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nonlinear models in [13]. Their conclusions show that the SLS estimator is asymptotically
more efficient than the OLS estimator if the third moment of the random error is nonzero
or the distribution of error is asymmetric, and both estimators have the same asymptotic
covariance matrix if the error distribution is symmetric. In practice, it is difficult to de-
termine what the distribution of random error is. Therefore, the SLS estimator is more
efficient than or as efficient as the OLS estimator. Furthermore, Abarin and Wang made a
comparison between generalized method of moments (GMM) and SLS estimation in nonlin-
ear models in [1], and they established the SLS estimation in censored regression models in
[2]. Moreover, there are some studies based on SLS estimation (See [6], [7]). However, there
is little research on calculation methods. The traditional Newton method cannot guarantee
its convergence for solving such non-convex optimization problem, and the first-order line
search method cannot achieve a desired accuracy. So, it is still an interesting and challenging
task to solve the non-convex optimization problem corresponding to SLS estimation. In this
paper, we attempt to design a systematic numerical method to solve the optimization of
SLS estimation.

Optimality conditions can be used to characterize the information of local or global
minimizer. The standard optimality condition can only describe local information on a small
scale. It follows from the definition of the SLS estimation that the global minimization
is necessary. Thus, the standard optimality condition may be weak. For some specific
composite optimization problem (COP),

min
x

f1(x) + f2(x),

there are some better results. Xu et al. [14] designed a fast solver for the ℓ1/2 regularized
minimization problem. Inspired by this research, Peng et al. [10] proposed the global
necessary optimality condition of a class of matrix optimization. Zhou et al. [15] established
a global necessary optimality condition for ℓ0-regularized optimization. Their conclusions
show that this optimality condition is stronger than the standard optimality. Moreover,
Peng et al. [10] used the proximal gradient algorithm (PGA) (See [14], [10], [4], [8]) to
solve this optimization, and established convergence of their algorithm. The premise of
these theories and such algorithms is that L-smooth, i.e. the gradient function ∇f1(x) is
Lipschitz continuous with the Lipschitz constant L > 0. However, the optimization of the
SLS estimation does not satisfy this condition. Fortunately, under mild conditions, this
problem can be overcome. We will give a specific analysis later. In addition, notice that
there are two variables we need to calculate. The frameworks of AU method in [16], [17],
[18] can be referred. These algorithms provide a reference for us to solve the optimization
problem of the SLS estimation.

In this paper, we attempt to design a systematic and complete calculation method for
the optimization problem corresponding to SLS estimation in linear regression. First, we
give the assumptions of SLS estimation and analyze the complex nature of these assump-
tions. Second, under these implicit properties, the L-smooth condition can be weakened
to the local Lipschitz continuity, and a necessary optimality condition stronger than the
standard optimality condition of this problem is proved. Finally, we discuss the numerical
computation of this problem, and propose an AU method to solve it. The convergence of
this AU method is establied. Finally, some numerical simulations verify the effectiveness
of the AU method and the superiority of SLS estimation in linear regression. Our work
provides not only an effective calculation method for SLS estimation, but also theoretical
support for regularized SLS estimation.

The rest of the paper is organized as follows. In Section 2, we introduce the SLS esti-
mation in linear regression problems and its optimization. In Section 3, we define a class of
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stationary points and analyze its relationship with the minimizer. In Section 4, we discuss
the computation of the optimization problem of SLS estimation, and propose an AU method
to solve it. In addition, the convergence of the AU method is established. In Section 5, the
effectiveness of AU method is demonstrated by numerical simulation. The final conclusions
and discussion are given in Section 6.

2 The SLS Estimation and Optimization Model

Consider the linear regression model

y = xTβ + ε,

where y ∈ R is the response variable, x ∈ Rp is the predictor variable, β ∈ Rp is the unknown
regression parameter, and ε is the random error satisfying E(ε|x) = 0 and E(ε2|x) = σ2.

Suppose {xi, yi}, i = 1, . . . , n is an i.i.d. random sample, the optimization problem of
the second-order least squares (SLS) estimation is described as

min
β∈Θ,σ2∈Σ

Qn(β, σ
2) :=

n∑
i=1

ρTi (β, σ
2)Wi(xi)ρi(β, σ

2), (2.1)

where ρi(β, σ
2) = (yi − xT

i β, y
2
i − (xT

i β)
2 − σ2)T and Wi(xi) is a 2× 2 nonnegative definite

matrix which may depend on xi. Here, we assume thatWi(xi) is positive definite (see Lemma
9 in Section 5). Further, we denote γ = (βT , σ2)T and assume that the true parameter value
γtrue = (βT

true, σ
2
true)

T lies in the parameter space Γ = Θ×Σ ⊆ Rp+1. Note that if the weights
are taken as Wi=[1,0;0,0], then the SLS estimator degenerates to the ordinary least squares
(OLS) estimator βOLS = (XTX)−1XTy, where X = [x1, . . . ,xn]

T and y = (y1, . . . , yn)
T . It

is also worthwhile to note that the problem (2.1) is non-convex optimization even for linear
regression.

The SLS estimation was developed for general nonlinear regression models by [13], who
established the asymptotic theories under the following regularity assumptions.

Assumption 1. The regression function m(x;β) is a measurable function of x for every
β ∈ Θ, and is continuous in β ∈ Θ for µ−almost all x.

Assumption 2. E∥W (x)∥2(supΘ)(m4(x;β) + 1) <∞.

Assumption 3. The parameter space Γ = Θ× Σ is compact.

Assumption 4. For any γ ∈ Γ, E[ρ(γ)− ρ(γtrue)]
TW (x)[ρ(γ)− ρ(γtrue)] = 0 if and only if

γ = γ0.

Assumption 5. βtrue is an interior point of Θ and m(x;β) is twice continuously differen-
tiable in Θ for µ−almost all x. Furthermore, the first and second derivatives of m(x;β)
satisfy

E∥W (x)∥2 sup
Θ
∥∇βm(x;β)∥42 <∞, E∥W (x)∥2 sup

Θ
∥∇2

βm(x;β)∥42 <∞.

Assumption 6. The matrix A = E[∇γρ
T (γtrue)W (x)∇γρ(γtrue)] is nonsingular, where

∇γρ
T (γtrue) = −

(
∇βm(x;βtrue) 2m(x;βtrue)∇βm(x;βtrue)

0 1

)
.
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However, for linear regression model m(x;β) = xTβ, some of these assumptions are nat-
urally satisfied, and some other conditions can be simplified or relaxed. In the following we
provide some detailed discussion. First, Assumption 1 is obviously satisfied, and Assumption
2 and 5 hold under Assumption 3 and the following assumption.

