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where Ψ is a random mapping consisting of vector and/ or matrix-valued measurable func-
tions, the mathematical expectation of Ψ is taken w.r.t. each component of Ψ, P(IRk)
denotes the set of all probability measures on IRk induced by ξ and K is a closed convex
cone in the Cartesian product of some finite dimensional vector and/ or matrix spaces, see
Xu et al. [34]. In general, Ψ depends on sample information such as sample mean and sample
variance. The next example explains this.

Example 1.1 (Delage and Ye [2] and So [24]). Consider the ambiguity set

P = P(µN ,ΣN , γ1, γ2) :=

{
P ∈ P(Ξ) :

EP [ξ − µN ]TΣ−1
N EP [ξ − µN ] ≤ γ1

EP [(ξ − µN )(ξ − µN )T ] ⪯ γ2ΣN

}
, (1.3)

where γ1 and γ2 are nonnegative constants, µN and ΣN are the sample mean and sample
covariance, Ξ ⊂ IRk is the support set of the true probability distribution of ξ and P(Ξ)
is the set of all probability distributions of ξ whose support sets are contained in Ξ (or
alternatively the set of all probability measures on Ξ induced by mapping ξ). The ambiguity
set is considered by Delage and Ye [2], further studied by So [24] and used by many others
in different DRO models. By employing the Schur complement, we can easily reformulate
(1.3) in the form of (1.2) with

Ψ(ξ) = Ψ(ξ, µN ,ΣN , γ1, γ2) :=

 [
−ΣN µN − ξ
(µN − ξ)T −γ1

]
(ξ − µN )(ξ − µN )T − γ2ΣN

 , (1.4)

K = K1×K2, where K1 and K2 are cones of negative semidefinite symmetric (k+1)×(k+1)
and k × k matrices, and k is the dimension of ξ.

In this setup, information on the sample means and sample variances is used to identify
the scope of the true unknown probability distribution. The samples are assumed to be
generated by the true probability distribution of ξ, which means that they are not contami-
nated. The DRO model is mainly concerned with the sample size N . If the sample size can
be arbitrarily large, then one can simply use samples to recover the true probability distri-
bution of ξ. In practice particularly in data-driven problems, one may not be able to obtain
a large amount of samples and subsequently use the sample mean and sample variance to
construct a set of plausible probability distributions satisfying (1.3).

An important issue which is not paid adequate attention to, in the literature of distribu-
tionally robust optimization, is that the sample data may be potentially contaminated. In
this case µN and ΣN may not approximate the true mean value and the true covariance as
N goes to infinity, which means that the theoretical results of the DRO model in [2, 24, 25]
are not applicable.

Another approach which is used in the literature of distributionally robust optimization is
to use partially available information about the true probability distribution such as samples,
computer simulation or subjective judgement to construct a nominal distribution and then
build an ambiguity set P by including all distributions near the nominal in the sense of
some “distance” such as Kantorovich/Wasserstein distance, semi-distance and divergence
distance [5, 14, 23]. Here we give a simple example.

Example 1.2 (Pichler and Xu [20]). Let PN ∈ P(Ξ) be a nominal distribution constructed
through available sample data. Let

P = {P ′ ∈ P(Ξ) : dlG (P
′, PN ) ≤ rN}, (1.5)
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where rN is a positive number,

dlG (P,Q) := sup
g∈G

|EP [g(ξ)]− EQ[g(ξ)]| (1.6)

is a semi-distance called a metric with ζ-structure and G is a family of real-valued measurable
functions on Ξ. Formulation (1.6) subsumes a wide range of metrics in probability theory,
see Rachev [26] or Zolotarev [38]. For the simplicity of terminology, we call it ζ-metric and
the ambiguity set P ζ-ball. In the case that

G = GL := {g : IRk → IR : g is Lipschitz continuous with modulus being bounded by 1},(1.7)

dlG (P,Q) reduces to the Kantorovich metric, denoted by dlK,k(P,Q), where the subscripts

K, k indicate the Kantorovich metric in P(IRk).
In the literature of DRO models, it is often assumed that PN is constructed by samples

without any noise. Under such an assumption, we know that PN converges to the true
probability distribution as N → ∞ and so does the ambiguity set when rN → 0, see
Esfahani and Kuhn [5] and Shapiro [23]. Like in the previous example, our concern here is
that the samples to be used to construct PN may be potentially contaminated.

