
2023

188 Y.-J. LIU AND T. ZHANG

Nonparametric regression is a popular field with many celebrated tools. Trend filter-
ing, a recently proposed tool for nonparametric regression, is defined as the minimizer of
a penalized least squares criterion. Trend filtering arises in a wide of applications includ-
ing macroeconomics [10, 33], social sciences [14], financial time series analysis [36], revenue
management [34], and so on [1, 9]. For solving some practical economic problems, a number
of linear trend filtering methods have been presented, see, e.g., the exponential smoothing
method [20], the moving average filtering method [25] and the Hodrick-Prescott(H-P) fil-
tering method [10]. Kim et al. [12] proposed the ℓ1 trend filtering, i.e., a variation on H-P
filtering which substitutes a sum of absolute values (i.e., an ℓ1 norm) for the sum of squares
used in H-P filtering to penalize variations in the estimated trend. Furthermore, this idea
can be extended to fitting a piecewise polynomial of degree k − 1 to the data, i.e., general
ℓ1 trend filtering.

When k = 1, general ℓ1 trend filtering becomes 1-dimensional total variation denois-
ing [32], also called the 1-dimensional fused lasso problem [35], which admits an explicit
solution. There are some direct, linear time algorithms for 1-dimensional total variation
denoising problem, such as a taut string principle [5], an entirely different dynamic pro-
gramming approach [11] and 1D total variation denoising algorithm [4]. However, these
algorithms cannot be directly extended to the higher order cases k ≥ 2. Therefore, some
iterative algorithms have been developed to solve higher order ℓ1 trend filtering, including
the alternating direction method of multipliers (ADMM) [26] and the primal dual interior
point (PDIP) algorithm [12].

In this paper, we intend to design a sparse second order information based efficient
algorithm to solve general ℓ1 trend filtering (1.1). The superior performances of the Ssnal
algorithm applied to solve some large-scale problems including support vector machines [24],
Lasso problems [17, 19, 15, 16, 37], Dantzig selector [6], SLBoxLSR problem [18], OSCAR
and SLOPE models [21] have been demonstrated. The highlights of the Ssnal algorithm lie
in the attractive convergence property and the low computational costs in the Ssn algorithm
by exploiting the second order sparsity and some efficient techniques. Based on the success
of previous work, we aim to develop the Ssnal algorithm to find the optimal solution of
general ℓ1 trend filtering.

We summarize main contributions of this paper as follows. Firstly, we reformulate the
general ℓ1 trend filtering (1.1) and then apply the Ssnal algorithm to solve it. Secondly,
we validate the global and local convergence property of the Ssnal algorithm under very
mild conditions. In addition, the computational costs of the Ssn algorithm for solving
the subproblem involved in the Ssnal algorithm can be cheap by exploiting the second-
order sparsity of the Hessian matrix and some efficient computation techniques. Thirdly,
we demonstrate the numerical results on synthetic and real data sets by comparing our
algorithm against other algorithms including ADMM and PDIP algorithms.

The rest of this paper is organized as follows. Section 2 develops the Ssnal algorithm
for solving the reformulation of the general ℓ1 trend filtering problem (1.1) and shows its
global and local convergence. We then employ the second order sparsity of Hessian and
some efficient techniques to solve inner problem of the Ssnal algorithm. In Section 3, we
conduct extensive numerical experiments on the synthetic and real data sets by comparing
our proposed algorithm with other state-of-the-art algorithms and report their performances.
In Section 4, we make final conclusions to close this paper.

Notation. We define the l∞ norm unit ball by B∞ := {x ∈ Rm| ∥x∥∞ ≤ 1}. For any
positive integer n, In is the n× n identity matrix, and 1m is the vector of all ones. For any
x ∈ Rn,“ Diag(x)” denotes the diagonal matrix whose diagonal is the vector x,“ |x|”
denotes the absolute vector whose i-th entry is |xi|, and“ sign(x)”denotes the sign vector

SPARSE HESSIAN BASED Ssnal ALGORITHM FOR GENERAL ℓl TREND FILTERING 189

whose i-th entry is 1 if xi > 0, −1 if xi < 0, and 0 otherwise. The Fenchel conjugate of
a proper convex function f is defined as f∗(s) = supx∈Rn{⟨x, s⟩ − f(x)}, ∀s ∈ Rn and ⊙
denotes the Hadamard product.

2 A semismooth Newton based augmented Lagrangian algorithm

In this section, we employ an efficient semismooth Newton based augmented Lagrangian
(Ssnal) algorithm to solve the equivalent form of general ℓ1 trend filtering problem (1.1).

We first reformulate problem (1.1) as the following form:

min
x,z

1

2
∥x− y∥2 + λ∥z∥1

s.t. D(k,n)x− z = 0.

(P)

The Lagrangian function of problem (P) is given by

l(x, z;µ) :=
1

2
∥x− y∥2 + λ∥z∥1 + ⟨µ,D(k,n)x− z⟩.

The Karush-Kuhn-Tucker (KKT) optimality conditions for problem (P) are given as follows:

x− y +D(k,n)Tµ = 0, 0 ∈ λ∂∥z∥1 − µ, D(k,n)x− z = 0. (2.1)

The dual of problem (P) has the following form:

min
µ

1

2
∥D(k,n)Tµ∥2 − ⟨D(k,n)Tµ, y⟩

s.t. ∥µ∥∞ ≤ λ.

(D)

For given σ > 0, we obtain the augmented Lagrangian function of problem (P) :

Lσ(x, z;µ) :=
1

2
∥x− y∥2 + λ∥z∥1 + ⟨µ,D(k,n)x− z⟩+ σ

2
∥D(k,n)x− z∥2. (2.2)

2.1 A semismooth Newton based augmented Lagrangian algorithm for prob-
lem (P)

Since the proposed algorithm combines a semismooth Newton algorithm and an inexact
augmented Lagrangian algorithm, we are able to call it as Ssnal. The framework of Ssnal
algorithm is given as follows:

Algorithm 1 (Ssnal)A semismooth Newton based augmented Lagrangian algorithm for problem (P)

Input: σ0 > 0, λ > 0, (x0, z0, µ0) ∈ Rn × Rn−k × Rn−k and i = 0.
1: Compute

xi+1 ≈ argmin
x∈Rn

{Φi(x) := inf
z
Lσi (x, z;µ

i)} (2.3)

to satisfy the conditions (A1) and (A2) below.
2: Compute

zi+1 = Prox
σ−1
i λ∥·∥1

(D(k,n)xi+1 + σ−1
i µi).

