ki,xi) ≤ ϵ2

2
||ki+1 − ki||22, (5.12)

F̃ (yi+1,ki+1,xi+1) +
ρ3
2
||xi+1 − xi||22 − F̃ (yi+1,ki+1,xi) ≤ ϵ3

2
||xi+1 − xi||22, (5.13)

and

∃ ξi+1
1 ∈ ∂yF̃ (yi+1,ki,xi) + ρ1(yi+1 − yi), (5.14)

∃ ξi+1
2 ∈ ∂kF̃ (yi+1,ki+1,xi) + ρ2(ki+1 − ki), (5.15)

∃ ξi+1
3 ∈ ∂xF̃ (yi+1,ki+1,xi+1) + ρ3(xi+1 − xi), (5.16)

with

||ξi+1
1 ||2 ≤ b1||yi+1 − yi||2, (5.17)

||ξi+1
2 ||2 ≤ b2||ki+1 − ki||2, (5.18)

||ξi+1
3 ||2 ≤ b3||xi+1 − xi||2. (5.19)

In the remaining part, we give a proof that if our obtained inexact solutions of PAM
Iteration (5.2)-(5.4) satisfy the conditions (5.11)-(5.19), our solutions will always converge
to a critical point. However, we cannot guarantee the global minimum because of the non-
convexity of the object function.

Let f : Rn → R ∪ {+∞} be a PLSC function, and for −∞ < η1 < η2 < +∞, we denote
[η1 < f < η2] = {x ∈ Rn|η1 < f(x) < η2}.

Proposition 5.3 ([5, 6]). A real valued semi-algebraic function is a Kurdyka-Lojasiewicz
(KL) function, i.e. it satisfies KL property [3] at each point in its domain.

Lemma 5.4. F̃ is semi-algebraic on Ŝ. Combined with Proposition 5.3, F̃ has KL property
at each point v ∈ Ŝ.

Proof. The main idea of the proof is that we first prove that the set Ŝ is semi-algebraic,
and the objective function F̃ is semi-algebraic on RN . By Proposition 2.9, we complete the
proof. Here are the details of the proof.

From (5.1),
F̃ (v) = Ψ(v) + g1(y) + g3(x) + δŜ(v),

where v = (y,k,x). And

Ŝ = Ŝ1 × Ŝ2 × Ŝ3,

where

Ŝ1 = {y ∈ RN1 | 0 ≤ y ≤ 1, y(P1(Ω)) = [V1(M)](P1(Ω))}, (5.20)

Ŝ2 = {k ∈ RN2 | k ≥ 0, 1Tkt = 1, k = [k1, ...,kkb
]}, (5.21)

Ŝ3 = {x ∈ RN3 | 0 ≤ x ≤ 1}. (5.22)
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Ŝ1 is the Cartesian products of points and intervals [0, 1], where interval [0, 1] can also be

regarded as the union of open interval (0, 1) and points {0, 1}. Hence, Ŝ1 is semi-algebraic

subset of RN1 . Ŝ3 is the Cartesian products of intervals [0, 1]. Hence, Ŝ3 is a semi-algebraic
subset of RN3 .

We can rewrite the
Ŝ2 = Ŝ2,1 × Ŝ2,2 × ...× Ŝ2,kb

,

where Ŝ2,t = {kt ∈ RN2,t |kt ≥ 0,1Tkt = 1} and N2,t = N2/kb = (2 ∗ kv + 1) ∗ (2 ∗ kh + 1).
Denote an operation I(kt) = 1Tkt, and it is a polynomial of kt ∈ RN2,t . Thus from the
Proposition 2.8 (f), the operation I is semi-algebraic on RN2,t . According to Definition
2.7 (c), {(kt, I(kt))|kt ∈ RN2,t} is semi-algebraic. Also, it’s easy to verify that the set

RN2,t

+ × {1} is semi-algebraic by Proposition 2.8 (a), (b). Denote S̄2,t = {(kt, I(kt))|kt ∈
RN2,t} ∩ (RN2,t

+ × {1}), and it is semi-algebraic. Let

Tn
n+1(S) = {(x1, ..., xn)|x = (x1, ..., xn, xn+1) ∈ S}.

