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is necessary to study the noisy tensor completion which aims to reconstruct a data tensor
from a fraction of noisy observations.

It is generally impossible to recover the unknown entries of a tensor from only a small
number of noisy observations without any assumptions on the underlying tensor. To make
the problem of noisy tensor completion well-posed, the mostly adopted assumption is that the
underlying tensor has some low-rankness, such that it can be represented by a relatively small
number of latent parameters. By estimating the latent parameters of a low-rank tensor from
limited noisy observations, the unknown entries then can be well reconstructed. Recently,
the low-rank tensor models have become a paradigm in visual data recovery [13, 14, 49].

As a higher-order generalization of matrix low-rankness [10], tensor low-rankness is often
characterized by different tensor rank functions [22], e.g. the CANDECOMP/PARAFAC
(CP) rank [3], Tucker rank [40], Tensor Train (TT) rank [32], Tensor Ring (TR) rank [51],
etc. From a signal processing perspective, all the above exampled tensor rank functions
are defined in the original domain of the tensor signal. A typically different example is the
recently proposed tensor tubal rank [50, 18] which measures low-rankness in the frequency
domain defined via Discrete Fourier Transform (DFT). It is advocated in [24, 23, 43, 45]
that the tensor tubal rank can simultaneously reflect both low-rank and smooth structures
of the signal tensor, and is thus ideal for the analysis and processing of various visual data
which often possess both low-rankness and smoothness at the same time [52, 13].

Although the low-tubal-rank tensor model is broadly used in imagery data recovery, a
typical defect of it is the orientation sensitivity owing to low-rankness strictly defined along
the tubal orientation which makes it fail to simultaneously exploit frequency low-rankness
in multiple orientations. To address this issue, Wang et al. [43] proposed the so called
Orientation Invariant Tubal Nuclear Norm (OITNN) to exploit multi-orientational frequency
low-rankness for an arbitrary K-way (K ≥ 3) tensors, which achieve higher accuracy in
robust tensor decomposition over traditional tensor low-rank models.

Motivated by the promising performance of OITNN, we introduce it to solve the problem
of noisy tensor completion in this paper (see Fig. 1). Specifically, the contributions of this
work are three-fold:

1). First, we formulate an OITNN-based estimator to estimate the underlying tensor from
partial noisy observations. Benefiting from the orientational invariance of OITNN,
the proposed estimator can simultaneously exploit the spectral low-rankness of the
underlying tensor data along all orientations.

2). Algorithmically, we propose an algorithm based on Alternating Direction Method of
Multipliers (ADMM) [12, 34] to compute the estimator and evaluate its effectiveness
on nine different types of remote sensing data.

3). Statistically, the statistical performance of the proposed estimator is analyzed by es-
tablishing an upper bound on the estimation error.

The rest of this paper is organized as follows. First, the notations and preliminaries of
tensor Singular Value Decomposition (t-SVD) and OITNN are introduced in Sec. 2. Then,
the proposed estimator for noisy tensor completion is formulated in Sec. 3. To compute the
proposed estimator, we design an ADMM-based algorithm in Sec. 4. To understand the
statistical behavior of the estimator, we establish an upper bound on the estimation error
in Sec. 5. Extensive experimental results on nine different types of remote sensing data are
reported in Sec. 6. This work is briefly summarized in Sec. 7. Proofs for the theoretical
results are given in the appendix.
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Figure 1: An illustration of this work.

2 Notations and Preliminaries

Notations. We use lowercase boldface, uppercase boldface, and calligraphy letters to denote
vectors (e.g., v), matrices (e.g., M), and tensors (e.g., T ), respectively. For any positive
integer n, let [n] := {1, . . . , n} for notational simplicity. For any real numbers a, b, let
a ∨ b = max{a, b}, and a ∧ b = min{a, b}. Without specification, a K-way tensor refers to
a tensor of 3 or higher ways, i.e., K ≥ 3. If the size of a tensor is not given explicitly, then
it is in Rd1×d2×···×dK . We use c, c′, c1 etc. to denote constants whose values can vary from
line to line. For notational simplicity, let

dK+1 = d1, D =
∏

k∈[K]
dk, d\k = D/(dkdk+1), d̃k =

√
dk+1

(√
dk +

√
d\k
)
, ∀k ∈ [K]

Given a matrix M ∈ Rd1×d2 , its nuclear norm and spectral norm are defined as ∥M∥∗ :=∑
i σi and ∥M∥ := maxi σi respectively, where {σi | i ∈ [d1 ∧ d2]} are its singular values.

Given a tensor T ∈ Rd1×d2×···×dK , define its l0-norm, l1-norm, F-norm, and l∞-norm, re-
spectively, as follows

∥T ∥0 := ∥vec(T )∥0, ∥T ∥1 := ∥vec(T )∥1, ∥T ∥F := ∥vec(T )∥2, ∥T ∥∞ := ∥vec(T )∥∞,

where vec(·) denotes the vectorization operation of a tensor [21]. Given T ∈ Rd1×d2×d3 , let
T (i) := T (:, :, i) denotes its ith frontal slice. Other notations are introduced at their first
appearance.

2.1 Tensor Singular Value Decomposition

We briefly recall the tensor singular value decomposition.

Definition 2.1 (t-product [18]). Given T1 ∈ Rd1×d2×d3 and T2 ∈ Rd2×d4×d3 , their t-product

T = T1 ∗ T2 ∈ Rd1×d4×d3 is a tensor whose (i, j)th tube T (i, j, :) =
∑d2

k=1 T1(i, k, :) • T2(k, j, :),
where • is the circular convolution.

Definition 2.2 (Tensor transpose [18]). Let T be a tensor of size d1 × d2 × d3, then T ⊤ is
the d2× d1× d3 tensor obtained by transposing each of the frontal slices and then reversing
the order of transposed frontal slices 2 through d3.
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Figure 2: Illustration of t-SVD [44].

Definition 2.3 (Identity tensor [18]). The identity tensor I ∈ Rd×d×d3 is a tensor whose
first frontal slice is the d× d identity matrix and all other frontal slices are zero.

Definition 2.4 (f-diagonal tensor [18]). A tensor is called f-diagonal if each frontal slice of
the tensor is a diagonal matrix.

Definition 2.5 (Orthogonal tensor [18]). A tensor Q ∈ Rd×d×d3 is orthogonal if Q⊤ ∗Q =
Q ∗ Q⊤ = I.

The block diagonal matrix of 3-way tensors are further defined for the convenience of
analysis.

Definition 2.6 (Block-diagonal matrix [18]). Let T (or T ) denote the block-diagonal matrix

of the tensor T̃ in the Fourier domain, i.e.,

T :=

 T̃ (1)

. . .

T̃ (d3)

 ∈ Cd1d3×d2d3 (2.1)

Then, t-SVD can be defined as follows (see Fig. 2).

Definition 2.7 (t-SVD, tubal rank [18]). Any tensor T ∈ Rd1×d2×d3 has a tensor singular
value decomposition as

T = U ∗ S ∗ V⊤, (2.2)

where U ∈ Rd1×d1×d3 ,V ∈ Rd2×d2×d3 are orthogonal tensors, and S ∈ Rd1×d2×d3 is an f -
diagonal tensor. The tubal rank of T is defined as the number of non-zero tubes of S:

rtb(T ) := #
{
i
∣∣S(i, i, :) ̸= 0

}
. (2.3)

Definition 2.8 (Average rank, tubal nuclear norm, tensor spectral norm [26]). Given T ∈
Rd1×d2×d3 , let T̃ be its Fourier version in Cd1×d2×d3 . The tensor average rank rankavg(·),
tubal nuclear norm ∥ · ∥⋆ of T are defined as the averaged rank and nuclear norm of frontal

slices of T̃ :

rankavg(T ) :=
1

d3

d3∑
i=1

rank(T̃ (i)), ∥T ∥⋆ :=
1

d3

d3∑
i=1

∥T̃ (i)∥∗,

whereas tensor spectral norm ∥ · ∥ is the largest spectral norm:

∥T ∥ := max
i∈[d3]

{∥T̃ (i)∥}.

The Fourier version T̃ is obtained by performing 1D-DFT on all tubes of T , i.e., T̃ = fft(T , [], 3) ∈
Cd1×d2×d3 in Matlab.
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Figure 3: Illustration of 3D-unfolding.

It has been shown in [26] that just like the relationship between the matrix nuclear
norm and matrix rank, TNN is the tightest convex relaxation of tensor average rank for
tensors within the unit ball of tensor spectral norm. Thus according to Definition 2.8, TNN
indeed imposes a low-average-rank structure which captures low-rankness in the spectral
domain. By viewing low-rankness as a special type of sparsity, and recalling the wisdom
from signal processing that “sparsity in the spectral domain usually means smoothness in
the original domain”, it can be said that a low-average-rank structure may simultaneously
model both low-rankness and smoothness of the tensor data. This can explain the superior
performance of TNN in visual data (like images and videos) restoration to some extent since
many visual data are both low-rank and smooth. However, as pointed out in [43], TNN is
orientation sensitive in the sense that just mode-3 fibers are chosen to perform DFT, and
thus only spectral low-rankness along orientation of mode-3 can be exploited, leading to
very limited representation ability for general higher-way tensors with spectral low-rankness
along multiple orientations.

2.2 Orientation Invariant TNN

To overcome the orientation sensitivity of TNN, a new tensor norm named orientation invari-
ant TNN is proposed in [43] which heavily relies on a novel tensor 3D-unfolding operation
as follows.

Definition 2.9 (mode-(k, t) 3D-unfolding [43]). For different k, t ∈ [K], the mode-(k, t)
3D-unfolding of T ∈ Rd1×d2×···×dK is a 3-way tensor T[k,t] ∈ Rdk×(D/(dkdt))×dt obtained by
the following two steps (See Fig. 3).

First, permute T to Z ∈ Rd′
1×d′

2×···×d′
K whose 1st and Kth modes are respectively the

kth and tth modes of T , with the rest modes permuted circularly. Second, reshape Z to

T[k,t] ∈ Rdk×(Dd−1
k d−1

t )×dt obeying the equation as follows

(T[k,t])i1jiK = Zi1i2...iK

where j = 1 +
∑K−1

l=2 (il − 1)Jl with Jl =
∑l−1

m=2 d
′
m.

Inspired the spirit of t-product which treats a 3-way tensor as a “2-way array” whose
entries are tubes, we can also take a K-way (K ≥ 3) tensor T as a “(K-1)-way array T ” of
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size d1×d2×· · ·×dt−1×dt+1×· · ·×dK whose entries are mode-t fibers. In this manner, the
mode-(k, t) 3D-unfolding T[k,t] of T can also be analogously seen as a “mode-k unfolding”
of T whose entries are mode-t fibers.

The mode-(k, t) 3d-unfolding is defined to transform an original K-way tensor to 3-way,
where the mode-k is re-indexed to the 1-st mode of the resulted tensor, while the mode-
t is re-indexed to the 3-rd mode. Thus, the average rank (as well as the TNN) of the
resulted 3-way tensor can measure spectral low-rankness along the t-th orientation of the
original tensor. Then, if we fix the mode-t, we can in general choose any k ̸= t to obtain
K − 1 different 3-way tensors, whose average ranks (and TNNs) all measures low-rankness
along the same (i.e., the t-th) orientation. Although it is considerable and feasible for us
to simultaneously consider the K − 1 resulted 3-way tensors, this would significantly bring
with more complexities of notation, exposition, and computation. For simplicity, we follow
the idea of [43] which straightforwardly lets k = t − 1, and considers the mode-(t − 1, t)
3d-unfolding, or equivalently the mode-(k, k + 1) 3d-unfolding.

