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s.t. b+ r ∈ R(A+ E),

by the singular value decomposition (SVD). Randomized algorithms for total least squares
problems are presented in [62].

The sensitivity analysis of the matrix function F (A) is deterministic, which leads to the
expression of first order estimation [16]

∥F (A+H)− F (A)∥ ≤ κ ∥H∥+ o(∥H∥),

where κ is the deterministic condition number defined as [20]

κ = lim
δ→0

cδ
δ

= lim
δ→0

sup
∥H∥≤δ

∥F (A+H)− F (A)∥
δ

.

Rice [46] shows that if F is Fréchet differentiable at A, then κ is the operator norm of the
Fréchet derivative of F at A. However, few attempts have been made to cases when random
noises exist. In fact, the random noise exists in many cases. Some automatic error analysis
software perform random perturbations and the experimental data obtained by containing
random errors which confirm certain kinds of distribution. Therefore, it is worthwhile to
gain the error bounds by the stochastic analysis. We can trace the original idea to Turing
[53], who first considers the function F (A) = A−1b for a nonsingular matrix A ∈ Rn×n and
b ∈ Rn. He ignores the o(∥H∥) term of the high order error in the equation

(A+H)−1b−A−1b = −A−1HA−1b+ o(∥H∥),

and gives an expression for the root-mean-square of
∥∥A−1HA−1b

∥∥
2
. Stewart [50] considers

general cases with random noises, and derives the expression of expectation of the error
bound. Fletcher [16] obtains the similar results independently and provides the error ex-
pectation, when the input data satisfies the standard normal distribution. In recent years,
Gratton and Titley-Peloquin [20] propose the stochastic condition number which determines
the sensitivity of the matrix function with random noises. They utilize the stochastic condi-
tion number to present the first-order estimation (FOE) of a matrix function and compare
it with deterministic cases to show the effectiveness or their stochastic error estimation.
Breiding and Vannieuwenhoven [3] investigate the average condition number of tensor rank
decompositions.

Unfortunately, the linear least squares problems and the error estimation theories have
not been fully extended to tensor functions due to the multiplications of tensors have not
been well-defined yet.

Recently, a lot of tensor multiplication methods and recent results come into the world
[11, 43, 60]. There are two important kinds of products between tensors, which is the tensor
Einstein product and the tensor-tensor product [29]. Under both kinds of products, the
set of tensors forms a ring structure and inherits nice properties from matrices. The tensor
Moore-Penrose inverse and tensor least squares problems have already been established
for the Einstein product in [37, 51]. They also discuss about the minimum-norm least
squares solution with the Einstein product. Few papers emphasize the conditioning of
tensor functions based on the tensor-tensor product.

The tensor-tensor product is introduced by Kilmer et al. [29], which has been proved to
be of great help in many areas, such as, the image processing [29, 38, 47, 52], the computer
vision [22, 63], the signal processing [5, 34, 35], the low rank tensor recovery and robust
tensor PCA [31, 34], the data completion and denoising [15, 26, 35, 54] and random tensors
[6, 7, 8, 9]. An approach of linearization is provided by the tensor-tensor product to transfer
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tensor multiplication, to the matrix multiplication by the discrete Fourier transformation
and the block circulant matrices [4, 28]. Due to the importance of the tensor-tensor product,
Lund [36] gives the definition of tensor functions based on the tensor-tensor product of third
order F-square tensors in her Ph.D thesis in 2018. The definition of T-function is given by

f♢(A) = fold(f(bcirc(A))Ê1

np×n
),

where ‘bcirc(A)’ is the block circulant matrix [28] defined by the F-square tensor A ∈
Cn×n×p and Ê1

np×n
= êpk ⊗ In, where êpk ∈ Cp is the vector of all zeros except for the k-th

entry and In is the identity matrix, ‘⊗’ is the matrix Kronecker product [25].
The T-function has been proved to be useful in stable tensor neural networks for rapid

deep learning [42]. Special kinds of T-function, such as tensor power used in Arnoldi methods
to compute the tensor eigenvalues and diagonal tensor canonical form [17] is also proposed.
Miao, Qi and Wei [40, 41] investigate the generalized tensor functions, the tensor Jordan
canonical forms and the tensor generalized inverses, which gives the classification of tensors
based on the tensor-tensor product. The tensor neural network models based on the tensor
singular value decomposition (T-SVD) is presented in [57]. Quantum tensor singular value
decomposition with applications to recommendation systems is given in [56]. Xu et al. [64]
developed tensor-tensor product based nonlocal tensor sparse representation model

min
D,S

{
1

2
∥X − D ∗ S∥2F + λ ∥S∥1

}
.

for hyperspectral image super-resolution. Ekanadham et al. [14] also used L1 regularization
method to solve automatic neural spike identification problem. Tensor Tikhonov methods
for ill-posed problems with the tensor-tensor product structure can be found in [1, 21, 44, 45].

In this paper, we dedicate to investigate the conditioning of tensor functions based on
the tensor-tensor product and show the effectiveness of stochastic condition number. In the
preliminaries, we recall the basic notations and the definition of tensor-tensor product and
give the definition of tensor norms, tensor rank, tensor range space and tensor null space
based on the tensor-tensor product. Properties of standard tensor functions are collected. In
the main part, we discuss the bound of the stochastic perturbation for third order tensors.
As an application, we obtain the perturbation bounds for the solution to the T-least squares
problem and the T-Total least squares problem based on the tensor-tensor product. The
stochastic conditioning problem of general tensor T-functions is taken into consideration. We
give the definition of Fréchet derivative of tensor functions. Then we obtain the estimation
of the upper bound of stochastic condition number by the basic probability inequalities.
Comparisons are made with the deterministic condition number in the first-order estimation
(FOE) of tensor T-functions in stochastic cases. To illustrate the above results, a numerical
test is presented to compare the FOE of the tensor least squares problem by using the
deterministic condition number with the stochastic condition number.

2 Notation and Preliminaries

2.1 Notation

A new concept is proposed by Kilmer et al. [29, 30] for multiplying third order tensors,
viewing a tensor as a stack of frontal slices. Suppose that we have two tensors A ∈ Rm×n×p

and B ∈ Rn×s×p and denote their frontal slices respectively as A(k) ∈ Rm×n and B(k) ∈
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Rn×s, (k = 1, 2, . . . , p). We can also define the operations bcirc, unfold and fold as [22, 29,
30],

bcirc(A) :=


A(1) A(p) A(p−1) · · · A(2)

A(2) A(1) A(p) · · · A(3)

...
. . .

. . .
. . .

...

A(p) A(p−1) . . . A(2) A(1)

 , unfold(A) :=


A(1)

A(2)

...
A(p)

 ,

and fold(unfold(A)) := A.
We can define the inverse operation bcirc−1 : Rmp×np → Rm×n×p such that

bcirc−1(bcirc(A)) = A.
In view of the large number of symbols used in this paper, the meanings of the main

symbols are listed in the following table.

Symbols Meaning
* T-product

bcirc block circulant operator
Fp DFT matrix
⊗ matrix Kronecker product

R(·) Range space of tensors
N (·) Null space of tensors
E{·} Mathematical expectation
|| · ||S Tensor stochastic norm
Prob(·) Probability
Med(·) Median of random variable

J Jacobi tensor

Table 1: Notations and Symbols

2.2 The Tensor-Tensor Product

The following definitions and properties are adopted in [22, 29, 30].

Definition 2.1. (Tensor-tensor product) Let A ∈ Rm×n×p and B ∈ Rn×s×p be two real
tensors. Then the tensor-tensor product A ∗ B is an m× s× p real tensor defined by

A ∗ B := fold(bcirc(A)unfold(B)).

We introduce definitions of transpose, identity and orthogonal of tensors as follows.

Definition 2.2. (Transpose and conjugate transpose) If A is a third order tensor of size
m× n× p, then the transpose A⊤ is obtained by transposing each of the frontal slices and
then reversing the order of transposed frontal slices 2 through n. The conjugate transpose
AH is obtained by conjugate transposing each of the frontal slices and then reversing the
order of transposed frontal slices 2 through n.

Definition 2.3. (Identity tensor) The n × n × p identity tensor Innp is the tensor whose
first frontal slice is the n× n identity matrix, and whose other frontal slices are all zeros.

It is easy to check that A ∗ Innp = Immp ∗ A = A for A ∈ Rm×n×p.
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Definition 2.4. (Orthogonal and unitary tensors) An n × n × p real-valued tensor P is
orthogonal if P⊤ ∗ P = P ∗ P⊤ = I. An n × n × p complex-valued tensor Q is unitary if
QH ∗ Q = Q ∗ QH = I.