Note that, for each t, by Tarski-Seidenberg Theorem (Theorem 2.2 in [4]),

Ŝ2,t = Tn
n+1(S̄2)

is semi-algebraic, meaning that Ŝ2 is semi-algebraic by Proposition 2.8 (b). Therefore, Ŝ
is a semi-algebraic subset of RN .

For the objective function F̃ = Ψ(v) + g1(y) + g3(x) + δŜ(v). V−1
i (i = 1, 2, 3) are linear

mappings from a vector to a tensor, and convolution ’⋆’ is a linear operator, thus Ψ(v) =
1
2 ||V

−1
1 (y)−V−1

2 (k) ⋆V−1
3 (x)||2F + β

2 ||k||
2
2 is actually a polynomial of v = (y,k,x). g1(y) =

||V−1
1 (y)||TTNN =

∑nb

j=1 ||[V
−1
1 (y)]Φ(j)||∗, and we can see that for each j, [V−1

1 (y)]Φ(j)

is the polynomials of y, and from Proposition 2.8 (i), ||[V−1
1 (y)]Φ(j)||∗ is semi-algebraic

function defined on RN1 . Thus, g1(y) is semi-algebraic. g3(x) = γ(||h1(x)||1 + ||h2(x)||1)
and h1(x) = D1(V−1

3 (x)), h2(x) = (V−1
3 (x))DT

2 . It’s easy to prove that h1 and h2 are
polynomials of x, and by Proposition 2.8 (g), g3 is semi-algebraic on RN3 . As for δŜ, the

graph {(v, δŜ(v))|v ∈ RN} = (Ŝ× {0}) ∪ ((RN \ Ŝ) × {+∞}) is semi-algebraic because Ŝ

is semi-algebraic subset of RN . Therefore, the objective function F̃ (v) is semi-algebraic on
RN .

With Proposition 2.9, the objective function F̃ is semi-algebraic on Ŝ. By Proposition
5.3, F̃ has KL property at each point v ∈ Ŝ.

Lemma 5.5 ([4]). For a PLSC function f : Rn → R, suppose that there is a sequence
{xk}k∈N satisfying the following three conditions:
H1. (sufficient decrease condition). For each k ∈ N, there exists a fixed constant a > 0,

f(xk+1) + a||xk+1 − xk||22 ≤ f(xk).

H2. (relative error condition). For each k ∈ N, there exists a fixed constant b > 0, and
∃wk+1 ∈ ∂f(xk+1), such that

||wk+1|| ≤ b||xk+1 − xk||2.

H3. (continuity condition) There exists a subsequence {xkj}j∈N, and x∗ such that

xkj → x∗ and f(xkj ) → f(x∗) as j → +∞.

And if f has the KL property at x∗ in H3., then
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• xk → x∗.

• 0 ∈ ∂f(x∗), meaning that x∗ is a critical point of f .

• The sequence {xk}k∈N has a finite length, i.e.,

+∞∑
k=0

||xk+1 − xk||22 < +∞.

The following theorem proves that if we inexactly solve each subproblem in PAM Iteration
with errors satisfying Assumption 5.1, the sequence we obtained will still converge to a
critical point of the objective function F̃ .

Theorem 5.6 (global convergence of inexact solutions with errors). Let vi = (yi,ki,xi) is
the sequence generated by PAM Iteration (5.2)-(5.4) with errors satisfying (5.11)-(5.19) in
Assumption 5.1. Then there exists a critical point v∗, such that

• vi → v∗;

• 0 ∈ ∂F̃ (v∗);

• {vi}i∈N has a finite length, i.e.,

+∞∑
i=0

||vi+1 − vi||22 < +∞.