Assumption 7. E[∥W (x)∥2(∥x∥42 + 1)] <∞.

Then, the second derivative of Qn at true parameter γtrue is given by

∇2
γQn(γtrue) = 2

n∑
i=1

[∇ρTi (γtrue)Wi∇ρi(γtrue) + (ρTi (γtrue)Wi ⊗ Ip+1)∇vec(∇ρTi (γtrue))],

where ⊗ is Kronecker product, Ip+1 is identity matrix, and

∇γvec(∇γρ
T
i (γtrue)) = −


0 0
0 0

2xix
T
i 0

0 0

 ,

and 0 is the zero in R and 0 is the zero vector or the zero matrix. By Assumption 6,

1

n
∇2

γQn(γtrue) =
2

n

n∑
i=1

[∇ρTi (γtrue)Wi∇ρi(γtrue)] + op(1)

is positive definite when n is sufficiently large. By some straightforward calculation, it
follows from the positive definite of the sub-matrix ∇2

βQn(γtrue) of ∇2
γQn(γtrue) that X

TX
is a positive definite matrix, which implies that X has full column rank. Further, there is
at least one i ∈ {1, . . . , n} such that |xT

i β| → ∞ for any β satisfying ∥β∥2 → ∞. Indeed,
this can be seen by the definition of OLS estimator and

Ln(β)

= Ln(βOLS) + ⟨∇βLn(βOLS), β − βOLS⟩+
1

2
(β − βOLS)

T (∇2
βLn(βOLS))(β − βOLS)

= Ln(βOLS) +
1

2
(β − βOLS)

T (XTX)(β − βOLS)

≥ Ln(βOLS) +
1

2
λmin(X

TX)∥β − βOLS∥22 for any β ∈ Rp,

where Ln(β) =
∑n

i=1(yi−xT
i β)

2 is the OLS loss, λmin(X
TX) is the minimum eigenvalue of

XTX. It follows that, if ∥β∥2 →∞, then Ln(β)→∞ and therefore |xT
i β| → ∞ for at least

one i. Further, we can show the following result.

Theorem 2.1. Suppose that {Wi} is given. The function Qn in problem (2.1) is proper,
closed, coercive.

Proof. For any given γ ∈ Rp × R+, we have that Qn(γ) ≥ 0 and Qn(γ) < ∞. Thus, Qn is
proper. In addition, from Corollary 2.9 in [3], Qn is closed.

Next, we will verify the coerciveness of Qn. The analysis process is divided into two
cases.
Case 1: ∥β∥2 is infinite, σ2 is finite or infinite. By the previous analysis, there is at least
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one i ∈ {1, . . . , n} such that |xT
i β| → ∞ if ∥β∥2 →∞. For this i, we have that

lim
∥β∥2→∞

(Wi)1,1(yi − xT
i β)

2 + (Wi)2,2(y
2
i − (xT

i β)
2 − σ2)2

2
√

(Wi)1,1(Wi)(2,2)|yi − xT
i β||y2i − (xT

i β)
2 − σ2|

= lim
∥β∥2→∞

(
(Wi)1,1|yi − xT

i β|
2
√
(Wi)1,1(Wi)2,2|y2i − (xT

i β)
2 − σ2|

+
(Wi)2,2|y2i − (xT

i β)
2 − σ2|

2
√

(Wi)1,1(Wi)2,2|yi − xT
i β|

)

= lim
∥β∥2→∞

(
(Wi)1,1

|yi−xT
i β|

|xT
i β|

2
√
(Wi)1,1(Wi)2,2

|y2
i−(xT

i β)2−σ2|
|xT

i β|

+
(Wi)2,2

|y2
i−(xT

i β)2−σ2|
|xT

i β|

2
√

(Wi)1,1(Wi)2,2
|yi−xT

i β|
|xT

i β|

)

= ∞.

It follows that

lim
∥β∥2→∞

(Wi)1,1(yi − xT
i β)

2 + (Wi)2,2(y
2
i − (xT

i β)
2 − σ2)2 +

2(Wi)1,2(yi − xT
i β)(y

2
i − (xT

i β)
2 − σ2)

≥ lim
∥β∥2→∞

(Wi)(1,1)(yi − xT
i β)

2 + (Wi)2,2(y
2
i − (xT

i β)
2 − σ2)2 −

2
√
(Wi)1,1(Wi)2,2|yi − xT

i β||y2i − (xT
i β)

2 − σ2| =∞,

Thus,
lim

∥γ∥2→∞
Qn(γ) ≥ lim

∥γ∥2→∞
ρTi (β, σ

2)Wiρi(β, σ
2) =∞.

Case 2: ∥β∥2 is finite, σ2 is infinite. Notice that Qn(γ) is a quadratic function about σ2.
It is trivial that

lim
∥γ∥2→∞

Qn(γ) =∞.

Thus, Qn is coercive. This conclusion holds.

It follows from Theorem 2.14 in [3] that Qn attains its minimal value over Rp×R+, and
there exists an M > 0 such that the unique minimizer of Qn is in (Rp × R+) ∩B∥·∥2

[0,M ],
where B∥·∥2

[0,M ] := {γ ∈ Rp+1 : ∥γ∥2 ≤M} denotes a closed ball in Rp+1 with a center of
0 and a radius M . The parameter set can be set to (Rp × R+) ∩ B∥·∥2

[0,M ], where M is
sufficiently large and we can give a suitable M through OLS estimator. Then, Assumption
2 can be omitted. Moreover, by the coerciveness of Qn, the minimizer of Qn over (Rp ×
R+) ∩ B∥·∥2

[0,M ] is the minimizer of Qn over Rp × R+. By Assumption 4, Qn has a
unique minimizer in parameter set when n is sufficiently large. Thus, we can derive the SLS
estimator by solving the following problem,

min
β∈Rp,σ2∈R+

Qn(β, σ
2). (2.2)

Finally, based on the above analysis, the asymptotic properties of SLS estimator in linear
regression can be established only under Assumptions 4, 6 and 7.

