A2 Py, 4,

“ Yokohama Publishers

Aol /SSN 1349-8169 _ONLINE JOURNAL

Yok, %

PIECEWISE LINEAR RELAXATION METHOD FOR
GLOBALLY SOLVING A CLASS OF MULTIPLICATIVE
PROBLEMS*

HoNGwEI J1ao!, WENJIE WANG AND PEIPING SHEN

Abstract: This paper presents an image space branch-and-bound algorithm for globally solving a class of
multiplicative problems (MP). In the algorithm, by introducing new variables and the logarithmic trans-
formation, we firstly transform the problem (MP) into an equivalent problem (EP1). Next, by using the
properties of the logarithmic function, we propose a piecewise linear relaxation method for constructing
the linear relaxation problem of the problem (EP1), which can be used to compute the lower bound of the
optimal value of the problem (EP1). Furthermore, to improve the convergence speed of the algorithm, some
image space region reduction techniques are added into the branch-and-bound algorithm. Finally, the global
convergence of the algorithm is proved and the maximum number of iterations of the algorithm is estimated
by analyzing its computational complexity, and numerical results show the feasibility and validity of the
algorithm.
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Introduction

This paper investigates the following multiplicative problem:

1 —_ TP n ;
(MP) : in f(x) - j:l(zizl Cji%; + dj)7 ,
s.t. ‘TEX:{J;ER”‘A(ESI)}’

where c¢;;, d; and «; are arbitrary real numbers, A € R™*" b € R™, and X is a nonempty
bounded set, and for any = € X, E?:1 cjiti+d; >0,7=1,2,...,p.

During the past years, the problem (MP) and its special cases have attracted wide
attentions of many researchers and practitioners. On the one hand, the problem (MP) has
a wide range of applications in data analysis and processing, system engineering, financial
optimization, robust optimization, VLISI chip design, decision tree optimization, and so on
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[10, 22, 14, 9, 15, 4, 2]. On the other hand, the problem (MP) generally exists many local
optimal solutions which are not global optimal.

In the last two decades, a large number of algorithms have been proposed for globally
solving some special forms of the problem (MP). In general, these algorithms can be classified
into the following categories: branch-and-bound algorithms [17, 3, 13, 30, 31, 5, 16, 27, 6, 24],
outer-approximation algorithm [11], level set algorithm [12], polynomial time approximation
method [19], cutting plane method [1], and so on. In addition to the algorithms mentioned
in the above comments, especially recently, Shen et al. [20] proposed an outer space branch-
and-bound algorithm for solving the linear multiplicative programming problem by utilizing
the linear relaxation technique and the branch-and-bound scheme; Wang and Liu [25] pro-
posed a D.C. decomposition linearization method for a generalized linear multiplicative
programming problem; Zhang et al. [28] presented an output-space branch-and-bound re-
duction algorithm for the generalized linear multiplicative programming problem by utilizing
a new relaxation bounding method; Jiao et al. [7] proposed an outer space branch-and-bound
algorithm for the generalized linear multiplicative programming problem. Shen and Huang
[18] proposed a rectangular branch-and-bound algorithm with standard bisection rule for
solving the linear multiplicative problem by using a new linear programming relaxation.
By dividing the outer space of the generalized linear multiplicative programming problem
into finite polynomial rectangles and a new two-stage acceleration technique, Zhang et al.
[29] proposed an efficient polynomial time algorithm for a class of generalized linear multi-
plicative programs with positive exponents. Shen et al. [21] proposed a branch and bound
algorithm for globally solving the linear multiplicative problem based on the characteristics
of the initial problem. However, the above reviewed methods can only deal with some par-
ticular cases of the problem (MP). Therefore, it is very necessary to propose a new algorithm
for solving the problem (MP) in its general form.

In this paper, we will present an image space branch-and-bound algorithm for globally
solving the problem (MP). First of all, we convert the problem (MP) into the equivalent
problem (EP1) by introducing new variables and the logarithmic transformation. Next, by
utilizing the piecewise linear relaxation method, we derive the linear relaxation problem
(LRP) of the problem (EP1). To improve the computational efficiency of the algorithm, we
construct some image space region reduction techniques by using the variable separability
of the objective function of the problem (EP1) and the framework of the branch-and-bound
algorithm. Based on the branch-and-bound framework, an image space branch-and-bound
algorithm is established by combining the linear relaxation problem and the image space
region reduction techniques. Compared with the existing branch-and-bound methods, the
proposed algorithm has the following potential practical and computational advantages: (i)
The branch-and-bound search takes place in the p-dimensional image space of linear product
functions, which greatly mitigates the required computational efforts; (ii) A new piecewise
linear relaxation method is proposed for deriving the linear relaxation problems with higher
compactness; (iii) Some new image space region reduction techniques are proposed for im-
proving the computational efficiency of the algorithm; (iv) The computational complexity of
the algorithm is analysed and the maximum iterations of the algorithm are estimated for the
first time; (v) The numerical results show that the proposed algorithm can effectively find
the globally optimal solutions of all test instances with better computational performance.

The structure of this paper is given as follows. In Section 2, the equivalent problem (EP1)
of the problem (MP) is derived, and a new piecewise linear relaxation method is proposed
for establishing the linear relaxation problem of the problem (EP1). In Section 3, some
image space region reduction techniques are constructed for improving the computational
efficiency of the algorithm, an image space branch-and-bound algorithm is presented, the
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global convergence of the algorithm is proved, and its computational complexity is analyzed.
Numerical results for some test examples in recent literatures are reported in Section 4.
Finally, some conclusions are provided in Section 5.

Piecewise Linear Relaxation Method

To globally solve the problem (MP), we firstly convert the problem (MP) into an equivalent
problem (EP). Next, by utilizing the logarithmic transformation, we transform the problem
(EP) into the equivalent problem (EP1), which has the same optimal solution as the problem
(EP).