For a frontal square tensor A of size n×n×p, it has inverse tensor B (= A−1), provided
that

A ∗ B = Innp and B ∗ A = Innp.

It should be noticed that invertible third order tensors of size n×n× p forms a group, since
the invertibility of tensor A is equivalent to the invertibility of the matrix bcirc(A), and the
set of invertible matrices forms a group. Also, the orthogonal tensors via the tensor-tensor
product also forms a group, since bcirc(Q) is an orthogonal matrix.

The concept of T-range space, T-null space, tensor norm, and T-Moore-Penrose inverse
are defined as follows [40].

Definition 2.5. Let A be an m× n× p real-valued tensor.
(1) The T-range space of A, R(A) := Ran((Fp ⊗ Im)bcirc(A)(FH

p ⊗ In)), ‘Ran’ means the
range space of the matrix,
(2) The T-null space of A, N (A) := Null((Fp ⊗ Im)bcirc(A)(FH

p ⊗ In)), ‘Null’ represents
the null space of the matrix,
(3) The tensor norm ∥A∥ := ∥bcirc(A)∥,
(4) The tensor Moore-Penrose inverse A† = bcirc−1((bcirc(A))†).

In detail, let x ∈ Rm×1×p and A ∈ Rm×n×p be two real tensors. They have the following
factorization, respectively,

bcirc(x)

= (FH
p ⊗ Im)


x1

x2

. . .

xp

 (Fp ⊗ 1) = (FH
p ⊗ Im)diag{x1,x2, . . . ,xp}(Fp ⊗ 1),

bcirc(A)

= (FH
p ⊗ Im)


A1

A2

. . .

Ap

 (Fp ⊗ In) = (FH
p ⊗ Im)diag{A1, A2, . . . , Ap}(Fp ⊗ In),

where Fn is the discrete Fourier matrix of size n× n, which is defined as [4]

Fn =
1√
n



1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωn−1

1 ω2 ω4 ω6 · · · ω2(n−1)

1 ω3 ω6 ω9 · · · ω3(n−1)

...
...

...
...

. . .
...

1 ωn−1 ω2(n−1) ω3(n−1) · · · ω(n−1)(n−1)


,

where ω = e−2πi/n is the primitive n-th root of unity in which i =
√
−1. FH

p is the conjugate
transpose of Fp. x1,x2, . . . ,xp ∈ Cm, A1, A2, . . . , Ap ∈ Cm×n.
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Then

∥x∥2 = max
1≤i≤p

∥xi∥2 , ∥A∥F =

√√√√ p∑
i=1

∥Ai∥2F , ∥A∥2 = max
1≤i≤p

∥Ai∥2 ,

where ∥xi∥2 =
(∑m

j=1(xi)
2
j

)1/2
and ∥Ai∥2 = max

∥y∥2=1
∥Aiy∥2 .

It is easy to check that ∥A∥2 = ∥bcirc(A)∥2 and ∥A∥F = ∥bcirc(A)∥F due to the fact
that the discrete Fourier transformation is a unitary transformation.

Remark 2.6. It should be noticed that

∥A∥2F ̸=
p∑

i=1

∥∥∥A(i)
∥∥∥2
F
,

where A(i) are the frontal slices of A, since ∥A∥2F := ∥bcirc(A)∥F = p
∑p

i=1

∥∥A(i)
∥∥2
F
.

It indicates the Frobenius norm of a third order tensor A ∈ Rm×n×p is defined to be p
times the sum of the squares of all entries.

We call x ∈ Rm×1×p is in the range space of A ∈ Rm×n×p, denoted by x ∈ R(A), if and
only if for all xi ∈ R(Ai), i = 1, 2, . . . , p.

Similarly, we call x ∈ Rm×1×p is in the null space of A ∈ Rm×n×p, denoted by x ∈ N (A),
if and only if for all xi ∈ N (Ai), i = 1, 2, . . . , p.

Remark 2.7. We call a third order tensor A is T-full column (row) rank if and only if each
Ai is of full column (row) rank.

Remark 2.8. We call a third order F-square tensor A is T-nonsingular if and only if each
square matrix Ai is nonsingular.

The definition of tensor rank based on tensor-tensor product is given as follows.

Definition 2.9. (Tensor rank) Let A be an m × n × p real-valued tensor. If we have the
factorization,

(Fp ⊗ Im)bcirc(A)(FH
p ⊗ In) = diag{A1, A2, . . . , Ap},

then we call the rank of A is

rank(A) = (r1, r2, . . . , rp),

where ri = rank(Ai), i = 1, 2, . . . , p.
Especially, if r1 = r2 = · · · = rp = r, we call the rank of A is r, denoted by rank(A) = r.

Che and Wei [10] present the randomized algorithms for the approximations of Tucker
and the tensor train decompositions.

2.3 Tensor T-Function

By using the tensor-tensor product, the matrix function can be generalized to tensors of size
n × n × p. Assume that we have tensors A ∈ Cn×n×p and B ∈ Cn×s×p, then the tensor
T-function of A is defined by [36]

f(A) ∗ B := fold(f(bcirc(A)) · unfold(B)),
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or equivalently

f(A) := fold(f(bcirc(A))Ê1

np×n
).

There is another way to express Ê1

np×n
:

Ê1

np×n
=


In
0
...
0

 =


1
0
...
0

⊗ In = unfold(In×n×p).

Note that f on the right-hand side of the equation is merely the matrix function defined
above, the T-function is well defined.

From this definition, we could see that for a tensor A ∈ Cn×n×p, bcirc(A) is a block

circulant matrix of size np × np. The frontal faces of A are the block entries of AÊ1

np×n
,

then A = fold(AÊ1

np×n
), where A = unfold(A).

To obtain further properties of generalized tensor functions, we make reviews of the
results on block circulant matrices and the tensor-tensor product.

Lemma 2.10 ([4]). Suppose that A,B ∈ Cnp×np are block circulant matrices with n × n

blocks. Let {αj}kj=1 be scalars. Then A⊤, AH , α1A + α2B, AB, q(A) =
∑k

j=1 αjA
j and

A−1 are also block circulant.

Lemma 2.11 ([36]). Suppose that tensors A ∈ Cn×n×p and B ∈ Cn×s×p. Then

(1) unfold(A) = bcirc(A)Ê1

np×n
,

(2) bcirc(fold(bcirc(A)Ê1

np×n
)) = bcirc(A),

(3) bcirc(A ∗ B) = bcirc(A)bcirc(B),
(4) bcirc(A)j = bcirc(Aj), for all j = 0, 1, . . ., where Aj denotes the j-th power of A under
T-product.
(5) (A ∗ B)H = BH ∗ AH ,
(6) bcirc(A⊤) = (bcirc(A))⊤, bcirc(AH) = (bcirc(A))H .

3 Main Results

3.1 Upper-bounds for
∥∥∥A†

∥∥∥
The pseudo-inverse [55, 61] (or Moore-Penrose inverse) of a third order tensor A based on
the tensor-tensor product can be defined as the unique tensor A† satisfying the following
four equations,

A† ∗ A ∗ A† = A†, A ∗ A† ∗ A = A, (A ∗ A†)H = A ∗ A†, (A† ∗ A)H = A† ∗ A. (3.1)

The tensor Moore-Penrose inverse and the generalized tensor functions of third order tensors
based on the tensor-tensor product have been investigated by Miao, Qi and Wei [40]. It is
proved that if a third order tensor A ∈ Rm×n×p has T-SVD [29] as

A = U ∗ Σ ∗ V⊤,

then the unique T-Moore-Penrose inverse could be expressed by A† = V ∗ Σ† ∗ U⊤.
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The orthogonal projections to the subspaces R(A) and R(A⊤) are defined as

PA = A ∗ A†, RA = A† ∗ A.

Let A = A+∆A be the perturbed tensor from the original tensor A ∈ Rm×n×p. Pursuing

the upper bound for ∥A†∥ plays an important role in the perturbation behaviour of the tensor
least square problems [17, 40].

Since an arbitrarily small perturbation of a tensor can change the T-rank of A, which
will cause arbitrarily large perturbation of the T-Moore-Penrose inverse, it is no wonder
that we should put some constraints of the way that A is perturbed. Stewart [48, 49] and
Wedin [58] independently constrained the acute perturbation and the similar idea could be
put on the tensor cases.

Definition 3.1 (Acute perturbation of tensors). A tensor A = A+∆A ∈ Rm×n×p is called
an acute perturbation of tensor A ∈ Rm×n×p if ∥PA − PA∥2 < 1 and ∥RA −RA∥2 < 1.