3: Compute
µi+1 = µi + σi(D

(k,n)xi+1 − zi+1).

4: Update σi+1 ↑ σ∞ ≤ +∞, i← i+ 1, and go to step 1.

190 Y.-J. LIU AND T. ZHANG

We get the approximate solution xi+1 of problem (2.3) under the following stopping
criteria discussed in [29, 30]:

∥▽Φi(x
i+1)∥ ≤ ϵi√

σi
,

∞∑
i=0

ϵi < ∞, (A1)

∥▽Φi(x
i+1)∥ ≤ ci

√
σi∥D(k,n)xi+1 − zi+1∥,

∞∑
i=0

ci < ∞, (A2)

∥▽Φi(x
i+1)∥ ≤ c′i∥D(k,n)xi+1 − zi+1∥, 0 ≤ c′i → 0, (A2’)

where {ci} and {ϵi} are given nonnegative error tolerance sequences.
For the objective function g of problem (D) and the Lagrangian function l of problem

(P), we define the maximal monotone operators Tg and Tl [28, 29] by

Tg(µ) := ∂g(µ), Tl(x, z;µ) := {(x′, z′;µ′)|(x′, z′;−µ′) ∈ ∂l(x, z;µ)}.

Their inverse are given as the following form:

T −1
g (µ) = ∂g∗(µ), T −1

l (x′, z′;µ′) := arg minimax
x,z,µ

{l(x, z;µ)− ⟨x′, x⟩ − ⟨z′, z⟩+ ⟨µ′, µ⟩}.

Now, we shall state the global and local convergence results of the Ssnal algorithm.
Since problem (P) is feasible, one knows from [29, 30] that if the stopping criterion (A1) is
satisfied, the global convergence of the Ssnal algorithm for problem (P) can be guaranteed.

Theorem 2.1 (Global convergence). If {(xi, zi, µi)} is the infinite sequence generated by
Algorithm 1 with stopping criterion (A1). Then, the sequence {µi} is bounded and converges
to an optimal solution of problem (D). In addition, the sequence {(xi, zi)} is also bounded
and converges to the optimal solution (x∗, z∗) of problem (P).

In order to characterize the local convergence of the Ssnal algorithm, we give some
results on error bound conditions. According to the definition of piecewise linear-quadratic
functions [31], one obtains that g and l are piecewise linear-quadratic functions. One can
further obtain from [31, Proposition 12.30] that Tg, Tl are piecewise polyhedral multifunc-
tions. According to [27], if F is a polyhedral multifunction, then F is locally upper Lipschitz
continuous and it satisfies the error bound condition. We can conclude that Tg satisfies the
error bound condition with a common modulus, say rg. Especially, since the optimal solu-
tion set of problem (D), denoted by SD, is exactly T −1

g (0), there exists ϵg > 0 such that if
dist(0, Tg(µ)) ≤ ϵg, then

dist(µ, SD) ≤ rgdist(0, Tg(µ)), (2.4)

Similarly, for the polyhedral multifunction Tl, there exists ϵl > 0 and rl > 0 such that if
dist(0, Tl(x, z;µ)) ≤ ϵl, then

dist((x, z;µ), Sl) ≤ rldist(0, Tl(x, z;µ)), (2.5)

where Sl := {x∗, z∗} × SD and (x∗, z∗) is the unique optimal solution of problem (P).
By virture of above analysis, combining with [22, 29, 30], we can get the result on local

convergence of the Ssnal algorithm.

Theorem 2.2 (Local convergence). Let the sequence {(xi, zi, µi)} be the infinite sequence
generated by Algorithm 1 with stopping criteria (A1) and (A2). Then, for sufficiently large
i,

dist(µi+1, SD) ≤ θidist(µ
i, SD),

SPARSE HESSIAN BASED Ssnal ALGORITHM FOR GENERAL ℓl TREND FILTERING 191

where θi = [rg/
√
r2g + σ2

i + 2ci]/(1− ci) → θ∞ = rg/
√
r2g + σ2

∞ < 1 as i → ∞.

If in addition to (A1) and (A2), the stopping criterion (A2’) is also satisfied, it holds
that for sufficiently large i,

∥(xi+1, zi+1)− (x∗, z∗)∥ ≤ θ′i∥µi+1 − µi∥,

where θ′i = rl(1 + c′i)/σi → θ′∞ = rl/σ∞.

Proof. The result of the first part is valid due to [22, Theorem 2.1]. With the above analysis,
one knows that Tℓ satisfies the error bound condition with modulus rℓ. It then holds that
for sufficiently large i,

∥(xi+1, zi+1)− (x∗, z∗)∥+ dist(µi+1,SD) ≤ rℓdist(0, Tℓ(xi+1, zi+1;µi+1)).

Combining with the stopping criterion (A2’) and [29, Corollary], we get the desired result
of the second part. The proof is complete.

2.2 A semismooth Newton method for the subproblem

In this subsection, we focus on an efficient semismooth Newton (Ssn) algorithm to solve the
inner subproblem (2.3) in the augmented Lagrangian algorithm.

For the purpose of our subsequent analysis, we first give some relevant preliminaries.
Given a closed proper convex function f : R → (−∞,∞] and any scalar γ > 0, the proximal
mapping and the Moreau-Yosida regularization of γf (cf. [23]) are defined respectively by

Proxγf (s) := argmin
x∈Rn

{f(x) + 1

2γ
∥x− s∥2}, ∀s ∈ Rn,

Mγf (s) := min
x∈Rn

{f(x) + 1

2γ
∥x− s∥2}, ∀s ∈ Rn.

The Moreau identity [28] holds, i.e.,

Proxγf (s) + γProxf∗/γ(s/γ) = s, ∀s ∈ Rn.

From [13], we know that Mγf (·) is convex and continuously differentiable with its gradient
given by

▽Mγf (s) = (s− Proxγf (s))/γ, ∀s ∈ Rn.

Moreover, Proxγf (·) and Mγf (·) are globally Lipschitz continuous with modulus 1. For
given κ > 0 and a closed set Λ ⊆ Rn, the proximal mapping of ℓ1 norm, also called soft-
thresholding operator, is given by

Proxκ∥·∥1
(s) = sign(s)⊙max{|s| − κ1n, 0}, ∀s ∈ Rn.

In particular, if f is the indicator function of Λ, the proximal mapping of f at s ∈ Rn

reduces to the projection ΠΛ(s), i.e.,

ΠΛ(s) = argmin
x∈Λ

{1
2
∥x− s∥2}.