Without losing generality, for each j = 1,2,...,p, introducing the variable t; =
S cjiwi + dj, and letting

l? = min Z?:l Cji%; + dj
s.t. Az <b,
Z?:l CjiTi + dj >0,
ujQ =max Y . ,¢jxi+d;
s.t. Az <b,
Z?:l Cjixi + dj > 0,
we can construct the initial rectangle 7° = {t € Rﬂl? <t; < u]Q,j =1,2,...,p}, and the
problem (MP) can be transformed into the following equivalent problem:

min g¢(t) = ?zl(tj)'”,
(EP) : s.t. tj = Z?:l Cji 5 +dj, ] = 1,2,...,p,
re X, teTY.
Remark 2.1. If (z%,t7,15,...,t3) is a global optimal solution to the problem (EP), then x*
is a global optimal solution to the problem (MP), where ;= S ciri+di, i =1,2,...,p.
In turn, if * is a global optimal solution to the problem (MP), let ;= Yo ciri4di, i =
1,2,...,p, then (z*,13,t3,...,1;) is a global optimal solution to the problem (EP).

By applying the logarithmic transformation, we can convert the problem (EP) into the
following equivalent problem (EP1):

min  s(t) = >0, v Int;,
(BP1):¢ st t;=>0"  cimi+dj,j=1,2,...,p,
reX, teTO.

Obviously, the problems (EP1) and (EP) have the same optimal solutions and optimal
values. In the following, the main work is to solve the problem (EP1), so that we need to
construct the linear relaxation problem (LRP) of the problem (EP1), which can provide a
reliable lower bound for the optimal value of the problem (EP1) in the branch-and-bound
searching process.

Without losing generality, for convenience, for any t € T = {t € RP|l; < t; < u;,j =
1,2,...,p} € T° the following symbols are introduced.

In ity —Inl; Inu;—In Lty
0j(ty) =1ntj, k= “rFm— s ke = e,
2 J i 2
6; (t) = min{lnlj —+ klj(tj — lj),hl ZJJFTUJ + kgj(tj — _l]‘J;uJ- )},

j\"J
5?(fj) = min{kljtj —1—1In k‘lj7 ]{/’thj —1—1In kgj}.
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By utilizing the geometric properties of the logarithmic function, we need to construct
the linear relaxation problem of the problem (EP1), and the following Theorem 2.2 presents
an effective method for constructing the linear relaxation problem.

Theorem 2.2. For any t; € [l;,u;],j =1,2,...,p, let w; = u; —;, consider the functions

5§(tj), j(ts), and 6}(t;), j = 1,2,...,p, we have the following conclusions:

(1) 5;( ) <4t )<6“( ), i=1,2...,p;
(if) limg,; 50[0;(t;) — 0L (t;)] = limy,, 0[0%(t;) — 6;(t;)].

Proof. (i) For any t; € [l;, L 'H”] Jj =1,2,...,p, Since the function Int; is a concave and
monotone increase function over [I;, 7; ], its convex envelope is Inl; + kq,(¢; — ;). Since

the tangential supporting function for In tj is parallel with the Inl; + k1;(¢t; — {;), thus the
point of tangentlal support will occur at " - and the corresponding tangential supporting
function is k1 ;¢; —1—Ink;;. Therefore, by the geometric property of the logarithmic function
3;(t;), we have

hllj + klj(tj - ZJ) S lntj S kljtj —1- lnklj.

l]-+uj

Similarly, for any ¢; € |
function ¢;(t;), we have

In b+

,ujl,5 =1,2,...,p, by the geometric property of the logarithmic

+ koj(t; —

L. .
%) S lntj S kgjtj —1- h’lkgj.

Therefore, for any t; € [I;,u;],7 =1,2,...,p, we have that
(5§ (tj) = min{ln lj + ]ﬁj (tj — lj),ln l,--‘;uj + k‘gj(tj - HTUJ)}
Int; = 9;(t;)
min{kljtj —1—1In klja ]fgjtj —1—1In k‘2j}
53 (),

IN A

ie.,
8 (t5) < 85(5) < 87 (t)-

(ii) When ¢t; € [I;, ljzuj] we have 4! (i) =1Inl; + k1;(t; —1;), which is a linear function
about ¢;, also since the function J;(¢;) is a concave function, we have that §;(¢;) — 6;- (t;) is
l +u3]

2

a concave function about t; over [l;, . Thus, the maximum value of §;(¢;) — (5; (t;) over

[lj, L Z"]} can be obtained at the point of tangential support hyperplane ﬁ Similarly, we
v17

li+u,

can prove that, when t; € [

[l’zu’ ,uj}7 the maximum value of §;(¢t;) — 5;- (t;) over [lj';uj7uj] can be also obtained at

the point of tangential support hyperplane é Therefore, we have
J

i(t5) = 05(t5)]
= max {lnt] —min{lnl; + k1,;(t; — ;),1n lj—guj + koj(t; — l"—guj )}}

uj} 0;(t;)— 5;(15]-) is also a concave function about t; over

max

=max{ —Inky; —Inl; — 1+ k05, — In ko, —lnlﬁ% -1 +k2jlj+2uj}

Litug Litus .

Z_ )1 In =2 =i -1 In( i

= max lnw—l—&— In 2 -1+ —-—27
ln( 12]' >

li+tu,; I
il BN nf % ST B D
lj lzv:uz' L7+2uz<
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Litu,
Since Jli — S 1lor 5 — 1 as w;j — 0, so that we can obtain that max[éj(tj)féé(tj)] —0
2

Ly
as w; — 0.

When ¢; € [I;, ljg"j ], we have 03/(t;) = k1;t; —1—Inki;, which is a linear function about

t;, also since the function —4;(¢;) is a convex function about ¢;, we have that &3 (t;) —d;(t;)
lj+ug']

2]

0%(t;) — 8;(t;) over [lj7 lﬁzu’} can be achieved at the point /; or ljguj. Similarly, we can

is a convex function about t; over [l;, Thus, the maximum value of the function

prove that, when ¢; € [lj';uj,uj} 0% (t;) — 0;(t;) is also a convex function about ¢;, the

maximum value of the function &3 (t;) —d,(t;) over [lj ';uj

,uj} can be achieved at the point

l . .
% or u;. Therefore, we have

8¥(1;) — 8;(1;) = kjly — 1 — Inky; — Inly,

ettty — g, (BtN ) = byt — 1 —Inky; — In 5E
gu(lttay — g,(Hth ) = ky it 1 Inky; — In Bt
6% (uj) — 0;(uj) = kojuj — 1 — Inkgj — Inwy.