For the ease of presentation, let

T[k] := T[k,k+1], k = 1, 2, . . . ,K

and name it the mode-k 3D-unfolding of T . For the ease of notations, we also define the
3D-unfolding operator Fk(·) for any T ∈ Rd1×d2×···×dK and its inverse operator F−1

k (·) as
follows

Fk(T ) := T[k], and F−1
k (T[k]) = T

Based on the tensor 3D-unfolding, we are now ready to introduce two new tensor ranks
[43].

Definition 2.10 (Orientation invariant tubal rank, Orientation invariant average rank [43]).
For any tensor T ∈ Rd1×d2×···×dK , its Orientation Invariant Tubal Rank (OITR) r⃗t and
Orientation Invariant Average Rank (OIAR) r⃗a are defined as the K-dimensional vectors
whose k-th entries are respectively the tubal rank and average rank of the mode-k 3d-
unfolding T[k] as follows:

r⃗t(T ) :=
(
rtb(T[1]), . . . , rtb(T[K])

)⊤ ∈ RK ,

r⃗a(T ) :=
(
rankavg(T[1]), . . . , rankavg(T[K])

)⊤ ∈ RK .
(2.4)

Thus, OITR is a complexity measure in the original domain, whereas the OIAR measures
low-rankness in the spectral domain as shown in Eq. (2.4). According to Lemma 1 in [43],
the following relationship between the OITR, OIAR, and the classical Tucker rank r⃗Tucker
holds

r⃗a(T ) ≤ min{⃗rt(T ), r⃗Tucker(T )}, (2.5)

where the partial order “≤” is defined entry-wisely. Eq. (2.5) shows that if a tensor has
a low OITR or Tucker rank, then it will have a low OIAR, which indicates the low OIAR
assumption is weaker than the popular low Tucker rank assumption [43].

Motivated by the definition of TNN, it is natural to relax the average ranks in OIAR
to their tightest convex envelops in all orientations and obtain the following orientation
invariant norm:

Using circular order of modes, let dK+1 = d(K+1)modK = d1.
According to the definitions of OITR and OIAR, either of them has K elements which represent spectral

low-rankness along K different orientations, and thus the dimensionality K could not be reduced from the
standpoint of signal modeling.
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Definition 2.11 (Overlapped orientation invariant tubal nuclear norm [43]). The Over-
lapped Orientation Invariant Tubal Nuclear Norm (OITNN-O) of T ∈ Rd1×d2×···×dK is de-
fined as follows:

∥T ∥⋆o :=
∑K

k=1
wk∥T[k]∥⋆, (2.6)

where wk’s are positive weights satisfying
∑

k wk = 1.

As discussed in [43], OITNN-O indeed imposes a low OIAR structure, which exploits
low-rankness in the spectral domain of all orientations. Thus in the original domain, it
models a data tensor as simultaneously low tubal rank in all orientations.

3 Noisy Tensor Completion via OITNN

In this section, we first specify the observation model in the noisy tensor completion setting
and then formulate the OITNN-based model.

3.1 The Observation Model

Let L∗ ∈ Rd1×d2×···×dK be the unknown tensor to be estimated. Suppose it’s partial noisy
observation Y ∈ Rd1×d2×···×dK is measured through a noisy channel specified by the following
observation model:

Yi1i2...iK = Bi1i2...iK (L∗
i1i2...iK + σEi1i2...iK ), ∀(i1, i2, . . . , iK) ∈ [d1]× [d2]× . . . [dK ] (3.1)

where B = (Bi1i2...iK ) ∈ Rd1×d2×···×dK is the sampling tensor whose entries are independent
Bernoulli random variables, the positive constant σ is the known standard deviation of
random noises, and Ei1i2...iK ∈ Rd1×d2×···×dK represents the noise tensor whose entries are
independent random variables with normalized variance. For simplicity of exposition, we
make the following assumptions on the sampling scheme and the noise setting:

Assumption 3.1 (Uniform sampling). All the entries of the underlying tensor L∗ are
sampled independently with the same probability p. Equivalently, all the entries of the
sampling tensor B are i.i.d. sampled from Bernoulli distribution of parameter p ∈ (0, 1],
i.e.,

Bi1i2...iK =

{
1, with probability p

0, with probability 1− p.
(3.2)

Assumption 3.2 (Sub-exponential noises). The noise variables Ei1i2...iK are sub-exponential
random variables with zero expectation and unit variance, i.e.,

E[Bi1i2...iK ] = 0, and var(Bi1i2...iK ) = 1

and there exists a positive constant ϱ as the smallest number such that the following in-
equality holds

E[exp
(
ϱ−1|Bi1i2...iK |

)
] ≤ +∞, ∀(i1, i2, . . . , iK) ∈ [d1]× [d2]× . . . [dK ] (3.3)

Remark 3.1. In this paper, we assume uniform sampling only for the ease of exposition.
Both the proposed estimator in Eq. (3.5) and Algorithm 1 are not limited to uniform sam-
pling. One can easily adopts a K-way generalization of the Assumption 1 in [44] and uses
very similar arguments to extend the estimation error in Sec. 5 to a more generalized sam-
pling schemes.



280 A. WANG, G. ZHOU, Z. JIN AND Q. ZHAO

3.2 The Proposed Model for Noisy Tensor Completion

The goal of noisy tensor completion is to recover the unknown tensor L∗ from the incomplete
noisy observation Y satisfying the observation model (3.1). Our idea is to seek an estimation
of the underlying tensor by using a least squares estimator penalized by the OIAR defined
in (2.4) to exploit spectral low-rankness along all orientations:

min
L

1

2
∥B ⊙ (Y − L)∥2F + λ0∥⃗ra(L)∥1 (3.4)

where ⊙ represents the entry-wise multiplication between tensors, and λ0 is a tunable reg-
ularization parameter which balances the low-rankness and the fidelity term.

However, general rank minimization is NP-hard [10, 2], making it extremely hard to
soundly solve Problem (3.4). For tractable low-OIAR optimization, we follow the most
common idea to relax the non-convex function OIAR to its convex surrogate (i.e., the over-
lapped OITNN ∥·∥⋆o), and obtain the following estimator:

L̂ ∈ argmin∥L∥∞≤a

1

2
∥B ⊙ (Y − L)∥2F + λ∥L∥⋆o (3.5)

where a > 0 is a known constant constraining the magnitude of entries in L∗. The additional
constraint ∥L∥∞ ≤ a is very mild since most signals are of limited energy in real applications.
It can also provide a theoretical benefit to exclude the “spiky” tensors, which is important
in controlling the identifiability of L∗. Such “non-spiky” constraints are also imposed in
previous literatures [30, 19, 14, 49], playing a key role in bounding the estimation error.

Then, it is natural to ask the following questions:

Q1: How to compute the proposed estimator?

Q2: How well can the proposed estimator estimate L∗?

We first discuss Q1 in Sec. 4 and then answer Q2 in Sec. 5.

4 Optimization Algorithm

In this section, we answer Q1 by designing an algorithm based on ADMM to compute the
proposed estimator.

For notational simplicity, we recall the definition 3D-unfolding operator for T ∈ Rd1×d2×···×dK

as Fk(T ) := T[k] and its inverse F−1
k (·) such that F−1

k (T[k]) = T . To solve Problem (3.5), the

first step is to introduce auxiliary variables {K(k)} as follows:

min
L,{K(k)}

1

2
∥B ⊙ (Y − L)∥2F + λ

K∑
k=1

wk∥K(k)
[k] ∥⋆ + δ∞a (L),

s.t. L = K(k), ∀k ∈ [K]

(4.1)

where δ∞a (L) is the indicator function of tensor l∞-norm ball defined as

δ∞a (L) =

{
0 ∥L∥∞ ≤ a

+∞ ∥L∥∞ > a
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The augmented Lagrangian of Problem (4.1) is given by

Lρ(L, {K(k), {W(k)}}) = 1

2
∥B ⊙ (Y − L)∥2F + λ

K∑
k=1

wk∥K(k)
[k] ∥⋆ + δ∞a (L)

+

K∑
k=1

(
⟨W(k),L −K(k)⟩+ ρ

2
∥L − K(k)∥2F

) (4.2)

where {W(k)} are Lagrangian multipliers and ρ > 0 is a penalty parameter.
According to the framework of ADMM [1, 12], we update the variables alternatively after

the t-th iteration as follows:

Update L: We update L by keeping the other variables fixed:

Lt+1 = argminLLρ(L, {K(k)
t , {W(k)

t }})

= argminL
1

2
∥B ⊙ (Y − L)∥2F + δ∞a (L) +

K∑
k=1

ρ

2
∥L − (K(k)

t − ρ−1W(k)
t )∥2F

= Proj∥·∥∞
a

((
B ⊙ Y + ρ

K∑
k=1

K(k)
t −

K∑
k=1

W(k)
t

)
⊘ (B +Kρ1)

) (4.3)

where ⊘ denotes entry-wise division, 1 ∈ Rd1×d2×···×dK is the tensor with all entires
being 1, and Proj∥·∥∞

a (·) is the projector onto the tensor l∞-norm ball of radius a which

is given by Proj∥·∥∞
a (L) = sign(L)⊙min(|L|, a) [43].

Update {K(k)}: We update each {K(k)} separately with L and {W(k)} fixed as follows:

K(k)
t+1 = argminK(k) Lρ(Lt+1, {K(k), {W(k)

t }})

= argminK(k) λwk∥K(k)
[k] ∥⋆ +

ρ

2
∥K(k) − (Lt+1 + ρ−1W(k)

t )∥2F

= F−1
k

(
Prox

∥·∥⋆

ρ−1λwk
(Fk(Lt+1 + ρ−1W(k)

t ))
) (4.4)

where Prox∥·∥⋆
τ (K) is the proximal operator of TNN at point K given in the following

lemma:

Lemma 4.1 (Proximal operator of TNN [44]). Let tensor T0 ∈ Rd1×d2×d3 with t-SVD
T0 = U ∗ S ∗ V⊤, where U ∈ Rd1×r×d3 and V ∈ Rd2×r×d3 are orthogonal tensors and
S ∈ Rr×r×d3 is the f-diagonal tensor of singular tubes. Then the proximal operator of
function ∥·∥⋆ at point T0 with parameter τ , can be computed as follows:

Prox∥·∥⋆
τ (K0) :=argminT

1

2
∥T0 − T ∥2F + τ∥T ∥⋆

=U ∗ ifft3(max(fft3(S)− τ, 0)) ∗ V⊤

Update {W(k)}: Following [1], we update the dual variables {W(k)} by dual ascent as
follows:

W(k)
t+1 =W(k)

t + ρ(Lt+1 −K(k)
t ), k ∈ [K] (4.5)
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Algorithm 1 ADMM for Problem (4.1)

Require: Observation Y, parameters λ ≥ 0, {wk} ≥ 0.

1: Let ρ = 1, ϵ = 10−6, and initialize L0 = 0, K(k)
0 = W(k)

0 = 0, ∀k ∈ [K].
2: while not converged do
3: Update L by Eq. (4.3);
4: Update {K(k)} by Eq. (4.4);
5: Update {W(k)} by Eq. (4.5);
6: Check the convergence criteria as follows:

Convergence in primal variables: ∥Xt+1 −Xt∥∞ ≤ ϵ, ∀X ∈ {L}
⋃
{K(k)}k;

Convergence in constraints: ∥Lt+1 −K(k)
t+1∥∞ ≤ ϵ, ∀k ∈ [K];

7: t = t+ 1.
8: end while

We then summarize the algorithm in Algorithm 1.
Complexity analysis: In each single iteration of Algorithms 1, the main cost comes

from updating the low tubal rank components which involves FFT, IFFT and d3 SVDs
of d1 × d2 matrices for tensors of size d1 × d2 × d3. Hence Algorithm 1 has per-iteration
complexity

O
(
KD logD +D

∑
k
min(dk, d

−1
k d−1

k+1D
)
, (4.6)

which is the same order as ADMM-based algorithms for SNN [11].
Convergence analysis: We then discuss the convergence of Algorithm 1 as follows.