Theorem 2.2. (Theorems 1 and 2 in [13]) Let γtrue be the true parameter. Then

(i)(Consistency) under Assumptions 4 and 7, the SLS estimator γSLS
a.s.−−→ γtrue, as

n→∞.
(ii)(Asymptotic normality) under Assumptions 4, 6 and 7, as n → ∞,

√
n(γSLS −

γtrue)
L−→ N(0, A−1BA−1), where

B = E
(
∇γρ

T (γtrue)W (x)ρ(γtrue)ρ
T (γtrue)W (x)∇γρ(γtrue)

)
.
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3 Optimality

In this section, we propose a necessary optimality condition for problem (2.2), which is
stronger than the standard optimality condition of problem (2.2). The standard first-order
stationary point can be defined as follows.

Definition 3.1. We say that γ̂ is a standard first-order stationary point of problem (2.2) if

0 ∈ ∇γQn(γ̂) +NRp×R+
(γ̂), (3.1)

where NRp×R+(γ) denotes the normal cone to Rp × R+ at γ.

By some calculation, the specific expression of NRp×R+
(γ̂) can be obtained. Thus, (3.1)

is equivalent to

∇βQn(β̂, σ̂
2) = 0 and ⟨∇σ2Qn(β̂, σ̂

2), σ2 − σ̂2⟩ ≥ 0 for any σ2 ≥ 0.

It is obvious that each local minimizer of the problem (2.2) must be a standard first-order
stationary point. However, the SLS estimator is the global minimizer of problem (2.2). Based
on definitions of the global necessity condition in [10], [15], we can give the global necessity
condition of problem (2.2). Before that, we review the definition of proximal mapping.

Definition 3.2. Given a function f : Rp → (−∞,∞], the proximal mapping of f is the
operator given by

proxf (β) = arg min
u∈Rp

f(u) +
1

2
∥u− β∥22, for any β ∈ Rp. (3.2)

For a fixed sequence {Wi}, the Qn(γ) can be rewritten as

n∑
i=1

[(Wi)1,1(yi − xT
i β)

2 + (Wi)2,2(y
2
i − (xT

i β)
2 − σ2)2

+ 2(Wi)1,2(yi − xT
i β)(y

2
i − (xT

i β)
2 − σ2)].

For convenience, let

h(β) :=

n∑
i=1

(Wi)1,1(yi − xT
i β)

2, and

g(β, σ2) :=

n∑
i=1

[(Wi)2,2(y
2
i − (xT

i β)
2 − σ2)2 + 2(Wi)1,2(yi − xT

i β)(y
2
i − (xT

i β)
2 − σ2)].

Thus, the first-order stationary point we consider is defined as follows.

Definition 3.3. We say that γ̂ ∈ Rp ×R+ is a first-order stationary point of problem (2.2)

if there exists a constant L̂ > 0, satisfying the following conditions:{
β̂ = prox 1

Lh(β̂ − 1
L∇βg(β̂, σ̂

2))), for any L ≥ L̂,

σ̂2 = argminσ2≥0 Qn(β̂, σ
2).

(3.3)
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Note that if γ̂ is the minimizer of problem (2.2), then σ̂2 is the minimizer of

min
σ2≥0

Qn(β̂, σ
2).

Hence, we can derive the second item in (3.3). By Definition 3.2, we can see that{
β̂ = argminβ∈Rp

1
Lh(β) +

1
2∥β − (β̂ − 1

L∇βg(β̂, σ̂
2))∥22,

σ̂2 = argminσ2≥0 Qn(β̂, σ
2),

which implies (3.1) holds. Thus, the first-order stationary point of problem (2.2) is a stan-
dard first-order stationary point. In contrast, the operator in the first term in (3.3) corre-
sponds to a strong convex optimization. If γ̂ is a standard first-order stationary point and
∇βQn(β̂, σ̂

2) = 0, then β̂ is the minimizer of

min
β∈Rp

1

L
h(β) +

1

2
∥β − (β̂ − 1

L
∇βg(β̂, σ̂

2))∥22

for any given 0 < L <∞. Thus, by Definition 3.3, the standard first-order stationary point
is weaker than first-order stationary point.

Next, we analyze the relationship between the global minimizer and the first-order sta-
tionary point of problem (2.2).

Theorem 3.4. Let γ̂ be the minimizer of problem (2.2). Then there exists a constant L̂ > 0

such that γ̂ is a first-order stationary point of problem (2.2) for any L ≥ L̂.

Proof. Suppose γ̂ is a minimizer of problem (2.2), then σ̂2 is the minimizer of problem

min
σ2≥0

Qn(β̂, σ
2),

which yields the second item of the definition of the first stationary point.
Further, let γM be a point in Rn ×R+ satisfying Qn(γM ) > Qn(γ̂). By the coerciveness

of Qn, there exists M > 0 such that

Qn(γ) > Qn(γM ) for any γ satisfying ∥γ∥2 > M.

This implies that ∥γ∥2 ≤ M for any γ satisfying Qn(γ) ≤ Qn(γM ). Since γ̂ is a minimizer

of problem (2.2), then Qn(γ̂) ≤ Qn(γM ). Thus, γ̂ ∈ (Rp × R+) ∩ B∥·∥2
[0,M ] and ∥β̂∥2 <√

M2 − σ̂4. Define a auxiliary function

F (β, β̂, σ̂2, L) := g(β̂, σ̂2) + ⟨∇βg(β̂, σ̂
2), β − β̂⟩+ L

2
∥β − β̂∥22 + h(β).

The function F is strong convex with respect to β. Let β̃ be the minimizer of F . Then we
have

⟨∇βg(β̂, σ̂
2), β̃ − β̂⟩+ L

2
∥β̃ − β̂∥22 + h(β̃) < h(β̂), for anyL > 0,

which along with h ≥ 0 yields that

L

2
∥β̃ − β̂∥22 − ∥∇βg(β̂, σ̂

2)∥2∥β̃ − β̂∥2 − h(β̂) < 0.
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By simple calculation, we have

∥β̃ − β̂∥2 <
∥∇βg(β̂, σ̂

2)∥2 +
√
∥∇βg(β̂, σ̂2)∥22 + 2Lh(β̂)

L
.

Furthermore,

∥β̃∥2 < ∥β̂∥2 +
∥∇βg(β̂, σ̂

2)∥2 +
√
∥∇βg(β̂, σ̂2)∥22 + 2Lh(β̂)

L
≤ ∥β̂∥2 + I.

Note that ∥β̂∥2 ≤
√
M2 − σ̂4 and I → 0 as L → ∞. Thus, there exists a constant L such

that I ≤M −
√
M2 − σ̂4 for any L ≥ L and ∥β̃∥2 ≤M .