Furthermore, the projection ΠκB∞(s) can be further expressed as

ΠκB∞(s) = sign(s)⊙min{|s|, κ1n}, ∀s ∈ Rn.

192 Y.-J. LIU AND T. ZHANG

Now, we are ready to consider solving the subproblem (2.3). Given µ̃ ∈ Rn and σ > 0,
the minimization problem is given by

min
x∈Rn

{Φ(x) := inf
z
Lσ(x, z; µ̃)}, (2.6)

where Φ(·) is given by

Φ(x) = inf
z
Lσ(x, z; µ̃)

=
1

2
∥x− y∥2 + inf

z
{λ∥z∥1 + ⟨µ,D(k,n)x− z⟩+ σ

2
∥D(k,n)x− z∥2}

=
1

2
∥x− y∥2 + inf

z
{λ∥z∥1 +

σ

2
∥z − (D(k,n)x+ σ−1µ̃)∥2} − 1

2σ
∥µ̃∥2

=
1

2
∥x− y∥2 + σMσ−1λ∥·∥1

(D(k,n)x+ σ−1µ̃)− 1

2σ
∥µ̃∥2.

Since Mσ−1λ∥·∥1
(·) is strongly convex and continuously differentiable, Φ(·) is continuously

differentiable and convex. Hence, the problem (2.6) is equivalent to solving the following
nonsmooth equations:

0 = ∇Φ(x) = x− y + σD(k,n)T∇Mσ−1λ∥·∥1
(s) |s=D(k,n)x+σ−1µ̃

= x− y + σD(k,n)TProx(σ−1λ∥·∥1)∗(D
(k,n)x+ σ−1µ̃)

= x− y + σD(k,n)TΠσ−1λB∞(D(k,n)x+ σ−1µ̃),

where the second equation follows from the chain rule, the third equation holds from the
Moreau identity, and the last equation is valid because the conjugate function of σ−1λ∥·∥1 is
the indicator function of σ−1λB∞. Since Πσ−1λB∞(·) is Lipschitz continuous, the following
function is well defined:

∂̂2Φ(x) := In + σD(k,n)T∂Πσ−1λB∞(D(k,n)x+ σ−1µ̃)D(k,n).

Let
V ∈ ∂Πσ−1λB∞(D(k,n)x+ σ−1µ̃).

Then, we can easily obtain that V = Diag(v1, ..., vn−k) with

vi =

1, if |D(k,n)x+ σ−1µ̃|i < σ−1λ,

0, if |D(k,n)x+ σ−1µ̃|i > σ−1λ, i = 1, 2, ..., n− k.

∈ [0, 1], if |D(k,n)x+ σ−1µ̃|i = σ−1λ,

We know that the generalized Jacobian of ∇Φ(·) is the key to apply the Ssn algorithm
to solve the nonsmooth equations ∇Φ(x) = 0, however it is difficult to express it exactly.

From [3, Proposition 2.3.3 and Theorem 2.6.6], we know that ∂2Φ(x) ⊆ ∂̂2Φ(x), ∀x ∈ Rn,
where ∂2Φ(x) is the generalized Hessian of Φ at x. Therefore, we can define the following
alternative for ∂2Φ(x):

W := In + σD(k,n)TV D(k,n),

with V ∈ ∂Πσ−1λB∞(D(k,n)x+ σ−1µ̃).
Since Πσ−1λB∞(·) is strongly semismooth, we obtain that ∇Φ(·) is strongly semismooth.

We employ a superlinearly convergent semismooth Newton algorithm to solve the nonsmooth
equations ∇Φ(x) = 0. The process is described as follows:

SPARSE HESSIAN BASED Ssnal ALGORITHM FOR GENERAL ℓl TREND FILTERING 193

Algorithm 2 (Ssn) A semismooth Newton algorithm for subproblem (2.3)

Input: ι ∈ (0, 1/2), δ̄ ∈ (0, 1), τ ∈ (0, 1] and ζ ∈ (0, 1). Choose x0 ∈ Rn. Iterate the following steps for
j=0,1,...

1: Choose Wj ∈ ∂̂2Φ(xj). Apply the conjugate gradient (CG) algorithm to find an approximate direction
dj to satisfy the following linear system

Wjd = −∇Φ(xj) (2.7)

such that
∥Wjd

j +∇Φ(xj)∥ ≤ min(δ̄, ∥∇Φ(xj)∥1+τ).

2: Set αj = ζmj , where mj is the smallest nonnegative integer m satisfying

Φ(xj + ζmdj) ≤ Φ(xj) + ιζm⟨∇Φ(xj), dj⟩.

3: Set xj+1 = xj + αjd
j .

From [38, Theorem 3.4 and 3.5], we can easily state results on the global and local
convergence of the above Ssn algorithm without detailed proof here.

Theorem 2.3. Let the sequence {xj} be generated by the Ssn algorithm. Then {xj} con-
verges to the unique optimal solution x̂ of problem (2.3) and the rate of convergence is at
least superlinear

∥xj+1 − x̂∥ = O(∥xj − x̂∥1+τ),

where τ is the parameter used in the Ssn algorithm.

2.3 Efficient techniques for implementation of the semismooth Newton algo-
rithm

As we know, it is the most crucial step to find the appropriate search direction dj in the Ssn
Algorithm, so we focus on solving the linear system (2.7) efficiently. We intend to further
analyze the special structure of the Hessian matrix W to reduce the computational costs of
linear system (2.7).

For given σ > 0, x ∈ Rn and µ̃ ∈ Rn−k, the linear system (2.7) can be written as follows:

(In + σD(k,n)TV D(k,n))d = −∇Φ(x), (2.8)

where V ∈ ∂Πσ−1λB∞(D(k,n)x + σ−1µ̃). The costs of computing D(k,n)TV D(k,n) and

D(k,n)TV D(k,n)d are O(n(n−k)(2n−k)) and O((n−k)(2n−k)), respectively. The computa-

tional costs of the Hessian matrix In+σD(k,n)TV D(k,n) and the matrix-vector multiplication

(In+σD(k,n)TV D(k,n))d are so expensive that the frequently-used methods like the Cholesky
factorization and the conjugate gradient method are not efficient for solving some large-scale
problems.

Fortunately, the computational costs of solving the linear system (2.7) can be reduced
by applying the second order sparsity of V . Next, we tend to show how this can be done by
fully utilizing the sparsity of V . By observing the structure of matrix V , we can let vi = 0
when |D(k,n)x + σ−1µ̃|i = σ−1λ in the equation (2.7). Therefore, V is a diagonal matrix
with ith diagonal elements being either 0 or 1 and hence the sparsity of V can substantially
reduce these unfavorable computational costs to a low level.