Theorem 4.2 (Convergence of Algorithm 1). For any positive constant ρ, if the unaug-
mented Lagrangian function L0(L, {K(k)}, {W(k)}) has a saddle point, then the iterations

(Lt, {K(k)
t }, {W

(k)
t }) in Algorithm 1 satisfy the residual convergence, objective convergence

and dual variable convergence (defined in [1]) of Problem (4.1) as t→∞.

The proof of Theorem 4.2 is given in Appendix B. Since there are only equality constraints
in the convex Problem (4.1), strong duality holds naturally as a corollary of Slater’s condition
[37], which further indicates that the unaugmented Lagrangian L0(L, {K(k)}, {W(k)}) has
a saddle point. Moreover, according to the analysis in [12], the convergence rate of general
ADMM-based algorithms is O(1/T ), where T denotes the iteration number. In this way,
the convergence behavior of Algorithm 1 is analyzed.

5 Statistical Performance of the Proposed Estimator

We answer Q2 by establishing an upper bound on the estimation error of any estimator L̂
in the solution set of Problem (3.5) to the underlying tensor L∗. Let ∆ := L̂ − L∗ be the
error tensor whose F-norm will be upper bounded in this section.

Lemma 5.1 (Error bound on the observed entries). By setting the regularization parameter

λ ≥ 2σ∥B ⊙ E∥∗⋆o (5.1)

then we obtain
∥∆∥⋆o ≤

∑
k

wk

√
32r∗k∥∆∥F (5.2)

and
1

2
∥B ⊙∆∥2F ≤

3λ

2

∑
k

wk

√
2r∗k∥∆∥F (5.3)
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The proof can be found in Appendix A.1. Lemma 5.1 gives an upper bound on the
“observed part” of the estimation error ∥B ⊙∆∥F. As our goal is to establish a bound on
∥∆∥F, we then connect ∥B ⊙∆∥F with ∥∆∥F by quantifying the probability of the following
so-called Restricted Strong Convexity (RSC) property of the sampling operator defined by
B:

∥B ⊙∆∥2F ≥
p

2
∥∆∥2F − an intercept term (5.4)

when the error tensor ∆ belongs to some set C(β, r) defined as

C(β, r) :=
{
∆ ∈ Rd1×d2×···×dK

∣∣∣ ∥∆∥∞ ≤ 1, p∥∆∥2F ≥ β, ∥∆∥⋆o ≤
∑
k

wk
√
rk∥∆∥F

}
(5.5)

where β is an F-norm tolerance parameter and r = (r1, r2, . . . , rK) is a rank parameter
whose values will be specified in the sequel.

Lemma 5.2 (Restricted Strong Convexity). For any ∆ ∈ C(β, r), it holds with probability
at least 1− 1/d̃ that

∥B ⊙∆∥2F ≥
p

2
∥∆∥2F − 64ep−1

(
E
[
∥B ⊙R∥∗⋆o

]∑
k

wk
√
rk + 2

)2
(5.6)

where e is the base of the natural logarithm, and the entries Ri1i2...iK of tensor R are
i.i.d. Rademacher random variables.

The proof of Lemma 5.2 can be found in Appendix A.1. According to Lemma 5.1 and
Lemma 5.2, it remains to bound ∥B ⊙ E∥∗⋆o and E[∥B ⊙R∥∗⋆o]. The following lemmas upper
bound them respectively.

Lemma 5.3. Let p ≥ maxk(dk ∧ d\k)−1. Then it holds with probability at least 1−
∑

k d̃
−1
k

that

∥B ⊙ E∥∗⋆o ≤
Cϱ

K2

K∑
k=1

w−1
k

√
pD(dk ∧ d\k)−1 log d̃k (5.7)

Lemma 5.4. Let p ≥ maxk(dk ∧ d\k)
−1 and pD(dk ∧ d\k)

−1 ≥ 2 log2(dk ∧ d\k) log d̃k, ∀k ∈
[K]. Then, the following inequality holds

E[∥B ⊙R∥∗⋆o] ≤
C2

K2

K∑
k=1

w−1
k

√
pD(dk ∧ d\k)−1 log d̃k (5.8)

For the proof of Lemma 5.3 and Lemma 5.4, please see Appendix A.1.

Then, combining Lemmas 5.1 to 5.4, we arrive at an upper bound on the estimation
error in the follow theorem.

Theorem 5.5. Suppose Assumption 3.1 and Assumption 3.2 are satisfied and ∥L∗∥∞ ≤ a.
Let p ≥ maxk(dk ∧d\k)−1 and pD(dk ∧d\k)−1 ≥ 2 log2(dk ∧d\k) log d̃k, ∀k ∈ [K]. By setting

λ =
c′1σ

K2

K∑
k=1

w−1
k

√
pD(dk ∧ d\k)−1 log d̃k (5.9)
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the estimation error of any estimator L̂ defined in Problem (3.5) can be upper bounded as
follows

∥L̂ − L∗∥2F ≤
C

p2

(
pD(σ ∨ a)2

K4

( K∑
k=1

w−1
k

√
(dk ∧ d\k)−1 log d̃k

)2( K∑
k=1

wk

√
r∗k

)2
+ a2 + log d̃

)
(5.10)

with probability at least 1− d̃−1 −
∑

k d̃
−1
k .

The proof of Theorem 5.5 can be found in Appendix A.2. To understand the proposed
bound, we consider the K-way cubical tensor L∗ ∈ Rd×d×···×d with regularization weights
w1 = w2 = · · · = wK = 1/K and sampling ratio p ≥ 1/d. Then the bound in Eq. (5.10) is
simplified to the following element-wise error:

∥L̂ − L∗∥2F
dK

≤ O

1

p
· (σ ∨ a)2 · 1

K

(
K∑

k=1

√
r∗k
d

)2

log d

 (5.11)

which means the estimation error is controlled by the averaged low-tubal-rank ratio in all
orientations of the underlying tensor L∗. Eq. (5.11) also indicates that as the sampling ratio

p ≥ Ω

 1

K

(
K∑

k=1

√
r∗k
d

)2

log d

 (5.12)

the estimation error will be small. Equivalently, the expected observation number N = pdK

for approximate tensor completion is

N ≥ Ω

(
1

K

( K∑
k=1

√
r∗k

)2
dK−1 log d

)
(5.13)

It can be seen from Eq. (5.11) and Eq. (5.13) that both the estimation error and the
sample complexity are controlled by the low-tubal-rankness along all orientations, which is
in consistence with the results for sum-of-norms-based estimators in [33, 39, 43, 29]. A
more general analysis in [29] and [33] indicates that the performance of sum-of-norms-based
estimators are determined by all the structural complexities for a simultaneously structured
signal, just as the proposed bounds show. However, a straightforward corollary of the
results in [29] and [33] also shows that for tensor recovery from a small number of noisy
observations, OITNN cannot provide essentially lower estimation error or sample complexity
than TNN. Fortunately, despite this general and unavoidable limitation of sum-of-norms-
based estimators [33, 39, 43, 29], one can still find a significant gain in empirical performance
of OITNN over TNN in Sec. 6.
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6 Experiments

In this section, we evaluate the effectiveness of OITNN in comparison with traditional ma-
trix/tensor nuclear norms by conducting simulated noisy tensor completion on nine different
types of datasets collected from several remote sensing related applications from §§6.1 to
§§6.9.

Sampling schemes: In the simulations, we consider two sampling schemes:

1) Uniform sampling with ratio p: As described in Assumption 3.1, each element of the
binary sampling tensor B ∈ Rd1×d2×···×dK is drawn i.i.d. from Bernoulli distribution
with parameter p ∈ (0, 1].

2) Non-uniform sampling with proxy ratio p: This is a more challenging setting where
there exists totally missing rows, columns, tubes and possibly higher-order fibers.
Specifically, given the proxy ratio p ∈ (0, 1], we let q = (1 − p)1/K and construct the
sampling tensor B as follows:
Step 1 : Initialize the sampling tensor B0 to all ones, i.e., B0 ← ones([d1, . . . , dK ]) in
Matlab.
Step 2 : For each k from 1 to K, we generate the tensor Bk by specifying its mode-k
matricization Bk

(k) as the matrix obtained by randomly setting each column of Bk−1
(k)

to zero with probability q.
Step 3 : We finally construct the sampling tensor by B ← BK .
According to the above steps, we can see that the sampling tensor B may process
totally zero rows, columns, tubes, and higher-order fiber. We call the parameter p the
proxy sampling ratio because the expected sample number, i.e., the expectation of the
number of non-zero entries in B is pD.

Observation model: We conduct noisy tensor completion on the datasets . First we
rescale the signal tensor L∗ ∈ Rd1×d2×···×dK by ∥L∗∥∞ = 1, and then we generate the
noise tensor E ∈ Rd1×d2×···×dK with i.i.d. standard Gaussian entries. Next, the standard
deviation parameter σ of the random noises is chosen by σ = c∥L∗∥F/

√
D for a constant

Signal to Noise Ratio (SNR) c = 0.05. Further, the binary sampling tensor B is generated
according to the above mentioned uniform or non-uniform sampling schemes. Finally, we
obtain the observation tensor Y = B ⊙ (L∗ + σE) according to the observation model (3.1).

Competitor nuclear norms and performance metrics: We evaluate the effective-
ness of OITNN in comparison with mostly adopted matrix/tensor nuclear norms, including
matrix Nuclear Norm (NN) [19, 31], the Sum of Nuclear Norms (SNN) [39], the vanilla Tubal
Nuclear Norm (TNN-DFT) [42], the Tubal Nuclear Norm defined with Discrete Fourier
Transform (TNN-DCT) [27, 45], and the Square Nuclear Norm (SqNN) [29] (only for 4-way
tensors in §§6.9). The effectiveness of norms are measured by the Peaks Signal Noise Ra-
tio (PSNR) and structural similarity (SSIM) [47]. Larger PSNR and SSIM values indicate
higher quality of the estimator L̂.
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6.1 Experiments on An Urban Area Imagery Dataset

This section uses the well known area imagery dataset UCMerced land use dataset [48],
which is composed of 256× 256 pixels RGB images. The 85-th image of all the 21 classes
are chosen in this experiment and we obtain 21 images as shown in Fig. 4.

We consider two sampling schemes, i.e., uniform sampling with ratio p ∈ {0.05, 0.1, 0.15}
and non-uniform sampling with proxy ratio p ∈ {0.05, 0.1, 0.15} for the d × d × 3 images,
that is, {95%, 90%, 85%} entries of an image are missing. For NN [19, 31], we set the
regularization parameter λ = λισ

√
pd log(2d). For SNN [39], we set the regularization

parameter λ = λι and choose the weight α by α1 : α2 : α3 = 1 : 1 : 0.01. For TNN-DFT
[42] and TNN-DCT [27], we set λ = λι

√
pd log(6d). For the proposed OITNN-O, we set the

regularization parameter λ = λι

√
pd log(6d) and choose the weight w by w1 : w2 : w3 =

1 : 1 : 2.5. The factor λι is then tuned in {10−3, 10−2, . . . , 103} for each norm, and we
choose the one with highest PSNRs in most cases in the parameter tuning phase. In each
setting, we test each image for 10 trials and report the averaged PSNR (in db) and SSIM
values. We present the PSNR and SSIM values for two sampling schemes in Fig. 5 and
Fig. 6 respectively for quantitative comparison. Several visual examples are shown in Fig. 7.
It can be found from Fig. 5 and Fig. 6 that

The non-uniform sampling setting is harder than the uniform setting with equal (proxy)
sampling ratio because the non-uniform setting involves totally missing rows, columns,
and tubes which will be automatically filled with zeros by directly minimizing tradi-
tional nuclear norms.