Definition 3.2 (Stable perturbation of tensors). A tensor A = A+∆A ∈ Rm×n×p is called
a stable perturbation of tensor A ∈ Rm×n×p if R(A)∩R⊥(A) = {0}, where R⊥(A) denotes
the orthogonal complementary subspace of R(A).

Similar to the matrix cases, it can be proved that if A is an acute perturbation of A,
then A is a stable perturbation of A. But A is not necessarily an acute perturbation of
A, when A is a stable perturbation of A. Fortunately, if ∥∆A∥2 is small enough, then the
stable perturbation implies acute perturbation, as the following lemma.

Lemma 3.3. Let A = A+∆A ∈ Rm×n×p be a perturbation of A ∈ Rm×n×p. If∥∥A†∥∥
2
∥∆A∥2 < 1,

then the following statements are equivalent:
(1) A is a stable perturbation of A.
(2) A is an acute perturbation of A.
(3) rank(A) = rank(A).

As a generalization of the estimation of Stewart [48], we obtain the following theorem.

Theorem 3.4. Let A = A+∆A ∈ Rm×n×p be an acute perturbation of A ∈ Rm×n×p and∥∥A†
∥∥
2
∥∆A∥2 < 1, then ∥∥∥A†

∥∥∥
2
≤

∥∥A†
∥∥
2

1− ∥A†∥2 ∥∆A∥2
. (3.2)

Proof. Without loss of generality, we only prove this theorem with the tensor two-norm. By
the definition of the tensor norm,

∥A∥2 = ∥bcirc(A)∥2 =
∥∥(FH

p ⊗ Im)bcirc(A)(Fp ⊗ In)
∥∥
2

= ∥diag{A1, A2, . . . , Ap}∥2
= max

1≤i≤p
∥Ai∥2 .

Since bcirc(A†) = (FH
p ⊗ Im)diag{A†

1, A
†
2, . . . , A

†
p}(Fp ⊗ In), we obtain that∥∥A†∥∥

2
=
∥∥bcirc(A†)

∥∥
2
= max

1≤i≤p

∥∥∥A†
i

∥∥∥
2
.
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On the other hand, A = A+∆A,

bcirc(A) = (FH
p ⊗ Im)diag{A1, A2, . . . , Ap}(Fp ⊗ In).

By Lemma 2.11, we have

bcirc(A) = bcirc(A+∆A) = bcirc(A) + bcirc(∆A)

= (FH
p ⊗ Im) (diag{A1, A2, . . . , Ap}+ diag{∆A1,∆A2, . . . ,∆Ap}) (Fp ⊗ In),

which is equivalent to Ai = Ai +∆Ai, (i = 1, 2, . . . , p).
By the results of Stewart [48], it turns out that

∥∥∥A†
∥∥∥
2
=
∥∥bcirc(A)

∥∥
2
= max

1≤i≤p

∥∥∥Ai
†
∥∥∥
2
≤ max

1≤i≤p

∥∥∥A†
i

∥∥∥
2

1−
∥∥∥A†

i

∥∥∥
2
∥∆Ai∥2

.

The condition 0 <
∥∥A†

∥∥
2
∥∆A∥2 < 1 shows that

0 <
∥∥∥A†

i

∥∥∥
2
∥∆Ai∥2 < 1, i = 1, 2, . . . , p.

Then we have

∥∥∥A†
∥∥∥
2
≤

max
1≤i≤p

∥∥∥A†
i

∥∥∥
2

1− max
1≤i≤p

∥∥∥A†
i

∥∥∥
2
∥∆Ai∥2

=

∥∥A†
∥∥
2

1− ∥A†∥2 ∥∆A∥
2

.

We can also obtain the sharper upper bound for
∥∥∥A†

∥∥∥
2
as follows,

∥∥∥A†
∥∥∥
2
≤ µ

∥∥A†
∥∥
2

1−
∥∥∥A†

2

∥∥∥ ∥∆A∥2
with µ ≤ 1.

Furthermore,

µ < 1 if and only if R(A) ∩R(A) = {0} and R(A⊤
) ∩R(A⊤) = {0}.

The proof can be referred to Li, Xu, and Wei [32, Theorem 2].

3.2 T-Total Least Squares Problem

The tensor T-Least Squares problem is to minimize ∥A ∗ x− b∥2, which can be rewrite as
follows [18, 63]:

min
b+r∈R(A)

∥r∥2 .

By using the generalized inverses of tensors, Jin et al. [27] obtained the explicit expression
of the solution to the tensor least squares. If there is error on the tensor A, it is natural to
consider the following problem:

min
b+r∈R(A+E)

∥[E r]∥F . (3.3)
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This is the tensor T-Total Least Squares problem (T-TLS). If we can get the solution
which can minimize the Frobenius norm of [E0 r0], then we call the tensor x0 satisfying
(A+E0)∗x0 = b+r0 to be the solution of the T-TLS problem. By using the Frobenius norm,
Golub and Van Loan [19] generalized the matrix TLS problem. For tensors, we can intro-
duce the weight tensors D ∈ Rm×m×p, T ∈ R(n+k)×(n+k)×p, which are F-diagonal reversible
tensors. Then we can raise the multidimensional T-TLS problem [39, 65] as follows:

min
B+R∈R(A+E)

∥D ∗ [E R] ∗ T ∥F ,

Here E ∈ Rm×n×p and R ∈ Rm×k×p. If [E0 R0] is the solution to the above problem, then
any tensor X ∈ Rn×k×p satisfying

(A+ E0) ∗ X = B +R0 (3.4)

is called the solution to the T-TLS problem. We can use the T-SVD [30] to solve this
problem as the following theorem.

Theorem 3.5. Let A ∈ Rm×n×p and B ∈ Rm×k×p be third order tensors. D ∈ Rm×m×p

and T ∈ R(n+k)×(n+k)×p are two reversible F-diagonal tensors. if m ≥ n+k and the T-SVD
of

C = D ∗ [A B] ∗ T = [C1 C2], C1 ∈ Rm×n×p, C2 ∈ Rm×k×p,

takes the form U⊤ ∗ C ∗ V = Σ, where U , V, Σ can be written as:

U = [U1 U2], U1 ∈ Rm×n×p, U2 ∈ Rm×k×p,

V =

[
V11 V12

V21 V22

]
, V11 ∈ Rn×n×p, V12 ∈ Rn×k×p, V21 ∈ Rk×n×p, V22 ∈ Rk×k×p,

Σ =

[
Σ1 O
O Σ2

]
, Σ1 ∈ Rn×n×p, Σ2 ∈ Rk×k×p.

Suppose tensor C satisfies

bcirc(C) = (FH
p ⊗ Im)diag{C1, C2, . . . , Cp}(Fp ⊗ In+k),

and the singular values of matrix Ci are σ
(i)
1 (C), σ(i)

2 (C) . . . , σ(i)
n+k(C), i = 1, 2, . . . , p. Mean-

while,
bcirc(C1) = (FH

p ⊗ Im)diag{C1
1 , C

1
2 , . . . , C

1
p}(Fp ⊗ In),

and the singular values of C1
i are σ

(i)
1 (C1), σ(i)

2 (C1) . . . , σ(i)
n (C1), i = 1, 2, . . . , p.

If i = 1, 2, . . . p, we have σ
(i)
n (C1) > σ

(i)
n+1(C), then the block tensor [E0 R0] is the solution

to the equation
D ∗ [E0 R0] ∗ T = −U2 ∗ Σ2 ∗ [V⊤

12 V⊤
22].

Moreover, if the F-diagonal tensor T can be written as

T =

[
T1 O
O T2

]
, T1 ∈ Rn×n×p, T2 ∈ Rk×k×p,

then the tensor
XTLS = −T1 ∗ V12 ∗ V−1

22 ∗ T −1
2 (3.5)

exists, and it is the unique solution to the T-TLS problem (A+ E0) ∗ X = B +R0.
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Proof. From equation C ∗ V = U ∗ Σ, we get

C1 ∗ V12 + C2 ∗ V22 = U2 ∗ Σ2.

We need to prove V22 is a reversible tensor. Suppose there exists a tensor x ∈ Rk×1×p,
∥x∥2 = 1, satisfying

V22 ∗ x = O.

From
V⊤
12 ∗ V12 + V⊤

22 ∗ V22 = I

we have ∥V12 ∗ x∥2 = 1. However

σ
(i)
n+1(C) ≥ ∥U2 ∗ Σ2 ∗ x∥2 = ∥C1 ∗ V12 ∗ x∥2 ≥ σ(i)

n (C),

which comes to a contradiction. Thus V22 must be a reversible tensor. From the seperation

properties of singular values, we have σ
(i)
n (C) ≥ σ

(i)
n (C1). Therefore,

σ(i)
n (C) ≥ σ(i)

n (C1) > σ
(i)
n+1(C).