By kijlj — Inlj = kyj 25" — In 954 and ko ut™ — In 9%% = kyju; — Inw;, we have that

lj—|-Uj lj+Uj

07 (1) = 0;(1y) = 63 (=5—7) = 85 (=) = 65 (uy) — 65 (uy)-
So that

max[5}/ (t;) — 6;(t;)]
= max[kljlj —1—1In klj — hllj, kngj —1—In kgj — hlu]‘}

= maX[— In ]{1]‘ —1In lj -1 + Ifljlja —In k'gj —1In Litu; -1 + kgj lj+uj}

5 2
= max[0;(t;) — 5;(733’)]'

Therefore, we can obtain that max[d7 (¢;) —d;(t;)] — 0 as w; — 0, and the proof is completed.

U

To better illustrate the piecewise linear lower bound 65- (t;) and the piecewise linear upper

bound 4} (¢;) of the function d,(¢;) in the revised manuscript, we give the following Figure
1.

Next, denoting ¢(t) as the underestimating function of the function s(t), by Theorem
2.2, for any t € T, we have

p p p
s(t) = Z%‘ Int; > Z 705 (t5) + Z 7505 (t;) = (1)
Jj=1 J=1,7>0 J=1,7;<0

Therefore, by the above discussions, for any T C T, we construct the relaxation problem
(RP) of the problem (EP1) as follows:

min ¢(t) = Y01, oot (t) + S0y 16t (E),
(RP) : s.t. tj = Z?:l Cjil‘i—f—dj,j = 1,2,...,]),
re X, teT,
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. d;(t;)
; (t;)
/6§(tj)
l;
(@) l]' + u; Uuj t]'
2

Figure 2.1: The piecewise linear lower bound d%(¢;) and the piecewise linear upper bound 8% (%)
of the function §;(¢;)

where
lj + u; lj + u;

2 )}’
(S;J(t]) = min{kljtj —1—1In k1j7 k‘gjtj —1—1In kgj}.

5§(tj) = min{ln lj + k‘lj(tj — lj),ln + k’gj(tj —

Remark 2.3. Obviously, the feasible set of the problem (RP) is the same as that of the
problem (EP1) over T, and ¢(t) < s(t). Therefore, the global optimal value of the problem
(RP) provides a lower bound for the global optimal value of the problem (EP1) over T

By introducing new variables \;,j = 1,2,...,p, the problem (RP) can be rewritten as
the following equivalent linear relaxation problem (LRP):

min 6() = S, s,
s.t. )\jSlHljﬁ*klj(tj*lj), if"}/j>0,j:].,2,...,p,

)\j SIDHT% +k2j(tj - ljguj), if"yj >0,7=12,...,p,
(LRP) )\jgkljtjflflnklj, if’)/j<0,j:1,2,...,p,
)‘j < kgjtj —l—lnk2j7 lf’)/] <0,5=12,...,p,
tj:Z?:lcji.’lfi—‘rdj,j:1,2,...,]).
re X, teT.

Thus, in the process of iterative solution, we can solve the problem (LRP) instead of solving
the problem (RP).

Algorithm and its Complexity Analysis

In this section, we first present a rectangle branching rule and some image space region
reduction techniques. Next, an image space branch-reduction-bound algorithm is proposed
for solving the problem (EP1) based on the former linear relaxation problem. Finally, we
give the detail proof of the convergence and the complexity analysis of the algorithm.
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Branching rule

Consider any node subproblem identified by the rectangle 7' = {t € RP|l; < t; < u;,j =
1,2,...,p} C TP The proposed branching rule is given as follows:

(i) Let ¢ = argmax{u; —;,j =1,2,...,p};

(ii) We subdivide the T into two sub-rectangles

lj+Uj

T={teRP|l; <t; < J=aly <ty <w;,j=1,2,...,p,j #q}

and
= plj+uj . . .

By the branching rule, the rectangle T' can be partitioned into two sub-rectangles T' and T.

Image space region reduction techniques

In this subsection, some image space region reduction techniques are constructed for im-
proving the convergence speed of the algorithm.

Without loss of generality, for any t € T = {t € R?|l; < t; < wu;,j = 1,2,...,p} CT°,
denote UB as the current upper bound of the global optimal value of the problem (EP1),
let

p p p p
LB = Z v Inl; + Z vilnu;, B, = Z v Inl; + Z vj Inuy,
J=17;>0 §=17;<0 J=1,j7#0,7;>0 J=1,j#0,7;<0

_ UB—-FE
Tl = {thp”j Stj Sujaj:]-a?v"'vpvj?ég;exp <Q> <tg Sugajg}
Yo

and

_ UB-E
T2={teRPllj<tj<uj,j=1,2,...,p,j7ég;zg<t9<exp(—@),j:g},

Yo

the detailed image space region reduction techniques are discussed in two cases as follows.

Theorem 3.1. For any T = {t € RP|l; < t; < uj,j = 1,2,...,p} C T°, we have the
following conclusions:

(i) If LB > UB, then there exists no globally optimal solution to the problem (EP1) over
T.

(ii) If LB < UB, then we have the following two cases:

if there exists some ¢ € {1,2,...,p} satisfying that v, > 0 and [, < exp (UB{)E‘-’) <

Uy, then T' contains no globally optimal solution to the problem (EP1);

if there exists some o € {1,2,...,p} satisfying that v, < 0 and [, < exp (UB,Y;E‘-’) <

Uy, then T contains no globally optimal solution to the problem (EP1).
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Proof. (i) If LB > UB, then for any t € T, we have

P P p
Itrél%ls(t):?él%l Z’yjlntj = Z 'yjlnlj—i—v Z vjlnu; = LB > UB.
j=1 7=1,7;>0 j=1,7v;<0

Thus, T contains no globally optimal solution to the problem (EP1).
(ii) If LB < UB, then for any t € Tl, for some ¢ € {1,2,...,p}, we have

. . UB-E .
l]Sthu]a]:1a277p717£Qa eXp<770><thuQa]:Q'
o

Thus, by v, > 0, it follows that

. . » )
min, 1 s(t) = min, g (ijl o7 lntj> > ijljj?ég_ﬂjx) v; Inl;

+Z?:17'Yj<0 Yjilnuj +7,1n (exp (%;EQ))
= E,+UB-E,
= UB.