In addition, let Ψβ := {β ∈ Rn : ∥(βT , σ̂2)T ∥2 ≤M} and LM := supβ∈Ψβ
∥∇2

βg(β, σ̂
2)∥2.

For any β ∈ Ψβ , if L ≥ LM , we have

Qn(β, σ̂
2) = h(β) + g(β, σ̂2)

= h(β) + g(β̂, σ̂2) + ⟨∇βg(β̂, σ̂
2), β − β̂⟩

+
1

2
(β − β̂)T∇2

βg(ξ, σ̂
2)(β − β̂)

= F (β, β̂, σ̂2, L) +
1

2
(β − β̂)T∇2

βg(ξ, σ̂
2)(β − β̂)− L

2
∥β − β̂∥22 (3.4)

≤ F (β, β̂, σ̂2, L) +
1

2
∥∇2

βg(ξ, σ̂
2)∥2∥β − β̂∥22 −

L

2
∥β − β̂∥22

≤ F (β, β̂, σ̂2, L) +
LM

2
∥β − β̂∥22 −

L

2
∥β − β̂∥22

≤ F (β, β̂, σ̂2, L),

where ξ = u+α(β−u) for some α ∈ (0, 1). In other words, as long as L is sufficiently large,
(3.4) can be established on Ψβ .

For any L ≥ L̂ := max(L,LM ), we have that

Qn(β̃, σ̂
2) ≤ F (β̃, β̂, σ̂2, L) ≤ F (β̂, β̂, σ̂2, L) = Qn(β̂, σ̂

2) ≤ Qn(β̃, σ̂
2). (3.5)

Therefore, by the strong convexity of F , (3.5) implies that β̃ = β̂. From Definition 3.2, we
can get that

β̂ = prox 1
Lh(β̂ −

1

L
∇βg(β̂, σ̂

2))),

which is the first term of the definition of the first-order stationary point. Thus, γ̂ is a
first-order stationary point of problem (2.2) for any L ≥ L̂.

4 Alternate Updating Method

In this section, we consider the numerical optimization for problem (2.2) and propose an
AU method, which is a combination of the proximal gradient method and classical alternate
updating method. The framework of the AU method is shown below.

Algorithm 1 The alternate updating method
Initialization: Let 0 < Lmin < Lmax, α > 1, c > 0. Choose an initial point (β0, σ

2
0). Set
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k = 0.
Step1: Choose L0

k ∈ [Lmin, Lmax] and set Lk = L0
k.

(1a):Solve subproblems{
βk(Lk) = argminβ∈Rp h(β) + ⟨∇βg(βk, σ

2
k), β − βk⟩+ Lk

2 ∥β − βk∥22,
σ2
k(Lk) = argminσ2>0 Qn(βk+1(Lk), σ

2).
(4.1)

(1b): Go to Step2, if

Qn(βk(Lk), σ
2
k(Lk)) ≤ Qn(βk, σ

2
k)− [

c

2
∥βk(Lk)− βk∥22 +

n∑
i=1

(Wi)2,2(σ
2
k(Lk)− σ2

k)
2]. (4.2)

(1c): Lk = αLk and go to (1a).
Step2: Set βk+1 ← βk(Lk), σ

2
k+1 ← σ2

k(Lk), k ← k + 1 and go to Step1.

By simple calculation, subproblems (4.1) have closed-form solutions:{
βk(Lk) = (2X̂T X̂ + LkIn)

−1(Lkβk + 2X̂T ŷ −∇βg(βk, σ
2
k)),

σ2
k(Lk) = max{0,

∑n
i=1 2(Wi)1,2(yi−xT

i βk(Lk))+(2(Wi)2,2)(y
2
i−(xT

i βk(Lk))
2)∑n

i=1 2(Wi)2,2
}.

where X̂ = [x̂1, . . . , x̂n]
T , x̂i =

√
(Wi)1,1xi and ŷi =

√
(Wi)1,1yi, which makes iteration

easy.
As we know that the convergence of proximal gradient methods relies on the assumption

that g is L-smooth, i.e. the gradient function ∇g is globally lipschitz continuous with
lipschitz constant L. Unfortunately, ∇g does not satisfy this assumption in problem (2.2).
However, this problem can be overcome under the coerciveness of Qn. Next, we establish
the convergence of the AU method. The convergence analysis refers to Proposition A.1. in
[5].

We first define the following quantities:

A := sup
∥γ∥2≤M0

∥∇g(γ)∥2, B := sup
∥β∥2≤M0

h(β), Lg := sup
∥γ∥2≤M0+∆

∥∇2g(γ)∥2,

where M0 and ∆ are given constants, which can be seen from the following theorem.

Theorem 4.1. Let the sequence {βk, σ
2
k} be generated by the AU method. The following

statements hold:
(i) Q(βk+1, σ

2
k+1) ≤ Q(β0, σ

2
0) for all k ≥ 0.

(ii) {Lk} is bounded.
(iii) For each k > 0, the descent criterion (4.2) holds after at most⌊

log(L+ c)− log(Lmin)

log(α)
+ 1

⌋
inner iterations.

Proof. (i) When k = 0, by the coerciveness of Qn, there exist M0 > 0 such that ∥γ0∥2 < M0

and Qn(γ) > Qn(γ0) for any γ satisfying ∥γ∥2 > M0, which implies that ∥γ∥2 ≤M0 for any
γ satisfying Qn(γ) ≤ Qn(γ0). For any L > 0, set

β0(L) = arg min
β∈Rp

h(β) + ⟨∇βg(β0, σ
2
0), β − β0⟩+

L

2
∥β − β0∥22,
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which along with h ≥ 0 yields

L

2
∥β0(L)− β0∥22 − ∥∇βg(β0, σ

2
0)∥2∥β0(L)− β0∥2 − h(β0) ≤ 0.

Thus, we have

∥β0(L)− β0∥2 ≤
∥∇βg(β0, σ

2
0)∥2 +

√
∥∇βg(β0, σ2

0)∥22 + 2Lh(β0)

L
.

Furthermore,

∥β0(L)∥2 ≤ ∥β0∥2 +
A+
√
A2 + 2LB

L
,

which implies that there exists constant L such that ∥β0(L)∥2 ≤ M0 + ∆ for any L ≥ L.
Indeed, ∥β0∥2 ≤M0 and

A+
√
A2 + 2LB

L
→ 0 as L→∞.

On the other hand, let L = max{L,Lg}. Then

g(β0(L), σ
2
0) ≤ g(β0, σ

2
0) + ⟨∇βg(β0, σ

2
0), β0(L)− β0⟩+

L

2
∥β0(L)− β0∥22

=: f(β0(L), β0, σ
2
0 , L).