Over the past decade, DRO models have found many applications including machine
learning and risk management. Here we list a couple of them.

Example 1.3 (Shafieezadeh-Abadeh et al. [22]). Let X ⊂ IRk−1 be an input space (e.g.,
information on the frequency of certain keywords in an email) and Y ⊂ IR the output space
(e.g., a label +1 (−1) if the email is likely (unlikely) to be a spam message). The relationship
between an input x ∈ X and an output y ∈ Y is described by a probability distribution P .
To ease the notation, let ξ denote the input-output pair (x, y) and Ξ := X×Y ⊂ IRk−1 × IR
the support set of ξ.

In a supervised learning framework, the true distribution P on X× Y is often unknown
but it is possible to obtain finite input-output data (samples) ξi = (xi, yi) for i = 1, . . . , N
generated by the true distribution P (e.g., a database of emails which have been classified
by a human as legitimate or as spam messages), which are referred as the training data.

Given the training samples ξi = (xi, yi), i = 1, . . . , N , the goal of supervised learning is
to find a function h : X → Y to infer an unknown relationship between input x and output
y, which is described by target function f : X → Y such that h solves

inf
h∈H

EPN
[c(h(x), y)]. (1.8)

In this model, PN denotes the empirical distribution constructed through ξ1, . . . , ξN , h ∈ H
is known as a hypothesis or a learning model, where H is a hypothesis space, c : IR×Y → IR+

is the loss function which measures the cost of mismatch between each pair of input and
output data by using the hypothesis h instead of the true target function f .

Model (1.8) is to find an optimal candidate function h ∈ H which approximates the
unknown target function f such that the overall expected cost is minimized. Since the op-
timization process is based on training data, it is called a learning model/algorithm. When
a linear hypothesis h(x) = ⟨w,x⟩ with w ∈ IRk−1 is used, problem (1.8) only minimizes
the training sample error EPN

[c(⟨w,x⟩, y)] and w may still suffer from a high out-of-sample
error EP [c(⟨w,x⟩, y)] due to overfitting. The standard remedy to tackle overfitting is us-
ing regularization, such as Lasso regularization [30] and L2-regularization to consider the
regularized loss EPN

[c(⟨w,x⟩, y)] + cR(w), where cR(w) is an overfitting penalty.
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Shafieezadeh-Abadeh et al. [22] consider a distributionally robust model which is more
principled than regularization,

inf
w

sup
P ′∈B̂(PN ,r)

EP ′ [c(⟨w,x⟩, y)], (1.9)

where the ambiguity set is defined by a Wasserstein ball:

B̂(PN , r) = {P ′ ∈ P(Ξ) : dW,k(P
′, PN ) ≤ r}. (1.10)

The particular Wasserstein distance that they consider is

dW,k(Q,Q
′) := inf

Π

{∫
Ξ2

d(ξ, ξ′)Π(dξ, dξ′) :
Π is a joint distribution of ξ and ξ′

with marginals Q and Q′, respectively

}
,

where d is a distance in metric space (Ξ, d) and subscripts W,k indicate the Wasserstein
metric in P(IRk). By the Kantorovich-Rubinstein theorem, dlW,k coincides with the Kan-
torovich metric dlK,k when (Ξ, d) is a metric space, see e.g. [4, page 338], [3, Theorem
11.8.2], [29, Theorem 2]. Our concern here is how the learning model/algorithm works in
the case when the training data are contaminated.

Next, we consider a DRO model in risk management.

Example 1.4 (Guo and Xu [6]). Guo and Xu [6] consider the distributionally robust short-
fall risk optimization model

min
t∈IR

t

s.t. sup
P ′∈B(PN ,r)

EP ′ [l(−ξ − t)] ≤ λ, (1.11)

where ξ is a random financial position, l : IR → IR is an increasing utility loss function and
λ is the maximum tolerable utility loss. The shortfall risk is the smallest amount of cash to
be injected to the financial position so that the expected loss falls below the specified level.
The DRO model is used because the true probability distribution of ξ is often unknown.
The authors propose to use the Kantorovich ball centered at a nominal distribution PN ,

B(PN , r) = {P ′ ∈ P(Ξ) : dlK,1(P
′, PN ) ≤ r}, (1.12)

for constructing the ambiguity set. Like in the previous example, our concern here is that
the sample data may be contaminated.

