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To overcome the above issue of pairwise correlations, higher order tensor correlation
methods are generally used. They directly model interconnections as tensors. The tensor
canonical correlation analysis (TCCA) method is introduced in [29] for maximizing the
higher order tensor correlation. It not only generalizes the correlation between two views
but also explores higher order correlations for more views. The maximization of higher
order tensor correlations often uses the alternating least squares (ALS) method [5, 23].
It is suboptimal for solving the best rank-r tensor approximation problem [29]. This is
because the set of tensors whose ranks are less than or equal to r is usually not closed.
The ALS is convenient for implementation, but its performance is generally not reliable.
When r = 1, the problem is reduced to the best rank-1 approximation. Frequently used
methods are higher order power iterations [13], semidefinite relaxations [7, 32], and SVD-
based algorithms [17]. For a generic tensor F , the best rank-1 approximation is unique [16].
For r > 1, there exist various methods for computing rank-r approximations, see [5, 38, 39].
Many of these methods are based on ALS. Their performance is not very reliable. Generally,
only critical points can be guaranteed. We refer to [5, 6, 31] for recent work on low rank
tensor approximations.

In this paper, we propose a new method for solving the higher order tensor correlation
maximization problem. The generating polynomial method is introduced to compute low
rank approximating tensors with promising performance from the higher order correlation
tensor of multi-view input data. Consequently, the proposed method can achieve better
performance than earlier methods based on the ALS, since a good initial point can be found
by the generating polynomial method. The proposed method is tested on two real data
sets for multi-view feature extraction. The computational results show that our proposed
method consistently outperforms the prior existing methods.

The paper is organized as follows. Section 2 gives some preliminaries about tensor compu-
tations. We introduce the generating polynomial method for low rank tensor approximation
in Section 3. The formulation of low rank tensor approximation for the higher order tensor
correlation maximization problem is given in Section 4. An algorithm for solving the for-
mulated problem is given in Section 5. The numerical experiments on two real multi-view
data sets are given in Section 6.

2 Preliminary

Notation

The symbol N (resp., R, C) denotes the set of nonnegative integers (resp., real, complex
numbers). For an integer r > 0, denote the set [r] := {1, . . . , r}. Uppercase letters (e.g.,
A) denote matrices, (A)i,j denotes the (i, j)th entry of the matrix A, and Curl letters (e.g.,
F) denote tensors. For a complex matrix A, AT denotes its transpose and A∗ denotes its
conjugate transpose. The col(A) denotes the column space of A. Bold lower case letters
(e.g., v) denote vectors, and (v)i denotes the ith entry of v. The diag(v) denotes the square
diagonal matrix whose diagonal entries are given by the entries of v. For a matrix A, the
subscript notation A:,j and Ai,: respectively denotes its jth column and ith row. For a
vector v, the subscript vs:t denotes the subvector of v whose label is from s to t. Similar
subscript notation is used for tensors.

Let F be a field (either the real field R or the complex field C). Let m and n1, . . . , nm be
positive integers. A tensor of order m and dimension (n1, . . . , nm) can be represented by an
array F that is labelled by an integeral tuple (i1, . . . , im), with 1 ≤ ij ≤ nj , j = 1, . . . ,m,
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such that

F = (Fi1,...,im)1≤i1≤n1,...,1≤im≤nm
. (2.1)

The space of all such tensors with entries in the field F is denoted as Fn1×···×nm . The integer
m is the order of F . The Hilbert-Schmidt norm of F is

∥F∥ =

√ ∑
1≤ij≤nj ,1≤j≤m

|Fi1,...,im |2.

For vectors v1 ∈ Fn1 , . . . ,vm ∈ Fnm , their outer product v1 ⊗ · · · ⊗ vm is the tensor in
Fn1×···×nm such that

(v1 ⊗ · · · ⊗ vm)i1,...,im = (v1)i1 · · · (vm)im

for all labels i1, . . . , im in the range. A tensor in the form v1 ⊗ · · · ⊗ vm is called a rank-1
tensor. For each F ∈ Fn1×···×nm , there exist tuples of vectors (vs,1, . . . ,vs,m), s = 1, . . . , r,
with vs,j ∈ Fnj , such that

F =

r∑
s=1

vs,1 ⊗ · · · ⊗ vs,m. (2.2)

The smallest such r is the rank of F over the field F, for which we denote rankF(F).
If rankF(F) = r, the equation (2.2) is called a rank-r decomposition. In the literature,
rankC(F) is also called the candecomp-parafac (CP) rank of F and (2.2) is called a CP
decomposition. We refer to [24, 28] for tensor theory and refer to [3, 10, 12, 14, 25, 30, 39, 41]
for tensor decomposition methods. Recent applications of tensor decompositions can be
found in [18, 23, 33]. Tensors are closely related to polynomial optimization [7, 15, 32, 34].