It follows that

Qn(β0(L), σ
2
0) = g(β0(L), σ

2
0) + h(β0(L))

≤ f(β0(L), β0, σ
2
0 , L) + h(β0(L))

≤ f(β0(L), β0, σ
2
0 , L) + h(β0(L))−

c

2
∥β − β0∥22

≤ f(β0, β0, σ
2
0 , L) + h(β0(L))−

c

2
∥β − β0∥22

= Qn(β0, σ
2
0)−

c

2
∥β − β0∥22 (4.3)

for any L ≥ L+ c, which implies that ∥(β0(L)
T , σ2

0)
T ∥2 ≤M0.

In addition, by simple calculation, if σ2
1 > 0, then

Qn(β0(L), σ
2
0(L))−Qn(β0(L), σ

2
0) = −

n∑
i=1

(Wi)2,2(σ
2
0(L)− σ2

0)
2. (4.4)

Otherwise, if σ2
1 = 0, then

Qn(β0(L), σ
2
0(L))−Qn(β0(L), σ

2
0) ≤ −

n∑
i=1

(Wi)2,2(σ
2
0(L)− σ2

0)
2. (4.5)

Combining (4.3), (4.4), (4.5), the descent criterion (9) holds and Qn(β1, σ
2
1) ≤ Qn(β0, σ

2
0)

for any L1 ≥ L+ c when k = 0.
We now suppose that statements (i) hold for all k ≤ K for some K > 0. Thus, ∥γk∥2 ≤

M0. Repeat the above analysis, we have Qn(βk+1, σ
2
k+1) ≤ Qn(βk, σ

2
k) for any Lk+1 ≥ L+ c



NUMERICAL OPTIMIZATION FOR SECOND-ORDER LS ESTIMATION 325

when k = K +1. Further, by induction hypothesis, we have Q(βk+1, σ
2
k+1) ≤ Q(β0, σ

2
0) and

the statement (i) holds for any Lk+1 ≥ L+ c.
(ii) Note that L, Lg and L are bounded if M0 and ∆ are given, and their values are fixed.

When Lk ≥ L + c, the inequality (4.2) must be established. Thus, we have Lk ≤ α(L + c)
for any k ≥ 0. Hence, the statement (ii) holds.

(iii) Let Jk denote the number of inner iterations at the kth iteration. Then,

Lminα
Jk−1 ≤ L0

kα
Jk−1 ≤ L+ c.

It follows that

Jk ≤ logα(
L+ c

Lmin
) =

log(L+ c)− log(Lmin)

log(α)
.

Thus, the statement (iii) holds.

Finally, we establish the convergence of AU method.

Theorem 4.2. Let the sequence {βk, σ
2
k} be generated by the AU method. The following

statements hold:

(i) {βk, σ
2
k} is bounded;

(ii) limk→∞ ∥βk+1 − βk∥22 = 0 and limk→∞ |σ2
k+1 − σ2

k| = 0.

(iii) limk→∞ Lk∥βk+1 − βk∥22 = 0.

(iv) Any accumulation point of {βk, σ
2
k} is a first-order stationary point of problem (2.2).

Proof. (i) By the (i) in Theorem 4.1,

Q(βk, σ
2
k) ≤ Q(β0, σ

2
0) for all k ≥ 0.

Since Qn is coercive, we have ∥(βT
k , σ

2
k)

T ∥2 ≤M0 and {βk, σ
2
k} is bounded.

(ii) It follows from descent criterion (4.2) that

c

2
∥βk+1 − βk∥22 +

n∑
i=1

(Wi)2,2(σ
2
k(L)− σ2

k)
2 ≤ Qn(βk, σ

2
k)−Qn(βk+1, σ

2
k+1),

and limk→∞ Qn(γk) = ζ. Thus,

∞∑
k=1

c

2
∥βk+1 − βk∥22 +

n∑
i=1

(Wi)2,2(σ
2
k(L)− σ2

k)
2 ≤

∞∑
k=1

(Qn(βk, σ
2
k)−Qn(βk+1, σ

2
k+1))

= Qn(β0, σ
2
0)− ζ

≤ Qn(β0, σ
2
0) <∞,

which implies that

lim
k→∞

c

2
∥βk+1 − βk∥22 +

n∑
i=1

(Wi)2,2(σ
2
k(L)− σ2

k)
2 = 0.

Thus, the statement (ii) holds.



326 X. WANG, L. KONG AND L. WANG

(iii) From (ii) in Theorem 4.1, we can see that {Lk} is bounded. Thus,

lim
k→∞

Lk∥βk+1 − βk∥2 = 0.

(iv) By the boundedness of {(βk, σ
2
k)}, for any accumulation point (β̂, σ̂2), there exists a

subsequence {βkj
, σ2

kj
} such that limkj→∞ βkj

= β̂ and limkj→∞ σ2
kj

= σ̂, where kj →∞ as

j →∞. From statement(ii), we have that

∥βkj+1 − β̂∥2 ≤ ∥βkj+1 − βkj∥2 + ∥βkj − β̂∥2 → 0, as kj →∞,

|σ2
kj+1 − σ̂2| ≤ |σ2

kj+1 − σ2
kj
|+ |σ2

kj
− σ̂2| → 0, as kj →∞.

Thus, βkj+1 → β̂ and σ2
kj+1 → σ̂2. From the AU method, we have

βkj+1 = arg min
β∈Rp

h(β) + ⟨∇βg(βkj
, σ2

kj
)), β − βkj

⟩+
Lkj

2
∥β − βkj

∥22,

σ2
kj+1 = arg min

σ2≥0
Qn(βkj+1, σ

2).

Furthermore,

h(βkj+1) + ⟨∇βg(βkj , σ
2
kj
)), βkj+1 − βkj ⟩+

Lkj

2
∥βkj+1 − βkj∥22 ≤

h(β) + ⟨∇βg(βkj
, σ2

kj
)), β − βkj

⟩+
Lkj

2
∥β − βkj

∥22,

Taking limit kj → ∞, using continuity of the h and ∇βg, and by the Theorem 3.4, we

immediately obtain that there exist an L̃ such that

β̂ = arg min
β∈Rp

h(β) + ⟨∇βg(β̂, σ̂
2)), β − β̂⟩+ L

2
∥β − β̂∥22, ∀L ≥ L̃,

σ̂2 = min
σ2≥0

Qn(β̂, σ̂
2).