Now we begin to prove our theorem. If R(B +R) ⊆ R(A + E), then there exists a tensor
X ∈ Rn×k×p satisfying (A+ E) ∗ X = B +R, that is

{D ∗ [A B] ∗ T +D ∗ [E R] ∗ T } ∗ T −1 ∗
[

X
−Ik

]
= O.

Therefore, the rank of the tensor in the brace is at most n. On the other hand, we have

∥D ∗ [E R] ∗ T ∥2F ≥
n+k∑

j=n+1

σ
(i)
j (C)2.

Moreover, equality can be achieved when [E R] = [E0 R0]. By using the seperation property

of singular values, we have σ
(i)
n (C) > σ

(i)
n+1(C). Thus we have [E0 R0] is the unique solution

to let the equality to be achieved.
In order to get to the solution XTLS , first it can be observed that the kernel of the tensor

{D ∗ [A B] ∗ T +D ∗ [E R] ∗ T } = U1 ∗ Σ1 ∗ [V⊤
11 V⊤

21]

is the range space of the tensor

[
V12

V22

]
. Therefore, there exists a tensor S ∈ Rk×k×p satisfying

T −1 ∗
[

X
−Ik

]
=

[
V12

V22

]
∗ S.

From equations T −1
1 ∗ X = V12 ∗ S and −T −1

2 = V22 ∗ S, it can be obtained that

S = −V−1
22 ∗ T −1

2 .

Therefore,
X = T1 ∗ V12 ∗ S = −T1 ∗ V12 ∗ V−1

22 ∗ T −1
2 = XTLS ,

which comes to the proof.
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Specially, if we take p = k = 1, then the T-TLS problem degenerates to the matrix total
least squares problem. The following result was given by Golub and Van Loan [19]:

Corollary 3.6. Suppose matrices A,E ∈ Rm×n and vectors b, r ∈ Rm×1 satisfies

min
E,r

∥D[E r]T∥F

s.t. b+ r ∈ R(A+ E),

where 
D = diag(d1, d2, . . . , dm), di > 0, i = 1, 2, . . . ,m,

T = diag(t1, t2, . . . , tn+1) =

[
T1 O

O tn+1

]
, ti > 0, i = 1, 2, . . . , n+ 1,

are reversible weight matrices.
Denote C = D[A b]T , and it has singular value decomposition as follows

U⊤CV = diag(σ1, σ2, . . . , σn+1),

Â = DAT1, b̂ = Db, λ = tn+1,

and the singular value decomposition of matrix Â is

Â = Û Σ̂V̂ ⊤ = diag(σ̂1, σ̂2, . . . , σ̂n).

If σ̂n > σn+1, then the solution xTLS exists and it is the unique solution to the matrix
TLS problem. Moreover, {

xTLS = T1(Â
⊤Â− σ2

n+1I)
−1Â⊤b̂,

σ2
n+1

[
1
λ2 +

∑n
i=1

c2i
σ̂2
i−σ2

n+1

]
= ρ2LS ,

where {
c = (c1, c2, . . . , cm)⊤ = Û⊤b̂,

ρ2LS = min ∥D(b−Ax)∥22 = min ∥D(b−AxLS)∥22 .

By using the same kind of technique as Wei [59], we directly give the perturbation bound
of the TLS problem.

Corollary 3.7. For the TLS problem (3.4), we assume that the conditions in Theorem 3.5
hold. Partition the tensor V as

V =

[
V11 V12

V21 V22

]
where V11 ∈ Rn×q×p, V12 ∈ Rn×(n+d−q)×p, V21 ∈ Rd×q×p, V22 ∈ Rd×(n+d−q)×p. Let A′ ∈
Cm×n×p, B′ ∈ Cm×d×p and [A′ B′] = [A B] + E with η(k) = 1

6 (σ
(k)
p −σ

(k)
n+1), and the T-SVD

for A′, [A′ B′] be

U ′ ∗ A ∗ V ′
= Σ

′
,

where Σ
′
= diag(σ

(1)
1

′
, . . . , σ

(p)
n

′
) and Σ = diag(σ

(1)
1

′
, . . . , σ

(p)
n+d

′
). Suppose that all elements

of σ
(k)
q after ‘bcirc’ operation and fast Fourier transformation is greater than all elements
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of σ
(k)
q+1 after ‘bcirc’ operation and fast Fourier transformation for all k. Partition V ′ con-

formally with V, and replace Vij by V ′
ij for i, j = 1, 2. The perturbed solution comes to be

X ′
TLS = ((V ′

11)
H)† ∗ (V ′

21)
H . Then we get the following estimates:

∥XTLS −X ′
TLS∥ ≤ max

k

η(k) + σ
(k)
n+1

σ
(k)
q − σ

(k)
n+1

(3 + 5 ∥XTLS∥).

The condition numbers and algorithms for the total least squares problem can be found
in [33, 39, 62, 65].

3.3 Stochastic Perturbation Bound for A†

In this section, we approach the tensor perturbation from a probabilistic point of view.
Without loss of generality, for a tensor A ∈ Rm×n×p (m ≥ n), we assume that the pertur-
bation tensor S ∈ Rm×n×p is a random tensor whose distributions of elements satisfies the
independently identically distribution (i.i.d.) N (0, σ2), where the variance σ2 is sufficiently
small.

Under the above assumptions the perturbed tensor A = A+S has rank n almost surely,
it is no wonder that we suppose the tensor A always has T-rank n in this section.

Definition 3.8 (Stochastic norm). The stochastic norm of a tensor ∥·∥S is defined by

∥·∥S =

√
E
(
∥·∥2F

)
,

where ∥·∥F is the Frobenius norm of a tensor.

Lemma 3.9. For a third order tensor A ∈ Cm×n×p, we have

∥A∥2S = ∥bcirc(A)∥2S , (3.6)

where ∥bcirc(A)∥S is the matrix stochastic norm of bcirc(A) defined by Stewart in [50].

Applying the discrete Fourier transformation to A, we obtain

bcirc(A) = bcirc(A+ S)
= bcirc(A) + bcirc(S)
= (FH

p ⊗ Im) (diag{A1, A2, . . . , Ap}+ diag{S1, S2, . . . , Sp}) (Fp ⊗ In),

and

bcirc(A) = (FH
p ⊗ Im)diag{A1, A2, . . . , Ap}(Fp ⊗ In).

It is easy to find that Ai = Ai + Si, (i = 1, 2, . . . , p) and Si are random matrices. The
following lemma characterizes the probability distribution of Si.

Lemma 3.10. Suppose that S1 is a real matrix. The entries of S1 satisfies the i.i.d.
N (0, pσ2). Si, (i = 2, 3, . . . , p) are complex matrices. The real part and imaginary part
of Si, (i = 2, 3, . . . , p) satisfies the i.i.d. N (0, 1

2pσ
2), respectively. The real and imaginary

part are two independent Gaussian matrices.
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Proof. Denote the k-th slice of tensor A as A(k) = (a
(k)
ij )m×n, (k = 1, 2, . . . , p) and define

S(k) similarly from S. S(k) are independent matrices with i.i.d. Gaussian elements.
For i = 1, we obtain that S1 =

∑p
k=1 S

(k).
It can be deduced from the distribution of entries of S and the properties of normal

distribution that the elements of S1 satisfies the i.i.d. Gaussian distribution with variance
pσ2.

Now we turn to i = 2, 3, . . . , p. Similarly we have Si =
∑p

k=1 S
(p+2−k)ω(i−1)k, where

ωq = exp
{

2qπ
p i
}
is the q-th unit root of order p and i ≡

√
−1 which represents the imaginary

units.
Let Rk be the real part of Sk and denote θq = 2qπ

p i . We arrive at the expression

Ri =
∑p

k=1 S
(p+2−k) cos(kθi−1), from the corresponding formula of Sk. It implies that the

elements of Rk satisfies the i.i.d. Gaussian distribution with mean zero, and the variance of
elements is

p∑
k=1

cos2(kθi−1) =

{
p
2 , if (i− 1) ∤ p,(

p
i−1

) (
i−1
2

)
, if (i− 1) | p,

=
p

2
.

The distribution of the imaginary part of Si, (i = 2, 3, . . . , p) denoted by Wi can be derived
in the same way. The variance of the elements wjl of Wi is

p∑
k=1

sin2(kθi−1) =

{
p
2 , if (i− 1) ∤ p,(

p
i−1

) (
i−1
2

)
, if (i− 1) | p,

=
p

2
.