Our OITNN-O performs best in the tensorial norms, and we owe the gain in perfor-
mance to its capability to model spectral low-rankness in multiple orientations. The
effect is particularly significant in dealing with non-uniform sampling (See Fig. 7):
1) First, NN and SNN fail to recover totally missing rows, columns, and tubes since
the minimization of nuclear norm simply fills the void with zeros. 2) The orienta-
tion sensitivity of TNN-DFT and TNN-DCT prevents them from recovering the to-
tally missing tubes, since the direction minimization of TNN leads to a preference
to filling in the unknown tubes with zeros. 3) Thanks to its capability to exploit
multi-orientational spectral low-rankness, our OITNN-O can introduce information of
observed rows/columns/tubes to reconstruct the unseen ones, leading to improved re-
covery.

6.2 Experiments on Gray Image Sequences

Time sequences of images are broadly used in many computer vision based remote sensing
applications. We experiment on a 180 × 320× 30 tensor which consists of the first 30 gray
image frames of the Sky dataset.

We also consider two sampling schemes, i.e., uniform sampling with ratio p ∈
{0.05, 0.1, 0.15} and non-uniform sampling with proxy ratio p ∈ {0.05, 0.1, 0.15} for the
d1 × d2 × d3 images, that is, {95%, 90%, 85%} entries of a tensor are missing. For NN
[19, 31], we set the parameter λ = λισ

√
p(d1 ∨ d2) log(d1 + d2). For SNN [39], we set the

regularization parameter λ = λι and chose the weight α by α1 : α2 : α3 = 1 : 1 : 1. For
TNN-DFT [42], we set λ = λισ

√
pd3(d1 ∨ d2) log(d1d3 + d2d3). For TNN-DCT [27], we

set λ = λισ
√
p(d1 ∨ d2) log(d1d3 + d2d3). For the proposed OITNN-O, we set the regu-

larization parameter λ = λισ
√
pd3(d1 ∨ d2) log(d1d3 + d2d3) and choose the weight w by
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Figure 4: The dataset consists of the 85-th frame of all the 21 classes in the UCMerced dataset

[46].

w1 : w2 : w3 = 1 : 1 : 1. The factor λι is then tuned in {10−3, 10−2, . . . , 103} for each norm,
and we chose the one with highest PSNRs in most cases in the parameter tuning phase. In
each setting, we test each tensor for 10 trials and report the averaged PSNR (in db) and
SSIM values.

We present the PSNR and SSIM values for two sampling schemes in Table 1 for quan-
titative comparison. The results are so similar to §§6.1: First, the non-uniform sampling
setting is harder than the uniform setting with equal (proxy) sampling ratio. Second, the
tensorial norms (SNN, TNN-DFT, TNN-DCT, and OITNN-O) outperform vanilla matrix
NN, and our OITNN-O performs best in the tensorial norms, owing to its capability in
modeling spectral low-rankness in multiple orientations.

6.3 Experiments on Hyperspectral Data

Benefit from its fine spectral and spatial resolutions, hyperspectral image processing has
been extensively adopted in many remote sensing applications [13]. In this section, we
conduct noisy tensor completion on subsets of the two representative hyperspectral datasets
described as follows:

Indian Pines : This dataset was collected by AVIRIS sensor in 1992 over the Indian
Pines test site in North-western Indiana and consists of 145×145 pixels and 224 spectral
reflectance bands. We use the first 30 bands in the experiments due to the trade-off
between the limitation of computing resources and the efforts for parameter tuning.

Salinas A: The data were acquired by AVIRIS sensor over the Salinas Valley, California
in 1998, and consists of 224 bands over a spectrum range of 400–2500nm. This dataset
has a spatial extent of 86 × 83 pixels with a resolution of 3.7m. We use the first 30
bands in the experiments too.

We also consider two sampling schemes, i.e., uniform sampling with ratio p ∈
{0.05, 0.1, 0.15} and non-uniform sampling with proxy ratio p ∈ {0.05, 0.1, 0.15} for the
d1 × d2 × d3 images, that is, {95%, 90%, 85%} entries of a tensor are missing. We use the
same parameter tuning scheme with §§6.2. In each setting, we test each tensor for 10 tri-
als and report the averaged PSNR (in db) and SSIM values. We present the PSNR and
SSIM values for two sampling schemes in Table 2 for quantitative comparison, with visual
examples shown in Fig. 8. The experimental results are also very similar to §§6.1: Our
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Figure 5: The PSNR and SSIM values obtained by five norms (NN [19], SNN [39], TNN-DFT [42],

TNN-DCT [27], and our OITNN-O) for noisy tensor completion on the UCMerced dataset in the

uniform sampling setting with ratio p ∈ {0.05, 0.1, 0.15}.

OITNN-O performs best in the tensorial norms thanks to its capability in modeling spectral
low-rankness in multiple orientations.

6.4 Experiments on Multispectral Images

Multispectral imaging captures image data within specific wavelength ranges across the
electromagnetic spectrum, and has become one of the most widely utilized datatype in
remote sensing. This section presents simulated experiments on multi-spectral images. The
original data are two multispectral images Cloth, Hair, Jelly Beans, and Oil Painting from
the Columbia MSI Database containing scenes of a variety of real-world objects. Each MSI
is of size 512× 512× 31 with intensity range scaled to [0, 1].

We also consider two sampling schemes, i.e., uniform sampling with ratio p ∈
{0.05, 0.1, 0.15} and non-uniform sampling with proxy ratio p ∈ {0.05, 0.1, 0.15} for the
d1 × d2 × d3 images, that is, {95%, 90%, 85%} entries of a tensor are missing. We use the
same parameter tuning scheme with §§6.2. In each setting, we test each tensor for 10 trials
and report the averaged PSNR (in db) and SSIM values.

We present the PSNR and SSIM values for two sampling schemes in Table 3 and Ta-
ble 4 respectively for quantitative comparison, with visual examples shown in Fig. 9. The

Available at http: //www1.cs.columbia.edu/CAVE/databases/multispectral
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Figure 6: The PSNR and SSIM values obtained by five norms (NN [19], SNN [39], TNN-DFT [42],

TNN-DCT [27], and our OITNN-O) for noisy tensor completion on the UCMerced dataset in the

non-uniform sampling setting with proxy ratio p ∈ {0.05, 0.1, 0.15}.

experimental results are also very similar to §§6.1: thanks to its capability in modeling spec-
tral low-rankness in multiple orientations, our OITNN-O outperforms the other competitor
norms.

6.5 Experiments on Point Could Data

With the rapid advances of sensor technology, the emerging point cloud data provide better
performance than 2-D images in many remote sensing applications due to its flexible and
scalable geometric representation [28]. In this section, we also conduct experiments on a
dataset for Unmanned Ground Vehicle (UGV). The dataset contains a sequence of point
cloud data acquired from a Velodyne HDL-64E LiDAR. We select 30 frames (Frame Nos.
65-94) from the data sequence. The point cloud data is formatted into two tensors sized
64× 870× 30 representing the distance data (named SenerioB Distance) and the intensity
data (named SenerioB Intensity), respectively.

We also consider two sampling schemes, i.e., uniform sampling with ratio p ∈
{0.05, 0.1, 0.15} and non-uniform sampling with proxy ratio p ∈ {0.05, 0.1, 0.15} for the
d1 × d2 × d3 images, that is, {95%, 90%, 85%} entries of a tensor are missing. We use the
same parameter tuning scheme with §§6.2. In each setting, we test each tensor for 10 trials

Scenario B from http://www.mrt.kit.edu/z/publ/download/velodynetracking/dataset.html
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Figure 7: Visual results obtained by five norms for noisy tensor completion on the UCMerced

dataset in the non-uniform sampling setting with approximately 95% missing entries. The sub-

plots from (a) to (g): (a) the original image; (b) the observed image; (c) image recovered by NN

[19]; (d) recovered by SNN [39]; (e) image recovered by the vanilla TNN-DFT [42]; (f) image

recovered by the TNN-DCT [27]; (g) image recovered by our OITNN-O.

and report the averaged PSNR (in db) and SSIM values.
We present the PSNR and SSIM values for two sampling schemes in Table 5 for quanti-

tative comparison. The experimental results are also very similar to §§6.1: our OITNN-O
performs better than the other norms thanks to its capability in modeling spectral low-
rankness in multiple orientations.

6.6 Experiments on SAR Data

Polarimetric synthetic aperture radar (PolSAR) has attracted lots of attention from remote
sensing scientists because of its various advantages, e.g., all-weather, all-time, penetrating
capability, and multi-polarimetry. In this section, we adopt the PolSAR UAVSAR Change

Figure 8: Visual results obtained by five norms for noisy tensor completion on the 21-th bound of

hyper-spectral dataset in the non-uniform sampling setting with approximately 95% missing entries.

The first row corresponds to the Indian Pines dataset with the second corresponding to Salinas A.

The sub-plots from (a) to (g): (a) the original image; (b) the observed image; (c) image recovered

by NN [19]; (d) recovered by SNN [39]; (e) image recovered by the vanilla TNN-DFT [42]; (f) image

recovered by the TNN-DCT [27]; (g) image recovered by our OITNN-O.
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Figure 9: Visual results obtained by five norms for noisy tensor completion on the 21-th bound of

multi-spectral dataset in the non-uniform sampling setting with approximately 95% missing entries.

The first, second, third, and fourth row correspond to the Cloth, Hair, Jelly Beans, and Oil Painting,

respectively. The sub-plots from (a) to (g): (a) the original image; (b) the observed image; (c) image

recovered by NN [19]; (d) recovered by SNN [39]; (e) image recovered by the vanilla TNN-DFT [42];

(f) image recovered by the TNN-DCT [27]; (g) image recovered by our OITNN-O.

Detection Images dataset. It is a dataset of single-look quad-polarimetric SAR images
acquired by the UAVSAR airborne sensor in L-band over an urban area in San Francisco
city on 18 September 2009, and May 11, 2015. The dataset #1 have length and width of
200 pixels, and we use the first 30 bands.

We also consider two sampling schemes, i.e., uniform sampling with ratio p ∈
{0.05, 0.1, 0.15} and non-uniform sampling with proxy ratio p ∈ {0.05, 0.1, 0.15} for the
d1 × d2 × d3 images, that is, {95%, 90%, 85%} entries of a tensor are missing. We use the
same parameter tuning scheme with §§6.2. In each setting, we test each tensor for 10 trials
and report the averaged PSNR (in db) and SSIM values.

We present the PSNR and SSIM values for two sampling schemes in Table 6 for quan-
titative comparison. The experimental results are also very similar to §§6.1: thanks to its
capability in modeling spectral low-rankness in multiple orientations, our OITNN-O achieves
better performance than the other competitors.