Proof. From (5.11)-(5.13) in Assumption 5.1,

F̃ (yi+1,ki,xi) +
ρ1
2
||yi+1 − yi||22 − F̃ (yi,ki,xi) ≤ ϵ1

2
||yi+1 − yi||22,

F̃ (yi+1,ki+1,xi) +
ρ2
2
||ki+1 − ki||22 − F̃ (yi+1,ki,xi) ≤ ϵ2

2
||ki+1 − ki||22,

F̃ (yi+1,ki+1,xi+1) +
ρ3
2
||xi+1 − xi||22 − F̃ (yi+1,ki+1,xi) ≤ ϵ3

2
||xi+1 − xi||22,

where ϵ1 ∈ (0, ρ1), ϵ2 ∈ (0, ρ2), ϵ3 ∈ (0, ρ3). Summing up the above three inequalities, we
can obtain

F̃ (yi+1,ki+1,xi+1) +
ρϵ
2
||vi+1 − vi||22 ≤ F̃ (yi,ki,xi),

where ρϵ = min{ρ1 − ϵ1, ρ2 − ϵ2, ρ3 − ϵ3}. Therefore, the condition H1. in the Lemma 5.5
is satisfied.

From (5.14)-(5.16), there exists

ξi+1
1 ∈ ∂yF̃ (yi+1,ki,xi) + ρ1(yi+1 − yi)

= ∇yΨ(yi+1,ki,xi) + ∂yg1(yi+1) + ∂yδŜ(yi+1,ki,xi) + ρ1(yi+1 − yi),

ξi+1
2 ∈ ∂kF̃ (yi+1,ki+1,xi) + ρ2(ki+1 − ki)

= ∇kΨ(yi+1,ki+1,xi) + ∂kδŜ(yi+1,ki+1,xi) + ρ2(ki+1 − ki),

ξi+1
3 ∈ ∂xF̃ (yi+1,ki+1,xi+1) + ρ3(xi+1 − xi)

= ∇xΨ(yi+1,ki+1,xi+1) + ∂xg3(xi+1) + ∂xδŜ(yi+1,ki+1,xi+1) + ρ3(xi+1 − xi).
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Thus, there exists

ζi+1
1 ∈ ∂yg1(yi+1) + ∂yδŜ(yi+1,ki,xi),

ζi+1
2 ∈ ∂kδŜ(yi+1,ki+1,xi),

ζi+1
3 ∈ ∂xg3(xi+1) + ∂xδŜ(yi+1,ki+1,xi+1),

such that

ξi+1
1 = ∇yΨ(yi+1,ki,xi) + ζi+1

1 + ρ1(yi+1 − yi), (5.23)

ξi+1
2 = ∇kΨ(yi+1,ki+1,xi) + ζi+1

2 + ρ2(ki+1 − ki), (5.24)

ξi+1
3 = ∇xΨ(yi+1,ki+1,xi+1) + ζi+1

3 + ρ3(xi+1 − xi). (5.25)

Note that
δŜ(v) = δŜ1

(y) + δŜ2
(k) + δŜ3

(x),

then we have ∂yδŜ(v) = ∂yδŜ1
(y), ∂kδŜ(v) = ∂kδŜ2

(k), ∂xδŜ(v) = ∂xδŜ3
(x).

The set Ŝ is bounded and closed, and the function Ψ(v) = 1
2 ||V

−1
1 (y) − V−1

2 (k) ⋆

V−1
3 (x)||2F + β

2 ||k||
2
2 is a polynomial of v = (y,k,x), therefore, ∇vΨ(v) is Lipschitz con-

tinuous on the set Ŝ, i.e., there exits a positive constant C, such that for any v,w ∈ Ŝ,

||∇Ψ(v) −∇Ψ(w)||2 ≤ C||v −w||2. (5.26)

Let wi+1 = (wi+1
1 , wi+1

2 , wi+1
3 ) and

wi+1
1 = ∇yΨ(yi+1,ki+1,xi+1) + ζi+1

1 ,

wi+1
2 = ∇kΨ(yi+1,ki+1,xi+1) + ζi+1

2 ,

wi+1
3 = ∇xΨ(yi+1,ki+1,xi+1) + ζi+1

3 ,

then wi+1 ∈ ∂vF̃ (v). Substituting the ζi+1 in above equations by (5.23)-(5.25), we obtain
the following:

wi+1
1 = ∇yΨ(yi+1,ki+1,xi+1) −∇yΨ(yi+1,ki,xi) + ξi+1

1 − ρ1(yi+1 − yi),

wi+1
2 = ∇kΨ(yi+1,ki+1,xi+1) −∇kΨ(yi+1,ki+1,xi) + ξi+1

3 − ρ2(ki+1 − ki),

wi+1
3 = ∇xΨ(yi+1,ki+1,xi+1) −∇xΨ(yi+1,ki+1,xi+1) + ξi+1

3 − ρ3(xi+1 − xi).