Tensors can be naturally used to characterize multidimensional data in applications, such
as 3D images, panel data (subjects × variables × time × location), including multi-channel
EEG and fMRI data in Neuroscience [8, 9], higher order multivariate portfolio moments [2],
and multi-view datasets [29]. The traditional data analysis approach based on representa-
tions by vectors or matrices has to reshape multidimensional data into the vector/matrix
format. However, such a transformation not only destroys the intrinsic interconnections
between the data points, but also gives exponentially growing number of estimated param-
eters.

A tensor decomposition can be represented by matrices. If a tensor F has the decompo-
sition

F =

r∑
s=1

us,1 ⊗ · · · ⊗ us,m,

we can denote the matrices

U (i) = [u1,i, . . .ur,i], i = 1, . . . ,m.

We call such U (i) the ith decomposing matrix for F . For convenience of notation, we denote
that

U (1) ◦ · · · ◦ U (m) =

r∑
i=1

(U (1)):,i ⊗ · · · ⊗ (U (m)):,i.
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In the above, (U (m)):,i stands for the ith column of U (m). For two matrices A and B, with
A = (Aij) ∈ Fk×n and B = [b1, . . . ,bn] ∈ Fp×n, their Khatri-Rao product ⊙ is the matrix

A⊙B :=

A11b1 . . . A1nbn

...
. . .

...
Ak1b1 . . . Aknbn

 .

For a given matrix V ∈ Cp×nt , we define the matrix-tensor product

F̂ := V ×t F ∈ Cn1×...×nt−1×p×nt+1×...×nm

such that the ith slice of F̂ is

F̂i1,···t−1,:,it+1,···m = V Fi1,···t−1,:,it+1,···m .

In particular, if V is a vector v ∈ Fnt , then the vector-tensor product

vT ×t F ∈ Cn1×...×nt−1×1×nt+1×...×nm

is similarly defined. Note that the order of vT ×t F drops by one.
The low rank tensor approximation (LRTA) problem is to approximate a given tensor

by a low rank one. The LRTA is equivalent to solving a nonlinear least square problem. For
a given tensor F ∈ Fn1×···×nm , and a given rank r, the LRTA is to find r tuples

v(s) := (vs,1, . . . ,vs,m) ∈ Fn1 × · · · × Fnm , s = 1, . . . , r,

which gives a minimizer to the following nonlinear least square problem

min
v(1),··· ,v(r)

∥∥F −
r∑

s=1

vs,1 ⊗ · · · ⊗ vs,m
∥∥2. (2.3)

3 Generating Polynomials

This section shows how to use generating polynomials to compute tensor decompositions.
Without loss of generality, we assume the tensor dimensions are decreasing:

n1 ≥ n2 ≥ · · · ≥ nm.

We consider tensors with rank r ≤ n1. Denote indeterminate variables

x1 = (x1,1, ...x1,n1
), x2 = (x2,1, ...x2,n2

), . . . ,xm = (xm,1, ...xm,nm
).

The (i1, i2,· · ·m)th entry of a tensor F can be labelled by a monomial x1,i1x2,i2 ...xm,im . Let

M :=
{
x1,i1 ...xm,im | 1 ≤ ij ≤ nj , 1 ≤ j ≤ m

}
,

M := span{M}. (3.1)

For a subset J ⊆ {1, 2, · · · }, we denote that

Jc := {1, 2, · · · }\J,
MJ :=

{
x1,i1 ...xm,im | xj,ij = 1, j ∈ Jc

}
,

MJ := span{MJ}.
(3.2)
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Note that (i1, . . . , im) is uniquely determined by the monomial x1,i1 · · ·xm,im . So a tensor
F ∈ Cn1×···×nm can be equivalently labelled as

Fx1,i1
...xm,im

:= Fi1,...,im . (3.3)

With the above new labelling, we define the bi-linear operation ⟨·, ·⟩ between MJ and
Cn1,...,nm as

⟨
∑
µ∈M

cµµ,F⟩ :=
∑
µ∈M

cµFµ. (3.4)

In the above, each cµ is a scalar and F is labelled by monomials as in (3.3).

Definition 3.1. For a subset J ⊆ {1, 2, · · · } and a tensor F ∈ Cn1×···×nm , a polynomial
p ∈ MJ is called a generating polynomial for F if

⟨pq,F⟩ = 0 for all q ∈ MJc . (3.5)

The following is an example of generating polynomials.

Example 3.2. Consider the cubic order tensor F ∈ C3×3×3 given as

[
F:,:,1 F:,:,2 F:,:,3

]
=

−10 48 70
−10 −64 −50
−5 10 20

22 −16 −58
−42 0 78
3 −6 −12

−1 44 49
−29 −68 −19
−4 8 16

 .

For J = {1, 2}, note that
[
6 3 2 1

]
is orthogonal to[

F1,1,i3 F1,2,i3 F2,1,i3 F2,2,i3

]
for i3 = 1, 2, 3. So

[
6 3 2 1

]
is the coefficient vector of a generating polynomial. The

following is a generating polynomial for F :

p := (3x1,1 + x1,2)(2x2,1 + x2,2).