6.7 Experiments on Seismic Data

With the rapid development of GIS and remote sensing technologies, valuable progress has
been made in the earthquake-related research field. We use the seismic data tensor of size
512× 512× 3 which is abstracted from the test data “seismic.mat” of a toolbox for seismic
data processing from Center of Geopyhsics, Harbin Institute of Technology, China.

We also consider two sampling schemes, i.e., uniform sampling with ratio p ∈
{0.05, 0.1, 0.15} and non-uniform sampling with proxy ratio p ∈ {0.05, 0.1, 0.15} for the
d1 × d2 × d3 images, that is, {95%, 90%, 85%} entries of a tensor are missing. We use the
same parameter tuning scheme with §§6.2. In each setting, we test each tensor for 10 trials
and report the averaged PSNR (in db) and SSIM values.

Available at https://github.com/sevenysw/MathGeo2018
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Figure 10: Visual results obtained by five norms for noisy tensor completion on the Seismic dataset

in the non-uniform sampling setting with approximately 85% missing entries. The first, second, and

third rows correspond to the first, second, and third frontal slice of the tensor. The sub-plots from

(a) to (g): (a) the original image; (b) the observed image; (c) image recovered by NN [19]; (d)

recovered by SNN [39]; (e) image recovered by the vanilla TNN-DFT [42]; (f) image recovered by

the TNN-DCT [27]; (g) image recovered by our OITNN-O.

We present the PSNR and SSIM values for two sampling schemes in Table 7 for quan-
titative comparison, with visual examples shown in Fig. 10. The experimental results are
also very similar to §§6.1: our OITNN-O outperforms the other competitor norms benefiting
from its capability in modeling spectral low-rankness in multiple orientations.

6.8 Experiments on Thermal Imaging Data

Thermal infrared data can provide important measurements of surface energy fluxes and
temperatures in various remote sensing applications. In this section, we experiment on two
infrared datasets as follows:

The OSU Thermal Database [9]: The sequences were recorded on the Ohio State
University campus during the months of February and March 2005, and show several
people, some in groups, moving through the scene. We use the first 30 frames of
Sequences 1 and form a tensor of size 320 × 240× 30.

The Infraed Detection dataset [15]: This dataset is collected for infrared detection and
tracking of dim-small aircraft targets under ground/air background. It consists of 22
subsets of infrared image sequences of all aircraft targets. We use the first 30 frames of
data3.zip to form a 256 × 256 × 30 tensor due to the trade-off between the limitation
of computing resources and the efforts for parameter tuning.

We also consider two sampling schemes, i.e., uniform sampling with ratio p ∈
{0.05, 0.1, 0.15} and non-uniform sampling with proxy ratio p ∈ {0.05, 0.1, 0.15} for the
d1 × d2 × d3 tensors, that is, {95%, 90%, 85%} entries of a tensor are missing. We use the
same parameter tuning scheme with §§6.2. In each setting, we test each tensor for 10 trials
and report the averaged PSNR (in db) and SSIM values.

Available at http://www.csdata.org/p/387/
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Figure 11: Visual results obtained by five norms for noisy tensor completion on the 21-th bound of

the thermal imaging dataset in the non-uniform sampling setting with approximately 95% missing

entries. The first and second rows correspond to the OSU Thermal Database and Infraed Detection

dataset, respectively. The sub-plots from (a) to (g): (a) the original image; (b) the observed image;

(c) image recovered by NN [19]; (d) recovered by SNN [39]; (e) image recovered by the vanilla

TNN-DFT [42]; (f) image recovered by the TNN-DCT [27]; (g) image recovered by our OITNN-O.

We present the PSNR and SSIM values for two sampling schemes in Table 8 for quanti-
tative comparison, with visual examples shown in Fig. 11. The experimental results are also
very similar to §§6.1: thanks to its capability in modeling spectral low-rankness in multiple
orientations, our OITNN-O outperforms the other tensorial norms.

6.9 Experiments on RGB Video Data

RGB aerial videos are broadly used in many computer vision based remote sensing tasks.
We experiment on a 216 × 288 × 3 × 30 tensor which consists of the first 30 frames of the
Ground dataset for small object detection [25].

Since the data tensor L∗ ∈ Rd1×d2×d3×d4 is 4-way, we evaluate NN by first unfolding
the L∗ along all the four modes to get four matrices L∗

(k), k ∈ [4], and then reporting the
result with highest PSNR values. We adopt TNN-DFT and TNN-DCT separately on three
d1 × d2 × d4 gray videos. Thus, we can use the same parameter tuning scheme for NN,
TNN-DFT, and TNN-DCT as §§6.2. We also consider the Square Nuclear Norm (SqNN)
[29] for which we consider the general unfolding with mode partitions {1, 4} and {2, 3}
and we set the regularization parameter λ = λισ

√
pd1d4 log(d1d4 + d2d3). For SNN [39],

we set the regularization parameter λ = λι and chose the weight α by α1 : α2 : α3 :
α4 = 1 : 1 : 0.01 : 1. For the proposed OITNN-O, we set the regularization parameter
λ = λισ

√
pd1d3d4 log(d1d3d4 + d2d3) and choose the weight w by w1 : w2 : w3 : w4 = 1 :

100 : 1 : 1. The factor λι is then tuned in {10−3, 10−2, . . . , 103} for each norm, and we chose
the one with highest PSNRs in most cases in the parameter tuning phase.

We consider two sampling schemes, i.e., uniform sampling with ratio p ∈ {0.05, 0.1}
and non-uniform sampling with proxy ratio p ∈ {0.05, 0.1, 0.15}, that is, {95%, 90%, 85%}
entries of the video are missing. In each setting, we test each tensor for 10 trials and report
the averaged PSNR (in db) and SSIM values. We present the PSNR and SSIM values for
two sampling schemes in Table 9 for quantitative comparison with visual examples shown
in Fig. 12. The results are so similar to §§6.1: First, the non-uniform sampling setting is
harder than the uniform setting with equal (proxy) sampling ratios. Second, the tensorial
norms (SqNN, SNN, TNN-DFT, TNN-DCT, and OITNN-O) outperform vanilla matrix NN,
and our OITNN-O performs best in the tensorial norms, owing to its capability in modeling
spectral low-rankness in multiple orientations.

Available at http://www.loujing.com/rss-small-target
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Figure 12: Visual results obtained by five norms for noisy tensor completion on the 21-th frame of

Ground dataset in the uniform and non-uniform sampling settings. The first and second rows corre-

spond to the uniform sampling with ratio p = 0.05 and 0.1 respectively, with the third, fourth, and

fifth corresponding to non-uniform sampling with proxy ratio p = 0.05, 0.1, and 0.15, respectively.

The sub-plots from (a) to (h): (a) the original image; (b) the observed image; (c) image recovered

by NN [19]; (d) image recovered by SqNN [29]; (e) image recovered by SNN [39]; (f) image recovered

by the vanilla TNN-DFT [42]; (g) image recovered by the TNN-DCT [27]; (h) image recovered by

our OITNN-O.

7 Conclusion and Discussion

To reconstruct an unknown tensor data from partial noisy observations, we first formulated
an OITNN penalized least squares estimator for noisy tensor completion and then explored
its statistical and empirical performance. The proposed estimator can be tractably com-
puted via an ADMM-based algorithm and its statistical performance is analyzed through
establishing an upper bound on the estimation error. The effectiveness of OITNN is vali-
dated through extensive simulation studies on nine different types of remote sensing data.

However, generally speaking, the proposed estimator has the following two drawbacks
due to the adoption of OITNN:

1) Computational inefficiency: Compared to TNN, it is more time-consuming since it
involves computing TNNs along all orientations.

2) Sample inefficiency: The analysis of [29] and [33] indicates that for tensor recovery
from a small number of observations, OITNN cannot provide essentially lower sample
complexity than TNN.

Thus, one future direction is to consider more efficient solvers of Problem (3.5) using
factorization strategy or sampling-based methods. Another direction is to study more gen-
eral transforms (linear or nonlinear) to define the tensor low-rankness like [17, 27, 45, 7] and
discuss whether lower sample complexity can be obtained. It is also interesting to consider
smoothness [4, 36] by constructing a hyper-graph-lile structure [5] in the proposed models
for more sound tensor modeling.
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A Proofs of the Theoretical Results in Sec. 5

In the section, we provide technical proof of the theoretical results in Sec. 5. Before giving
detailed proofs, we first introduce some preliminaries basis for further analysis.

Suppose any tensor X ∈ Rn1×n2×n3 with tubal rank r∗ has reduced t-SVD as follows

X = UX ∗ SX ∗ V⊤
X , (A.1)

where UX ∈ Rn1×r∗×n3 and VX ∈ Rn2×r∗×n3 are orthogonal and SX ∈ Rr∗×r∗×n3 is f -
diagonal.

Define a tensor space T as:

T :=

{
UX ∗ A+ B ∗ V⊤

X : where A ∈ Rr∗×n2×n3 ,B ∈ Rn1×r∗×n3

}
.

We further define the projectors to T and T⊥ as PT : Rn1×n2×n3 → Rn1×n2×n3 and PT⊥ :
Rn1×n2×n3 → Rn1×n2×n3 respectively

PT (T ) = UX ∗ U⊤
X ∗ T + T ∗ VX ∗ V⊤

X − UX ∗ U⊤
X ∗ T ∗ VX ∗ V⊤

X ,

PT⊥(T ) = (I − UX ∗ U⊤
X ) ∗ T ∗ (I − VX ∗ V⊤

X ).
(A.2)

Thus, we have

rtb(PT (T )) ≤ rtb(UX ∗ U⊤
X ∗ T ) + rtb((I − UX ∗ U⊤

X ) ∗ T ∗ VX ∗ V⊤
X )

≤ 2rtb(X ).
(A.3)

Equipped with the decomposibility of TNN in Lemma 2 in the supplementary material
of [42], we will present an inequality frequently used in the analysis as follows.

Lemma A.1. Given T ∈ Rn1×n2×n3 , we have

∥X + PT⊥(T )∥⋆ = ∥X∥⋆ + ∥PT⊥(T )∥⋆. (A.4)
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A.1 Proofs for Lemma 5.1 to Lemma 5.4

Proof of Lemma 5.1. Let ∆ := L̂ − L∗ be the tensor of estimation error. Let L (L) =
1
2∥B ⊙ (Y − L)∥2F + λ∥L∥⋆o. Then according to the optimality of L̂ to Problem (3.5), we
have

L (L̂) ≤ L (L∗) (A.5)

which means

1

2
∥B ⊙ (Y − (L∗ +∆))∥2F + λ

K∑
k=1

wk∥L∗
[k] +∆[k]∥⋆ ≤

1

2
∥B ⊙ (Y − L∗)∥2F + λ

K∑
k=1

wk∥L∗
[k]∥⋆

⇒ 1

2
∥B ⊙∆∥2F − σ⟨B ⊙ E ,∆⟩ ≤ λ(

K∑
k=1

wk∥L∗
[k]∥⋆ −

K∑
k=1

wk∥L∗
[k] +∆[k]∥⋆)

Let Pk(·) = PFk(L∗)(·) (see the definition of PT in Eq. (A.2)). For any tensor ∆ ∈
Rd1×d2×···×dK , define

∆′
k = Pk(∆[k]), and ∆′′

k = ∆[k] −∆′
k.

Using Lemma A.1 directly yields

∥L∗
[k] −∆′′

k∥⋆ = ∥L∗
[k]∥⋆ + ∥∆

′′
k∥⋆.