Therefore,

||wi+1||2 ≤ C||ki+1 − ki||2 + 2C||xi+1 − xi||2 + b1||yi+1 − yi|| + b2||ki+1 − ki||
+ b3||yi+1 − yi|| + ρ1||yi+1 − yi|| + ρ2||ki+1 − ki|| + ρ3||yi+1 − yi||
≤ 2C||vi+1 − vi||2 + ρb||vi+1 − vi||2 = (2C + ρb)||vi+1 − vi||2,

where ρb = max{ρ1 + b1, ρ2 + b2, ρ3 + b3}. The first inequality is because of the (5.26) and
(5.17)-(5.19) in Assumption 5.1. Therefore, the condition H2. in the Lemma 5.5 is satisfied.

Since {vi}i∈N is a bounded subset of RN , it’s relative compact, meaning that there

exists a subsequence {vij}j∈N → v∗, as j → +∞. {vij}j∈N ⊆ Ŝ and Ŝ is a closed set, thus
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v∗ ∈ Ŝ, and F̃ (vij ) → F̃ (v∗), as j → +∞. Therefore, the condition H3. in the Lemma 5.5
is satisfied.

By Lemma 5.4, F̃ has KL property at each point of Ŝ, thus at v∗. Hence, the proof is
completed by Lemma 5.5.

Back to the tensor computation rather than the vector form, the Assumption 5.1 can be
rewritten as the following Assumption 5.2.

Assumption 5.2. There exists same non-negative constants in Assumption 5.1, ϵ1 ∈ (0, ρ1),
ϵ2 ∈ (0, ρ2), ϵ3 ∈ (0, ρ3), and b1, b2, b3, such that for each iteration,

F (Yi+1,Ki, Xi) +
ρ1
2
||Yi+1 − Yi||2F − F (Yi,Ki, Xi) ≤ ϵ1

2
||Yi+1 − Yi||2F , (5.27)

F (Yi+1,Ki+1, Xi) +
ρ2
2
||Ki+1 −Ki||2F − F (Yi+1,Ki, Xi) ≤ ϵ2

2
||Ki+1 −Ki||2F , (5.28)

F (Yi+1,Ki+1, Xi+1) +
ρ3
2
||Xi+1 −Xi||2F − F (Yi+1,Ki+1, Xi) ≤ ϵ3

2
||Xi+1 −Xi||2F , (5.29)

and

∃ ξi+1
1 ∈ ∂YF (Yi+1,Ki, Xi) + ρ1(Yi+1 − Yi), (5.30)

∃ ξi+1
2 ∈ ∂KF (Yi+1,Ki+1, Xi) + ρ2(Ki+1 −Ki), (5.31)

∃ ξi+1
3 ∈ ∂XF (Yi+1,Ki+1, Xi+1) + ρ3(Xi+1 −Xi), (5.32)

with

||ξi+1
1 ||F ≤ b1||Yi+1 − Yi||F , (5.33)

||ξi+1
2 ||F ≤ b2||Ki+1 −Ki||F , (5.34)

||ξi+1
1 ||F ≤ b3||Xi+1 −Xi||F . (5.35)

Corollary 5.7 (global convergence of inexact iteration). Let (Yi,Ki, Xi) be the sequence
generated by PAM Iteration (4.1)-(4.3) with errors satisfying (5.27)-(5.35) in Assumption
5.2. Then there exists (Y∗,K∗, X∗), such that

• (Yi,Ki, Xi) → (Y∗,K∗, X∗);

• 0 ∈ ∂F (Y∗,K∗, X∗);

• {Yi,Ki, Xi}i∈N has a finite length, i.e.,

+∞∑
i=0

√
||Yi+1 − Yi||2F + ||Ki+1 −Ki||2F + ||Xi+1 −Xi||2F < +∞.