Therefore, T contains no globally optimal solution to the problem (EP1).

Similarly, if LB < UB, then for any t € Tz, for some p € {1,2,...,p}, we have

, , UB-E,\ .
ljStjéuja]:1a27"'1p7]7égv lg<tg<exp<Tg>vJ:Q~

Hence, by v, < 0, it follows that

min, 72 s(t) = min, (Z?:l 7v; In tj)
UB-E
> Z§:17’7j>0 v;lnl; + Z;‘;:Lj;ﬁen/j@ v lnu; 4+ v, 1n (exp (—79 0
- E,+UB-E,
= UB.

Therefore, T contains no globally optimal solution to the problem (EP1).

Remark 3.2. According to the conclusions of Theorem 3.1, for any 7' C T°, when
UB, we can let T = (); when LB < UB, for each g € {1,2,...,p}, we can let T =

the problem (EP1) does not exist.

Image space branch-reduction-bound algorithm

Definition 3.3. Let (z*,t*) be a feasible solution of the problem (EP1), and let v be the
global minimum of the problem (EP1), if s(t*) — v < ¢, then (2*,t*) is a global e-optimal

solution of the problem (EP1).

Based on the previous discussions, the basic steps of the algorithm are summarized as

follows.

)

LB >
T
or T = T\TQ. So Theorem 3.1 provides a possibility for deleting the whole or a large part
of the currently investigated image space rectangles in which the global optimal solution of
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Step 0. (Initialization) Given the convergence tolerance € > 0 and the initial rectangle
7o,

Solve the (LRP(TY)) to obtain its optimal solution (z(7°),#(T")) and optimal value
LB(T%). Let LBy = LB(T") and (2°,t°) = (z(T°),t(T°)). Since (z°,#°) is a feasible
solution of the problem (EP1), let UBg = s(t°).

If UBy — LBy < ¢, then the algorithm terminates with that (z°,¢%) is a global e-optimal
solution of the problem (EP1) over T°. Otherwise, we denote F' = {(z°,¢°)} as the set of
feasible points, denote Qo = {T"} as the set of all active nodes, and let k = 0.

Step 1. Subdivide the rectangle 7% into two new sub-rectangles T%! and T%2, and

denote by the set of new subdivided sub-rectangles T = {Tr1 T2},

Step 2. For each T%* ¢ Tk, where ¢ = 1,2, use the image space region reduction
technique to compress its interval, and still denote Tk as the set of the each remaining
sub-rectangles.

Step 3. If T # (), then: for i = 1,2, we solve the following new linear relaxation
problem:

min () = 325, 1\,
s.t. )\jglnlj+k1j(tj—lj), if’}/j>0,j:1,2,...,p,
Aj < Bt k(e — B if g > 0,5 =1,2,...,p,
)‘j < kljtj — 1—lnk1j, lf’yj <0,5=1,2,...,p,
)\j < kzjtj —1 —lnkgj, if’}/j <0,5=12,...,p,
Y17 < UBg-,
tj = Z?Zlcjix;—i—dj,j =1,2,...,p,
rzeX, teThk

(NLRP) :

and obtain its optimal solution (z(T**),t(T*%)) and optimal value LB(T*?).

If LB(T*') > UBy_1, then let T" = T \T*+.

Otherwise, update the upper bound by setting U By, = min{s(t(T*")), UBy_1}, update
the set of the feasible points by setting F' = F |J{(x(T*?),¢(T*"))}, and denote (z*,t*) as
the currently known best feasible solution.

Step 4. The remaining partition set is denoted by Qx = (Q\T*) UTk, the new lower
bound is denoted by LBj = mingpeg, LB(T).

Step 5. Let Qi1 = Qu\{T|UB; — LB(T) <¢,T € Qi }-

If Qi1 = 0, then the algorithm terminates, UBj is a global e-optimal value of the
problem (EP1), and (z*,t*) is a global e-optimal solution of the problem (EP1) over T°.

Otherwise, select a sub-rectangle 75! satisfying that T*F*! = arg minreq, , LB(T), let
k =k + 1, and return to Step 1.

Remark 3.4. Obviously the objective function of the problem (LRP) is always less than
or equal to the currently known upper bound, and we can obtain a new linear relaxation
problem (NLRP) by adding this condition to the constraints of the problem (LRP).

Global convergence of the algorithm

In the following, we will prove the global convergence of the algorithm.

Theorem 3.5. The proposed algorithm either terminates within a finite number of itera-
tions, or generates an infinite sequence {(z¥,t*)} such that any accumulation point of the
sequence {(x* %)} is a global optimal solution for the problem (EP1).
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Proof. If the proposed algorithm is finite, without losing generality, we assume that the
algorithm terminates after k iterations, then we can get the optimal solution (z*,t*) by
solving the problem (LRP) over T%, where

n
:ZCji$f+dj,j:1,27...,p
i=1

From the convergence detection of the algorithm, the renewal methods of the upper and
lower bounds, we can follow that

s(t") < LBy + €, LBy, < v,v < s(t").

Therefore,
v < s(tk) <wv+te,

i.e. (x t*) is a global e-optimal solution of the problem (EP1).

If the proposed algorithm is infinite, then it can generate an infinite solution sequence
{x* t*} by solving the problem (LRP) over T*. And obviously that (z*,t*) is a feasible
solution sequence of the problem (EP1) over T°. Let (z*,t*) be an accumulation point
of {(z*,t¥)}, without losing generality, we assume that limy_,. (2%, t¥) = (2*,¢*). Let
th =3 cjiay +dj,j =1,2,...,p, we can obtain that

n

n
lim i = khanolo EICﬂxi +d; = E Cjimr +d; :t;J =12,...,p.
1=

k—o00 2
=1

From the continuity of the function Y 1" | cjix; + dj, Y1y cjixf +dj = th € [IF, 4], =
1,2,...,p, and the exhaustiveness of the branching rule, it follows that

n n

* R .k B k gk
E ¢y +d; fklin;o Elcﬂxi +d; fklim ] lgn [l], il= lingoﬂ i ] =t.
— =

Thus, (z*,t*) is a feasible solution of the problem (EP1) over T°. Since {LB(T*)} is an
increasing sequence and the updating process of lower bound, we have

lim LB(T") < s(t*) and Jim LB(T*) = Jim B(tF).

k—oc0

By Theorem 2.2, we can get that

lim ¢(t*) = hm s(t*) = hm Z’yj lnt’C s(t).

k—o0

Therefore, we have
lim LB(T*) = s(t*).
k—o0

Thus, (z*,t*) is a global optimum solution for the problem (EP1) over T°. Meanwhile,
it follows that a* is a global optimum solution of the problem (MP), and the proof is
completed. |
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Computational complexity of the algorithm

In this subsection, we will analyze the computational complexity of the algorithm for esti-
mating the maximum iterations of the algorithm. To this end, we define the size A(T) of a
rectangle

T={TeR|l; <tj <uj,j=1,2,---,p} CT°

by letting
A(T) == max{u; — |, =1,2,--- ,p}.