It leads to
∥L∗

[k] −∆[k]∥⋆ =∥(L∗
[k] −∆′′

k)−∆′
k∥⋆

≥∥L∗
[k] −∆′′

k∥⋆ − ∥∆′
k∥⋆

=∥L∗
[k]∥⋆ + ∥∆

′′
k∥⋆ − ∥∆′

k∥⋆.

which further indicates∑
k

wk

(
∥L∗

[k]∥⋆ − ∥(L
∗ −∆)[k]∥⋆

)
≤
∑
k

wk

(
∥L∗

[k]∥⋆ − (∥L∗
[k]∥⋆ + ∥∆

′′
k∥⋆ − ∥∆′

k∥⋆)
)

=
∑
k

wk∥∆′
k∥⋆ −

∑
k

wk∥∆′′
k∥⋆.

Thus, we have

1

2
∥B ⊙∆∥2F

≤ λ(
∑
k

wk∥∆′
k∥⋆ −

∑
k

wk∥∆′′
k∥⋆) + σ∥B ⊙ E∥∗⋆o∥∆∥⋆o

≤ λ(
∑
k

wk∥∆′
k∥⋆ −

∑
k

wk∥∆′′
k∥⋆) + σ∥B ⊙ E∥∗⋆o(

∑
k

wk∥∆′
k∥⋆ +

∑
k

wk∥∆′′
k∥⋆)

≤ (λ+ σ∥B ⊙ E∥∗⋆o)
∑
k

wk∥∆′
k∥⋆ − (λ− σ∥B ⊙ E∥∗⋆o)

∑
k

wk∥∆′′
k∥⋆

(A.6)

Then by setting
λ ≥ 2σ∥B ⊙ E∥∗⋆o (A.7)

we obtain
1

2
∥B ⊙∆∥2F +

λ

2

∑
k

wk∥∆′′
k∥⋆ ≤

3λ

2

∑
k

wk∥∆′
k∥⋆
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which means ∑
k

wk∥∆′′
k∥⋆ ≤ 3

∑
k

wk∥∆′
k∥⋆ (A.8)

further leading to

∥∆∥⋆o ≤
∑
k

wk∥∆′
k∥⋆ +

∑
k

wk∥∆′′
k∥⋆

≤ 4
∑
k

wk∥∆′
k∥⋆

≤ 4
∑
k

wk

√
2r∗k∥∆

′
k∥F

≤ 4
∑
k

wk

√
2r∗k∥∆[k]∥F

=
∑
k

wk

√
32r∗k∥∆∥F

(A.9)

According to Eq. (A.6), we also have

1

2
∥B ⊙∆∥2F ≤

3λ

2

∑
k

wk∥∆′
k∥⋆ ≤

3λ

2

∑
k

wk

√
2r∗k∥∆

′
k∥F ≤

3λ

2

∑
k

wk

√
2r∗k∥∆∥F (A.10)

Proof of Lemma 5.2. We define the following event and upper bound the probability of it:

E :=
{
∃∆ ∈ C(β, r) such that

∥B ⊙∆∥2F ≤
p

2
∥∆∥2F − 64p−1α

(
E
[
∥B ⊙R∥∗⋆o

]∑
k

wk
√
rk + 2

)2}
We also define sub-events El with l ∈ N+:

El :=
{
∃∆ ∈ C′(t) with t ∈ [αl−1β, αlβ],

such that ∥B ⊙∆∥2F ≤
p

2
∥∆∥2F − 64p−1α

(
E
[
∥B ⊙R∥∗⋆o

]∑
k

wk
√
rk + 2

)2}
It holds according to Lemma A.2 that

P
[
El

]
≤ P

[
Zt ≥

1

2α
αlβ + 64p−1α

(
E
[
∥B ⊙R∥∗⋆o

]∑
k

wk
√
rk + 2

)2] ≤ 4 exp
(
− pαlβ

32α2

)
Then, we have

P
[
E
]
≤ P

[⋃
El

]
≤

+∞∑
l=1

P
[
El

]
≤

+∞∑
l=1

4 exp
(
− pαlβ

32α2

)
≤

+∞∑
l=1

4 exp
(
− pβl logα

32α2

)
=

4 exp
(
− pβ logα

32α2

)
1− exp

(
− pβ logα

32α2

)
Letting α = e and β = 32e2 log 8d̃/p, then we have P[E] ≤ 1/d̃.
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Proof of Lemma 5.3. According to Lemma A.5, we have

∥B ⊙ E∥∗⋆o ≤
1

K2

K∑
k=1

w−1
k ∥(B ⊙ E)[k]∥. (A.11)

For a fixed k ∈ [K], suppose p ≥ (dk ∧ d\k)−1. Then according to Lemma 5 in [44], it holds

with probability at least 1 − d̃−1
k that

∥(B ⊙ E)[k]∥ ≤ Cϱ

√
pD(dk ∧ d\k)−1 log d̃k (A.12)

Then by taking union bound ∀k ∈ [K] and letting p ≥ maxk(dk ∧ d\k)
−1, we obtain

∥B ⊙ E∥∗⋆o ≤
Cϱ

K2

K∑
k=1

w−1
k

√
pD(dk ∧ d\k)−1 log d̃k (A.13)

with probability at least 1 −
∑

k d̃
−1
k .

Proof of Lemma 5.4. According to Lemma A.5, we have

∥B ⊙R∥∗⋆o ≤
1

K2

K∑
k=1

w−1
k ∥(B ⊙R)[k]∥. (A.14)

For a fixed k ∈ [K], suppose p ≥ (dk∧d\k)−1 and pD(dk∧d\k)−1 ≥ 2 log2(dk∧d\k) log d̃k.
Then according to Lemma 6 in [44], it holds that

E[∥(B ⊙R)[k]∥] ≤ C ′
√

pD(dk ∧ d\k)−1 log d̃k (A.15)

Then by adding them together and letting p ≥ (dk∧d\k)−1 and pD(dk∧d\k)−1 ≥ 2 log2(dk∧
d\k) log d̃k, we obtain

E[∥B ⊙R∥∗⋆o] ≤
C2

K2

K∑
k=1

w−1
k

√
pD(dk ∧ d\k)−1 log d̃k (A.16)

A.2 Proof for Theorem 5.5

Proof of Theorem 5.5. Let

β =
32e2 log(8d̃)

p
(A.17)

and consider two cases:

Case 1: If p∥∆∥2F < 128e2a2 log(8d̃)/p = 4a2β, then we obtain

∥∆∥2F < 4a2β =
128e2a2 log(8d̃)

p2
(A.18)

and thus Bound (5.10) in Theorem 5.5 is satisfied.
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Case 2: If p∥∆∥2F ≥ 4a2β, according to the feasibility of L∗ and L̂ to Problem (3.5)
and the triangular inequality, we have

∥∆∥∞ = ∥L̂ − L∗∥∞ ≤ ∥L̂∥∞ − ∥L∗∥∞ ≤ 2a (A.19)

At the same time, Eq. (A.9) indicates that

∥∆∥⋆o ≤
∑
k

wk

√
32r∗k∥∆∥F (A.20)

Combining Eqs. (A.19) and (A.20) with the definition of set C(β, r) yields

∆

2a
∈ C(β, 32r∗) (A.21)

Then according to Lemma 5.2, it holds with probability at least 1 − 1/d̃ that

1

4a2
∥B ⊙∆∥2F ≥

p

8a2
∥∆∥2F − 256ep−1

(
E
[
∥B ⊙R∥∗⋆o

]∑
k

wk

√
2rk + 2

)2
(A.22)

Combining Eq. (A.22) and Lemma 5.1 gives

p

4
∥∆∥2F ≤

3λ

2

∑
k

wk

√
2r∗k∥∆∥F + 1024ea2p−1

(
E
[
∥B ⊙R∥∗⋆o

]∑
k

wk

√
2rk + 2

)2
According to 2

√
xy ≤ xc+ y/c, we have

3λ

2

∑
k

wk

√
2r∗k∥∆∥F = 2 · 3λ

4

∑
k

wk

√
2r∗k
√

8p−1 ·
√

p

8
∥∆∥2F

≤ 9λp−1(
∑
k

wk

√
r∗k)

2 +
p

8
∥∆∥2F

Thus, we obtain a bound on ∥∆∥2F as follows

p

8
∥∆∥2F ≤ 9λp−1(

∑
k

wk

√
r∗k)

2 + 1024ea2p−1
(
E
[
∥B ⊙R∥∗⋆o

]∑
k

wk

√
2rk + 2

)2
(A.23)

Combing λ = 2∥B ⊙ E∥∗⋆o, Lemma 5.3 and Lemma 5.4 with Eq. (A.23) directly yields
Bound (5.10) in Theorem 5.5.

A.3 Other Important Lemmas

Lemma A.2. Consider the set

C′(t) :=
{
∆
∣∣∣ p∥∆∥2F ≤ t

}⋂
C(β, r) (A.24)

and define the following quantity

Zt := sup
∆∈C′(t)

{∣∣∥B ⊙∆∥2F − E[∥B ⊙∆∥2F]
∣∣}

(A.25)

Then, it holds with any constant α > 1 that

P
[
Zt ≥

1

2α
+ 64p−1α

(
E
[
∥B ⊙R∥∗⋆o

]∑
k

wk
√
rk + 2

)2] ≤ 4 exp
(
− pt

32α2

)



OISY TENSOR COMPLETION VIA OITNN 303

Lemma A.3 (Talagrand’s concentration inequality [38] modified by [6]). Suppose that f :
[−1, 1]N → R is a convex ρ-Lipschitz function. Let X1, . . . , XN be independent random
variables taking values in [-1,1]. Let Z = f(X1, . . . , XN ). Then it holds for any t ≥ 0,

P [|Z − E[Z]| ≥ 16ρ+ t] ≤ 4 exp

(
− t2

2ρ2

)

Proof of Lemma A.2. The explicit form of Zt is given as follows:

Zt = sup
∆∈C′(t)

{∣∣∥B ⊙∆∥2F − E[∥B ⊙∆∥2F]
∣∣}

= sup
∆∈C′(t)

{∣∣ ∑
i1i2...iK

(
Bi1i2...iK∆2

i1i2...iK − E[Bi1i2...iK∆2
i1i2...iK ]

)∣∣}
We study the concentration behavior of random variable Zt by first upper bounding its
expectation and then specifying its tail behavior.

First, we bound the expectation of Zt. By the symmetrization principle [41], we have

E[Zt] = E
[

sup
∆∈C′(t)

{∣∣ ∑
i1i2...iK

(
Bi1i2...iK∆2

i1i2...iK − E[Bi1i2...iK∆2
i1i2...iK ]

)∣∣}]
= 2E

[
sup

∆∈C′(t)

{∣∣ ∑
i1i2...iK

Ri1i2...iKBi1i2...iK∆2
i1i2...iK

∣∣}]

where Ri1i2...iK are i.i.d. Rademacher random variables.