There are potentially two ways to tackle the data contamination issue in the DROmodels.
One is to investigate the impact of outliers of the random data on the optimal value. This
approach is well known in robust statistics where the impact is characterized by a so-called
influence function and it has been applied to support vector machine by Steinwart and
Christmann [28]. Robust statistics stems from Tukey [31, 32] and Hampel [12, 13] and
has been popularized by others particularly the monographs by Huber [15] and Huber and
Ronchetti [10]. Lecué and Lerasle [18] extend the research by proposing a so-called median-
of-mean (MOM) approach for machine learning models to reduce the impact of the outliers
in the dataset. More recently, Guo and Xu [8] apply the influence function approach to
stochastic generalized equations (SGE) and examine the sensitivity of the solutions of the
SGE w.r.t. a single data perturbation.
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The other is to look into the impact of all contaminated/corrupted data on the statis-
tical estimators of the DRO models rather than merely the outliers. This approach is first
proposed by Cont et al. [1] for investigating qualitative robustness of statistical estimator of
various risk measures derived from empirical data. An important finding out of their analysis
is that statistical estimator of any spectral risk measure including conditional value at risk is
not statistically robust whereas value at risk is. This is primarily because the former is more
sensitive to the perturbation of tail data. Krätschmer et al. [17] find that the robustness
of statistical estimators depends on the empirical data structure. They demonstrate that
if the perceived (contaminated) data are “close” under some fine topology to the real data
(with contamination being detached), the statistical estimators may remain qualitatively
robust. In the more recent developments, Guo and Xu [7] apply the qualitative statistical
robust approach to preference robust optimization models and take a step further to develop
a quantitative approach by using the Kantorovich metric to measure the difference between
laws of the statistical estimators of the optimal values. Wang et al. [33] extend the quan-
titative approach by adopting the Fortet-Mourier metric (including the Kantorovich metric
as a special case) and apply it to study statistical robustness of tail-dependent law invariant
risk measures. Guo et al. [9] apply the latter to machine learning.

In this paper, our focus will be on the second way. This is primarily because in data-
driven problems, decision makers are more likely to be confronted with a situation where
all of the available data are potentially contaminated. The main contributions of this paper
can be summarized as follows.

• First, we derive a general quantitative statistical robustness result for a general esti-
mator which is globally Lipschitz continuous w.r.t. the underlying uncertainty data
(Theorem 2.2) and use it as a template for describing the statistical robustness of the
optimal values of various specific DRO problems.

• Second, we derive quantitative statistical robustness for the optimal value of the DRO
model with ambiguity set having moment structure (1.3). This essentially requires us
to take two steps. One is to demonstrate the local Lipschitz continuity of the ambiguity
set as a set-valued mapping w.r.t. the change of the sample mean, sample covariance
and other parameters under the Slater condition of the moment system. This step is
based on the error bound for the moment system which holds uniformly for all pa-
rameter values in a neighborhood of a certain point where the Slater condition holds.
The second step is to show the global Lipschitz continuity of the optimal value of the
DRO model w.r.t. sample mean and sample covariance. To this end, we consider a
general DRO problem with an abstract ambiguity set and derive the global Lipschitz
continuity of the optimal value of the DRO problem (Lemma 3.1) under the condition
that the ambiguity set is locally Lipschitz continuous w.r.t. data. We then move to dis-
cuss sufficient conditions under which the ambiguity set is locally Lipschitz continuous
(Propositions 3.2 and 3.3).

• Third, by exploiting the quantitative stability of the ζ-ball in [20, Theorem 1], we es-
tablish the Lipschitz continuity of the optimal value w.r.t. independent and identically
distributed (iid) samples and subsequently derive the quantitative statistical robust-
ness of the optimal value of the DRO model with ζ-ball (Theorem 4.1). The statistical
robustness result covers the DRO model with Wasserstein ball in machine learning
(Proposition 4.2).