In addition, for convenience, we denote by

where l? e T,

Theorem 3.6. For any convergence tolerance € > 0, for any T C T°, if A(T) < =, then
for any feasible solution (x,t) of the problem (LRP) over T, we have

|s(t) — o(t)] < e
Proof. By Theorem 2.2, for any T C T9, for each j = 1,2, ..., p, we have

max[d7(t;) — ;(t;)] = max[d; (t;) — 85 (t5)]-

For any T C T°, if A(T) < piﬁ, then for any sufficiently small positive number ¢, it follows
that

|s(t) — o(t)]
= [ 2015005 (ty) = 85(t)) = 328, <o i [0% (t5) — 6;(2))]]
<IXE im0 x max(d;(ty) — 05 ()] — 8- <o x max[dy (t;) — 6;(t;)]]

< DE_ bl x max{[6;(t5) — 85 (t5)1}

=30 1yl x max{| Int; — Inly — kj(t; — 1)), | Int; — In S5% — kyj(¢; — 5]}

< byl x max{|1nlj+% —1Inl;| + |k1j(lj+2uj —1;)],|Inu; —In HTMW
kg (uy — S5}

=2 x (Y |yl x max{|In 5% —Ini;, [ Inu; — In B5% [}

< 2x (X8 byl x max{51E (u; — )], 3l g (us — )1}

<2 (S8 |yl x max{ 3] (g — L) 313 (uy — 1)])

< 0ol x max{%(uj =)l %(Uj =)}

< S5 X g — 1yl

< Y- (BA(T))

= pBA(T).

Therefore, from the above inequalities and A(T') < 5,

we have that

|s(t) — o(t)] < Z(A(T)ﬁ) <e

and the proof of the theorem is completed. O
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Remark 3.7. From Theorem 3.6, we can follow that 7" will be removed if A(T) < 5.

Therefore, the proposed algorithm terminates if the sizes of all the sub-rectangles T' satisfy

A(T) < 5.
B

Theorem 3.8. Given the convergence tolerance € > 0, the maximum number of iterations

required by the proposed algorithm in order to obtain the optimal solution to the problem

(MP) is

0_,0
B(uf—1
3

M = 950, Nlogy P2

i

where 3 is given by (3.1), and T° = ?:1 TJQ with T]Q = [l?,u?].

Proof. We assume that a rectangle T' = []}_, T; with T; = [I;,u;] C T} is selected from T°
starting to subdivide in Step 1 of the algorithm for each iteration. Without loss of generality,

from Theorem 3.6, suppose that, after m; iterations, there is a subinterval T;”j = [l;”j, ;nj ]
of T) = [19, uf] satisfying
I LIPS j=1,2,---,p. (3.2)

Therefore, we have

(=< S =120
That is

mj>log2pﬁ(9_l?), j=12 D
Let

my = Mogy 20y oy,

Then, after M; = Z§:1 m; iterations, the proposed algorithm will generate at most M + 1
rectangles, denoted by T4, 72, ..., TMi+1 and they satisfy that

A(TMI) — A(TM1+1) = max{u;ﬁj _ l;ﬁj,j =1,2,...,p}

and
My+1

0= | 1"
n=1
Next, put the M; + 1 sub-rectangles into the set SM+1 je.
SMFL — I o =1,2,... M) +1}.
According to (3.2), we have

A(TM) = ATV <
(T7) = A( )< 5
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For the convenience of description, let A = A(TM1) = A(TM1+1), we can obtain that
< €

A< —.

5
From Theorem 3.6 and Step 4, we will discard 7™t and TM:+! from the set SM1+1, because

there is no optimal solution to the problem (EP) in 7™ and T™:*!. Next, the remaining
sub-rectangles are placed in the set SM1, where

SMy — GMitIA (M pMitly — oy — 1.2, My — 1}

And the remaining rectangles T (n = 1,2, ..., M; — 1) will continue to be considered.
Next, we consider T*1~1. According to the branching rule, 7" ~1 will be immediately
divided into two sub-rectangles T ~11 and TM1 =12 such that

TM171 — TM17171 UTM171,2

and
A(Tlel,l) _ A(T]Wlfl,Q) — A

Hence, after M; + (2! — 1) iterations, 7M1~! will be discarded from the set St by the
above equations, and the remaining sub-rectangles will be put into the set SM1 =1 where

SML=L — gMutd M= My MY — i gy = 1,2, My — 2},

Similarly, after the algorithm executed M; + (2% — 1) + (22 — 1) iterations, TM1 =2 will
be thrown out of the set SM1~1 . And we move the remaining sub-rectangles into the set
SMi1=2 where

SML=2 — gMitl fpMi=2 pMi=1 pMy pMFIY — (o — 12, M, — 3}.

Repeat the above process, until all 77(n = 1,2,..., M; + 1) are deleted from T°. Therefore,
this algorithm iterates at most

B(ul—19

» P —13)
M=DM+2 = 1)+ 22 —1)+...+ "1 —1) =2M _1 = X [logs ——"1

times, and the proof of the theorem is completed. O

Numerical Experiments

In this section, we numerically compare the image space branch-and-bound algorithm with
BARON [8] and the existing branch-and-bound algorithms (Refs. [12, 26, 23]). All numer-
ical tests are implemented in MATLAB R2018a and run on a microcomputer with Win 7,
Intel(R) Core(TM) i5-4590S CPU @3.00GHz processor, and 4 GB RAM. The maximum
CPU time limit of all algorithms is set at 3600s. For all test examples, we present statistics
of the numerical results.