Note that p ∈ M{1,2} and for each i3 = 1, 2, 3

p · x3,i3 = (3x1,1 + x1,2)(2x2,1 + x2,2)x3,i3 .

One can check that for each i3 = 1, 2, 3

6F1,1,i3 + 3F1,2,i3 + 2F2,1,i3 + F2,2,i3 = 0.

So, ⟨pq,F⟩ = 0 for all q ∈ M{3}, hence p is a generating polynomial.

Suppose the rank r ≤ n1 is given. For convenience of notation, denote the label set

J := {(i, j, k) : 1 ≤ i ≤ r, 2 ≤ j ≤ m, 2 ≤ k ≤ nj}. (3.6)

For a matrix G ∈ C[r]×J and a triple τ = (i, j, k) ∈ J , define the bi-linear polynomial

ϕ[G, τ ](x) :=

r∑
ℓ=1

G(ℓ, τ)x1,ℓxj,1 − x1,ixj,k ∈ M{1,j}. (3.7)
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The rows of G are labelled by ℓ = 1, 2, . . . , r and the columns of G are labelled by τ ∈
J . We are interested in G such that ϕ[G, τ ] is a generating polynomial for a tensor F ∈
Cn1×n2×···×nm . This requires that

⟨ϕ[G, τ ] · µ,F⟩ = 0 for all µ ∈ M{1,j}c .

The above is equivalent to the equation (F is labelled as in (3.3))

r∑
ℓ=1

G(ℓ, τ)Fx1,ℓ·µ = Fx1,ixj,k·µ. (3.8)

Definition 3.3. If (3.8) holds for all τ ∈ J , then G is called a generating matrix for F .

For given G, j ∈ {2, . . . ,m} and k ∈ {2, . . . , nj}, we denote the matrix

M j,k[G] :=


G(1, (1, j, k)) G(2, (1, j, k)) . . . G(r, (1, j, k))
G(1, (2, j, k)) G(2, (2, j, k)) . . . G(r, (2, j, k))

...
...

. . .
...

G(1, (r, j, k)) G(2, (r, j, k)) . . . G(r, (r, j, k))

 . (3.9)

For each j, k, define the matrices
A[F , j] :=

(
Fx1,ℓ·µ

)
µ∈M{1,j}c ,1≤ℓ≤r

,

B[F , j, k] :=
(
Fx1,ℓ·xj,k·µ

)
µ∈M{1,j}c ,1≤ℓ≤r

.
(3.10)

Then the equation (3.8) is equivalent to

A[F , j](M j,k[G])T = B[F , j, k]. (3.11)

The following is a useful property for the matrices M j,k[G].

Theorem 3.4. Suppose F =
∑r

s=1 u
s,1 ⊗ ... ⊗ us,m with vectors us,j ∈ Cnj . If r ≤ n1,

(us,2)1...(u
s,m)1 ̸= 0, and the first r rows of the first decomposing matrix

U (1) := [u1,1 · · · ur,1]

are linearly independent, then there exists a G satisfying (3.11) and satisfying (for all j ∈
{2, . . . ,m}, k ∈ {2, . . . , nj} and s = 1, . . . , r)

M j,k[G] · (us,1)1:r = (us,j)k · (us,1)1:r. (3.12)

Proof. Since (us,2)1...(u
s,m)1 ̸= 0, we can generally assume

(us,2)1 · · · (us,m)1 = 1,

up to a scaling on us,1. Denote the matrices

Û1 =
[
(u1,1)1:r (u2,1)1:r . . . (ur,1)1:r

]
,

Ûj =
[
u1,j u2,j . . . ur,j

]
, j = 2, . . . ,m.
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Since r ≤ n1 and the first r rows of U (1) are linearly independent, the matrix Û1 is invertible.
Let U (j) be the jth decomposing matrix of F . For j = 2, . . .m, k = 2, . . . , nj , denote

Wj := U (2) ⊙ · · · ⊙ U (j−1) ⊙ U (j+1) · · · ⊙ U (m),

Λj,k := diag((U (j))k,:).

Then one can verify that

A[F , j] = WjΛj,1Û
T
1 , B[F , j, k] = WjΛj,kÛ

T
1 . (3.13)

Let Ĝ be the matrix such that for all (i, j, k) ∈ J

Mj,k[Ĝ] := Û1Λj,k(Û1)
−1. (3.14)

Note that each Mj,k[Ĝ] satisfies (3.12). We next show that Ĝ is a generating matrix for F .
Applying expressions in (3.13) and (3.14) to (3.11), we get that

A[F , j](M j,k[Ĝ])T = WjΛj,1Û
T
1 (ÛT

1 )−1Λj,k(Û1)
T

= WjΛj,1Λj,kÛ
T
1 = B[F , j, k].

The above implies that M j,k[Ĝ] satisfies (3.11) for all j, k in the range, so Ĝ is a generating
matrix for F .