• Fourth, when the support set is compact, we identify sufficient conditions under which
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the statistical estimator of the DRO version of the shortfall risk with the Kantorovich
ball structured ambiguity set is statistically robust against perturbation of data (Theo-
rem 5.2). This result provides theoretical grounding for the DRO version of the shortfall
risk measure to be applied in data-driven problems with contaminated data.

The rest of the paper is organized as follows. Section 2 presents the sufficient conditions for
the quantitative statistical robustness of general statistical estimator. Section 3 discusses the
Lipschitz continuity of the optimal value function of DRO with moment constraints which
paves the way for the analysis of the quantitative statistical robustness of the corresponding
statistical estimators. Section 4 derives the quantitative statistical robustness of the DRO
with ζ-ball based on the Lipschitz continuity of the ζ-ball w.r.t. the center. The result is
applied to the DRO model in machine learning (see Example 1.3). Section 5 focuses on
Lipschitz continuity of the optimal value function of the distributionally robust shortfall
risk optimization model with Kantorovich ball, which guarantees the quantitative statistical
robustness.

Throughout the paper, we use the following notation. By convention, we use IRk×k, Sk

and Sk
− to denote respectively the space of all k × k matrices, k × k symmetric matrices,

and the cone of negative semidefinite symmetric matrices. We use ∥x∥ to represent the
Euclidean norm of a vector x in IRk, and ∥A∥ :=

√
tr(ATA) to stand for the Frobenius

norm of a matrix A ∈ IRk×k, where “tr” denotes the trace of a matrix and the superscript
T denotes transpose. For a Banach space X, we write B for the closed unit ball in X. For
a set S ⊆ X, intS denotes the interior of S, and d(x, S) := infx′∈S ∥x′ − x∥ denotes the
distance from a point x ∈ X to a set S ⊂ X. For two sets S1, S2 ⊂ X,

D(S1, S2; d) := sup
x∈S1

d(x, S2)

signifies the deviation of S1 from S2 under the metric d, and

H(S1, S2; d) := max{D(S1, S2; d),D(S2, S1; d)}

denotes the Hausdorff distance between the two sets. Finally we write diam(Ξ) :=
supξ,ξ′∈Ξ ∥ξ − ξ′∥ for the diameter of Ξ and N for the set of positive integers.

2 Quantitative Statistical Robustness

Let P ∈ P(IRk) be the true probability distribution of random vector ξ and ξ1, . . . , ξN the
iid samples generated by P (strictly speaking they are iid random variables generating iid
samples). In practice, ξ1, . . . , ξN may be obtained from empirical data which are potentially
contaminated. Let ξ̃1, . . . , ξ̃N be the perceived data which contain noise. Obviously the
samples are not generated by P , rather they are generated by some unknown distribution
Q. If we view ξ̃1, . . . , ξ̃N as samples perturbed from ξ1, . . . , ξN , then we may regard Q as
a perturbation of P . Note that neither P nor Q is known. To facilitate the discussion, we
assume that ξ̃1, . . . , ξ̃N are also independent and identically distributed. Let

PN :=
1

N

N∑
i=1

δξi and QN :=
1

N

N∑
i=1

δξ̃i (2.1)

be the respective empirical distributions, where δa(·) denotes the Dirac probability measure
at point a ∈ Ξ.
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To explain the idea of statistical robustness, let (IRk)⊗N denote the Cartesian product
IRk×· · ·× IRk and B(IRk)⊗N its Borel sigma algebra. Let P⊗N denote the probability mea-

sure on the measurable space
(
(IRk)⊗N ,B(IRk)⊗N

)
with marginal P on each (IRk,B(IRk))

and Q⊗N with marginal Q. Consider a statistical functional T (·) mapping from a subset of
M ⊂ P(IRk) to IR. For each N ∈ N, we write TN (ξ1, . . . , ξN ) for T (PN ), where N is the set
of positive integers. Notice that TN maps from (IRk)⊗N to IR and provides an estimator for
T (P ). Our interest is whether T (QN ) is close to T (PN ) under some appropriate metric for
all N sufficiently large. Here T (PN ) should be understood as the corresponding statistical
estimator when the noise in the samples is detached. If T (QN ) is close to T (PN ), then it
is safe to use T (QN ) as an estimate of T (P ) (because we are unable to obtain T (PN ) in
practice).