The diagonal matrix V can be written as the following form:

vi =

{
1, if |D(k,n)x+ σ−1µ̃|i < σ−1λ,

0, otherwise,
i = 1, ..., n− k.

194 Y.-J. LIU AND T. ZHANG

Let J := {j|vj = 1, j = 1, ..., n − k} be the index set that corresponds to the indices of
nonzero diagonal elements in V and r = |J | denotes the cardinality of J . Then, we take
the special 0-1 structure of V into account, i.e.,

D(k,n)TV D(k,n) = (V D(k,n))T (V D(k,n)) = D
(k,n)
J

T
D

(k,n)
J , (2.9)

where D
(k,n)
J ∈ Rr×n is the sub-matrix of D(k,n) with those rows not in J being removed

from D(k,n). Therefore, the cost of computing D(k,n)TV D(k,n) can be reduced from O(n(n−
k)(2n−k)) to O(n2r) by using (2.9). We reduce the computational costs of the linear system
(2.7) by applying the Cholesky factorization and the total computational costs are reduced
from O(n(n− k)(2n− k)) +O(n3) to O(n2r) +O(n3).

In addition, we use Sherman-Morrison-Woodbury formula [8] to get the inverse of In +

σD(k,n)TV D(k,n):

(In + σD(k,n)TV D(k,n))−1 = (In + σD
(k,n)
J

T
D

(k,n)
J)−1

= In −D
(k,n)
J

T
(σ−1Ir +D

(k,n)
J D

(k,n)
J

T
)−1D

(k,n)
J .

In this case, we only need to factorize a r × r matrix instead of a n × n matrix. Thus, the
total computational costs can be reduced from O(n2r) + O(n3) to O(n2r) + O(r3) when
combining the Cholesky factorization with Sherman-Morrison-Woodbury formula.

From the above arguments, we know that the computational costs would be cheap when
r is small. When r is large, we only need to use the conjugate gradient method to solve

the linear system (2.7), where the pivotal step is to compute the formula D
(k,n)
J

T
D

(k,n)
J d

efficiently. We can apply the fast computation D
(k,n)
J

T
(D

(k,n)
J d) for any given d to make

D
(k,n)
J

T
D

(k,n)
J d consist only of matrix-vector multiplication rather than matrix-matrix mul-

tiplication. Since the matrix D
(k,n)
J has a special structure that D

(k,n)
J only has k nonzero

elements in each row, the effective multiplication numbers of matrix-vector multiplica-

tion D
(k,n)
J d and D

(k,n)
J

T
(D

(k,n)
J d) are both (k ∗ r). So the total computational cost of

D
(k,n)
J

T
(D

(k,n)
J d) is O(kr).

In order to employ the Ssn algorithm to solve the subproblem involved in the Ssnal

algorithm, we need to compute the matrix-vector multiplications D(k,n)x and D(k,n)Tx.
When n or k is large, direct matrix-vector multiplications may have expensive computational
costs. To reduce computational costs and increase the efficiency of the algorithm, we can

compute the matrix-vector multiplications D(k,n)x and D(k,n)Tx recursively. The function
of computing the matrix-vector multiplication D(k,n)x in Matlab is given blow:

func t i on Dx = ComputDx(x , k)
i f k==1

Dx = −d i f f (x) ;
e l s e

y = ComputDx(x , k−1);
Dx = −d i f f (y) ;

end

Similarly, the function of computing the matrix-vector multiplication D(k,n)Tx in Matlab
is given by

SPARSE HESSIAN BASED Ssnal ALGORITHM FOR GENERAL ℓl TREND FILTERING 195

f unc t i on DTx = ComputDTx(x , k)
i f k==1

DTx = x ;
DTx(2 : end) = d i f f (x) ;
DTx(end+1) = −x (end) ;

e l s e
DTx = ComputDTx(ComputDTx(x , 1) , k−1);

end

3 Numerical Experiments

In this section, we conduct numerical experiments on synthetic and real data sets to demon-
strate excellent performance of the Ssnal algorithm for solving general ℓ1 trend filtering
(1.1). In addition, we tend to compare it with other algorithms including ADMM and PDIP.
All our numerical experiments are executed in MATLAB on Dell desktop computer with
Inter(R) Core(TM) i5-8500 CPU@3.00GHz and 8GB RAM.

Alternating direction method of multipliers (ADMM) algorithm is an important method
for solving convex optimization problems with separable structures, which was first proposed
by Gabay and Mercier [7]. The process is stated as follows:

Algorithm 3 (ADMM) Alternating direction method of multipliers for problem (P)

Input: ω ∈ (0, (1 +
√
5)/2), σ > 0, (x0, z0, µ0) ∈ Rn × Rn−k × Rn−k and j = 0.

1: Compute
xj+1 ∈ argmin

x
Lσ(x, zj ;µj). (3.1)

2: Compute
zj+1 ∈ argmin

z
Lσ(xj+1, z;µj). (3.2)

3: Set µj+1 = µj + ωσ(D(k,n)xj+1 − zj+1).
4: Set j ← j + 1, and go to step 1.

From equation (3.1), we know that the subproblem can be solved by the following equiv-
alent form

(In + σD(k,n)TD(k,n))x = y +D(k,n)T (σzj − µj). (3.3)

We can apply the conjugate gradient method or the Cholesky factorization method to obtain
the solution of the linear system (3.3). We note that the subproblem (3.2) has a closed-form
solution:

zj+1 = Proxσ−1λ∥·∥1
(D(k,n)xj+1 + σ−1µj). (3.4)

A primal-dual interior-point (PDIP) algorithm can solve some quadratic problems in
finite number of interations, almost independent of the problem size or data. The details of
PDIP algorithm for solving ℓ1 trend filtering has been discussed in [12]. We summarize the
algorithmic framework of PDIP algorithm as follows:

196 Y.-J. LIU AND T. ZHANG

Algorithm 4 (PDIP) Primal-dual interior-point algorithm

Input: t > 0, η ∈ (0, 0.5], ξ ∈ (0, 1), (µ0, µ0
1, µ

0
2) ∈ Rn−k × Rn−k × Rn−k and j = 0.