Theorem 3.4 implies that if the tensor F has rank r ≤ n1 and has generic decomposing
vectors, there exists a generating matrix G such that all M j,k[G] are simultaneously diag-
onalizable as in (3.12). That is, there exists an invertible matrix V = [v1,v2, . . . ,vr] such
that

V −1M j,k[G]V = diag[λj,k,1, λj,k,2, . . . , λj,k,r]

are all diagonal. For this case, there must exist scalars c1, c2, . . . , cr such that

F1:r,1,...1 = c1v1 + c2v2 + ...+ crvr. (3.15)

Let F̂ := F1:r,:,··· ,: be the subtensor and let

H := c1w
1,1 ⊗ · · · ⊗w1,m + · · ·+ crw

r,1 ⊗ · · · ⊗wr,m,

where the vectors ws,1 = vs and (1 ≤ s ≤ r, 2 ≤ j ≤ m)

ws,j :=
[
1 λj,2,s λj,3,s · · · λj,nj ,s

]T
.

Then we show that H = F̂ . By (3.5) and (3.7),

⟨ϕ[G, τ ]p, F̂⟩ = ⟨ϕ[G, τ ]p,H⟩ = 0,

for all p ∈ M{1,j}c , so

⟨ϕ[G, τ ]p,H− F̂⟩ = 0, for all p ∈ M{1,j}c . (3.16)

The equation (3.15) implies that

(H− F̂)1:r,1,...,1 = 0. (3.17)
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By (3.17), for τ = (i, 2, k) ∈ J , we get

⟨H − F̂ , ϕ[G, τ ]⟩ = 0, (H− F̂):,:,1,...,1 = 0.

Then, for τ = (i, 2, k) ∈ J , we have

⟨H − F̂ , ϕ[G, τ ]x2,:⟩ = 0, (H− F̂):,:,:,1,...,1 = 0.

Doing this inductively, we can see H = F̂ . Since F̂ = F1:r,:... and F has rank r, F has a
tensor decomposition

F = U (1) ◦ U (2) ◦ · · · ◦ U (m).

Let W := U (1)(U
(1)
1:r,:)

−1 ∈ Cn1×r, then (W )1:r,: = Ir and

F = W ×1 F̂ . (3.18)

This implies the tensor decomposition

F =

r∑
i=1

ciŵ
i,1 ⊗wi,1 ⊗ · · · ⊗wi,m, (3.19)

where the vectors

ŵi,1 = Wwi,1 =

[
wi,1

w̃i,1

]
.

In computation, we do not need to compute the matrix W explicitly. The vectors w̃i,1 can
be obtained by solving the linear least squares

min
z1,...zr

∥∥∥∥ r∑
s=1

zs ⊗ws,2 ⊗ ...⊗ws,m −Fr+1:n1,:,···:

∥∥∥∥2. (3.20)

The optimal solutions are the vectors w̃i,1. Then F has the rank-r decomposition

F =

r∑
i=1

ŵi,1 ⊗wi,2 ⊗ ...⊗wi,m. (3.21)

When F is a rank-r tensor, the above process can produce a rank-r decomposition for F .
When F is near to a rank-r tensor, one can similarly obtain a rank-r tensor approximation
for F . This is shown in Section 5.

4 The Higher order Tensor Correlation Maximization

Let {(yi,1, . . . ,yi,m)}Ni=1 be a multi-view data set, with m views and N points. The vector
yi,j ∈ Rnj is the ith data point of the view j residing in the nj-dimensional space. We are
looking for a r-dimensional latent space Rr such that each yi,j is projected to zi,j ∈ Rr.
The projection for the jth view can be represented by a matrix Pj , that is, zi,j = PT

j yi,j .
The higher order canonical correlation ρ of m views is the quantity

ρ :=

N∑
i=1

r∑
s=1

m∏
j=1

(zi,j)s. (4.1)
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The tensor canonical correlation analysis aims to find optimal projection matrices P1, . . . , Pm

that maximize ρ. When m = 2, ρ reduces to the trace of sample cross-correlation, which
is used in the classical canonical correlation analysis. When m ≥ 3, ρ generalizes CCA for
capturing higher order correlations, which is inherently different from the sum of pairwise
correlations [35].

The connection of ρ as in (4.1) to a tensor can be built based on the t-mode product of
a tensor obtained from the input data with projection matrices P1, . . . , Pm. The tensor of
the input data is the mth order tensor of dimension n1 × · · · × nm

C :=

N∑
i=1

yi,1 ⊗ · · · ⊗ yi,m. (4.2)

Write that Pj = [p1,j , . . . ,pr,j ], where ps,j ∈ Rnj is the sth column of Pj . The higher order
canonical correlation ρ can be written as

ρ =

r∑
s=1

(ps,1)T ×1 · · · (ps,m)T ×m C. (4.3)

People often pose the uncorrelation constraints for projected points in the latent common
space

1

N

N∑
i=1

zi,jz
T
i,j = PT

j CjPj = Ir, j = 1, . . . ,m, (4.4)

where the jth view matrix

Cj :=
1

N

N∑
i=1

yi,jy
T
i,j .