Further, according to the contraction trick [41], it holds that

E[Zt] ≤ 8E
[

sup
∆∈C′(t)

{∣∣ ∑
i1i2...iK

Ri1i2...iKBi1i2...iK∆i1i2...iK

∣∣}]
= 8E

[
sup

∆∈C′(t)

{∣∣⟨R ⊙ B,∆⟩∣∣}]
≤ 8E

[
sup

∆∈C′(t)

{
∥B ⊙R∥∗⋆o∥∆∥⋆o

}]
≤ 8E

[
sup

∆∈C′(t)

{
∥B ⊙R∥∗⋆o

∑
k

wk
√
rk∥∆∥F

}]
≤ 8E

[
∥B ⊙R∥∗⋆o

]∑
k

wk
√
rk
√
t/p

Then, we bound the tail behavior of Zt by using Lemma A.3. By letting

f(B) := Zt = sup
∆∈C′(t)

{∣∣ ∑
i1i2...iK

(
Bi1i2...iK∆2

i1i2...iK − p∆2
i1i2...iK

)∣∣}
we can verify that f(·) is a Lipschitz function with parameter x. Indeed following the
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proof of Lemma 10 in [20], we have

f(B)− f(B′)

= sup
∆∈C′(t)

{∣∣ ∑
i1i2...iK

(Bi1i2...iK − p)∆2
i1i2...iK

∣∣}− sup
∆∈C′(t)

{∣∣ ∑
i1i2...iK

(B′i1i2...iK − p)∆2
i1i2...iK

∣∣}
≤ sup

∆∈C′(t)

{∣∣ ∑
i1i2...iK

(Bi1i2...iK − p)∆2
i1i2...iK

∣∣− ∣∣ ∑
i1i2...iK

(B′i1i2...iK − p)∆2
i1i2...iK

∣∣}
≤ sup

∆∈C′(t)

{∣∣ ∑
i1i2...iK

(Bi1i2...iK − p)∆2
i1i2...iK − (B′i1i2...iK − p)∆2

i1i2...iK

∣∣}
≤ sup

∆∈C′(t)

{∣∣ ∑
i1i2...iK

(Bi1i2...iK − B′
i1i2...iK )∆2

i1i2...iK

∣∣}
≤ sup

∆∈C′(t)

{
∥B − B′∥F

√ ∑
i1i2...iK

∆4
i1i2...iK

}
≤ sup

∆∈C′(t)

{
∥B − B′∥F

√ ∑
i1i2...iK

∆2
i1i2...iK

}
≤ ∥B − B′∥F

√
t/p

Then, according to Lemma A.3, we have

P[|Zt − E[Zt]| ≥ 16
√
t/p+ s] ≤ 4 exp(−ps2

2t
)

which further leads to

P[Zt ≥ 8E
[
∥B ⊙R∥∗⋆o

]∑
k

wk
√
rk
√
t/p+ 16

√
t/p+ s] ≤ 4 exp(−ps2

2t
) (A.26)

Using the inequality 2
√
xy ≤ cx+ y/c yields

8
√
t/p
(
E
[
∥B ⊙R∥∗⋆o

]∑
k

wk
√
rk + 2

)
= 2 ·

√
ct ·
√
16(cp)−1

(
E
[
∥B ⊙R∥∗⋆o

]∑
k

wk
√
rk + 2

)2
≤ ct+ 16(cp)−1

(
E
[
∥B ⊙R∥∗⋆o

]∑
k

wk
√
rk + 2

)2
(A.27)

By letting c = 1/(4α), s = ct with a constant α > 1, we have

P
[
Zt ≥

1

2α
+ 64p−1α

(
E
[
∥B ⊙R∥∗⋆o

]∑
k

wk
√
rk + 2

)2] ≤ 4 exp
(
− pt

32α2

)

Lemma A.4 (Dual norm of OITNN-O [43]). The dual norms of ∥ · ∥⋆o, denoted by ∥ · ∥∗⋆o
is given as follows:

∥T ∥∗⋆o := sup
∥R∥⋆o≤1

⟨T ,R⟩ = inf∑
k

X (k)=T
maxk

{
w−1

k ∥X
(k)
[k] ∥

}
(A.28)
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Lemma A.5. For any K-way (K ≥ 3) tensor T ∈ Rd1×d2×···×dK , the following inequality
holds:

∥T ∥∗⋆o ≤
1

K2

∑
k

w−1
k ∥T[k]∥. (A.29)

Proof of Lemma A.5. Recall the formulation of ∥T ∥∗⋆o in Lemma A.4 as follows

∥T ∥∗⋆o := inf∑
k T (k)=T

max
k
{w−1

k ∥T
(k)
[k] ∥}. (A.30)

Letting

T (k) =
wk∥T (k)

[k] ∥
−1∑

k wk∥T (k)
[k] ∥−1

T , (A.31)

then for any k ∈ [K],

w−1
k ∥T

(k)
[k] ∥ = w−1

k

wk∥T (k)
[k] ∥

−1∑
k wk∥T (k)

[k] ∥−1
∥T (k)

[k] ∥

=
1∑

k wk∥T (k)
[k] ∥−1

≤ 1

K2

∑
k

w−1
k ∥T

(k)
[k] ∥,

(A.32)

where the last inequality holds because the “harmonic mean” is no larger than the “arith-
metic mean”. In this way, the lemma is proved.

B Proofs of the Theoretical Results in Sec. 4

Proof of Theorem 4.2. The key idea is to rewrite Problem (4.1) into a standard two-block
ADMM problem. For notational simplicity, let

f(u) =
1

2
∥B ⊙ (Y − L)∥2F + δ∞a (L), g(v) = λ

K∑
k=1

wk∥K(k)
[k] ∥⋆,

with u,v,w and A defined as follows

u := vec(L) ∈ RD, v :=


vec(K(1))
vec(K(2))

...
vec(K(K))

 ∈ RKD,

w :=


vec(W(1))
vec(W(2))

...
vec(W(K))

 ∈ RKD, A :=


ID
ID
...
ID

 ∈ RKD×D

where vec(·) denotes the operation of tensor vectorization (see [21]).
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It can be verified that f(·) and g(·) are closed, proper convex functions. Then, Problem
(4.1) can be re-written as follows:

min
u,v

f(u) + g(v)

s.t. Au− v = 0.

According to the convergence analysis in [1], we have:

objective convergence: lim
t→∞

f(ut) + g(vt) = f⋆ + g⋆,

dual variable convergence: lim
t→∞

wt = w⋆,

constraint convergence: lim
t→∞

Aut − vt = 0,

where f⋆, g⋆ are the optimal values of f(u), g(v), respectively. Variable w⋆ is a dual optimal
point defined as:

w⋆ =


vec(W(1)⋆)
vec(W(2)⋆)

...
vec(W(K)⋆)


where ({W(k)⋆}k) are the dual variables in a saddle point (L⋆, {K(k)⋆}k, {W(k)⋆}k) of the
unaugmented Lagrangian L0(L, {K(k)}k, {W(k)}k).
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Table 1: The PSNR and SSIM values obtained by five norms (NN [19], SNN [39], TNN-DFT [42],

TNN-DCT [27], and our OITNN-O) for noisy tensor completion on the Sky dataset in the uniform

and non-uniform sampling settings. The highest PSNR and SSIM values are highlighted in bold.

Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Uniform p = 0.05
PSNR 22.57 25.23 27.52 27.66 29.25

SSIM 0.3893 0.7712 0.6226 0.6937 0.7953

Uniform p = 0.1
PSNR 24.53 27.15 28.56 28.79 30.61

SSIM 0.4826 0.7964 0.6572 0.7395 0.8196

Uniform p = 0.15
PSNR 25.68 28.38 29.28 29.52 31.32

SSIM 0.5257 0.8097 0.6826 0.7679 0.8276

Nonuniform p = 0.05
PSNR 3.58 23.84 27.22 27.22 28.14

SSIM 0.0046 0.7075 0.6135 0.6776 0.758

Nonuniform p = 0.1
PSNR 3.99 26.28 28.16 28.29 29.56

SSIM 0.0057 0.7676 0.645 0.7219 0.8095

Nonuniform p = 0.15
PSNR 4.38 27.6 28.82 29.01 30.52

SSIM 0.0066 0.7872 0.6649 0.7473 0.8361
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Table 2: The PSNR and SSIM values obtained by five norms (NN [19], SNN [39], TNN-DFT [42],

TNN-DCT [27], and our OITNN-O) for noisy tensor completion on the hyperspectral datasets in the

uniform and non-uniform sampling settings. The highest PSNR and SSIM values are highlighted

in bold.
(a) Indian Pines

Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Uniform p = 0.05
PSNR 20.44 22.01 25.68 26.26 28.64
SSIM 0.3895 0.6359 0.6293 0.6727 0.7985

Uniform p = 0.1
PSNR 22.23 24.94 27.45 28.4 30.41
SSIM 0.4836 0.7171 0.7226 0.7744 0.8484

Uniform p = 0.15
PSNR 23.52 26.61 28.54 29.52 31.24
SSIM 0.5438 0.7668 0.7713 0.8177 0.8687

Nonuniform p = 0.05
PSNR 6.63 21.17 24.07 24.32 26.58
SSIM 0.012 0.575 0.5277 0.5479 0.7307

Nonuniform p = 0.1
PSNR 7.04 23.95 25.56 26.03 28.2
SSIM 0.016 0.6759 0.6226 0.6535 0.7933

Nonuniform p = 0.15
PSNR 7.43 25.67 26.62 27.06 29.27
SSIM 0.0222 0.7328 0.6798 0.712 0.8285

(b) Salinas A
Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Uniform p = 0.05
PSNR 15.21 20.79 22.55 26.52 30.55
SSIM 0.2594 0.7547 0.5667 0.7384 0.8756

Uniform p = 0.1
PSNR 20.62 25.56 25.72 29.61 32.64
SSIM 0.4775 0.8284 0.7027 0.8403 0.9075

Uniform p = 0.15
PSNR 23.09 27.99 28.06 31.32 34.02
SSIM 0.5643 0.8622 0.7804 0.8798 0.9246

Nonuniform p = 0.05
PSNR 6.48 18.11 19.08 21.99 25.44
SSIM 0.0174 0.5246 0.383 0.5264 0.7895

Nonuniform p = 0.1
PSNR 6.92 23.63 21.04 25.01 27.98
SSIM 0.0264 0.7537 0.5257 0.6962 0.8463

Nonuniform p = 0.15
PSNR 7.31 26.43 22.42 27.19 30.31
SSIM 0.0358 0.8232 0.5947 0.7763 0.889
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Table 3: The PSNR and SSIM values obtained by five norms (NN [19], SNN [39], TNN-DFT [42],

TNN-DCT [27], and our OITNN-O) for noisy tensor completion on the multi-spectral datasets in

the uniform sampling settings. The highest PSNR and SSIM values are highlighted in bold.

(a) Cloth
Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Uniform p = 0.05
PSNR 20.1 20.95 25 26.09 28.72
SSIM 0.3762 0.5096 0.6773 0.7283 0.8674

Uniform p = 0.1
PSNR 21.14 22.72 28 29.24 32.13
SSIM 0.4341 0.5983 0.8132 0.854 0.9324

Uniform p = 0.15
PSNR 22.05 24.18 30.03 31.36 34.2
SSIM 0.4889 0.6783 0.8722 0.9054 0.954

(b) Hair
Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Uniform p = 0.05
PSNR 25.33 30.09 33.16 35.31 36.16
SSIM 0.7147 0.8631 0.8917 0.9248 0.9533

Uniform p = 0.1
PSNR 29.52 33.35 36.22 38.18 38.88
SSIM 0.8008 0.9122 0.9292 0.9535 0.9673

Uniform p = 0.15
PSNR 31.12 35.24 38 39.88 40.44
SSIM 0.8364 0.9336 0.9449 0.965 0.9725

(c) Jelly Beans
Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Uniform p = 0.05
PSNR 16.33 18.21 25.43 26.47 29.6
SSIM 0.2397 0.4942 0.6726 0.7223 0.8755

Uniform p = 0.1
PSNR 18.12 22.11 28.5 30.14 33.26
SSIM 0.3169 0.6629 0.79 0.8518 0.9344

Uniform p = 0.15
PSNR 19.92 24.67 30.51 32.33 35.37
SSIM 0.4053 0.7592 0.8489 0.903 0.9534

(d) Oil Painting
Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Uniform p = 0.05
PSNR 22.46 24.98 29.74 30.26 33.09
SSIM 0.5542 0.7363 0.8146 0.8327 0.9129

Uniform p = 0.1
PSNR 24.78 27.76 32.31 32.87 36
SSIM 0.6466 0.8213 0.8784 0.8963 0.9479

Uniform p = 0.15
PSNR 26.51 29.66 34.18 34.73 37.85
SSIM 0.7079 0.8641 0.9105 0.9267 0.9612
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Table 4: The PSNR and SSIM values obtained by five norms (NN [19], SNN [39], TNN-DFT [42],

TNN-DCT [27], and our OITNN-O) for noisy tensor completion on the multi-spectral datasets in

the non-uniform sampling settings. The highest PSNR and SSIM values are highlighted in bold.