First of all, some small-size examples in Appendix were tested with our algorithm for
comparison with the known existing algorithms (Refs. [12, 26, 23]) and BARON, and the
corresponding numerical results are reported in Table 1 with the given convergence tolerance,
where some notations have been used for column headers: Iter.: the number of iterations of
the algorithm; Time: the CPU execution time of the algorithm in seconds.
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From the numerical results in Table 1, for all small-size examples A.1-A.5, we can follow
that our algorithm can obtain almost the same global optimal solutions and optimal values as
BARON and the existing algorithms in Refs.[12, 26, 23] with almost the same computational
efficiency.

Next, we chose some large-size examples generated randomly to verify our algorithm
further, see the following Examples 1-4 for details.

Example 1 (Ref.[25]).

: 2 n
{ min Hj:1<zi:1 cjiz; + 1),

st. Ax <b,x >0.

where ¢j;, j =1,2, i =1,...,n, is randomly generated in [0, 1], each element of the matrix
A is randomly generated in [—1,1], and b;, i = 1,...,n, is randomly generated by setting
bi = 32— aij + 2, where pi is randomly generated in [0, 1].

Example 2 (Ref.[28]).

min [[7_, ¢!z,

J=1"J
st Yo Az <bs,s=1,2,...,m,
0<a;i<li=1,2---,n.

where ¢;, j =1,2,...,p, is randomly generated in [0,1], Ay, s=1,2,...,m,i=1,2,...,n,
is randomly generated in [—1,1], and bs, s = 1,2,...,m, is generated by setting by =
o Agi + 2p, where g is randomly generated in [0, 1].

Example 3.

min Hf:l(z?:l lexz + dj)’yj7

st. Ax <b,x>0.
where ¢;; and dj, j = 1,2,...,p,i = 1,2,...,n, are all randomly generated in [0,1], each
element a;; of the matrix A and v;,7 = 1,2,...,p, are generated in [—1, 1], and each element
b; of the vector b is generated by setting b; = Z?:l aij + 2, where i is randomly generated
in [0, 1].
Example 4.

min  [T7_, (370, cjii +n+ 1),

st.  Ax <bxe[-1,1].
where ¢j;, j = 1,2, i = 1,...,n, is randomly generated in [—1, 1], each element of the matrix
A is randomly generated in [—1,1], and b;, ¢ = 1,...,n, is randomly generated by setting

bi = >_7_ aij + 2, where pi is randomly generated in [0, 1].
Obviously, when p = 2,n =2, ¢;1 = 1,¢190 = 1,¢91 = 1,00 = =1, A =0, and b = 0,
Example 4 can be reduced to

min  f(x) = (z1 + 22 +2)(z1 — 22 + 3) = 2 — 23 + 51 + 22 + 6,
st. zel-1,1],

which is a nonconvex optimization problem.
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The numerical results of Examples 1-4 are listed in Tables 2-7. In Tables 2-7, some
notations are given as follows: Avg.N denotes by the average number of iterations; Std.N
denotes by the standard deviation of number of iterations; Avg. T denotes by the average
execution CPU time of the algorithm in seconds; Std. T denotes by the standard deviation of
execution CPU time of the algorithm; and “—” represents that some of ten random examples
failed to terminate in 3600s.

For each random Examples 1-4, with the given convergence error € = 107%, we solved
ten independently generated problems and recorded the average numerical results among
these ten test problems. For the large-size Example 2, since the software BARON failed
to solve some of ten random examples in 3600s, we only report the numerical comparisons
between the algorithm presented in Zhang et al. [28] and our algorithm in Table 4. For
the large-size Examples 3 and 4, since the software BARON also failed to solve some of ten
random examples in 3600s, we only report the numerical results of our algorithm in Tables
6 and 7.

By the numerical results in Table 2, first of all, we can observe that the algorithm
presented in Wang and Liu [25] takes more average time with more average iterations than
our algorithm, so that our algorithm highly outperforms the algorithm presented in Wang
and Liu [25]. Secondly, our algorithm highly outperforms the algorithm presented in Wang
and Liu [25] and the software BARON in computational performance.

By the numerical results in Tables 3, 6 and 7, we observe that our algorithm can solve
the large-size Examples 2-4, but the software BARON failed to solve some of ten random
examples in 3600s. Thus, this indicates the robustness and stability of our algorithm.

By the numerical results in Table 4, compared with the algorithm presented in Zhang et
al.[28], we can see that our algorithm uses fewer iterations and CPU running time. Thus,
our algorithm outperforms the algorithm presented in Zhang et al.[28§].

By the numerical results in Table 5, for Example 3, when p > 2, m > 20, and n >
20, the software BARON failed to solve some of ten random examples in 3600s, but our
algorithm can obtain the global optimal solution for such a problem. Thus, for Example 3,
our algorithm has higher computational performance than the software BARON.

By the numerical results in Tables 1-7, the software BARON is the most efficient one
for the small-size problem (MP). Moreover, we can observe that Examples 1-4 with the
large-size variables seem to be more difficult to be solved by the algorithm presented in
Wang and Liu [25], Zhang et al.[28] and the software BARON. It is expected to become
new test examples for validating the global algorithm of a generalized affine multiplicative
programming problem.

Conclusion

We study a class of multiplicative problems (MP) and propose an image space branch-and-
bound algorithm. In this algorithm, by introducing new variables and equivalent transfor-
mation, we firstly convert the problem (MP) into the equivalent problem (EP1). Next, we
propose a new piecewise linear relaxation method. By using the linear relaxation method,
the problem (EP1) is transformed into a linear relaxation problem. Based on the image
space branch-and-bound search, the linear relaxation problem, and the image space re-
gion reduction techniques, we design an image space branch-and-bound algorithm for glob-
ally solving the problem (MP). In contrast to some existing branch-and-bound algorithms,
the proposed algorithm can achieve an approximate global e-optimal solution in at most

0_30
pﬂ(uj U5

)
92 5=1[logs 1 _1 iterations. Numerical results indicate higher efficiency of the algo-
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Table 4.1: Numerical comparisons among the software BARON, Algorithms of Refs.[12, 26, 23],
and our new algorithm on Examples A.1-A.5.