Denote the vectors and tensor

us,j := C
1
2
j p

s,j , ps,j := C
− 1

2
j us,j , (4.5)

M := C
− 1

2
1 ×1 · · ·C

− 1
2

m ×m C. (4.6)

Then, we get the tensor correlation maximization problem
max
us,j

∑r
s=1(u

s,1)T ×1 · · · (us,m)T ×m M
s.t. ∥us,j∥2 = 1, s = 1, . . . r, j = 1, . . . ,m,

(us,j)Tus′,j = 0 for all s ̸= s′.

(4.7)

The above is equivalent to the rank-r tensor approximation problem
min

us,j ,λs

∥∥∥M−
∑r

s=1 λs · us,1 ⊗ · · · ⊗ us,m
∥∥∥2,

s.t. ∥us,j∥2 = 1, s = 1, . . . r, j = 1, . . . ,m,

(us,j)Tus′,j = 0 for all s ̸= s′.

(4.8)

The optimization (4.8) requires to compute the best rank-r orthogonal tensor approxima-
tion. This is typically a computationally hard task. Generally, the orthogonality constraints
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in (4.7) is hard to be enforced, because the rank decomposition and the orthogonal decom-
position are usually not achievable simultaneously [11]. For better performance in compu-
tational practice, people often relax the orthogonality constraints (see [29]) and then solve
the following relaxation of (4.8): min

us,j ,λs

∥∥∥M−
∑r

s=1 λs · us,1 ⊗ · · · ⊗ us,m
∥∥∥2,

s.t. ∥us,j∥2 = 1, s = 1, . . . r, j = 1, . . . ,m.
(4.9)

After the vectors us,j are obtained by solving (4.9), the projection matrices Pj can be chosen

such that ps,j = C
− 1

2
r us,j . We would like to remark that when M is sufficiently close to a

rank-r orthogonal tensor, the optimizer of (4.9) is expected to be close to a rank-r orthogonal
tensor.

5 The Algorithm for TCCA

For the given multi-view data set {(yi,1, . . . ,yi,m)}ni=1, we can formulate the tensor M as in
(4.6). Then compute a low rank approximating tensor for M and use it to get the projection
matrices Pj .

We use the method described in Section 3 to compute a rank-r approximation for M.
Suppose the rank r ≤ n1. By (3.10), the equation (3.8) is equivalent to

A[M, j](M j,k[G])T = B[M, j, k]. (5.1)

Due to noises, the linear equation (5.1) may be overdetermined or even inconsistent. There-
fore, we look for a matrix G that satisfies (5.1) as much as possible. This can be done by
solving linear least squares. Let Gls be a least square solution to

min
G∈C[r]×J

∑
τ=(i,j,k)∈J

∥∥∥∥A[M, j]M j,k[G]T −B[M, j, k]

∥∥∥∥2. (5.2)

After Gls is obtained, select generic scalars ξj,k ∈ R obeying the standard normal distribu-
tion and let

M [ξ,Gls] :=
∑

(1,j,k)∈J

ξj,kM
j,k[Gls]. (5.3)

We can compute its Schur Decomposition as

Q∗M [ξ,Gls]Q = T, (5.4)

where Q = [q1, . . . ,qr] is unitary and T is upper triangular. For s = 1, . . . , r, j = 2, . . . ,m,
let

vs,j := (1,q∗
sM

j,2[Gls]qs, . . . ,q
∗
sM

j,nj [Gls]qs). (5.5)

If the noises are big, it may have complex eigenvalue pairs, qs maybe complex and the
above vectors vs,j maybe complex. In computational practice, we can choose the real part
to get a real low rank tensor approximation. Denote the real part of vs,j by v̂s,j

real. After
they are obtained, we solve the linear least squares problem

min
z1,...zr∈Rn1

∥∥∥∥ r∑
s=1

zs ⊗ vs,2
real ⊗ vs,3

real ⊗ ...⊗ vs,m
real −M

∥∥∥∥2. (5.6)
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Let (v1,1,v2,1, . . .vr,1) be optimal ones for the least squares problem (5.6). Then we consider
the tensor

X gp :=

r∑
s=1

vs,1 ⊗ vs,2
real ⊗ ...⊗ vs,m

real. (5.7)

It can be used as an initial point for solving the nonlinear optimization

min
us,j∈Rnj

∥∥∥∥ r∑
s=1

us,1 ⊗ us,2 ⊗ · · · ⊗ us,m −M
∥∥∥∥2. (5.8)

By solving (5.8), one can improve the quality of the rank-r approximating tensor X opt.
Finally, we get the projection matrices P1, . . . , Pm as in (4.5).

The above can be summarized as the following algorithm.

Algorithm 5.1. (A generating polynomial method for TCCA)

Input: a multi-view data set {(yi,1, . . . ,yi,m)}Ni=1 and an approximating rank r ≤ n1.

Step 1. Generate tensor M ∈ Rn1×···nm as in (4.6).