1: Compute the Newton steps (∆µj ,∆µj
1,∆µj

2) for the system of nonlinear equations

rt(µ
j , µj

1, µ
j
2) =

[
∇g(µj) +D(k,n)(µj − λ1n−k)

Tµj
1 −D(k,n)(µj + λ1n−k)

Tµj
2

−µj
1(µ

j − λ1n−k) + µj
2(µ

j + λ1n−k)− (1/t)1n−k

]
= 0,

where rt(µj , µj
1, µ

j
2) is the residual.

2: Set αj = ξmj , where mj is the smallest nonnegative integer m satisfying

∥r(µj + ξm∆µ, µj
1 + ξm∆µ1, µ

j
2 + ξm∆µ2)∥2 ≤ (1− ηξm)∥(rt(µj , µj

1, µ
j
2)∥2.

3: Update
µj+1 = µj + αj∆µj , µj+1

1 = µj
1 + αj∆µj

1, µj+1
2 = µj

2 + αj∆µj
2.

4: Compute

xj+1 = y −D(k,n)Tµj+1.

5: Set j ← j + 1, and go to step 1.

3.1 Stopping criteria

We use the following relative residuals to measure the accuracy of approximate optimal
solutions obtained by all the tested algorithms:

Res1 :=
∥x− y+D(k,n)Tµ∥

1 + ∥x∥+ ∥y∥+ ∥D(k,n)Tµ∥
,

Res2 :=
∥D(k,n)x− Proxλ∥·∥1

(D(k,n)x+ µ)∥
1 + ∥D(k,n)x∥+ ∥µ∥

.

The primal infeasibility, dual infeasibility are denoted by Rp, Rd, namely

Rp =
∥Dx− z∥

1 + ∥Dx∥+ ∥z∥
, Rd =

∥x− y +D(k,n)Tµ∥
1 + ∥x∥+ ∥y∥+ ∥D(k,n)Tµ∥

.

In our experiments, for the Ssnal algorithm, we initialize the Ssnal algorithm with
(x0, z0, µ0) = (0, 0, 0) and terminate the algorithm when Rkkt := max{Res1,Res2} ≤ tol
or the number of outer iterations exceeds 50. The penalty parameter σi+1 in the Ssnal
algorithm is adjusted dynamically: starting from the initial value 0.1, we adjust σi+1 as
follows such that σi+1 cannot go to extremely large or small, and the primal and dual
infeasibilities are well balanced [2]:

σi+1 =

min{10−4, 0.1σi}, if Resi1 > 10Resi2,

max{5× 103, 1.3σi}, if Resi1 < 0.1Resi2,

σi, otherwise.

We initialize the ADMM algorithm with (x0, z0, µ0) = (0, 0, 0) and terminate the algorithm
when Rkkt := max{Res1,Res2} ≤ tol or the maximum number of iterations 20000 is reached.
We start the PDIP algorithm from the initial point (µ0, µ0

1, µ
0
2) = (0, 0, 0) and terminate the

algorithm when Rkkt := max{Res1,Res2} ≤ tol or the number of outer iterations exceeds
20000.

SPARSE HESSIAN BASED Ssnal ALGORITHM FOR GENERAL ℓl TREND FILTERING 197

For the parameters of the Ssn algorithm, we set ι = 10−12 and ζ = 0.5. We terminate
the CG algorithm at j-th Ssn iteration when ∥Wjd

j +∇Φ(xj)∥ ≤ toljcg with

toljcg =

{
min{0.1, 0.1∇Φ(xj)}, i < 2 and j < 1,

min{0.5, 0.5∇Φ(xj)}, otherwise.

3.2 Numerical results for synthetic data

In this subsection, we compare the Ssnal algorithm against other algorithms (PDIP, ADMM)
for the general ℓ1 trend filtering problem (1.1) on synthetic data sets, which are generated
as

yt = xt + zt, t = 1, ..., n, xt+1 = xt + vt, t = 1, ..., n− 1, (3.5)

where vt is the trend slope, xt is the “true” underlying trend, and zt is the irregular com-
ponent or noise. The initial condition is x1 = 0 and the noises zt are independent and
identically distributed N (0, β2). The trend slopes vt are selected from a simple Markov
process (independent of z). With probability p, we have vt+1 = vt, i.e., no slope change in
the underlying trend. With probability 1 − p, we choose vt+1 from a uniform distribution
on [−b, b]. We choose the initial slope v1 from a uniform distribution on [−b, b]. In our
experiments, we set p = 0.01, β = 1, b = 0.5. We test three cases of the tuning parameter
with λ = 0.001, 0.005, 0.01. We let n = 200000i, i = 1, ..., 5 and the accuracy tol = 10−6.
We selected the average of the data from five experiments as our experimental results and
time is measured in seconds.

Table 1: The numerical results of Ssnal, PDIP and ADMM on synthetic
data sets when k = 2, tol = 10−6.

n solver
λ=0.001 λ=0.005 λ=0.01

Time Rkkt Time Rkkt Time Rkkt

2e+05

Ssnal 0.206 3.003e-07 0.488 3.025e-07 0.543 2.908e-07

PDIP 1.147 3.561e-07 1.427 2.523e-07 1.472 1.904e-07

ADMM 0.575 3.614e-07 2.536 3.940e-07 3.293 3.702e-07

4e+05

Ssnal 0.281 2.963e-07 0.956 3.035e-07 1.197 2.863e-07

PDIP 2.269 3.630e-07 2.812 2.458e-07 2.955 1.955e-07

ADMM 1.239 3.580e-07 5.092 3.766e-07 7.077 3.796e-07

6e+05

Ssnal 0.423 2.962e-07 1.501 3.056e-07 1.906 2.893e-07

PDIP 3.406 3.659e-07 4.277 2.530e-07 4.424 2.012e-07

ADMM 1.873 3.579e-07 8.127 3.776e-07 11.093 3.785e-07

8e+05

Ssnal 0.585 2.902e-07 2.046 3.036e-07 2.602 2.925e-07

PDIP 4.547 3.654e-07 5.697 2.535e-07 5.962 2.004e-07

ADMM 2.568 3.574e-07 11.019 3.757e-07 15.231 3.778e-07

1e+06

Ssnal 0.735 2.910e-07 2.567 3.027e-07 3.334 2.976e-07

PDIP 5.719 3.666e-07 7.011 2.582e-07 7.501 2.018e-07

ADMM 3.275 3.569e-07 13.926 3.734e-07 19.406 3.788e-07

198 Y.-J. LIU AND T. ZHANG

From Table 1, we can see the comparison results of Ssnal, PDIP and ADMM on the
computational time (Time) and the relative KKT residual (Rkkt) under k = 2, tol = 10−6.
Although all the algorithms can successfully solve the problem within the required accuracy,
it is obvious that Ssnal algorithm has better performance than other algorithms. For the
computational time, the Ssnal algorithm is 3 to 10 times faster than PDIP algorithm, 5 to
10 times faster than ADMM algorithm.