Finally, we need to prove the independence of Ri and Wi. Only the uncorrelation of the
entries in the corresponding positions are needed to prove since the both matrices have i.i.d.
Gaussian elements. It comes to

E(rjlwjl) = E

(
p∑

k=1

sjl(p+2−k) cos(kθi−1)

)(
p∑

k=1

sjl(p+2−k) sin(kθi−1)

)

= E

(
p∑

k=1

cos(kθi−1) sin(kθi−1)s
2
jl(p+2−k)

)

= pσ2

p∑
k=1

cos(kθi−1) sin(kθi−1)

=
p

2
σ2

p∑
k=1

sin(2kθi−1)

= 0,

which completes the proof.

The explicit formula of the perturbed tensor Moore-Penrose inverse

bcirc(A†) = bcirc((A+ S)†)
= (FH

p ⊗ In)
(
diag

{
(A1 + S1)

†, (A2 + S2)
†, . . . , (Ap + Sp)

†}) (Fp ⊗ Im),
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implies that we can bound the tensor perturbation error by analyzing the deviations between
the diagonal block before and after perturbed. Thus we arrive at the main theorem.

Theorem 3.11. Let A be an m× n× p tensor and S be the Gaussian perturbation tensor
with i.i.d. N (0, σ2) entries. If the following two conditions hold,

(i)
∥∥A† ∗ S

∥∥2
S
≪ 1,

(ii) σ2(m− n)
∥∥A†

∥∥2
F
≪ 1,

then the perturbation bound of the stochastically perturbed tensor based on the stochastic
norm is ∥∥∥A† −A†

∥∥∥2
S
≤ pσ2(m− n+

√
n)
∥∥A†∥∥2

F

∥∥A†∥∥2
2
. (3.7)

Proof. The perturbation bound of the tensor Moore-Penrose inverse relies on the pertur-
bation expansion of the matrix Moore-Penrose inverse, i.e., for an m × n matrix A of full
column rank, that is rank(A) = n (m ≥ n), with a perturbation E. Dropping high-order
terms, we have [13]

(A+ E)† = A† −A†EA† + (AHA)−1EHP,

where P = I −AA† is the projection (see [48, 49, 50]).
Because of the fact that

bcirc(A†) = bcirc((A+ S)†)
= (FH

p ⊗ In)
(
diag

{
(A1 + S1)

†, (A2 + S2)
†, . . . , (Ap + Sp)

†}) (Fp ⊗ Im),

we have ∥∥∥A†
∥∥∥2
S
=
∥∥(A+ S)†

∥∥2
S
=

p∑
i=1

∥∥(Ai + Si)
†∥∥2

S
.

Hence we may bound them separately.
By the perturbation expansion of the Moore-Penrose inverse and Lemma 3.10, firstly we

have
(Ak + Sk)

† −A†
k = −A†

kSkA
†
k + (AH

k Ak)
−1SH

k Pk

= −A†
i (Rk + iWk)A

†
k + (A⊤

k Ak)
−1(Rk − iWk)

⊤Pk,

for Sk = Rk + iWk, Pk = I −AkA
†
k and k = 2, 3, . . . , p.

It is the two technical conditions in the theorems and the discussion in [50] (Section 2.4
and Section 3.1.2 of [50]) that ensure the rationality of truncating the higher-order terms

O(∥Sk∥2S).

According to the fact that

(A†
kSkA

†
k)((A

H
k Ak)

−1SH
k Pk)

H = A†
kSk[A

†
k(I −AkA

†
k)]Sk(A

H
k Ak)

−1 ≡ O,

we derive that∥∥∥A†
k −A†

k

∥∥∥2
S
= E

(∥∥∥A†
k −A†

k

∥∥∥2
F

)
= E

(∥∥∥(Ak + Sk)
† −A†

k

∥∥∥2
F

)
= E

(∥∥∥−A†
kSkA

†
k + (AH

k Ak)
−1SH

k Pk

∥∥∥2
F

)
= E

(∥∥∥A†
kSkA

†
k

∥∥∥2
F

)
+ E

(∥∥(AH
k Ak)

−1SH
k Pk

∥∥2
F

)
.
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By Theorem 2.3 and 2.4 in [50], we obtain that

E
(∥∥∥A†

kSkA
†
k

∥∥∥2
F

)
= E

(∥∥∥A†
k(Rk + iWk)A

†
k

∥∥∥2
F

)
= E

(∥∥∥A†
kRkA

†
k

∥∥∥2
F

)
+ E

(∥∥∥A†
kWkA

†
k

∥∥∥2
F

)
(by Lemma 3.10)

= E
[
tr
(
(A†

k)
HR⊤

k (A
†
k)

HA†
kRkA

†
k

)]
+ E

[
tr
(
(A†

k)
HW⊤

k (A†
k)

HA†
kWkA

†
k

)]
= tr

(
(A†

k)
HE[R⊤

k (A
†
k)

HA†
kRk]A

†
k

)
+ tr

(
(A†

k)
HE[W⊤

k (A†
k)

HA†
kWk]A

†
k

)
=

p

2
σ2
∥∥∥A†

k

∥∥∥2
F
tr
(
(A†

k)
HA†

k

)
+

p

2
σ2
∥∥∥A†

k

∥∥∥2
F
tr
(
(A†

k)
HA†

k

)
(by [50,Theorem2.3])

= pσ2
∥∥∥A†

k

∥∥∥4
F
.

Similarly, we can derive

E
(∥∥(AH

k Ak)
−1SH

k Pk

∥∥2
F

)
= E

(∥∥(AH
k Ak)

−1(Rk − iWk)
⊤Pk

∥∥2
F

)
= E

(∥∥(AH
k Ak)

−1R⊤
k Pk

∥∥2
F

)
+ E

(∥∥(AH
k Ak)

−1W⊤
k Pk

∥∥2
F

)
=

p

2
σ2 ∥Pk∥2F tr

(
((AH

k Ak)
−1)H(AH

k Ak)
−1
)

+
p

2
σ2 ∥Pk∥2F tr

(
((AH

k Ak)
−1)H(AH

k Ak)
−1
)

= pσ2(m− n)
∥∥(AH

k Ak)
−1
∥∥2
F
.

Using the results above and in light of
∥∥(AH

k Ak)
−1
∥∥2
F
=
∥∥∥(A†

k)
HA†

k

∥∥∥2
F
≤
∥∥∥A†

k

∥∥∥2
2

∥∥∥A†
k

∥∥∥2
F
, we

obtain that ∥∥∥A†
k −A†

k

∥∥∥2
S
= pσ2

(∥∥∥A†
k

∥∥∥4
F
+ (m− n)

∥∥(AH
k Ak)

−1
∥∥2
F

)
≤ pσ2(m− n+

√
n)
∥∥∥A†

k

∥∥∥2
2

∥∥∥A†
k

∥∥∥2
F
,

which is a concise form of perturbation estimation of the blocks A†
k (k ≥ 2).

In the same way (even easier), we can derive the perturbation bound of A†
1 for resembling

form, that is, ∥∥∥A†
1 −A†

1

∥∥∥2
S
≤ pσ2(m− n+

√
n)
∥∥∥A†

1

∥∥∥2
2

∥∥∥A†
1

∥∥∥2
F
.

Combining the two aforementioned inequalities, it turns out that∥∥∥A† −A†
∥∥∥2
S
=

p∑
k=1

∥∥∥A†
k −A†

k

∥∥∥2
S

≤ pσ2(m− n+
√
n)

p∑
k=1

∥∥∥A†
k

∥∥∥2
2

∥∥∥A†
k

∥∥∥2
F

≤ pσ2(m− n+
√
n)
∥∥A†∥∥2

F

(
max
1≤k≤p

∥∥∥A†
k

∥∥∥2
2

)
≤ pσ2(m− n+

√
n)
∥∥A†∥∥2

F

∥∥A†∥∥2
2
.
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3.4 Stochastic Conditioning of Tensor Functions

In this subsection, we investigate how sensitive are the tensor functions to stochastic per-
turbations in their input. Miao, Qi and Wei [40] present the definition of generalized tensor
function of non-F-square tensors based on the T-SVD decomposition. Now we explore the
more general cases, that is F : Ω → Rt×s×p, where Ω is an open subset of Rm×n×p. To
our best knowledge, there is few literature to rigorously quantify the sensitivity of tensor
functions to random noises. As for the random perturbation, these represent uncertainties
in the data or rounding errors arising from computations in the finite precision arithmetic.
The goal is to quantify the effect that such uncertainties have on the computed function
value. First, we generalize the concept of Fréchet derivative to tensor functions based on
the T-product.