By simplifying above formulas, the accumulation point of {βk, σ
2
k} is a first-order stationary

point of problem (2.2).

5 Numerical Simulations

In this section, we study the performance of the AU method for solving problem (2.2) by
numerical simulations. Before that, we give the calculation method of the optimal weighting
matrix in Qn.

Lemma 5.1. (Corollary in [13]) If σ2
true(µ4 − σ4

true) − µ2
3 ̸= 0, then the optimal weighting

matrix {Ŵi}, i = 1, . . . , n is given by

Ŵi =
1

σ2
true(µ4 − σ4

true)− µ2
3

×
(

µ4 + 4µ3x
T
i βtrue + 4σ2

true(x
T
i βtrue)

2 − σ4
true −µ3 − 2σ2

truex
T
i βtrue

−µ3 − 2σ2
truex

T
i βtrue σ2

true

)
,



NUMERICAL OPTIMIZATION FOR SECOND-ORDER LS ESTIMATION 327

where µ3 = E(ε3|X) and µ4 = E(ε4|X). Moreover, the asymptotic covariance matrix of the
most efficient SLS estimator is given by

C =

(
V (βSLS)

µ3

µ4−σ4
true

V (σ2
SLS)G

−1
2 G1

µ3

µ4−σ4
true

V (σ2
SLS)G

T
1 G

−1
2 V (σ2

SLS)

)
,

where

V (βSLS) = (σ2
true −

µ2
3

µ4 − σ4
true

)(G2 −
µ2
3

σ2
true(µ4 − σ4

true)
G1G

T
1 )

−1,

V (σ2
SLS) =

(µ4 − σ4
true)(σ

2
true(µ4 − σ4

true)− µ2
3)

σ2
0(µ4 − σ4

true − µ2
3G

T
1 G

−1
2 G1)

,

and

G1 = E(x), G2 = E(xxT ).

The Lemma 5.1 provides the optimal weight matrix sequence and the asymptotic covari-
ance matrix of the most efficient SLS estimator. However, some parameters in the above
lemma are unknown. We use the two-stage procedure in [13] to calculate the optimal weight
matrix sequence, and derive the SLS estimator.

We consider numerical simulation with three error distributions: normal distribution
N(0, 1), student t distribution, chi square distribution (χ2(3) − 3)/

√
6. We also apply the

SLS estimation on a real dataset. The mean squared error (MSE) and Variance (Var) are
used to compare the quality of the SLS estimator and the OLS estimator. They are defined
as follows:

Replicate Ns = 100 times simulations. For each j ∈ {1, . . . , p}, calculate the mean
estimator

βj =
1

Ns

Ns∑
i=1

βi,j .

The MSE for each coefficient is calculated by

MSE(βj) =
1

N

N∑
i=1

(βi,j − (βtrue)j)
2, j = 1, . . . , p.

where βi,j denote the j−th element of the estimator in the i−th simulation. The Var for
each coefficient is calculated by

Var(βj) =
1

N

N∑
i=1

(βi,j − (β)j)
2, j = 1, . . . , p.

For the AU method, the OLS estimator is taken as the initial point. The stopping
criterion as follows:

∥βk − βk+1∥2
max(1, ∥βk+1∥2)

≤ ν,

or the maximum iterative time of 5000s is reached.
All the numerical experiments were performed in MATLAB (R2019b) on a laptop with

an Intel(R) Core(TM)i5-6200 CPU(2.40GHz) and 8GB of RAM.
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5.1 Linear model without intercept

We consider linear regression without an intercept term

yi = xT
i β + εi, i = 1, . . . ,m.

where xT
i is normal with mean 0 and its correlation between xi and xj is 0.5

|i−j|. Let p = 4,
m = 50, 100, 200, 500, and βtrue = (2.5, 0.6,−0.5,−2.3)T .

The simulation results for this linear regression are presented in Tables 1, 2, 3. All results
show that the SLS estimator and the OLS estimator are close to the true parameter as the
sample size increases, and both Var and MSE are decreasing. From the first two tables, the
two estimators and their two evaluation indicators are very close, and the tiny gap between
them decreases as the sample size increases. These gaps are caused by the finiteness of
samples and calculation errors. However, this will not affect the theoretical equivalence of
the two estimators. This conclusion also implies the effectiveness of our proposed algorithm.
In the case of εi ∼ (χ2(3)− 3)/

√
6, the MSE and Var of the SLS estimator are smaller than

the OLS estimator, and this gap will not decrease significantly as the sample size increases,
which means that when the random error distribution is asymmetric, the SLS eatimator is
asymptotically more efficient than the OLS eatimator.

These conclusions not only show the superiority of the SLS estimation for linear regression
but also verify the effectiveness of our calculation method.

Table 1: Simulation results with ε(i) ∼ N(0, 1).

SLSE Var MSE OLSE Var MSE

m=50
β1 2.498 3.693e-03 3.696e-03 2.498 2.892e-03 2.896e-03
β2 0.601 4.876e-03 4.878e-03 0.601 3.630e-03 3.631e-03
β3 -0.498 4.885e-03 4.888e-03 -0.499 3.779e-03 3.779e-03
β4 -2.307 3.565e-03 3.617e-03 -2.305 2.820e-03 2.844e-03
m=100
β1 2.501 1.488e-03 1.489e-03 2.501 1.345e-03 1.346e-03
β2 0.599 1.933e-03 1.933e-03 0.600 1.678e-03 1.678e-03
β3 -0.499 1.860e-03 1.862e-03 -0.498 1.625e-03 1.627e-03
β4 -2.301 1.612e-03 1.614e-03 -2.301 1.427e-03 1.428e-03
m=200
β1 2.501 6.491e-04 6.497e-04 2.501 6.184e-04 6.192e-04
β2 0.599 9.239e-04 9.246e-04 0.599 8.959e-04 8.967e-04
β3 -0.500 9.431e-04 9.431e-04 -0.500 9.026e-04 9.026e-04
β4 -2.299 7.590e-04 7.593e-04 -2.300 7.323e-04 7.324e-04
m=500
β1 2.500 2.734e-04 2.734e-04 2.500 2.680e-04 2.681e-04
β2 0.600 3.264e-04 3.264e-04 0.600 3.228e-04 3.229e-04
β3 -0.500 3.523e-04 3.523e-04 0.500 3.454e-04 3.454e-04
β4 -2.300 2.575e-04 2.577e-04 -2.300 2.546e-04 2.548e-04

5.2 Linear model with intercept

We consider linear regression with intercept term

yi = xT
i β + βin + εi, i = 1, . . . ,m.
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Table 2: Simulation results with ε(i) ∼ t(5).