Table 2: The numerical results of Ssnal, PDIP and ADMM on synthetic
data sets when k = 3, tol = 10−6.

n solver
λ=0.001 λ=0.005 λ=0.01

Time Rkkt Time Rkkt Time Rkkt

2e+05

Ssnal 0.107 1.977e-07 0.471 3.081e-07 0.591 2.399e-07

PDIP 1.377 2.963e-07 1.854 2.810e-07 1.850 3.241e-07

ADMM 1.359 1.472e-07 2.566 3.469e-07 3.001 2.952e-07

4e+05

Ssnal 0.238 1.982e-07 1.021 2.963e-07 1.382 2.628e-07

PDIP 2.990 2.589e-07 3.454 3.643e-07 3.971 1.699e-07

ADMM 2.797 1.907e-07 5.455 3.348e-07 6.394 3.199e-07

6e+05

Ssnal 0.340 1.943e-07 1.660 2.973e-07 2.191 2.796e-07

PDIP 4.169 2.704e-07 5.275 3.365e-07 6.025 2.403e-07

ADMM 4.012 2.831e-07 8.459 3.433e-07 9.953 3.301e-07

8e+05

Ssnal 0.466 1.970e-07 2.326 2.991e-07 2.990 2.740e-07

PDIP 5.691 2.720e-07 7.703 3.122e-07 7.621 3.735e-07

ADMM 5.475 2.015e-07 11.631 3.469e-07 13.706 3.262e-07

1e+06

Ssnal 0.594 1.944e-07 2.902 3.036e-07 3.994 2.704e-07

PDIP 11.413 2.326e-07 14.905 2.729e-07 14.870 2.571e-07

ADMM 6.134 3.007e-07 14.901 3.533e-07 17.488 3.262e-07

Table 2 shows the numerical results of the tested algorithms under k = 3, tol = 10−6.
Compared with the results of k = 2, it can be seen that Ssnal algorithm still maintains
the advantages of shorter time. The Ssnal algorithm is 10 to 20 times faster than PDIP
algorithm and ADMM algorithm with λ = 0.001. For the instance n = 1e+06 and λ = 0.001,
it takes 0.594 seconds for Ssnal algorithm to get the high-precision solution, while ADMM
algorithm needs 6.134 seconds to achieve the required accuracy, and PDIP algorithm even
costs 11.413 seconds to solve the problem.

SPARSE HESSIAN BASED Ssnal ALGORITHM FOR GENERAL ℓl TREND FILTERING 199

Table 3: The numerical results of Ssnal, PDIP and ADMM on synthetic
data sets when k = 4, tol = 10−6.

n solver
λ=0.001 λ=0.005 λ=0.01

Time Rkkt Time Rkkt Time Rkkt

2e+05

Ssnal 0.125 9.181e-08 0.931 3.408e-07 1.335 3.642e-07

PDIP 1.709 2.511e-07 2.234 2.679e-07 2.569 2.144e-07

ADMM 7.435 3.243e-07 7.419 3.169e-07 7.425 3.854e-07

4e+05

Ssnal 0.257 9.379e-08 1.957 3.530e-07 2.716 3.651e-07

PDIP 3.384 2.554e-07 4.424 2.901e-07 4.842 3.690e-07

ADMM 13.452 3.708e-07 14.800 3.903e-07 15.447 3.874e-07

6e+05

Ssnal 0.406 9.311e-08 3.078 3.451e-07 4.525 3.570e-07

PDIP 4.819 3.096e-07 6.654 2.995e-07 7.297 3.960e-07

ADMM 22.062 3.934e-07 23.106 3.950e-07 25.201 2.891e-07

8e+05

Ssnal 0.550 9.432e-08 4.185 3.472e-07 7.449 3.687e-07

PDIP 7.156 2.904e-07 9.183 2.984e-07 9.738 2.848e-07

ADMM 28.981 3.942e-07 31.848 3.975e-07 34.749 2.887e-07

1e+06

Ssnal 0.706 9.322e-08 5.615 3.497e-07 10.385 3.740e-07

PDIP 9.212 2.828e-07 11.832 2.991e-07 12.737 2.995e-07

ADMM 35.269 3.894e-07 42.733 3.023e-07 44.589 2.968e-07

Table 3 demonstrates the performances of all algorithms on Time and Rkkt under k = 4,
tol = 10−6. The Ssnal algorithm still performs very well, while the performances of PDIP
algorithm and ADMM algorithm are quite poor. For the instance λ = 0.001 and n = 1e+6,
Ssnal algorithm takes 0.706 seconds to reach the high accuracy Rkkt = 9.322e− 08, while
PDIP algorithm needs 9.212 seconds to achieve the lower accuracy Rkkt = 2.828e− 07, and
ADMM algorithm even costs 35.269 seconds to get the lowest accuracy Rkkt = 3.894e− 07.
Therefore, Ssnal algorithm is superior to other two algorithms on synthetic data when
Rkkt ≤ 10−6.

3.3 Numerical results for real data

In this subsection, we compare the Ssnal algorithm with PDIP algorithm and ADMM
algorithm for solving general ℓ1 trend filtering (1.1) on real data sets collected from PJM
dataset. PJM Interconnection LLC (PJM) is a regional transmission organization (RTO)
in the United States. It is part of the Eastern Interconnection grid operating an electric
transmission system serving all or parts of Delaware, Illinois, Indiana, Kentucky and so on.
In this database, we pick out four datasets to test all the algorithms. In our experiments,
we still choose three tuning parameters with λ = 0.001, 0.005, 0.01. We set k = 2, 3, 4 and
different n depending on the size of the data sets. In addition, the statistics of all tested
instances are shown in Table 4.

https://www.kaggle.com/robikscube/hourly-energy-consumption

200 Y.-J. LIU AND T. ZHANG

Table 4: Summary of tested data sets.

abbreviation proname source n

data1 PJM-Load-hourly PJM 32896

data2 NI-hourly PJM 58450

data3 PJMW-hourly PJM 143206

data4 PJM-hourly-est PJM 803000

Table 5: The numerical results of Ssnal, PDIP and ADMM on real data sets
when k = 2, tol = 10−6.