Example Refs. Optimal value Optimal solution Tter CPU time
1 Our 0.89019 (1.3148, 0.1396, 0.0, 0.4233) 1 0.03
[26] 0.8902 (1.3148, 0.1396, 0.0, 0.4233) 1 0.19
BARON 0.8902 (1.3148, 0.1396, 0.0, 0.4233) 3 0.05
2 Our 0.53333 (0.0, 0. 0) 30 0.75
[23] 0.53333 (0.0, 0.0) 16 0.05
BARON 0.5333 (0.0, 0.0) 1 0.03
3 Our 997.66127 (1, 1) 1 0.01
[12] 997.66127 (1, 1) 3 0.09
BARON 997.6613 (1, 1) 1 0.03
4 Our 263.78893 (1.25, 1) 1 0.03
[12] 263.7889 (1.25, 1) 11 0.30
BARON 263.7889 (1.25, 1) 3 0.03
5 Our 5.00931 (3, ) 58 1.22
[12] 5.00931 (3, 2) 2 0.05
BARON 5.0093 (3, 2) 1 0.03

Table 4.2: Numerical computational comparisons among the software BARON, the algorithm of
Wang and Liu [25], and our algorithm on Example 1.

(m, ) Algorithm of Wang and Liu [25]  Our algorithm BARON
Avg(Std).N  Avg(Std).T Avg(Std).N  Avg(Std).T Avg(Std).N  Avg(Std).T

(10,20)  14.2(1.5492)  0.6062(0.0695)  26.0(5.4160) 0.6254(0.1216)  8.8(9.21) 0.1(0.03)
(20,20) 17.4(1.7127)  0.8368(0.0756) 21.3(4.7152)  0.5200(0.1128) - -

(22,20) 18.5(1.9003)  0.9460(0.1235)  14.5(9.3956)  0.3606(0.2306) - -

(20,30) 19.9(0.5676)  1.0781(0.0674)  24.0(2.8284)  0.5899(0.0867) - .

(35,50) 21.2(0.4316)  1.8415(0.1338) 19.8(5.2026)  0.5314(0.1374) - -

(45,60)  23.0(0.6667) 2.4338(0.1016)  22.8(2.7809)  0.6563(0.0650) - §
(45,100)  35.7(1.1595)  5.1287(0.0935)  23.9(1.3703)  0.8225(0.0573) - -
(60,100) 36.1(0.7379)  6.8143(0.1713) 23.7(2.0028)  0.8955(0.0838) - -
(70,100) 36.6(1.2649)  8.1967(0.2121) 23.6(0.8433)  0.9462(0.0415) - -
(70,120) 39.1(1.6633)  9.5642(0.2975) 24.1(1.6633)  1.0991(0.0660) - -
(100,100)  37.5(2.1731)  13.0578(0.3543) 17.8(5.3500)  0.8810(0.2339) - -
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Table 4.3: Numerical computational results for our algorithm on Example 2.

(m,n) Avg(Std).N(T) p=4 p=>5 p==6 p="7
(10,20) Avg(Std).N 11.500(3.9220)  13.900(4.7945)  17.200(5.5337)  19.000(6.3596)
Avg(Std).T 0.3037(0.1045)  0.3604(0.1303)  0.4522(0.1325)  0.4707(0.1551)
(20,40) Avg(Std).N 11.900(3.1780) 14.500(5.3385) 18.200(3.3928) 19.100(4.8637)
Avg(Std).T 0.3437(0.0866)  0.3957(0.1458)  0.4993(0.0769)  0.5149(0.1224)
(30,60) Avg(Std).N 11.600(2.0656) 15.400(2.5033) 18.500(5.3177) 22.900(3.2472)
Avg(Std).T 0.3423(0.0595)  0.4435(0.0751)  0.5533(0.1512)  0.6640(0.1017)
(40,80) Avg(Std).N 11.000(2.6667) 15.200(3.6148) 17.300(4.0291) 20.300(4.5717)
Avg(Std).T 0.3561(0.0648)  0.4771(0.1078)  0.5526(0.1086)  0.6498(0.1447)
(50,100)  Avg(Std).N 11.400(2.0111)  16.400(1.5776)  15.900(3.7845)  18.200(3.5839)
Avg(Std). T 0.3997(0.0560) 0.5675(0.0542) 0.5712(0.1357) 0.6521(0.1162)
(60,120)  Avg(Std).N 11.900(2.0248)  13.800(2.9740)  17.300(3.8020)  20.900(2.6437)
Avg(Std).T 0.4682(0.0577) 0.5606(0.1214) 0.6982(0.1103) 0.8813(0.1342)
(70,140)  Avg(Std).N 12.400(2.9889)  14.900(3.6347)  17.900(2.9231)  19.800(5.5337)
Avg(Std). T 0.5874(0.1375)  0.6740(0.1400)  0.8417(0.1459)  0.9474(0.2458)
(80,160)  Avg(Std).N 11.300(1.5670)  13.600(2.6750)  15.800(2.5298)  20.600(4.0056)
Avg(Std).T 0.6113(0.0728)  0.7755(0.1203)  0.9197(0.1307)  1.1214(0.1751)
(90,180)  Avg(Std).N 11.900(2.1833)  13.900(2.3310)  15.400(2.7568)  21.000(3.3333)
Avg(Std).T 0.7373(0.0949)  0.9333(0.1186)  1.0481(0.2041)  1.4688(0.2734)
(100,200) Avg(Std).N 12.200(3.0840) 13.800(3.9384) 14.300(1.8886) 19.800(4.2374)
Avg(Std). T 0.9037(0.1969)  1.0944(0.3071)  1.1815(0.2029)  1.6473(0.3446)
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Table 4.4: Numerical computational comparisons between the algorithm presented in Zhang et al.
[28] and our algorithm on Example 2.