SLSE Var MSE OLSE Var MSE

m=50
β1 2.502 5.924e-03 5.926e-02 2.505 5.088e-03 5.109e-03
β2 0.599 6.506e-03 6.507e-02 0.596 5.771e-03 5.784e-03
β3 -0.502 6.962e-03 6.966e-02 -0.501 6.309e-03 6.309e-03
β4 -2.298 5.435e-03 5.439e-02 -2.299 5.118e-03 5.119e-03
m=100
β1 2.502 2.322e-03 2.327e-03 2.502 2.275e-03 2.278e-03
β2 0.599 3.198e-03 3.199e-03 0.599 3.196e-03 3.197e-03
β3 -0.503 2.807e-03 2.816e-03 -0.502 2.812e-03 2.818e-03
β4 -2.298 2.157e-03 2.162e-03 -2.298 2.123e-03 2.127e-03
m=200
β1 2.501 1.046e-03 1.048e-03 2.501 1.076e-03 1.077e-03
β2 0.599 1.336e-03 1.337e-03 0.599 1.414e-03 1.415e-03
β3 -0.499 1.421e-03 1.422e-03 0.500 1.511e-03 1.511e-03
β4 -2.300 1.106e-03 1.106e-03 -2.300 1.168e-03 1.168e-03
m=500
β1 2.500 4.379e-04 4.380e-04 2.500 4.491e-04 4.491e-04
β2 0.600 5.741e-04 5.743e-04 0.595 5.949e-04 5.952e-04
β3 -0.499 5.697e-04 5.704e-04 -0.499 5.750e-04 5.753e-04
β4 -2.301 4.616e-04 4.626e-04 -2.301 4.737e-04 4.748e-04

Table 3: Simulation results with ε(i) = (χ2(3)− 3)/
√
6.

SLSE Var MSE OLSE Var MSE

m=50
β1 2.500 2.182e-03 2.182e-03 2.500 3.272e-03 3.272e-03
β2 0.602 2.317e-03 2.321e-03 0.602 3.787e-03 3.790e-03
β3 -0.500 2.515e-03 2.515e-03 -0.500 3.741e-03 3.741e-03
β4 -2.302 2.104e-03 2.108e-03 -2.300 2.859e-03 2.859e-03
m=100
β1 2.501 8.688e-04 8.704e-04 2.502 1.434e-03 1.438e-03
β2 0.601 1.007e-03 1.009e-03 0.600 1.700e-03 1.700e-03
β3 -0.501 1.072e-03 1.074e-03 -0.502 1.834e-03 1.837e-03
β4 -2.300 8.866e-04 8.866e-04 -2.299 1.434e-03 1.434e-03
m=200
β1 2.501 3.878e-04 3.882e-04 2.500 6.606e-04 6.607e-04
β2 0.600 4.917e-04 4.918e-04 0.600 8.261e-04 8.261e-04
β3 -0.500 4.860e-04 4.861e-04 -0.500 8.486e-04 8.488e-04
β4 -2.301 3.663e-04 3.670e-04 -2.300 6.788e-04 6.790e-04
m=500
β1 2.500 1.479e-04 1.480e-04 2.500 2.824e-04 2.825e-04
β2 0.599 1.865e-04 1.868e-04 0.600 3.356e-04 3.357e-04
β3 -0.500 1.874e-04 1.874e-04 -0.500 3.241e-04 3.242e-04
β4 -2.300 1.525e-04 1.525e-04 -2.300 2.826e-04 2.827e-04
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where βin ∈ R is the intercept term. Set X̂ = [X
...1], where 1 is the vector in Rm with

all components are 1, the OLS estimator is calculated by (X̂T X̂)−1X̂T y. We set β0 =
[2.5, 0.6,−0.5]T . The rest of the settings are the same as Section 5.1.

Simulation results are given in displayed in Tables 4, 5, 6. For βi, i = 1, 2, 3, we
have the same conclusion as in the previous section. However, the OLS estimator and SLS
estimator for βin have similar performance. Indeed, it follows from Lemma 1 in [7], the
existence of the intercept term yields to GT

1 G
−1
2 G1 = 1. Further, Theorem 4 in [13] explains

this phenomenon.

Table 4: Simulation results with ε(i) ∼ N(0, 1).

SLSE Var MSE OLSE Var MSE

m=50
βin -2.298 2.231e-02 2.232e-02 -2.296 2.107e-02 2.109e-02
β1 2.508 3.508e-02 3.515e-02 2.509 3.015e-02 3.023e-02
β2 0.601 4.155e-02 4.155e-02 0.600 3.493e-02 3.493e-02
β3 -0.503 3.613e-02 3.614e-02 -0.501 2.983e-02 2.983e-02
m=100
βin -2.300 1.000e-02 1.000e-02 -2.299 9.916e-03 9.916e-03
β1 2.499 1.564e-02 1.564e-02 2.500 1.455e-02 1.455e-02
β2 0.603 1.839e-02 1.834e-02 0.602 1.742e-02 1.743e-02
β3 -0.502 1.547e-02 1.548e-02 -0.503 1.470e-02 1.471e-02
m=200
βin -2.299 5.083e-03 5.084e-03 -2.299 5.111e-03 5.112e-03
β1 2.504 6.739e-03 6.756e-03 2.504 6.586e-03 6.603e-03
β2 0.601 8.427e-03 8.428e-03 0.601 8.172e-03 8.173e-03
β3 -0.504 6.828e-03 6.842e-03 -0.504 6.737e-03 6.752e-03
m=500
βin -2.298 2.051e-03 2.054e-03 -2.298 2.051e-03 2.055e-03
β1 2.501 2.434e-03 2.435e-03 2.500 2.446e-03 2.446e-03
β2 0.598 3.476e-03 3.479e-03 0.598 3.468e-03 3.471e-03
β3 -0.499 2.715e-03 2.715e-03 -0.499 2.716e-03 2.717e-03

5.3 Real data example

The first two sets of simulations not only verified the effectiveness of the AU method for
problem (2.2), but also demonstrated that the SLS estimator is asymptotically more efficient
than the OLS estimator if the third moment of the random error is nonzero. We applied
the proposed method on a real data set in this subsection.