The Corollary 5.7 demonstrates that if the sequence generated by PAM Iteration (4.1)-
(4.3) with errors satisfying (5.27)-(5.35) in Assumption 5.2, then our sequence will converge
to the critical point of the objective function F . Moreover, due to the non-convexity of the
object function in (Y,K, X), the global minimum is hard to achieve.

6 Numerical Experiments

In this section, numerical experiments are conducted and numerical results show both the
effectiveness and the robustness of the proposed model for tensor completion and blind
deconvolution. We adopt both the discrete Fourier transform matrix (DFT) and the discrete
cosine transform (DCT) matrix as the transform matrix Φ in TTNN.
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6.1 Parameters setting

Fixed hyperparameters. The observation ratio is defined as ρ = |Ω|
nvnhnb

, where |Ω|
denotes the number of elements in Ω. In our numerical experiments, the observed data are
sampled uniformly. All images tested in this section are of size 251×251. Usually the model
should be insensitive to the parameters ρ1, ρ2 and ρ3 (defined in (4.1) - (4.3)), thus we set
them all to be 10−6, i.e., ρ1 = ρ2 = ρ3 = 10−6. We adopt the following relative error as
stopping criterion for each iteration step,

max{ ||Y
i+1 − Yi||2F
||Yi+1||2F

,
||Ki+1 −Ki||2F

||Ki+1||2F
,
||Xi+1 −Xi||2F

||Xi+1||2F
} < 5 × 10−7.

The maximum number of PAM iteration for our model is set to 500. In ADMM iteration,
we set κ1 = κ2 = κ3 = 2 for lower computational costs.

Tunable hyperparameters. In our proposed model (3.1), hyperparameters α, β and
γ play essential roles in recovering clean images. Proper choices of penalty parameters µ1,
µ2 and µ3 for augmented Lagrangian methods also contribute to empirical performances of
the proposed algorithm. In each experiment, we tune the above hyperparameters by grid
search. Surprisingly, we find that with fixed image size, blur kernels and observation ratios,
the numerically optimal hyperparameters are close even for different images, which implies
the practical feasibility of the proposed model. Hyperparamters for test 1 (applicable to all
images with the same setting) are (α, β, γ, µ1, µ2, µ3) = (1e−1, 8e−1, 15e−5, 15, 7e2, 7e−3).
For test 2 to 4, we tune hyperparameters based on those in test 1.

Evaluation. In order to evaluate the performance of our model, we use PSNR values
to measure the quality of the restored sharp image X and blurred images Y. If tensor Ŷ is
an approximation to tensor Y, then the PSNR values for Ŷ and Y is as follows,

MSE =
1

nvnhnb

∑
(i,j,t)

|Y(i, j, t) − Ŷ(i, j, t)|2,

PSNR = 10 · log10(
max(Y)2

MSE
).

Initial values. Initial values for the PAM iterations are

Y0(i, j, t) =


1

2
, if (i, j, t) /∈ Ω,

M(i, j, t), if (i, j, t) ∈ Ω.

X0 = Y(:, :, 1),

K(i, j, t) =
1

(2kv + 1)(2kh + 1)
, −kv ≤ i ≤ kv, −kh ≤ j ≤ kh, 1 ≤ t ≤ kb.

Kernels. In the follwoing tests, we use Gaussian kernels with different standard devia-
tions, as is defined in (6.1).

G(i, j) =

exp(− i2 + j2

2σ2
), if |i| ≤ kv and |j| ≤ kh,

0, otherwise.

(6.1)

We assume that for the blurred images from the same source, the size of blurs should be
the same, i.e., kv and kh are fixed for all blurred images in experiments, but with different
σ. Therefore, we set kv = kh = 5 in the tests.
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Transformations for tensor nuclear norm. In each case, we use discrete Fourier
transform (DFT) matrix Φ1 = 1√

kb
Fkb

and discrete cosine transform (DCT) matrix Φ2 = Ckb

as two transform matrix for TTNN. In [24], Song et.al. proposed a kind of data dependent
transform matrix Φ, however, in our tests, it’s not appropriate to adopt the strategy because
our observations have missing values.