Theorem 3.12 (Fréchet derivative). Let A,H ∈ Rm×n×p be third order tensors and the
tensor function F : Ω ⊆ Rm×n×p → Rt×s×p be Fréchet differentiable at A. Then the Fréchet
derivative of F at A is the unique bounded operator F ′(A) given by the relation

F (A+H) = F (A) + F ′(A)(H) +R(H), lim
H→0

∥R(H)∥
∥H∥

= 0. (3.8)

Proof. Suppose

(Fp ⊗ Im)bcirc(A)(FH
p ⊗ In) = diag{A1, A2, . . . , Ap},

and
(Fp ⊗ Im)bcirc(H)(FH

p ⊗ In) = diag{H1,H2, . . . , Hp}.
Then the tensor function satisfies,

(Fp ⊗ It)bcirc(F (A))(FH
p ⊗ Is) = diag{F (A1), F (A2), . . . , F (Ap)},

and

(Fp ⊗ It)bcirc(F (A+H))(FH
p ⊗ Is) = diag{F (A1 +H1), F (A2 +H2), . . . , F (Ap +Hp)},

by Fréchet derivative of matrix function [20], we have

F (Ai +Hi) = F (Ai) + F ′(Ai)(Hi) +R(Hi), lim
Hi→0

∥R(Hi)∥
∥Hi∥

= 0.

Then it turns out that

bcirc(F (A+H)) = (FH
p ⊗ It)diag{F (A1), F (A2), . . . , F (Ap)}(Fp ⊗ Is)

+ (FH
p ⊗ It)diag{F ′(A1)(H1), F

′(A2)(H2), . . . , F
′(Ap)(Hp)}(Fp ⊗ Is)

+ (FH
p ⊗ It)diag{R(H1), R(H2), . . . , R(Hp)}(Fp ⊗ Is)

= bcirc(F (A)) + bcirc(F ′(A)(H)) + bcirc(R(H)),

which is equivalent to

F (A+H) = F (A) + F ′(A)(H) +R(H), lim
H→0

∥R(H)∥
∥H∥

= 0.
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In addition, we have vec(F ′(Ai)Hi) = JAi
vec(Hi) is the matrix representation of each

derivative F ′(Ai), where JAi
is the Jacobian matrix in the standard coordinate.

In order to get further results, we need the following lemmas.

Lemma 3.13. (Basic probability inequalities) If α and β are random variables such that
α ≤ β, then for any τ ∈ R, we have

Prob{α ≥ τ} ≤ Prob{β ≥ τ}, Prob{β ≤ τ} ≤ Prob{α ≥ τ}.

For random variables α and β and any τ, ϵ ∈ R,

Prob{α+ β ≥ τ} ≤ Prob{α ≥ τ(1− ϵ)}+ Prob{β ≥ τϵ}.

Definition 3.14. (Covariance tensor) Let x ∈ Rm×1×p be a third order tensor satisfing

(Fp ⊗ Im)bcirc(x)(FH
p ⊗ 1) = diag{x1, x2, . . . , xp}.

We say Σ ∈ Rm×m×p is the covariance tensor of x if and only if

(Fp ⊗ Im)bcirc(Σ)(FH
p ⊗ In) = diag{Σ1,Σ2, . . . ,Σp},

and each covariant matrix of xi is Σi.
In addition, if the mean value of each xi is 0, then the distribution of x is denoted by

x ∼ (0,Σ). If the mean value of the above each vec(Hi) is 0, and covariant matrix is Σi,
then the distribution of H is denoted by vec(H) ∼ (0,Σ).

Lemma 3.15 (Quadratic forms). (1) Let M ∈ Rm×n×p and x ∈ Rn×1×p be third order
tensors. The distribution of x is x ∼ (0,Σ), Σ ∈ Rn×n×p. Then we have

E (∥M ∗ x∥F ) ≤
∥∥∥M∗ Σ1/2

∥∥∥
F
= ∥M ∗ x∥S .

(2) Let H ∈ Rm×n×p be a third order tensor and vec(H) ∼ (0,Σ′), Σ′ ∈ Rmn×mn×p. Then
we have

E (∥H∥F ) ≤
∥∥∥Σ′1/2

∥∥∥
F
.

Proof. (1).
E (∥M ∗ x∥F ) = E

(
∥diag{M1x1,M2x2, . . . ,Mpxp}∥F

)
= E

(√
∥diag{M1x1,M2x2, . . . ,Mpxp}∥2F

)
≤
√

E
(
∥diag{M1x1,M2x2, . . . ,Mpxp}∥2F

)
=

√∥∥∥diag{M1Σ
1/2
1 ,M2Σ

1/2
2 , . . . ,MpΣ

1/2
p }2F

∥∥∥
=
∥∥∥M∗ Σ1/2

∥∥∥
F
=

√
∥M ∗ x∥2S = ∥M ∗ x∥S .

(2).

E (∥H∥F ) = E
(
∥diag{H1,H2, . . . , Hp}∥F

)
= E

(√
∥diag{H1,H2, . . . , Hp}∥2F

)
≤
√

E
(
∥diag{H1,H2, . . . , Hp}∥2F

)
=

√
E
(
∥diag{vec(H1), vec(H2), . . . , vec(Hp)}∥2F

)
=

√∥∥∥diag{Σ1/2
1 ,Σ

1/2
2 , . . . ,Σ

1/2
p }

∥∥∥2
F

=
∥∥∥Σ1/2

∥∥∥
F
.
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Lemma 3.16. Let A,H ∈ Rm×n×p be third order tensors. The tensor function F : Ω ⊆
Rm×n×p → Rt×s×p is Fréchet differentiable at A. H satisfies the distribution vec(H) ∼
(0, σ2Σ), where Σ ∈ Rmn×mn×p. Then

∥F ′(A)(H)∥S = σ
∥∥∥JA ∗ Σ1/2

∥∥∥
F
,

where JA is the Jacobi tensor whose block entries are JAi
, (i = 1, 2, . . . , p) after the block

circulant and the discrete Fourier transformation.

Proof.

E
(
∥F ′(A)(H)∥2F

)
= E

(
∥diag{F ′(A1)(H1), F

′(A2)(H2), . . . , F
′(Ap)(Hp)}∥

2

F

)
= E

(
∥diag{vec(F ′(A1)(H1)), vec(F

′(A2)(H2)), . . . , vec(F
′(Ap)(Hp))}∥

2

F

)
= E

(∥∥diag{JA1(vec(H1)), JA2(vec(H2)), . . . , JAp(vec(Hp))}
∥∥2
F

)
= σ2

∥∥∥diag{JA1
Σ

1/2
1 , JA2

Σ
1/2
2 , . . . , JAp

Σ1/2
p }

∥∥∥2
F

= σ2
∥∥∥JA ∗ Σ1/2

∥∥∥2
F
.

The idea of stochastic condition number can be traced back to Turing [53]. Fletcher [16]
assumes that the elements of H are independent random variables with mean 0 and variance
σ2A2

ij . He calls √
E(∥A−1HA−1b∥22) = σ

∥∥[A−1][A][A−1b]
∥∥1/2
2

the expected condition number of F (A) = A−1b, where ‘[A]’ denotes the matrix whose
elements are the squares of A. Stewart [50] derives the similar result independently.

Similarly, this idea can be generalized to tensor functions based on the T-product. We
consider the following first-order expansion according to Theorem 3.12,

F (A+H)− F (A) = F ′(A)(H) + o(∥H∥),

and we call
∥F ′(A)(H)∥S

the expected condition number of the tensor function F . Suppose the stochastic perturbation
satisfies the distribution

vec(H) ∼ (0, σ2Σ),

where σ ∈ R and Σ ∈ Rmn×mn×p is F-symmetric semi-positive definite tensor. Then from
Lemma 3.16, we have

∥F ′(A)(H)∥S = σ
∥∥∥JA ∗ Σ1/2

∥∥∥
F
.

By ignoring the o(∥H∥) terms in the Taylor expansion, we obtain that

∥F (A+H)− F (A)∥S ≈ ∥F ′(A)(H)∥S = σ
∥∥∥JA ∗ Σ1/2

∥∥∥
F
.

In order to guarantee the above approximation is tight at least when σ is small, we need the
following definition.
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Definition 3.17. (Entire tensor function) The tensor function F : Ω ⊆ Rm×n×p → Rt×s×p

is called an entire function if and only if each component fijk of F has a Taylor series [40]
that is absolutely convergent.

Similar to the Theorem 3.2 of Gratton [20], we give the following theorem without proof.

Theorem 3.18. Let A,H ∈ Rm×n×p be third order tensors. The tensor function F : Ω ⊆
Rm×n×p → Rt×s×p is an entire function. H satisfies the distribution vec(H) ∼ (0, σ2Σ),
where Σ ∈ Rmn×mn×p. Additionally, the elements of H being random variables whose kth
moments are bounded by cσk. Then we have

lim
σ→0

∥F (A+H)− F (A)∥S
σ

=
∥∥∥JA ∗ Σ1/2

∥∥∥
F
, (3.9)

where JA is the Jacobi tensor at A.