Step 2. Solve the linear least squares (5.2) of tensor M for an optimizer Gls.

Step 3. Choose generic ξj,k ∈ R obeying the standard normal distribution and formulate
M [ξ,Gls] as in (5.3). Compute the Schur Decomposition (5.4).

Step 4. For s ∈ 1, . . . , r and j ∈ 2, . . . ,m, compute vs,j as in (5.5) and keep its real part
only (vs,j = real(vs,j)). Solve (5.6) for optimal solution (v1,1,v2,1, . . .vr,1).

Step 5. Compute an improved solution us,j as in

min
us,j∈Rnj

∥∥∥∥ r∑
s=1

us,1 ⊗ us,2 ⊗ ...⊗ us,m −F
∥∥∥∥2.

Output: The matrices Pj , . . . , Pm as in (4.5).

When F is a rank-r tensor, Algorithm 5.1 should give a rank-r decomposition for F .
When F is close to a rank-r tensor, Algorithm 5.1 is expected to give a good rank-r approx-
imation. An interesting future work is to study the stability analysis.

6 Numerical Experiments on Multi-View Data

We implement the Algorithm 5.1 in MATLAB and run numerical experiments in MATLAB 2020b
on a workstation with Ubuntu 20.04.2 LTS, Intel®Xeon(R) Gold 6248R CPU @ 3.00GHz
and memory 1TB. We evaluate our algorithm for multi-view feature extraction by comparing
it with two baseline methods on two real data sets.

6.1 Data description and experimental setup

Two image data sets are used in this experiment: Caltech101-7 [27] and Scene15 [26]. We
applied six feature descriptors to extract features of views including centrist [43], gist [36],
lbp [37], histogram of oriented gradient (hog), color histogram (ch), and sift-spm [26]. Note
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Table 1: Data sets used in the experiments.
Data set samples class centrist gist lbp hog ch sift-spm

Caltech101-7 1474 7 254 512 1180 1008 64 1000
Scene15 4310 15 254 512 531 360 - 1000
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Figure 1: Sensitivity analysis of compared methods with six views on data Caltech101-7.
(a) varying the training ratios over common spaces from 3 to 20; (b) varying the size of
common space on 30% training data.

that Scene15 consists of gray images, so ch is not used. The statistics of the two multi-view
data sets are summarized in Table 1.

As our main focus is on data sets with more than two views, our proposed algorithm is
evaluated by comparing with multiset CCA (mcca) [42] and TCCA using ALS (als) [29]. For
each data, we first apply principal component analysis (PCA) [22] to each view to reduce
the input dimension to 20 so that the constructed tensor can be properly handled by tensor-
based methods. And then, we split the data into training and testing sets with a predefined
training ratio. All compared methods are run on the training data to get the projection
matrix of each view for a given dimension of the common space (or rank). To report the
testing accuracy, we apply the learned projection matrix to both training and testing sets
of each view, concatenate the projected features of all views as the final representation of
each sample, train linear support vector classifier (SVC) [4] on training data and evaluate
the performance of the trained classifier on testing data. The classification accuracy is
used as the evaluation metric. The regularization parameter of the linear SVC is tuned
in {0.01, 0.1, 1, 10, 100}. The experiments of the compared methods on each data set are
repeated ten times with randomly sampled training and testing sets, and the mean accuracy
with standard deviation on the ten experiments are reported for compared methods.

6.2 Experiments on Caltech101-7

We tested the overall performance of three compared methods on Caltech101-7 with all
combinations of more than two views. For six views, there are 42 combinations in total.
This experiment is conducted on 30% training data and 70% testing data by running three
compared methods on each combination separately with the size of the common space (or
rank) varied from 3 to 20. The experiment is repeated 10 times on randomly splits drawn
from the input data, and the mean accuracies with standard deviations of three compared
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methods are reported in Table 2.
From Table 2, we have the following observations: (i) als outperforms mcca on three

views, but underperforms mcca for more than three views; (ii) Our method outperforms
both als and mcca consistently over all 42 combinations. These results imply that tensor-
based methods can outperform mcca, when a good tensor approximation solver like our
proposed algorithm is applied.
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Figure 2: Experimental results of compared methods on Caltech101-7 with three, four and
five views over 30% training data.