(a) Cloth
Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Nonuniform p = 0.05
PSNR 13.67 19.53 22.17 23.3 24.65
SSIM 0.0958 0.4461 0.5514 0.5882 0.7028

Nonuniform p = 0.1
PSNR 14.07 21.73 24.05 25.63 26.65
SSIM 0.1373 0.5554 0.6675 0.7156 0.7943

Nonuniform p = 0.15
PSNR 14.46 23.24 25.32 27.02 28.1
SSIM 0.1728 0.6346 0.7336 0.7805 0.844

(b) Hair
Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Nonuniform p=0.05
PSNR 15.48 26.64 28.94 31.87 32.18
SSIM 0.2823 0.7933 0.8293 0.8733 0.9107

Nonuniform p = 0.1
PSNR 15.92 30.81 30.54 33.62 34.21
SSIM 0.3392 0.8748 0.8701 0.9116 0.9366

Nonuniform p = 0.15
PSNR 16.24 33.09 31.5 34.83 35.61
SSIM 0.3833 0.9068 0.8886 0.9285 0.9481

(c) Jelly Beans
Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Nonuniform p = 0.05
PSNR 13.78 17.18 23.4 23.93 25.41
SSIM 0.1854 0.4429 0.5877 0.6065 0.7614

Nonuniform p = 0.1
PSNR 14.2 20.32 25.68 26.59 27.89
SSIM 0.2351 0.5798 0.7046 0.7396 0.8437

Nonuniform p = 0.15
PSNR 14.59 22.7 27.21 28.3 29.39
SSIM 0.2762 0.6784 0.7681 0.8059 0.8799

(d) Oil Painting
Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Nonuniform p = 0.05
PSNR 14.99 23.21 28.15 28.62 29.84
SSIM 0.1857 0.6633 0.7618 0.7798 0.8445

Nonuniform p = 0.1
PSNR 15.4 26.35 30.08 30.77 32.02
SSIM 0.2319 0.7685 0.8243 0.8461 0.8933

Nonuniform p = 0.15
PSNR 15.78 28.25 31.4 32.19 33.41
SSIM 0.2687 0.825 0.8583 0.8824 0.9174
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Table 5: The PSNR and SSIM values obtained by five norms (NN [19], SNN [39], TNN-DFT

[42], TNN-DCT [27], and our OITNN-O) for noisy tensor completion on the LiDAR point cloud

datasets in the uniform and non-uniform sampling settings. The highest PSNR and SSIM values

are highlighted in bold.

(a) ScenerioB Distance
Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Uniform p = 0.05
PSNR 15.94 19.95 23.08 23.14 23.16
SSIM 0.305 0.6253 0.7752 0.7818 0.788

Uniform p = 0.1
PSNR 17.4 22.11 24.71 24.78 25.11
SSIM 0.4203 0.7164 0.8425 0.8514 0.8568

Uniform p = 0.15
PSNR 18.43 23.54 25.73 25.84 26.18
SSIM 0.4966 0.7664 0.8733 0.8832 0.8846

Nonuniform p = 0.05
PSNR 13.63 17.25 21.01 21.07 21.22
SSIM 0.1655 0.4905 0.6889 0.6926 0.7105

Nonuniform p = 0.1
PSNR 14 19.44 22.16 22.19 22.45
SSIM 0.2027 0.6209 0.7472 0.7559 0.7659

Nonuniform p = 0.15
PSNR 14.39 20.82 22.86 22.88 23.17
SSIM 0.2325 0.675 0.7798 0.7877 0.7958

(b) ScenerioB Intensity
Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Uniform p = 0.05
PSNR 14.81 17.59 20.76 20.8 20.9
SSIM 0.1461 0.3301 0.5462 0.5487 0.5558

Uniform p = 0.1
PSNR 16.12 19.39 22.15 22.23 22.5
SSIM 0.2311 0.4573 0.6628 0.6678 0.6913

Uniform p = 0.15
PSNR 17.04 20.59 22.98 23.09 23.42
SSIM 0.2996 0.5458 0.7221 0.7293 0.7511

Nonuniform p = 0.05
PSNR 12.55 15.94 19.27 19.28 19.44
SSIM 0.1478 0.2453 0.4374 0.4384 0.421

Nonuniform p = 0.1
PSNR 12.95 17.88 20.29 20.34 20.57
SSIM 0.18 0.3719 0.5204 0.5229 0.5222

Nonuniform p = 0.15
PSNR 13.29 18.94 20.9 20.95 21.26
SSIM 0.215 0.4497 0.5741 0.5768 0.5856
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Table 6: The PSNR and SSIM values obtained by five norms (NN [19], SNN [39], TNN-DFT [42],

TNN-DCT [27], and our OITNN-O) for noisy tensor completion on the PolSAR dataset in the

uniform and non-uniform sampling settings. The highest PSNR and SSIM values are highlighted

in bold.

Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Uniform p = 0.05
PSNR 26.24 26.08 26.48 26.33 28.16
SSIM 0.8740 0.8355 0.8007 0.7850 0.9193

Uniform p = 0.1
PSNR 27.72 28.28 28.22 28.40 30.27
SSIM 0.9007 0.8904 0.8429 0.8529 0.9419

Uniform p = 0.15
PSNR 28.89 29.71 29.56 29.90 32.09
SSIM 0.9162 0.9150 0.8643 0.8864 0.9563

Nonuniform p = 0.05
PSNR 13.63 17.25 21.01 21.08 21.22
SSIM 0.1655 0.4905 0.6889 0.6926 0.7105

Nonuniform p = 0.1
PSNR 14 19.44 22.16 22.19 22.45
SSIM 0.2027 0.6209 0.7472 0.7559 0.7659

Nonuniform p = 0.15
PSNR 14.39 20.82 22.86 22.88 23.17
SSIM 0.2325 0.675 0.7798 0.7877 0.7958

Table 7: The PSNR and SSIM values obtained by five norms (NN [19], SNN [39], TNN-DFT

[42], TNN-DCT [27], and our OITNN-O) for noisy tensor completion on the Seismic dataset in the

uniform and non-uniform sampling settings. The highest PSNR and SSIM values are highlighted

in bold.

Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Uniform p = 0.05
PSNR 22.25 22.28 22.49 22.62 23.17
SSIM 0.4369 0.4906 0.3928 0.4168 0.5206

Uniform p = 0.1
PSNR 23.58 23.53 23.48 23.61 24.17
SSIM 0.5462 0.5740 0.5004 0.5265 0.6163

Uniform p = 0.15
PSNR 24.74 24.66 24.51 24.61 25.42
SSIM 0.6266 0.6552 0.5898 0.6148 0.7044

Nonuniform p = 0.05
PSNR 6.14 6.67 8.87 8.81 22.24
SSIM 0.0115 0.0165 0.0272 0.0276 0.4341

Nonuniform p = 0.1
PSNR 6.55 7.83 10.64 10.62 23.23
SSIM 0.0151 0.0254 0.0699 0.0646 0.512

Nonuniform p = 0.15
PSNR 6.94 9.19 11.97 11.94 23.93
SSIM 0.0213 0.047 0.127 0.1163 0.5768
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Table 8: The PSNR and SSIM values obtained by five norms (NN [19], SNN [39], TNN-DFT [42],

TNN-DCT [27], and our OITNN-O) for noisy tensor completion on the thermal imaging data in the

uniform and non-uniform sampling settings. The highest PSNR and SSIM values are highlighted

in bold.

(a) The OSU Thermal Database
Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Uniform p = 0.05
PSNR 13.19 15.83 28.06 27.99 28.79
SSIM 0.1848 0.4759 0.8584 0.8707 0.8913

Uniform p = 0.1
PSNR 14.67 19.75 31.30 31.62 32.14
SSIM 0.2509 0.6594 0.9151 0.9326 0.9316

Uniform p = 0.15
PSNR 16.27 22.52 33.02 33.51 33.88
SSIM 0.3273 0.7621 0.9315 0.9509 0.9428

Nonuniform p = 0.05
PSNR 9.41 14.77 22.47 22.38 23.59
SSIM 0.1331 0.4102 0.6776 0.6855 0.7691

Nonuniform p = 0.1
PSNR 9.83 18.12 24.75 24.72 25.9
SSIM 0.1567 0.5783 0.7746 0.7874 0.8474

Nonuniform p = 0.15
PSNR 10.2 20.56 26.78 26.84 27.83
SSIM 0.1809 0.6823 0.8273 0.8427 0.8877

(b) The Infraed Detection dataset
Settings NN SNN TNN-DFT TNN-DCT OITNN-O

Uniform p = 0.05
PSNR 27.50 29.52 31.37 31.86 32.54
SSIM 0.5961 0.8106 0.7517 0.8042 0.8278

Uniform p = 0.1
PSNR 29.13 31.24 32.03 32.71 33.50
SSIM 0.6510 0.8358 0.7610 0.8215 0.8415

Uniform p = 0.15
PSNR 30.00 32.24 32.56 33.27 34.10
SSIM 0.6729 0.8486 0.7721 0.8344 0.8481

Nonuniform p = 0.05
PSNR 6.42 28.26 31.25 31.58 31.95
SSIM 0.0098 0.7715 0.7542 0.8003 0.8207

Nonuniform p = 0.1
PSNR 6.83 30.5 31.78 32.32 32.84
SSIM 0.0115 0.8165 0.7596 0.8157 0.8384

Nonuniform p = 0.15
PSNR 7.23 31.64 32.23 32.87 33.66
SSIM 0.0126 0.8377 0.7675 0.8285 0.8553

Table 9: The PSNR and SSIM values obtained by six norms (NN [19], SqNN [29], SNN [39],

TNN-DFT [42], TNN-DCT [27], and our OITNN-O) for noisy tensor completion on the Ground

datasets in the uniform and non-uniform sampling settings. The highest PSNR and SSIM values

are highlighted in bold.

Settings NN SqNN SNN TNN-DFT TNN-DCT OITNN-O

Uniform p = 0.05
PSNR 24.83 26.80 25.03 30.90 30.94 32.85
SSIM 0.7697 0.8011 0.8055 0.8955 0.8997 0.9306

Uniform p = 0.1
PSNR 27.03 29.10 27.36 32.27 32.49 34.25
SSIM 0.8395 0.8725 0.8559 0.9083 0.9149 0.9382

Nonuniform p = 0.05
PSNR 7.6 13.08 24.94 29.57 29.6 32.18
SSIM 0.0444 0.2344 0.7923 0.8763 0.8801 0.9239

Nonuniform p = 0.1
PSNR 8.54 15.35 26.66 30.93 31.1 33.84
SSIM 0.0593 0.3242 0.8348 0.8924 0.8987 0.9312

Nonuniform p = 0.15
PSNR 9.21 17.1 28.19 31.52 31.8 33.99
SSIM 0.0711 0.5342 0.8644 0.8971 0.905 0.9372