6.2 Single observed image with incomplete data

To show the effectiveness of our model of integrating information from different blurred
images, we compare it with a ”downgraded” method that restores a sharp image from single
incomplete blurred image. The model adopts low rank prior, Tikhonov prior and low total
variation prior to the blurred image Y ∈ Rnv×nh , the kernel K ∈ Rkv×kh and the sharp
image X ∈ Rnv×nh respectively. It is a special case of our model that nb = kb = 1, thus we
call it one-dimension model. Therefore, the model is

arg min
Y,K,X

1

2
||Y −K ⋆X||2F + α||Y ||∗ +

β

2
||K||2F + γ(||D1X||1 + ||XDT

2 ||1),

s.t. 0 ≤ X,Y ≤ 1, PΩ(Y −M) = 0, K ≥ 0,
∑
i,j

K(i, j) = 1, (6.2)

where α, β and γ are given positive parameters of regularization terms. Ω denotes the
observed entries of the blurred image and M is the observed data, satisfying that PΩ(Y ) =
PΩ(M) and the values of matrix M outside Ω is 0. Here, ’⋆’ is the convolution product with
periodic boundary condition. The procedure of solving this optimization problem is similar
to but much easier than solving our model.

6.3 Numerical results

There are several tests to show the effectiveness and robustness of our model. The blurred
images are generated by the convolution of Gaussian kernels and the corresponding sharp
images. In test 6.3.1, we select four different clean images: “Pepper”, “Akita”, “Camera-
man” and “Barbara” for numerical tests. We compare the restored results with different
observation ratios. To show the performance of our model in integrating information from
different blurred images, we also compare it with the state-of-the-art method of recovering
a sharp image from single incomplete blurred image. For brevity, we only present the best
restored images and their PSNR values as results of the one-dimension method, although it
does blind deconvolution to all obtained blurred images. In test 6.3.2, to further reveal the
effectiveness of our model in extracting information, we test on different number of blurred
images with fixed range of blur kernels. In test 6.3.3, we enlarge the range of blurs to fur-
ther investigate the properties of our model. Finally, small perturbation is considered in
observation ratio, indicating the robustness of our model with respect to observation ratio,
please see test 6.3.4.

6.3.1 Test 1: performance for different images

In Figure 1, the “Pepper” images are blurred by Gaussian kernels with σ ∈ {3, 3.5, 4, 4.5, 5}.
Figure 2 and Figure 3 show the observed images with observation ratio ρ = 0.6 and ρ = 0.8
respectively.

The clean image is shown in Figure 4a. Figure 4b is the restored image with ρ = 0.6
and the transformation matrix Φ being a discrete Fourier transformation matrix in TTNN.
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Figure 1: ”Pepper” blurred images with continuously changing kernel blurs.

Figure 2: “Pepper” observed images with ρ = 0.6.

Figure 4c shows the restored image with ρ = 0.6 and the transformation matrix Φ being a
discrete cosine transformation matrix in TTNN. Figure 4d and Figure 4e are the restored
image with ρ = 0.8 and the transformation matrix Φ being a discrete Fourier and cosine
transformation matrix in TTNN respectively. Comparing Figure4b and Figure 4c with
Figure 4d and Figure 4e, we can conclude that more observed data (larger observation ratio
ρ) can result in better restoration. From the PSNR values of the restored images, discrete
cosine transform matrix (DCT), as a transformed matrix in TTNN, performs better than
DFT in our model for image restoration. To show the effectiveness of our model, we also
use a blind deconvolution method to recover the sharp image from single incomplete blurred
image. Because most of the methods use fully observed data, which are different from our
model, we compare our model with the one-dimension method mentioned in section 6.2.
The results of the one-dimension method is shown is in Figure 6. We zoom in the region of
pepper stem with complicated details. The visual quality of zoomed images in Figure 5 is
much better than images in Figure 6, demonstrating the effectiveness of our model that it
performs better than restoring clean image from single incomplete blurred image and it can
integrate information from all blurred images.