The requirement of the above estimation is rather restrictive, since many interesting
tensor functions based on the tensor-tensor product are Fréchet differentiable by not entire.
This motivates us to another kind of estimation and condition number which only require
the tensor function is Fréchet differentiable. We present the definition of stochastic condition
number for tensor functions as follows.

Definition 3.19. (Stochastic condition number) Let A,H ∈ Rm×n×p be third order tensors.
H satisfies the distribution vec(H) ∼ (0, σ2Σ), where Σ ∈ Rmn×mn×p. The tensor function
F : Ω ⊆ Rm×n×p → Rt×s×p is Fréchet differentiable at A, we call

κ̃Σ = lim sup
σ→0

Med{∥F (A+H)− F (A)∥F }
σ

, (3.10)

the stochastic condition number of F at A with respect to (0, σ2Σ) perturbations. Here
Med{α} is the median of random variable α defined as

Med{α} = sup

{
τ
∣∣∣Prob{α ≤ τ} ≥ 1

2
and Prob{α ≥ τ} ≥ 1

2

}
. (3.11)

In order to obtain the bound for the stochastic condition number, we derive the following
theorem.

Theorem 3.20. Let A,H ∈ Rm×n×p be third order tensors. H satisfies the distribution
vec(H) ∼ (0, σ2Σ), where Σ ∈ Rmn×mn×p. The tensor function F : Ω ⊆ Rm×n×p → Rt×s×p

is Fréchet differentiable at A. Then for any τ > 0, we have

lim sup
σ→0

Prob

{
∥F (A+H)− F (A)∥F

σ
≥ τ

}
≤
∥∥JA ∗ Σ1/2

∥∥
F

τ
. (3.12)

Proof. Denote

Pτσ = Prob

{
∥F (A+H)− F (A)∥F

σ
≥ τ

}
.

From the basic probability inequality in Lemma 3.13, for any ϵ ∈ (0, 1), we have

Pτσ = Prob

{
∥F ′(A)(H) +R(H)∥F

σ
≥ τ

}
≤ Prob

{
∥F ′(A)(H)∥F

σ
≥ τ(1− ϵ)

}
+ Prob

{
∥R(H)∥F

σ
≥ τϵ

}
.
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From the distribution of H and the Markov inequality, the first term has the estimation

Prob

{
∥F ′(A)(H)∥F

σ
≥ τ(1− ϵ)

}
≤

E (∥F ′(A)(H)∥F )
στ(1− ϵ)

≤

√
E
(
∥F ′(A)(H)∥2F

)
στ(1− ϵ)

=

∥∥JA ∗ Σ1/2
∥∥
F

τ(1− ϵ)
.

We show that the second term could be controlled by ϵ, if σ is sufficiently small. For any
β > 0,

Rτσϵ = Prob

{
∥R(H)∥F

σ
≥ τϵ

}
= Prob

{
∥R(H)∥F

σ
≥ τϵ

⋂
∥H∥F < β

}
+ Prob

{
∥R(H)∥F

σ
≥ τϵ

⋂
∥H∥F ≥ β

}
≤ Prob

{
∥R(H)∥F

σ
≥ τϵ

⋂
∥H∥F < β

}
+ Prob {∥H∥F ≥ β} .

For any α > 0, there exists β such that

∥R(H)∥F
∥H∥F

≤ α, when ∥H∥F ≤ β.

Therefore, for any α > 0, there is a corresponding β such that

Rτσϵ ≤ Prob

{
∥R(H)∥F

σ
≥ τϵ

}
+ Prob {∥H∥F ≥ β}

≤
αE (∥H∥F )

στϵ
+

E (∥H∥F )
β

≤
α
∥∥Σ1/2

∥∥
F

τϵ
+

σ
∥∥Σ1/2

∥∥
F

β
.

Set α = τϵ2

2∥Σ1/2∥
F

. Since β only depends on α, for all σ ≤ ϵβ

2∥Σ1/2∥
F

,

Rτσϵ ≤
ϵ

2
+

ϵ

2
= ϵ.

It comes out

Pτσ =

∥∥JA ∗ Σ1/2
∥∥
F

τ(1− ϵ)
+ ϵ = γ(ϵ), if σ ≤ ϵβ

2
∥∥Σ1/2

∥∥
F

.

Finally, it comes to

lim sup
σ→0

Pτσ ≤ γ(0) =

∥∥JA ∗ Σ1/2
∥∥
F

τ
.
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By setting τ to be the median of
∥F (A+H)−F (A)∥F

σ , it can be bounded that

1

2
≤

∥∥JA ∗ Σ1/2
∥∥
F

Med
{

∥F (A+H)−F (A)∥F

σ

}
(1− ϵ)

+ ϵ.

Therefore, we have the following bound for the stochastic condition number.

Corollary 3.21. Let A,H ∈ Rm×n×p be third order tensors. H satisfies the distribution
vec(H) ∼ (0, σ2Σ), where Σ ∈ Rmn×mn×p. The tensor function F : Ω ⊆ Rm×n×p → Rt×s×p

is Fréchet differentiable at A. Then the stochastic condition number of the tensor function
F : Ω ⊆ Rm×n×p → Rt×s×p has the upper bound,

κ̃Σ = lim sup
σ→0

Med{∥F (A+H)− F (A)∥F }
σ

≤ 2
∥∥∥JA ∗ Σ1/2

∥∥∥
F
.

Most cases in practice provide us the distribution of the original perturbation tensor
H ∈ Rm×n×p, i.e., the distribution of H(i) (i = 1, 2, . . . , p), but not the distribution of the
sub-matrices H1,H2, . . . , Hp of the block diagonal matrix (Fp ⊗ Im)bcirc(H)(FH

p ⊗ In). In
the next part, we need to reveal the relationship between them.

For a tensor A ∈ Rm×n×p, H ∈ Rm×n×p is supposed to be the perturbation tensor whose
frontal slices H(i), (i = 1, 2, . . . , p) are independent and satisfies the distribution,

vec(H(i)) ∼ (0,Σ(i)).

By using the Lemma 4 in Miao, Qi, and Wei [41], if
H(1) H(p) H(p−1) · · · H(2)

H(2) H(1) H(p) · · · H(3)

...
. . .

. . .
. . .

...

H(p) H(p−1) . . . H(2) H(1)

 = (FH
p ⊗ Im)


H1

H2

. . .

Hp

 (Fp ⊗ In),

then we have
H1 = ω0H(1) + ω0H(p) + ω0H(p−1) + · · ·+ ω0H(2),

H2 = ω0H(1) + ω1H(p) + ω2H(p−1) + · · ·+ ωp−1H(2),

· · ·
Hp = ω0H(1) + ωp−1H(p) + ω2(p−1)H(p−1) + · · ·+ ω(p−1)(p−1)H(2),

(3.13)

where ω = e−2πi/p is the primitive p-th root of unity and is usually called the phase term.
From the above equations, it is easy to find H1 is a real matrix. On the other hand, since
H(i)’s are independent, satisfying the distribution (0,Σ(i)), it is easy to get,

vec(H1) ∼
(
0,Σ(1) +Σ(2) + · · ·+Σ(p)

)
.

Because of the fact that Ht, (t = 2, 3, . . . , p) are complex matrices, we need to take complex
numbers into consideration.

For t = 2, 3, . . . , p, we have

Ht = ω0H(1) + ωt−1H(p) + · · ·+ ω(p−1)(t−1)H(2),
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where ωt−1 = cos
(

2π(t−1)
p

)
+ i sin

(
2π(t−1)

p

)
.

Denote θt =
2πt
p and H(p+i) = H(i), then we have

Ht =

p∑
k=1

cos[(k − 1)θt−1]H
(p+2−k) + i

(
p∑

k=1

sin[(k − 1)θt−1]H
(p+2−k)

)
.

From the distribution of H(i), it is easy to find

E(vec(Ht)i) = 0.

Now we compute the covariance between the elements vec(Ht)i and vec(Ht)j , (i, j =
1, 2, . . . ,mn).

cov(vec(Ht)i, vec(Ht)j) = E{vec(Ht)i · vec(Ht)j}

= E
{( p∑

k=1

cos[(k − 1)θt−1][vec(H
(p+2−k))]i

+ i

p∑
k=1

sin[(k − 1)θt−1][vec(H
(p+2−k))]i

)
·
( p∑

k=1

cos[(k − 1)θt−1][vec(H
(p+2−k))]j

− i

p∑
k=1

sin[(k − 1)θt−1][vec(H
(p+2−k))]j

)}
.