We further investigate the impact of compared methods in terms of the varied ranks
and the training ratios. In Figure 1(a), the mean accuracy of testing data obtained by
three compared methods varies when the training ratio increases from 10% to 70%. Due to
the complexity of the tensor approximation problem, both als and our method show larger
fluctuations than that of mcca when the training ratio increases. However, our method
consistently outperforms both als and mcca over all tested training ratios. In Figure 1(b),
we show the mean accuracy of compared methods on 10 random splits with 30% training
data by varying rank from 3 to 20 on six views. In addition, we show the mean accuracy
of compared methods on varied ranks over 30% training data with respect to combinations
of different views in Figure 2. All these results demonstrate a similar trend with respect to
testing accuracy when the rank increases from 3 to 20: mcca shows better performance on
small ranks, but our method outperforms both mcca and als on large ranks, and overall our
method obtains the best performance over all tested ranks. From Figure 1, we can see that
our model on 30% training data shows the worst results comparing to other training ratios.
This implies that the results in Figure 1 show the worst results of our method, which still
outperforms the other two methods as shown in Figure 2. Moreover, we report the empirical
comparison of computational time for these three methods, according to values of ranks and
views on Caltech101-7. The comparison is shown in Table 3. For cleanness, the average
CPU time over the combinations of fixed numbers of views is reported. As the experiments
show, mcca is the fastest one, because the generalized eigenvalue decomposition for matrices
of size 20×v (v ∈ {3, 4, 5, 6}) can be very fast. Our method is slower than mcca and als. As
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Table 2: Mean accuracy and standard deviation of three compared methods on 42 data sets
generated from Caltech101-7 over 10 random splits with 30% training data and rank 20.

views als Alg. 5.1 mcca

centrist+gist+lbp 95.23 ± 0.69 95.30 ± 0.73 90.74 ± 0.88
centrist+gist+hog 95.26 ± 0.58 95.32 ± 0.46 90.28 ± 0.96
centrist+gist+ch 92.47 ± 2.21 93.86 ± 0.96 90.66 ± 1.25
centrist+gist+sift-spm 95.56 ± 0.75 95.93 ± 0.39 92.59 ± 0.84
centrist+lbp+hog 94.95 ± 0.63 95.19 ± 0.65 90.09 ± 0.75
centrist+lbp+ch 92.63 ± 0.56 92.97 ± 0.65 90.06 ± 1.04
centrist+lbp+sift-spm 94.82 ± 0.75 95.15 ± 0.71 91.59 ± 0.71
centrist+hog+ch 91.29 ± 1.14 92.62 ± 1.07 89.79 ± 0.68
centrist+hog+sift-spm 93.46 ± 1.34 93.86 ± 1.27 91.15 ± 0.55
centrist+ch+sift-spm 90.24 ± 1.83 92.29 ± 0.94 88.99 ± 0.33
gist+lbp+hog 95.49 ± 0.92 95.63 ± 0.82 90.25 ± 0.85
gist+lbp+ch 93.04 ± 1.11 93.99 ± 0.60 90.93 ± 1.29
gist+lbp+sift-spm 95.71 ± 1.16 96.02 ± 0.60 92.41 ± 0.92
gist+hog+ch 90.86 ± 1.74 91.87 ± 1.92 89.60 ± 0.74
gist+hog+sift-spm 93.02 ± 0.58 93.05 ± 0.52 91.03 ± 0.47
gist+ch+sift-spm 90.14 ± 2.19 92.73 ± 1.09 90.25 ± 0.86
lbp+hog+ch 91.65 ± 1.51 92.98 ± 1.12 89.88 ± 0.67
lbp+hog+sift-spm 93.18 ± 0.77 94.16 ± 1.10 91.21 ± 0.50
lbp+ch+sift-spm 90.48 ± 1.61 92.33 ± 1.10 89.09 ± 0.46
hog+ch+sift-spm 88.35 ± 3.82 91.93 ± 0.94 90.07 ± 0.87

centrist+gist+lbp+hog 92.14 ± 3.41 95.12 ± 1.03 89.14 ± 0.70
centrist+gist+lbp+ch 89.25 ± 2.64 92.41 ± 1.93 90.17 ± 0.87
centrist+gist+lbp+sift-spm 90.05 ± 3.10 94.60 ± 1.25 90.64 ± 0.88
centrist+gist+hog+ch 84.91 ± 4.33 93.01 ± 2.05 89.63 ± 0.53
centrist+gist+hog+sift-spm 88.32 ± 4.01 92.94 ± 0.81 90.42 ± 0.46
centrist+gist+ch+sift-spm 85.30 ± 3.53 92.90 ± 1.94 90.97 ± 0.63
centrist+lbp+hog+ch 87.09 ± 2.72 92.52 ± 1.78 89.29 ± 0.55
centrist+lbp+hog+sift-spm 87.00 ± 5.27 93.30 ± 2.36 89.82 ± 0.58
centrist+lbp+ch+sift-spm 84.64 ± 3.74 92.21 ± 1.96 89.21 ± 0.90
centrist+hog+ch+sift-spm 84.65 ± 3.19 92.31 ± 1.33 90.02 ± 0.51
gist+lbp+hog+ch 86.50 ± 6.35 92.76 ± 1.41 89.11 ± 0.38
gist+lbp+hog+sift-spm 87.96 ± 2.63 93.86 ± 1.21 89.96 ± 0.47
gist+lbp+ch+sift-spm 85.25 ± 3.50 91.93 ± 1.98 90.83 ± 0.60
gist+hog+ch+sift-spm 81.57 ± 5.98 90.82 ± 2.06 90.53 ± 0.54
lbp+hog+ch+sift-spm 83.20 ± 4.93 91.59 ± 1.65 89.89 ± 0.68