n solver
λ=0.001 λ=0.005 λ=0.01

Time Rkkt Time Rkkt Time Rkkt

32896

Ssnal 0.006 7.617e-08 0.003 3.809e-07 0.006 5.777e-08

PDIP 0.023 1.641e-07 0.110 3.513e-07 0.188 2.626e-07

ADMM 0.021 2.950e-07 0.018 3.086e-07 0.019 3.302e-07

58450

Ssnal 0.006 3.283e-07 0.010 1.343e-07 0.011 2.842e-07

PDIP 0.104 3.882e-07 0.307 3.423e-07 0.381 2.670e-07

ADMM 0.034 3.296e-07 0.029 3.730e-07 0.041 2.900e-07

143206

Ssnal 0.076 8.355e-08 0.093 3.814e-07 0.249 3.722e-07

PDIP 1.088 3.099e-07 1.247 2.660e-07 1.385 3.104e-07

ADMM 0.257 3.370e-07 0.421 3.291e-07 0.867 3.901e-07

803000

Ssnal 0.430 2.192e-07 2.027 3.112e-07 2.856 1.564e-07

PDIP 6.146 2.936e-07 7.426 2.540e-07 7.848 2.282e-07

ADMM 4.242 3.396e-07 7.924 3.814e-07 13.781 3.979e-07

From Table 5, we obtain comparison results of several algorithms on Time and Rkkt

under k = 2, tol = 10−6. The Ssnal algorithm can solve the problem in a shorter time,
while the other two algorithms perform worse. For example, when n = 32896 and λ = 0.01,
the Ssnal algorithm only takes 0.006 seconds to solve the problem with high accuracy
Rkkt = 5.777e− 08, but the ADMM algorithm costs 0.019 seconds to get the solution with
low accuracy Rkkt = 3.302e − 07, and the PDIP algorithm even needs 0.188 seconds to
obtain the solution with low accuracy Rkkt = 2.626e− 07.

SPARSE HESSIAN BASED Ssnal ALGORITHM FOR GENERAL ℓl TREND FILTERING 201

Table 6: The numerical results of Ssnal, PDIP and ADMM on real data sets
when k = 3, tol = 10−6.

n solver
λ=0.001 λ=0.005 λ=0.01

Time Rkkt Time Rkkt Time Rkkt

32896

Ssnal 0.003 5.355e-08 0.003 2.677e-07 0.007 5.220e-08

PDIP 0.030 1.135e-07 0.131 3.339e-07 0.241 2.248e-07

ADMM 0.063 3.551e-07 0.062 3.575e-07 0.064 3.610e-07

58450

Ssnal 0.006 2.258e-07 0.012 8.894e-08 0.015 1.996e-07

PDIP 0.049 2.753e-07 0.406 3.896e-07 0.460 3.061e-07

ADMM 0.101 3.909e-07 0.100 3.975e-07 0.114 1.575e-07

143206

Ssnal 0.084 4.869e-08 0.081 2.310e-07 0.168 3.985e-07

PDIP 0.982 3.645e-07 1.748 2.583e-07 1.732 2.516e-07

ADMM 1.020 3.906e-07 1.182 1.992e-07 1.144 3.921e-07

803000

Ssnal 0.538 9.862e-08 2.061 3.588e-07 3.223 2.567e-07

PDIP 7.827 2.306e-07 8.574 3.492e-07 9.734 2.646e-07

ADMM 9.989 3.458e-07 11.637 3.936e-07 14.954 3.257e-07

As revealed in Table 6, the Ssnal algorithm has more obvious advantages over PDIP
algorithm and ADMM algorithm with the increase of k. For the computational time, the
Ssnal algorithm is 3 to 20 times faster than PDIP algorithm, 5 to 20 times faster than
ADMM algorithm. For accuracy, the Ssnal algorithm is higher than other two algorithms
in most cases.

Table 7: The numerical results of Ssnal, PDIP and ADMM on real data sets
when k = 4, tol = 10−6.

n solver
λ=0.001 λ=0.005 λ=0.01

Time Rkkt Time Rkkt Time Rkkt

32896

Ssnal 0.004 6.628e-08 0.004 3.314e-07 0.007 2.402e-07

PDIP 0.039 6.561e-08 0.038 3.279e-07 0.174 3.756e-07

ADMM 0.373 2.896e-07 0.372 2.892e-07 0.380 2.887e-07

58450

Ssnal 0.007 1.664e-07 0.019 3.584e-08 0.018 9.836e-08

PDIP 0.059 1.563e-07 0.372 3.908e-07 0.579 3.154e-07

ADMM 0.585 3.160e-07 0.590 3.144e-07 0.597 3.125e-07

143206

Ssnal 0.052 3.578e-07 0.142 9.146e-08 0.150 2.526e-07

PDIP 0.176 3.376e-07 2.015 2.921e-07 2.224 3.616e-07

ADMM 6.145 3.161e-07 6.232 3.137e-07 6.179 3.111e-07

803000

Ssnal 1.502 6.818e-08 4.472 1.958e-07 6.115 2.541e-07

PDIP 8.125 3.304e-07 11.120 3.652e-07 13.128 3.867e-07

ADMM 55.464 3.593e-07 55.791 3.539e-07 55.514 3.481e-07

202 Y.-J. LIU AND T. ZHANG

From Table 7, we can intuitively observe that performance of the Ssnal algorithm is
much faster than that of other two algorithms under k = 4, tol = 10−6. For example, when
n = 803000 and λ = 0.001, it only takes 1.502 seconds for Ssnal algorithm to achieve the
high accuracy Rkkt = 6.818e − 08, while the PDIP algorithm costs 8.125 seconds with a
lower accuracy Rkkt = 3.304e − 07, and the ADMM algorithm even needs 55.464 seconds
to get the lowest accuracy Rkkt = 3.593e − 07. To sum up, the Ssnal algorithm performs
better than other two algorithms on real datasets when Rkkt ≤ 10−6.

4 Conclusion

In this paper, we have presented an efficient and robust semismooth Newton based aug-
mented Lagrangian (Ssnal) algorithm for solving general ℓ1 trend filtering. The theoretical
results on the global and local convergence property of the Ssnal algorithm has been il-
lustrated. We utilized the second order sparsity and some efficient techniques to reduce
the computational costs of the Ssn algorithm for solving the subproblem of the Ssnal al-
gorithm. In numerical experiments, the remarkable performance of the Ssnal algorithm
has been demonstrated by comparing the Ssnal algorithm with other state-of-the-art algo-
rithms.