Numerical results of “Akita” images are shown in Figure 7. Figure 7b is the restored
image by our proposed model with DCT as transformed matrix and ρ = 0.6. Image in
Figure 7d is recovered by one-dimension method with ρ = 0.6. The restored image by our
model has higher PSNR value than one-dimension method. We also zoom in the region of
Akita’s nose and whiskers, as is shown is in Figure 7c and Figure 7e. Figure 7c is closer
to the zoomed clean image in Figure 7a and has more well recovered details. However, it’s
difficult to recognize Akita’s whiskers in Figure 7e and the “Akita” image’s nose is also of
low resolution with obvious corners of pixels. The visual quality of zoomed images obtained
by our model is much better than images recovered by the one-dimension method, indicating
the effectiveness of our model.

The “Cameraman” images recovered by our model have higher PSNR values than that
of one-dimension model as is shown in Figure 8. We zoom in the face and camera regions
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Figure 3: “Pepper” observed images with ρ = 0.8.

Figure 4: “Pepper” clean and restored images.

Figure 5: “Pepper” zoomed clean and restored images.

Figure 6: “Pepper” restored and zoomed images by single blurred image only.

of the “Cameraman” image with full of details. Our model can recover most of the details
but the one-dimension model does not behave so well.



90 Y. GAO, X. LIN AND M. K. NG

Figure 7: “Akita” zoomed clean and restored images.

Figure 8: “Cameraman” clean image and the restored images.

Figure 9: “Barbara” zoomed clean and restored images.

The “Barbara” images recoveries are displayed in Figure 9. The images restored by our
model have higher PSNR values than that of one-dimension model. The face and headscarf
regions with complicated details and stripes are zoomed, referred to Figure 9a, Figure 9c
and Figure 9e. Although our model performs better than the one-dimension method in the
zoomed regions, it does not perform so well because of the complicated details especially
with much texture in “Barbara” image.

Table 1 lists the numerical results of all four kinds of images. The left hand side of
the table shows the PSNR values of the restored sharp image X and the right hand side
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PSNR of restored sharp images PSNR of completed blurred images
DFT DCT one-dim DFT DCT one-dim

Pepper
p = 0.6 30.6261 31.0788 27.5730 66.7739 69.8342 54.8405
p = 0.8 31.0991 31.3448 28.5924 70.5208 76.3178 66.2547

Akita
p = 0.6 34.2476 34.4482 31.5432 69.0501 69.8394 54.3027
p = 0.8 34.5492 34.7374 32.0961 74.5742 77.4138 64.9377

Cameraman
p = 0.6 29.0374 29.2544 26.3951 64.8718 69.5704 56.7223
p = 0.8 29.3584 29.4952 27.0570 73.5482 79.1875 65.8105

Barbara
p = 0.6 28.3122 28.6385 26.3631 68.2208 68.8145 57.5101
p = 0.8 29.0014 29.0080 27.3385 71.6434 76.1636 69.1548

Table 1: PSNR values of restored sharp images and incomplete blurred images

shows the PSNR values of the recovered blurred images Y. In four images, our model
performs better than one-dimension method from PSNR values of restored sharp images and
discrete cosine transform (DCT) as the transformed matrix Φ is better than discrete Fourier
transform (DFT) in our experiments. Better performance of DCT is within our expectations
because DCT in TTNN assumes the reflective boundary conditions (also known as Neumann
boundary conditions) for blurred images (a tensor) on third dimension. Also, high PSNR
values of completed blurred images Y shows the excellent performance of our model in low
rank tensor completion.

In next several parts, we adopt DCT as the transformed matrix in TTNN.

6.3.2 Test 2: performance for different numbers of observed images

In this part, we show the effectiveness of our model with different number of input blurred
images. The test images are same as in Figure 1. For more convenience, we fix the obser-
vation ratio ρ = 0.6 and the standard deviation of Gaussian kernels σ ranges from [3, 5].
Furthermore, the standard deviations are equally distributed in interval [3, 5], i.e., if given
nb = kb blurred images, in matlab language, σ ∈ linspace(3, 5, nb), where

σ1 = 3, σkb
= 5, σi+1 − σi = σi − σi−1.