Algorithm of Zhang et al. [28]

Our new algorithm

(p,m,n)

Avg.N Avg.T Avg.N Avg.T
(2,10,1000) 15.5 2.6293 10.9 0.6586
(2,10,2000) 28.5 14.0012 11.1 1.5257
(3,10,1000) 101.8 19.3235 14.9 1.1001
(3,10,2000) 185.4 90.3898 18.0 3.3383
(4,10,1000) 757.6 156.5649 23.2 1.6665
(4,10,2000) 1352.1 995.4707 25.9 4.5790

Table 4.5: Numerical computational comparisons between the software BARON and our algorithm

on Example 3.

Our algorithm BARON
(p, m,n)
Avg(Std).N Avg(Std). T Avg(Std).N Avg(Std).T
(2,10,20) 16.2(10.7889) 0.3971(0.2567) 3.6(3.8930) 0.0760(0.0455)
(2,20,20) 7.4(8.0166) 0.1890(0.1985) - -
(2,22,20) 10.1(7.7524) 0.2688(0.1959) - -
(2,20,30) 6.8(9.7388) 0.1868(0.2420) - -
(2,35,50) 11.5(10.5541) 0.3154(0.2841) - -
(2,45,60) 10.6(10.4158) 0.3190(0.3044) - -
(2,45,100) 8.8(6.6131) 0.3130(0.2490) - -
(2,60,100) 8.2(7.8287) 0.3286(0.2929) - -
(2,70,100) 7.6(9.6747) 0.3247(0.4013) - -
(2,70,120) 15.8(10.9423) 0.7730(0.5219) - -
(

13.6(8.3160)

0.7146(0.3986)
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Table 4.6: Numerical computational results for our algorithm on Example 3.
(p, m,n) Avg(Std).N Avg(Std). T
(10,100,100 6.9(11.1798) 19.9324(33.2809)
(10,100,2000 4.0(3.7118) 35.7204(34.9124)
(10,100,3000 5.8(9.9978) 113.5503(210.4960)

)
)
)
(10,100,4000)
(10,100,5000)
(20,100,1000)
(20,100,2000)
(20,100,3000)
(20,100,4000)

11.8(19.9321)
8.8(11.7927)
87.0(135.0547)
35.6(91.1643)
14.6(22.2521)
5.9(14.8058)

372.0691(520.8177)
642.7141(1030.4993)
152.6044(241.3521)
232.1741(601.8485)
213.4133(325.8330)
124.8827(307.8063)

Table 4.7: Numerical computational results for our algorithm on Example 4.

(p,m;n)

Avg(Std).NT

Avg(Std).Time

(5,100,100)

(5,100,500)

(5,100,1000)
(5,100,2000)
(5,100,3000)
(5,100,4000)
(10,100,100)
(10,100,500)
(10,100,1000
(10,100,2000
(10,100,3000
(10,100,4000

NN

109.3(1.4944)
115.2(0.6325)
116.0(0.4714)
116.3(0.8233)
116.9(0.3162)
116.9(0.3162)
227.8(3.3267)
237.8(1.5492)
241.0(1.6997)
241.7(0.6749)
241.8(1.1353)
242.3(0.4830)

3.7017(0.1228)
32.3005(0.3738)
104.0153(1.7031)
351.5042(7.5839)
737.9607(13.6290)
1258.1859(23.4237)
8.3797(0.2369)
74.6187(0.9019)
235.8993(2.2644)
794.3962(5.6962)
1655.3296(20.8176)
2831.4333(44.3357)
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rithm. The future work is to extend the algorithm to a generalized convex (or concave)
multiplicative programming problem.
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Appendix
A.1. (Ref.[26]).

min (0.81339621 + 0.67440z5 + 0.305038x3 + 0.129742x4 + 0.217796)
x(0.224508z1 + 0.063458z5 + 0.932230x3 + 0.528736x4 + 0.091947)

s.t.  0.488509z; + 0.063458x2 + 0.945686x3 + 0.210704x4 < 3.562809,
—0.324014x; — 0.50175425 — 0.719204x35 + 0.099562z4 < —0.052215,
0.445225x1 — 0.346896x2 + 0.637939z5 — 0.257623z4 < 0.427920,
—0.202821x1 + 0.647361x2 + 0.920135z3 — 0.983091z4 < 0.840950,
—0.886420x; — 0.802444x5 — 0.305441z3 — 0.180123z4 < —1.353686,
—0.515399z1 — 0.424820x2 + 0.897498z3 + 0.187268x4 < 2.137251,
—0.591515x1 + 0.060581x5 — 0.427365x3 + 0.579388z4 < —0.290987,
0.423524x; + 0.940496x2 — 0.43794425 — 0.742941z4 < 0.373620,
T Z 0,562 Z 07563 Z 071‘4 2 0.

A.2. (Ref.[23]).

min (=1 + 2w2 + 2) (4 — 329 +4)(32y — 4wy +5) (=221 + 29 +3) 71
st. x14+22<15, 0<2:<1, 0< 2, < 1.

A.3. (Ref.[12]).

min  (z; + 29 + 1)25(221 + 20 + 1)V 2y + 2290 + 1)10
s.t. 1+ 21‘2 S 6, 21‘1 + 2I2 S 8,
1§£L'1§3, 1§Z2§3

A.4. (Ref.[12]).

min (321 — 429 + 5) (21 + 279 — 1)%5(211 — 29 + 4) (27 — 272 + 8)%5 (2w + 15 — 1)
s.t.  bxry —8xg > —24, 5xy + 8w < 44,

6x1 — 3xo < 15, 4x1 + bxg > 10,

1<z <3, 02 < 1.

A.5. (Ref.[12]).
min  (3z1 — 2x9 — 2)§ (1 + 2z2 + 2)%

s.t. 2.731—23222, 1‘1—21‘2§2,
T +a2 <5, 3<x; <5, 1 <zy <3.

Manuscript received 8 September 2021
revised 20 November 2021
accepted for publication 19 January 2022



118 H. JJAO. W. WANG AND P. SHEN

HONGWEI J1A0

School of Mathematical Sciences

Henan Institute of Science and Technology
Xinxiang 453003, China

E-mail address: jiaohongwei@126.com

WENJIE WANG

School of Mathematical Sciences

Henan Institute of Science and Technology
Xinxiang 453003, China

E-mail address: wangwenjie0780@163.com

PEIPING SHEN

School of Mathematics and Statistics

North China University of Water Resources and Electric Power
Zhengzhou 450046, China

E-mail address: shenpeiping@163.com