References

[1] R.T. Baillie and S.K. Chung, Modeling and forecasting from trend stationary long
memory models with applications to climatology, Int. J. Forecast. 18 (2002) 215–226.

[2] C.H. Chen, Y.-J. Liu, D.F. Sun and K.-C. Toh, A semismooth Newton-CG based dual
PPA for matrix spectral norm approximation problems, Math. Program. 155 (2016)
435–470.

[3] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York,
1983.

[4] L. Condat, A direct algorithm for 1D total variation denoising, IEEE Signal Proc. Let.
20 (2013) 1054–1057.

[5] P.L. Davies and A. Kovac, Local extremes, runs, strings and multiresolution, Ann. Stat.
29 (2001) 61–65.

[6] S. Fang, Y.-J. Liu and X.Z. Xiong, Efficient sparse Heissian based semismooth Newton
algorithms for Dantzig selector, SIAM J. Sci. Comput. in press.

[7] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational
problems via finite element approximation, Comput. Math. Appl. 2 (1976) 17–40.

[8] G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, 1996.

[9] S. Greenland and M.P. Longnecker, Methods for trend estimation from summarized
dose-response data, with applications to meta-analysis, Amer. J. Epidemiol. 135 (1992)
1301–1309.

SPARSE HESSIAN BASED Ssnal ALGORITHM FOR GENERAL ℓl TREND FILTERING 203

[10] R.J. Hodrick and E.C. Prescott, Postwar U.S. business cycles: an empirical investiga-
tion, J. Money Credit Bank. 29 (1997) 1–16.

[11] N.A. Johnson, A dynamic programming algorithm for the fused lasso and L0-
segmentation, J. Comput. Graph. Stat. 22 (2013) 246–260.

[12] S.J. Kim, K. Koh, S. Boyd and D. Gorinevsky, ℓ1 Trend Filtering, SIAM Rev. 51 (2009)
339–360.

[13] C. Lemaréchal and C. Sagastizábal, Practical aspects of the Moreau-Yosida regulariza-
tion: theoretical preliminaries, SIAM J. Optim. 7 (1997) 367–385.

[14] S.D. Levitt, Understanding why crime fell in the 1990s: four factors that explain the
decline and six that do not, J. Econ. Perspect. 18 (2004) 163–190.

[15] X.D. Li, D.F. Sun and K.-C. Toh, A highly efficient semismooth Newton augmented
Lagrangian method for solving Lasso problems, SIAM J. Optim. 28 (2016) 433–458.

[16] X.D. Li, D.F. Sun and K.-C. Toh, On efficiently solving the subproblems of a level-set
method for fused lasso problems, SIAM J. Optim. 28 (2018) 1842–1866.

[17] M.X. Lin, Y.-J. Liu, D.F. Sun and K.-C. Toh, Efficient sparse semismooth Newton
methods for the clustered Lasso problem, SIAM J. Optim. 29 (2019) 2026–2052.

[18] L.Y. Lin and Y.-J. Liu, An efficient Hessian based algorithm for singly linearly and box
constrained least squares regression, J. Sci. Comput. 88 (2021) 1–21.

[19] J. Liu, L. Yuan and J.P. Ye, An efficient algorithm for a class of fused Lasso problems,
in: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2010, pp. 323–332.

[20] R.E. Lucas, Two illustrations of the quantity theory of money, Amer. Econom. Rev. 70
(1980) 1005–1014.

[21] Z.Y. Luo, D.F. Sun, K.-C. Toh and N.H. Xiu, Solving the OSCAR and SLOPE models
using a semismooth Newton-based augmented Lagrangian method, J. Mach. Learn.
Res. 20 (2019) 1–5.

[22] F.J. Luque, Asymptotic convergence analysis of the proximal point algorithm, SIAM
J. Control Optim. 22 (1984) 277–293.

[23] J.J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France
93 (1965) 273–299.

[24] D.B. Niu, C.J. Wang, P.P. Tang, Q.S. Wang and E.B. Song, A sparse semismooth
Newton based augmented Lagrangian method for large-scale support vector machines,
arXiv preprint arXiv:1910.01312, (2019).

[25] D.R. Osborne, Moving average detrending and the analysis of business cycles, Oxford
B. Econom. Statist. 57 (1995) 547–558.

[26] A. Ramdas and R.J. Tibshirani, Fast and flexible ADMM algorithms for trend filtering,
J. Comput. Graph. Statist. 25 (2016) 839–858.

[27] S.M. Robinson, Some continuity properties of polyhedral multifunctions, Math. Pro-
gram. Stud. 14 (1981) 206–214.

204 Y.-J. LIU AND T. ZHANG

[28] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

[29] R.T. Rockafellar, Augmented Lagrangians and applications of the proximal point algo-
rithm in convex programming, Math. Oper. Res. 1 (1976), 97–116.

[30] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Con-
trol Optim. 14 (1976) 877–898.

[31] R.T. Rockafellar and J.B. Wets, Variational Analysis, Springer, Berlin, 1998.

[32] L.I. Rudin, S. Osher and E. Faterni, Nonlinear total variation based noise removal
algorithms, Physica D. 60 (1992) 259–268.

[33] K.J. Singleton, Econometric issues in the analysis of equilibrium business cycle models,
J. Monetary Econ. 21 (1988) 361–386.

[34] K.T. Talluri and G.J. Ryzin, The Theory and Practice of Revenue Management, Kluwer
Academic, Boston, 2004.

[35] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu and K. Knight, Sparsity and smoothness
via the fused lasso, J. R. Stat. Soc. Ser. B. Stat. Methodol. 67 (2005) 91–108.

[36] R.S. Tsay, Analysis of Financial Time Series, 2nd Edition, Wiley-Interscience, Hobo-
ken, 2005.

[37] Y.J. Zhang, N. Zhang and D.F. Sun, An efficient Hessian based algorithm for solving
large-scale sparse group Lasso problems, Math. Program. 179 (2020) 223–263.

[38] X.Y. Zhao, D.F. Sun and K.-C. Toh, A Newton-CG augmented Lagrangian method for
semidefinite programming, SIAM J. Optim. 20 (2010) 1737–1765.

Manuscript received 5 August 2021
revised 25 October 2021

accepted for publication 6 December 2021

Yong-Jin Liu
School of Mathematics and Statistics, Fuzhou University
Fuzhou 350108, People’s Republic of China
E-mail address: yjliu@fzu.edu.cn

Tiqi Zhang
School of Mathematics and Statistics, Fuzhou University
Fuzhou 350108, People’s Republic of China
E-mail address: tiqizhang1018@163.com