Let ϕ : IRk → [0,∞) be a continuous function and

Mϕ
k :=

{
P ′ ∈ P(IRk) :

∫
IRk

ϕ(t)P ′(dt) <∞
}
.

Mϕ
k defines a subset of probability measures in P(IRk) which satisfies the generalized mo-

ment condition of ϕ.
Let P,Q ∈ P(IRk) be any two probability measures and P⊗N , Q⊗N ∈ P((IRk)⊗N ),

i.e., the two probability measures on (IRk)⊗N with marginal probabilities P and Q on IRk

respectively. The next lemma establishes a relationship between dlG ((P )
⊗N , (Q)⊗N ) and

dlK,k(P,Q) when G is the set of all Lipschitz continuous functions on (IRk)⊗N with modulus
being bounded by 1.

Lemma 2.1 ([7]). Let t⃗ := (t1, . . . , tN ) ∈ (IRk)⊗N and ψ : (IRk)⊗N → IR be a Lipschitz
continuous function with modulus being bounded by L/N for a fixed constant L > 0. Let Ψ
denote the set of all these functions, i.e.,

Ψ :=

{
ψ : (IRk)⊗N → IR

∣∣∣∣∣ψ(⃗t̃)− ψ(⃗t̂)| ≤ L

N

N∑
i=1

∥t̃i − t̂i∥, ∀⃗̃t, ⃗̂t ∈ (IRk)⊗N

}
.

Then dlΨ(P
⊗N , Q⊗N ) ≤ LdlK,k(P,Q), where dlK,k is defined as in Example 1.2.

With the technical result, we are able to derive a bound for dlG ((P )
⊗N◦T−1

N , (Q)⊗N◦T−1
N )

in terms of dlK,k(P,Q).

Theorem 2.2 (Quantitative statistical robustness). Assume that for any N ∈ N

|TN (ξ̃1, . . . , ξ̃N )− TN (ξ̂1, . . . , ξ̂N )| ≤ L

N

N∑
i=1

∥ξ̃i − ξ̂i∥. (2.2)

Let P,Q ∈ Mϕ
k , where ϕ(t) := ∥t∥, t ∈ IRk. Then

dlK,1

(
P⊗N ◦ T−1

N , Q⊗N ◦ T−1
N

)
≤ LdlK,k(P,Q) (2.3)

for all N ∈ N.

The result shows that when Q is close to P , the statistical estimator based on the
perceived data QN is close to the one based on the real data PN uniformly for all N .
This kind of result is first established by Guo and Xu [7] for the statistical estimators of
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the optimal values of preference robust optimization problems and extended by Wang et
al. [33] to risk measures where condition (2.2) is weakened to local Lipschitz continuity
with polynomial rate of growth of the Lipschitz modulus. It is called quantitative statistical
robustness in order to differentiate it from qualitative statistical robustness by Krätschmer et
al. [17] and Cont et al. [1] where the distance between P⊗N ◦T−1

N and Q⊗N ◦T−1
N is measured

by Prokhorov metric or Lévy metric and its relationship with the distance between Q and
P is implicit and qualitative.

Proof. By definition

dlK,1

(
P⊗N ◦ T−1

N , Q⊗N ◦ T−1
N

)
= sup

g∈GL

∣∣∣∣∫
IR

g(t)P⊗N ◦ T−1
N (dt)−

∫
IR

g(t)Q⊗N ◦ T−1
N (dt)

∣∣∣∣
= sup

g∈GL

∣∣∣∣∣
∫
(IRk)⊗N

g(TN (ξ⃗N ))P⊗N (dξ⃗N )−
∫
(IRk)⊗N

g(TN (ξ⃗N ))Q⊗N (dξ⃗N )

∣∣∣∣∣ , (2.4)

where GL is defined in (1.7) and ξ⃗N := (ξ1, . . . , ξN ). For each g ∈ GL, it follows by (2.2)
that

|g(TN (ξ̃1, . . . , ξ̃N ))− g(TN (ξ̂1, . . . , ξ̂N ))| ≤ |TN (ξ̃1, . . . , ξ̃N )− TN (ξ̂1, . . . , ξ̂N )|

≤ L

N

N∑
i=1

∥ξ̃i − ξ̂i∥, (2.5)

which means that g(TN (·)) is Lipschitz continuous over (IRk)⊗N with Lipschitz modulus
being bounded by L/N . By setting ψ = g ◦ TN and invoking Lemma 2.1, we have

rhs of (2.4) ≤ LdlK,k(Q,P ).