gist+lbp+hog+ch+sift-spm 84.38 ± 3.13 91.32 ± 2.46 89.76 ± 0.61
centrist+lbp+hog+ch+sift-spm 86.11 ± 3.49 91.80 ± 2.32 89.48 ± 0.73
centrist+gist+hog+ch+sift-spm 86.67 ± 4.70 92.51 ± 1.11 90.12 ± 0.60
centrist+gist+lbp+ch+sift-spm 88.70 ± 3.73 93.07 ± 1.35 89.96 ± 0.87
centrist+gist+lbp+hog+sift-spm 85.31 ± 4.66 94.17 ± 1.37 89.25 ± 0.47
centrist+gist+lbp+hog+ch 85.75 ± 4.66 92.48 ± 2.10 89.00 ± 0.49

sift-spm+ch+hog+lbp+gist+centrist 87.91 ± 2.98 90.09 ± 2.95 89.33 ± 0.65
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Figure 3: Sensitivity analysis of compared methods with four views on data Scene15. (top
row) varying the size of common space on 30% training data; (bottom row) varying the
training ratios over common spaces from 3 to 20.

the number of views increases, the size of tensor increases and our method becomes slower.

Table 3: The CPU time of three compared methods on Caltech101-7 in terms of both ranks
and views.

rank
3 views 4 views 5 views

mcca als Alg. 5.1 mcca als Alg. 5.1 mcca als Alg. 5.1

3 0.0016 0.0464 0.0578 0.0022 0.0520 0.0863 0.0040 0.2463 0.7044
4 0.0013 0.0450 0.0656 0.0022 0.0517 0.0916 0.0037 0.2388 0.8510
5 0.0014 0.0464 0.0713 0.0021 0.0537 0.1216 0.0040 0.2434 1.0633
6 0.0013 0.0459 0.0781 0.0021 0.0522 0.1431 0.0041 0.2461 1.2318
7 0.0013 0.0464 0.0797 0.0022 0.0537 0.1519 0.0036 0.2435 1.3059
8 0.0013 0.0478 0.0843 0.0020 0.0520 0.1578 0.0037 0.2563 1.3738
9 0.0014 0.0454 0.0942 0.0022 0.0536 0.1665 0.0035 0.2556 1.4235
10 0.0013 0.0461 0.0961 0.0023 0.0528 0.1778 0.0036 0.2609 1.6305

6.3 Experiments on Scene15

The experiments same as in section 6.2 are performed on data Scene15. In Table 4, tensor-
based methods including both als and ours outperform mcca on all view combinations.
Our method outperforms als on three and four views, while it is competitive to als on five
views. Figure 3 demonstrates the sensitivity of compared methods by varying the rank
and the training ratios. On data Scene15, the tensor-based methods are consistently better
than mcca over all tested training ratios, while our method outperforms als on large ranks
and is competitive on small ranks. These results are consistent with the observations on
Caltech101-7 in section 6.2, especially on relatively large ranks.
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Table 4: Mean accuracy and standard deviation of two compared methods on 16 data sets
generated from Scene15 over 10 random splits with 30% training data and rank 20.

views als ours mcca

centrist+gist+lbp 65.91 ± 1.45 66.66 ± 1.12 57.01 ± 0.81
centrist+gist+hog 67.21 ± 1.15 67.73 ± 1.08 58.47 ± 0.88
centrist+gist+sift-spm 70.40 ± 1.48 72.68 ± 1.70 64.34 ± 1.65
centrist+lbp+hog 60.29 ± 1.80 62.32 ± 1.56 53.63 ± 0.72
centrist+lbp+sift-spm 60.30 ± 1.83 65.43 ± 1.45 58.10 ± 1.46
centrist+hog+sift-spm 63.05 ± 1.98 67.45 ± 1.24 58.11 ± 1.24
gist+lbp+hog 61.08 ± 1.33 62.86 ± 1.20 54.20 ± 0.74
gist+lbp+sift-spm 65.82 ± 1.68 68.88 ± 1.30 59.23 ± 1.42
gist+hog+sift-spm 63.12 ± 3.94 67.13 ± 2.28 54.71 ± 1.76
lbp+hog+sift-spm 57.08 ± 2.54 60.58 ± 1.32 51.01 ± 2.05

centrist+gist+lbp+hog 62.33 ± 2.21 63.83 ± 2.11 51.07 ± 0.72
centrist+gist+lbp+sift-spm 61.96 ± 3.02 65.34 ± 1.62 55.56 ± 1.08
centrist+gist+hog+sift-spm 62.41 ± 3.08 63.67 ± 3.70 58.69 ± 1.19
centrist+lbp+hog+sift-spm 54.63 ± 3.26 57.98 ± 2.37 51.77 ± 1.57
gist+lbp+hog+sift-spm 58.93 ± 3.18 61.28 ± 2.26 50.05 ± 1.15

centrist+gist+lbp+hog+sift-spm 60.72 ± 2.87 60.35 ± 3.33 49.11 ± 1.49
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