Numerical results are displayed is Figure 10. PSNR values increase dramatically when
the number of input blurred images change from 3 to 5. But for more than 5 input blurred
images in our model, the PSNR value moves more and more slowly. That’s because with
our setting that standard deviations are equally spaced in the interval [3, 5], more input
images means more similarities between neighboring images, leading to the growing amount
of redundant information. In conclusion, too many similar blurred images will not improve
the quality of the restored image because they merely have limited information.

Hence, to improve the restoration, we can enlarge the range of standard deviations of
Gaussian blurs. See in the next test.

6.3.3 Test 3: performance for different blurred images

From Figure 10, with 10 input blurred images, our model has extracted most of the infor-
mation from blurred images whose standard deviations of Gaussian kernels ranging from 3
to 5. If we enlarge the range of standard deviations of Gaussian blurs, e.g., interval [2, 8],
and 10 standard deviations are equally spaced in this range, the numerical results are shown
in the following figure.
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Figure 10: PSNR values of restored images by our model with different number of input
blurred images.

Figure 11: Restored images and Zoomed regions

The restored image whose blur kernels range from 2 to 8, has larger PSNR values. We
zoom in the region of the stem of the pepper labeled by red rectangle and zoomed region is
shown in Figure 11b and Figure 11d. It’s easy to find that the blue region of Figure 11d has
more what zigzag pixels than the region in Figure 11b. In the green region, Figure 11b also
has more details than Figure 11d. Both PSNR values and recovered details demonstrate the
effectiveness of our model of extracting information from blurred images.

6.3.4 Test 4: performance for different sampling ratios ρ

In this test, we slightly change the observation ratio of each blurred image to show the
robustness of our model w.r.t. the observation ratio ρ. In each test, 5 blurred images are
used and the setting of Gaussian blurs is the same as Test 2, i.e., the standard deviations
are equally spaced from 3 to 5. We first define original mode and three modes of changing
observation ratio. In original mode, we set observation ratio ρ = 0.6 for each blurred image.
For mode 1, observation ratios are monotonically increasing, i.e.,

ρ = [ρ̃1, ..., ρ̃5] = [0.56, 0.58, 0.60, 0.62, 0.64],
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where, ρ̃i denotes the observation ratio of the i-th blurred image. For mode 2, observation
ratios are monotonically decreasing, i.e.,

ρ = [ρ̃1, ..., ρ̃5] = [0.64, 0.62, 0.60, 0.58, 0.56].

And for mode 3, observation ratios are changing more complicated, for example,

ρ = [ρ̃1, ..., ρ̃5] = [0.60, 0.62, 0.58, 0.64, 0.56].

Numerical results are shown in Figure 2. Images recovered by our model with four kinds
of observation modes have very similar PSNR values, meaning that our model is not sensitive
to small changes of observation ratios and doesn’t require each blurred images to have the
same observation ratio strictly. In conclusion, our model is robust with respect to observation
ratio that small perturbations of observation ratio don’t influence its performance.

original mode 1 mode 2 mode 3
PSNR 31.0788 31.1078 31.1577 31.0544

Table 2: PSNR values of images in four observation modes

7 Conclusion

In this paper, we have studied a model that can do blind deconvolution and low rank tensor
completion with incomplete observations for third order tensors. The model is mainly for
recovering one sharp image from multiple corresponding blurred images with missing values.
TTNN, a more general form of TNN, is adopted in our model for low rank tensor completion
based on Song’s recent work [24]. PAM and ADMM iterations are developed to solve the
optimization problem. Moreover, an inexact solution convergence analysis is established.
And the numerical experiments are presented to show both the effectiveness and robustness
of our proposed model that it can integrate information from different blurred images.

Different unitary matrix can be adopted in TTNN and will have different performances in
our model. Numerical experiments in this paper show better performance of DCT than DFT
as the transformed matrix in TTNN. It is interesting to propose a model whose transformed
matrix can be determined by observations rather than predefined because there are too
many proper unitary matrices but difficult to find a relatively optimal one without much
numerical testing.
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