To complete the proof, it suffices to show the well-definedness of the metric dlK,1, that is,

for any g(TN ), both
∫
(IRk)⊗N g(TN (ξ⃗N ))P⊗N (dξ⃗N ) and

∫
(IRk)⊗N g(TN (ξ⃗N ))Q⊗N (dξ⃗N ) are

well-defined. Let ξ10 , . . . , ξ
N
0 be fixed. By (2.5),

|g(TN (ξ1, . . . , ξN ))− g(TN (ξ10 , . . . , ξ
N
0 ))| ≤ L

N

N∑
i=1

∥ξi − ξi0∥. (2.6)

Note that inequality (2.5) implies continuity and hence measurability of g(TN (·)).
For any P ∈ Mϕ

k , by using inequality (2.6), and applying Tonelli’s theorem to the integral∫
(IRk)⊗N g(TN (ξ⃗N ))P⊗N (dξ⃗N ) by switching the order of integration, we obtain

∫
(IRk)⊗N

g(TN (ξ⃗N ))P⊗N (dξ⃗N ) ≤ |g(TN (ξ10 , . . . , ξ
N
0 ))|+ L

N

∫
(IRk)⊗N

N∑
i=1

∥ξi − ξi0∥P⊗N (dξ⃗N )

= |g(TN (ξ10 , . . . , ξ
N
0 ))|+ L

N

N∑
i=1

∫
IRk

∥ξi − ξi0∥P (dξi)

<∞,

where the equality is due to the fact that the integrand depends on (ξ1, . . . , ξN ) only and

the last inequality holds because
∫
IRk ∥ξi − ξi0∥P (dξi) < ∞ for P ∈ Mϕ

k . The boundedness
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and measurability ensure the well-definedness of
∫
(IRk)⊗N g(TN (ξ⃗N ))P⊗N (dξ⃗N ) as desired.

A similar conclusion can be drawn when P is replaced by Q.

Theorem 2.2 paves the way for the statistical robustness of the optimal values of the
DRO models outlined in Section 1. Note that as in Wang et al. [33], it is possible to weaken
condition (2.2) to locally Lipschitz continuity with specified rate of growth of the modulus,
and subsequently derive an error bound under the Fortet-Mourier metric at the right hand
side of (2.3). Here we adopt a simpler version of the quantitative statistical robustness result
so that we may concentrate on other important issues concerning the DRO models.

In the forthcoming discussions (Sections 3-5), we will use Theorem 2.2 as a template to
present the quantitative statistical robustness of the optimal values of the DRO problems.
The basic idea is to derive Lipschitz continuity of the ambiguity sets of probability distribu-
tions w.r.t. change of sample data and subsequently demonstrate the Lipschitz continuity of
the optimal value function (w.r.t. change of sample data).

3 Statistical Robustness of the DRO Models with Moment Condi-
tions

In this section, we consider the DRO model with the ambiguity set being constructed by
moment conditions:

(DRO-moment) min
x∈X

max
P ′∈P(µN ,ΣN ,r1,r2)

EP ′ [f(x, ξ)], (3.1)

where P(µN ,ΣN , r1, r2) is defined as in (1.3) and is recast here as

P(µN ,ΣN , r1, r2) =

{
P ′ ∈ P(Ξ) : EP ′ [Ψ(ξ, µN ,ΣN , γ1, γ2)] ∈

(
Sk+1
−

Sk
−

)}
, (3.2)

where Ψ(ξ, µN ,ΣN , γ1, γ2) is defined as in (1.4) and Sk
− denotes the cone of all k×k negative

semidefinite symmetric matrices. To facilitate the forthcoming discussions, let us write down
the inner maximization problem separately as

max
P ′∈P(IRk)

EP ′ [f(x, ξ)]

s.t. P ′ ∈ P(µN ,ΣN , r1, r2).
(3.3)

Let ϑ(µN ,ΣN , r1, r2) and v(x, µN ,ΣN , r1, r2) denote the optimal values of (3.1) and (3.3)
respectively.