The paper [9] provids a data set, which included the house price information and the 13
predictor variables. This data set was taken from the StatLib library which is maintained at
Carnegie Mellon University. We can download it from https://archive.ics.uci.edu/ml/machine-
learning-databases/housing/. In this data set, MEDV (Median value of owner-occupied
homes in 1000′s) is the response variable, and CRIM (per capita crime rate by town), ZN
(proportion of residential land zoned for lots over 25,000 sq.ft), INDUS (proportion of non-
retail business acres per town), CHAS (Charles River dummy variable (= 1 if tract bounds
river; 0 otherwise)), NOX (nitric oxides concentration (parts per 10 million)), RM (aver-
age number of rooms per dwelling), AGE (proportion of owner-occupied units built prior
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Table 5: Simulation results with ε(i) ∼ t(5).

SLSE Var MSE OLSE Var MSE

m=50
βin -2.303 3.139e-02 3.140e-02 -2.300 3.360e-02 3.360e-02
β1 2.503 5.255e-02 5.256e-02 2.511 4.937e-02 4.950e-02
β2 0.611 6.211e-02 6.222e-02 0.609 6.216e-02 6.223e-02
β3 -0.504 5.440e-02 5.442e-02 -0.504 5.558e-02 5.560e-02
m=100
βin -2.299 1.679e-02 1.679e-02 -2.299 1.786e-02 1.786e-02
β1 2.502 2.360e-02 2.361e-02 2.501 2.472e-02 2.472e-02
β2 0.602 2.858e-02 2.859e-02 0.603 2.942e-02 2.943e-02
β3 -0.506 2.145e-02 2.149e-02 -0.508 2.185e-02 2.192e-02
m=200
βin -2.300 8.926e-03 8.926e-03 -2.300 9.256e-03 9.261e-03
β1 2.499 9.726e-03 9.727e-02 2.501 1.030e-02 1.03e-02
β2 0.597 1.320e-02 1.321e-02 0.597 1.398e-02 1.399e-02
β3 -0.500 1.072e-02 1.072e-02 -0.500 1.117e-02 1.117e-02
m=500
βin -2.298 3.478e-03 3.483e-03 -2.298 3.530e-03 3.535e-03
β1 2.502 4.095e-03 4.101e-03 2.502 4.306e-03 4.311e-03
β2 0.596 5.084e-03 5.101e-03 0.596 5.185e-03 5.200e-03
β3 -0.500 4.383e-03 4.383e-03 -0.500 4.523e-03 4.523e-03

Table 6: Simulation results with ε(i) = (χ2(3)− 3)/
√
6.

SLSE Var MSE OLSE Var MSE

m=50
βin -2.341 1.991e-02 2.158e-02 -2.302 2.021e-02 2.021e-02
β1 2.497 1.686e-02 1.687e-02 2.499 2.808e-02 2.808e-02
β2 0.600 2.173e-02 2.173e-02 0.599 3.576e-02 3.576e-02
β3 -0.501 1.750e-02 1.750e-02 -0.495 2.936e-02 2.938e-02
m=100
βin -2.314 9.802e-03 9.991e-03 -2.295 9.791e-03 9.812e-03
β1 2.496 7.922e-03 7.937e-03 2.498 1.399e-02 1.399e-02
β2 0.605 1.040e-02 1.042e-02 0.610 1.795e-02 1.706e-02
β3 -0.502 8.694e-03 8.699e-03 -0.504 1.533e-02 1.534e-02
m=200
βin -2.308 4.622e-03 4.693e-03 -2.299 4.649e-03 4.650e-03
β1 2.502 3.837e-03 3.841e-03 2.501 7.298e-03 7.299e-03
β2 0.600 5.300e-03 5.300e-03 0.601 9.169e-03 9.170e-03
β3 -0.500 3.716e-03 3.716e-03 -0.501 6.813e-03 6.814e-03
m=500
βin -2.302 1.963e-03 1.968e-03 -2.299 1.968e-03 1.969e-03
β1 2.499 1.372e-03 1.374e-03 2.500 2.685e-03 2.695e-03
β2 0.601 1.870e-03 1.871e-03 0.600 3.602e-03 3.602e-03
β3 -0.501 1.455e-03 1.458e-03 -0.501 2.704e-03 2.704e-03



332 X. WANG, L. KONG AND L. WANG

to 1940), DIS (weighted distances to five Boston employment centres), RAD (index of ac-
cessibility to radial highways), TAX (full-value property-tax rate per 10, 000), PTRATIO
(pupil-teacher ratio by town), B (1000(Bk− 0.63)2 where Bk is the proportion of blacks by
town), LSTAT (% lower status of the population) .

We select suitable predictor variables by the correlation coefficient (co-co) between re-
sponse variable and predictor variables. The calculation results are shown in Table 7. The
RM, PTRATIO, LSTAT have relatively strong relations with MEDV. We can also see these
relationships intuitively through Figure 1.

Table 7: The correlation coefficient.

MEDV co-co MEDV co-co
CRIM -0.388 DIS 0.250
ZN 0.360 RAD -0.382
INDUS -0.484 TAX -0.469
CHAS 0.175 PTRATIO -0.508
NOX -0.427 B 0.333
RM 0.695 LSTAT -0.738
AGE -0.377

Figure 1: The Scatter plots between MEDV and RM, PTRATIO, LSTAT.

Consider the following linear model to fit the data set:

y = β0 + x1β1 + x2β2 + x3β3 + ε,

where β0 is the intercept term. We replicate 100 experiments through the Bootstrap method.
The results of OLS estimator and SLS estimator are shown in Table 8. The variance of the
SLS estimator is lower than the OLS estimator. In addition, we can get the corresponding
residual histograms of both estimators. From Figure 2, we can see that the random error
distribution is slightly asymmetric.

6 Conclusions

The SLS estimation is the estimation method that makes full use of the second-order moment
information of the data and have good statistical theoretical properties. It is asymptotically
more efficient than the OLS estimator if the third moment of the random error is nonzero.
In this paper, we propose the AU method to calculate SLS estimator in linear regression
based on a stronger optimality condition. Numerical experiments show that our method can
effectively solve problem (2.2), and also verify the superiority of SLS estimation. This paper
provides some basis for the extension of SLS estimation in high-dimensional regression.
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Table 8: Real data simulation results.

SLS Var OLS Var
β0 18.04 5.99 18.56 6.59
β1 4.69 1.01e-02 4.52 1.07e-02
β2 -0.99 2.60e-03 -0.93 3.50e-03
β3 -0.54 5.997e-04 -0.57 1.10e-03

Figure 2: The histograms of residuals of two estimators.
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