From the independence of H(i), we have

E
(
(vec(H(t)))i · (vec(H(s)))i

)
= 0, t ̸= s.

It comes to

cov(vec(Ht)i, vec(Ht)j) = E

(
p∑

k=1

vec[H(p+2−k)]i · vec[H(p+2−k)]j

)
+ iE{0}

= Σ
(1)
ij +Σ

(p)
ij +Σ

(p−1)
ij + · · ·+Σ

(2)
ij .

That is equivalent to say that the covariance matrix Σt of Ht, (t = 2, 3, . . . , p) is

Σ(1) +Σ(2) + · · ·+Σ(p).

In conclusion, we have the following theorem:

Theorem 3.22. Let H ∈ Rm×n×p be a third order tensor. If the frontal slices H(i), (i =
1, 2, . . . , p) are independent and satisfy the distribution

vec(H(i)) ∼ (0,Σ(i)),

then the diagonal blocks Hi (i = 1, 2, . . . , p) of (Fp ⊗ Im)bcirc(H)(FH
p ⊗ In) satisfies the

distribution
vec(Hi) ∼

(
0,Σ(1) +Σ(2) + · · ·+Σ(p)

)
. (3.14)
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In particular, if the frontal slices vec(H(i)) satisfies the same normal distribution, that is

vec(H(i)) ∼ N (0, σ2Σ),

by the properties of standard normal distribution and the equation vec(Hi) ∼
(
0, σ2(Σ(1)+

Σ(2) + · · ·+Σ(p))
)
, it comes to

vec(Hi) ∼ N (0, σ2pΣ),

which means Hi will also have the normal distribution.

3.5 Comparison with a Deterministic Error Estimation

Similar to Rice [46], it can be shown that if the tensor function F is Fréchet derivative at
A, then κ is the operator norm of the Fréchet derivative of F at A. By using the Fréchet
derivative of tensor functions, it can be obtained that the deterministic condition number is

κ = lim
δ→0

sup
∥H∥F≤δ

∥F (A+H)− F (A)∥F
δ

= sup
∥H∥F≤1

∥F ′(A)(H)∥F = ∥JA∥2 .

Therefore, the deterministic first order estimation turns out to be

∥F (A+H)− F (A)∥F ≤ ∥JA∥2 ∥H∥F + o(∥H∥F ).

For stochastic cases, the above estimation is not suitable for measuring the sensitivity of
random noises, since they are based on the Frobenius norm of H, instead of the distribution.
We must turn to the stochastic condition number defined above. By Theorem 3.20 and
Corollary 3.21, the stochastic estimation comes to

Med{∥F (A+H)− F (A)∥F } ≤ 2σ
∥∥∥JA ∗ Σ1/2

∥∥∥
F
+ o(∥H∥F ).

To gain more insight to the estimation, we suppose all the frontal slices of the pertubation
tensor satisfies the standard normal distribution vec(H(i)) ∼ N (0, σ2Imn), which will lead
to vec(Hi) ∼ N (0, σ2pImn). Then the deterministic first-order estimation is bounded by

∥F (A+H)− F (A)∥ ≤ σp
√
mn ∥JA∥2 ≡ δdet + o(∥H∥F ),

and the stochastic first-order estimation is bounded by

Med{∥F (A+H)− F (A)∥F } ≤ 2σ
√
p ∥JA∥F ≡ δmed + o(∥H∥F ).

Since JA ∈ Rts×mn×p, ∥JA∥F ≤ min{√mnp,
√
tsp} ∥JA∥2, it follows that

δmed

δdet
=

2σ
√
p ∥JA∥F

σp
√
mn ∥JA∥2

≤
2σ

√
pmin{√mnp,

√
tsp}

σp
√
mn

=
2min{

√
mn,

√
ts}√

mn
. (3.15)

The absolute value of δmed

δdet
will be very small in two special cases. The first one is ∥JA∥F ≪

min{√mnp,
√
tsp} ∥JA∥2 , i.e., there are a lot of T-singular values of the Jacobi tensor JA

are very large relative to the other singular values. The other one is ts ≪ mn, which means
the domain of the tensor function F : Ω ⊆ Rm×n×p → Rt×s×p is much larger than the
T-range space of it.

If δmed

δdet
≪ 1, there will be much difference between the first order estimation computed

by the stochastic condition number and deterministic condition number.
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3.6 Simulation

We give a numerical test which involves both the Moore-Penrose inverse and the first order
estimation of the deterministic and the stochastic condition number for tensor functions.
Our example is to analysis the following tensor least squares problem [1, 21, 44, 45].

F (x) = argmin
x

∥b−A ∗ x∥2 , (3.16)

whose solution is
x = A† ∗ b.

Here F : Rm×1×p → Rt×1×p is a tensor function, the tensor A ∈ Rm×t×p is of T-full column
rank, and A† = (A⊤ ∗ A)−1 ∗ A⊤ is the T-Moore-Penrose inverse which can be referred to
[40].

Now, we give a toy model to compare the deterministic and stochastic condition number.
We give a perturbation h ∈ Rm×1×p on tensor b ∈ Rm×1×p, that is

b → b+ h,

where h ∼ N (0, σ2Σ). In this example, we fix σ = 10−4 and vary m and t.

• The first test is to choose Σ = I and Σ = diag(b). Then fix p = 5, the ratio of m/t = 20
and t varies from 10, 20, . . . , 400.

• The second test is to choose choose Σ = I and Σ = diag(b). Then fix p = 5, t = 10
and the ratio m/t varies form 10, 20, . . . , 1000.

• The third test is to choose Σ = I and Σ = diag(b). Then fix t = 10, m/t = 20, the
number of frontal slices p varies from 10, 20, . . . , 1000.

It can be noticed that both the above three cases satisfies the condition ts ≪ mn, which
indicates the large difference between the first-order estimation calculated by the stochastic
condition number and the deterministic condition number.

The coefficient tensor A is given as follows. Suppose A can be Fourier diagonalized as

(Fp ⊗ Im)bcirc(A)(FH
p ⊗ In) = diag{A1, A2, . . . , Ap},

where Ap = UpSpV
⊤
p , Up = I − 2upu

⊤
p , Vp = I − 2vpv

⊤
p , and

up =


cos(p)
cos(2p)

...
cos(mp)

 , vp =


sin(p)
sin(2p)

...
sin(tp)

 .

The matrix Sp is chosen to be eye(m,n) in MATLAB.
Let b satisfy

(Fp ⊗ Im)bcirc(b)(FH
p ⊗ 1) = diag{b1, b2, . . . , bp}, bi = Ai · [1, 1, . . . , 1]⊤.

It can be verified that the Jacobi tensor at b is Jb = A†.
The following figures illustrate the comparison of relative error. Specifically, in each

figure, the Y-coordinate represents the relative error of the above least squares problem
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Figure 1: Σ = I, p = 5, m/t = 20, t =
10, 20, . . . , 400

Figure 2: Σ = diag(b), p = 5, m/t = 20,
t = 10, 20, . . . , 400

Figure 3: Σ = I, p = 5, t = 10 and m/t =
10, 20, . . . , 1000

Figure 4: Σ = diag(b), p = 5, t = 10 and
m/t = 10, 20, . . . , 1000

Figure 5: Σ = I, t = 10, m/t = 20 and
p = 10, 20, . . . , 1000

Figure 6: Σ = diag(b), m/t = 20 and p =
10, 20, . . . , 1000
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(3.16) (as a special example of tensor function), and the meaning of the X-coordinate is
marked in each figure. We estimate the relative error with stochastic condition number and
deterministic condition number respectively. In the figures, the former is represented by
orange points and the latter by blue points.

In conclusion, we find that the stochastic first-order estimation is an excellent example of
the median relative error for all values of m and the number of slice p tested. On the other
hand, the deterministic first-order estimation can be several orders of magnitude larger and
sometimes increasingly so with increasing m/n and p.

4 Conclusion

In this paper we extend a large number of classical results on the matrix perturbation to
tensors under the T-product. We present a deterministic perturbation bound for the tensor
Moore-Penrose inverse based on the T-product and then obtain a perturbation bound for
the solution to the T-Total least squares problem. We focus on the behavior of tensors
when they are randomly perturbed, we obtain a perturbation bound of the corresponding
Moore-Penrose inverse by using the stochastic norm. Furthermore, we introduce the Fréchet
derivative of the generalized tensor function and give the upper bound of stochastic condition
number. Both theoretical derivation and numerical experiments show that our stochastic
conditioning theory has better properties than the classical conditioning under the random
perturbation.
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