To derive the statistical robustness of ϑ(µN ,ΣN , r1, r2), we need to show the Lipschitz
continuity of ϑ w.r.t (ξ1, . . . , ξN ). Since ϑ(µN ,ΣN , r1, r2) is the minimum of function
v(·, µN ,ΣN , r1, r2) over X, we use classical stability analysis results (see e.g. Klatte [16,
Theorem 1]) to show Lipschitz continuity of v(x, µN ,ΣN , r1, r2). This requires us to figure
out sufficient conditions for the Lipscitz continuity of P(µN ,ΣN , r1, r2) w.r.t. (µN ,ΣN ) in
the first place, and then the Lipschitz continuity of µN and ΣN w.r.t. (ξ1, . . . , ξN ). We do
these in the sequel.

3.1 Stability of a general minimax DRO problem

We begin by presenting a stability result for an optimization problem with general minimax
structure. Let Ξ ⊂ IRk be a compact set, U be a compact set in a metric space equipped
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with norm ∥ · ∥U , and g be a continuous function mapping from IRn × P(Ξ) to IR. We
consider the following general parametric minimax problem:

min
x∈X

max
P∈P(u)

g(x, P ), (3.4)

where u ∈ U is a fixed parameter, X ⊂ IRn is a compact set. Let v(x, u) := maxP∈P(u) g(x, P )
denote the optimal value function of the maximization in (3.4) and ϑ(u) := minx∈X v(x, u)
be the optimal value function of problem (3.4). Assume P(u) ̸= ∅ for each u. Since Ξ
is compact, then P(Ξ) is weakly compact, and consequently by the continuity of g and
compactness of X, v(x, u) and ϑ(u) are finite valued.

We quantify the impact of arbitrary perturbation of parameter u on the optimal value ϑ.
To this end, we first investigate the case that parameter u is perturbed in a neighborhood
of ū.

Lemma 3.1. Let ū be fixed. Assume: (a) g(x, P ) is globally Lipschitz continuous in (x, P )
over X × P(Ξ), i.e., there exists a positive constant σ1 such that

|g(x̃, P̃ )− g(x̂, P̂ )| ≤ σ1(∥x̃− x̂∥+ dlK,k(P̃ , P̂ )), ∀x̃, x̂ ∈ X, P̃ , P̂ ∈ P(Ξ); (3.5)

(b) P(u) is locally Lipschitz continuous under the Kantorovich metric at ū, i.e., there exist
positive constants δ̄ and σ2 such that

H(P(ũ),P(û); dlK,k) ≤ σ2∥ũ− û∥U , ∀ũ, û ∈ N (ū, δ̄), (3.6)

where N (ū, δ̄) := {u′ ∈ U : ∥ū− u′∥U ≤ δ̄}. Then

(i) the optimal value function ϑ(u) is Lipschitz continuous at ū, i.e., there exists a positive
constant σ > 0 such that

|ϑ(ũ)− ϑ(û)| ≤ σ∥ũ− û∥U , ∀ũ, û ∈ N (ū, δ̄);

(ii) if, in addition, (c) P(u) is locally Lipschitz continuous under the Kantorovich metric
at every u ∈ U , i.e., there exist δu and σ′

2 > 0 such that

H(P(ũ),P(û); dlK,k) ≤ σ′
2∥ũ− û∥U , ∀ũ, û ∈ N (u, δu), (3.7)

then the optimal value function ϑ(u) is Lipschitz continuous in u, i.e., there exists a
positive constant σ′ > 0 such that

|ϑ(ũ)− ϑ(û)| ≤ σ′∥ũ− û∥U , ∀ũ, û ∈ U.

It might be helpful to give some comments about the conditions and the results of the
lemma before presenting a proof. Condition (a) requires g(x, P ) to be globally Lipschitz
continuity w.r.t. x and P . This condition is fulfilled when g is the expected value of a
random function, i.e., EP [f(x, ξ)] when (i) f(x, ξ) is globally Lipschitz continuous in x for
almost every ξ and the Lipschitz modulus is integrably bounded, and (ii) f(x, ξ) is globally
Lipschitz continuous uniformly for all x ∈ X, see [20] and references therein. Condition
(b) requires local Lipschitz continuity of the ambiguity set mapping w.r.t. variation of
parameters. This kind of result may be derived when the ambiguity set takes a specific
structure, see [19, 20, 25]. We will come back to this for problem (3.1) in the next subsection.

Lemma 3.1 (i) resembles [36, Theorem 3.1] although the stability result here is derived
for a general ambiguity set P(u). Lemma 3.1 (ii) is about global Lipschitz continuity of
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the optimal value function. Pichler and Xu [20] derive a similar result to Lemma 3.1 (ii)
when the ambiguity set is constructed through ζ-ball, see [20, Theorem 3]. Here we will use
Lemma 3.1 to derive global Lipschitz continuity and subsequently quantitative statistical
robustness of the optimal value of problem (3.4) when the objective function takes a specific
structure, see details in the next subsection.

Proof. The stability results are essentially based on the classical stability results for para-
metric programming (e.g. Klatte [16], Zhang et al. [35]).

Part (i). By the definition of v(x, u), we have

v(x̃, ũ)− v(x̂, û) = sup
P̃∈P(ũ)

g(x̃, P̃ )− sup
P̂∈P(û)

g(x̂, P̂ )

= sup
P̃∈P(ũ)

g(x̃, P̃ )− sup
P̂∈P(û)

g(x̃, P̂ ) + sup
P̂∈P(û)

g(x̃, P̂ )− sup
P̂∈P(û)

g(x̂, P̂ )

≤ sup
P̃∈P(ũ)

inf
P̂∈P(û)

|g(x̃, P̃ )− g(x̃, P̂ )|+ sup
P̂∈P(û)

|g(x̃, P̂ )− g(x̂, P̂ )|

≤ σ1 sup
P̃∈P(ũ)

inf
P̂∈P(û)

dlK,k(P̃ , P̂ ) + σ1∥x̃− x̂∥

= σ1(D(P(ũ),P(û); dlK,k) + ∥x̃− x̂∥),

where the second inequality is due to (3.5). Likewise, we can obtain

v(x̂, û)− v(x̃, ũ) ≤ σ1(D(P(û),P(ũ); dlK,k) + ∥x̃− x̂∥).

Combining the above two inequalities and the Lipschitz continuity of P(·) in (3.6), we have

|v(x̃, ũ)− v(x̂, û)| ≤ σ1(H(P(ũ),P(û); dlK,k) + ∥x̃− x̂∥)
≤ max{σ1σ2, σ1}(∥ũ− û∥U + ∥x̃− x̂∥).

The conclusion follows by setting σ := max{σ1σ2, σ1}. The Lipschitz continuity of ϑ(·)
follows from the classical stability results in [16, Theorem 1].

Part (ii). For any ũ, û ∈ U , since U is compact, we can construct a δ-net {u1, . . . , uN̂}
in the compact set U such that

{
u(λ) := (1− λ)ũ+ λû : λ ∈ [0, 1]

}
⊂

J⋃
j=1

N (uj , δuj ),

with J ≤ N̂ and U ⊂ ∪N̂
j=1N (uj , δuj ). Specifically, we can select an increasing sequence

{λj}J+1
j=1 ⊂ [0, 1] with λ1 = 0 and λJ+1 = 1, such that for u1j := (1 − λj)ũ + λj û and

u2j := (1− λj+1)ũ+ λj+1û, j = 1, . . . , J , we have

u2j = u1j+1
for j ∈ [J − 1],

J⋃
j=1

[u1j , u2j ] = [ũ, û] and [u1j , u2j ] ⊂ N (uj , δuj ) for j ∈ [J ],

where we write [J ] for {1, . . . , J} and [a, b] for the line segment connecting a and b. By Part
(i), there exist positive constants σuj , j ∈ [J ] such that∣∣ϑ(u1j )− ϑ(u2j )

∣∣ ≤ σuj∥u1j − u2j∥U , for j ∈ [J ].
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Let σ′ := max
j∈[N̂ ]

σuj . Then we have

|ϑ(ũ)− ϑ(û)| ≤
J∑

j=1

|ϑ(u1j )− ϑ(u2j )| ≤
J∑

j=1

σuj∥u1j − u2j∥U

=

J∑
j=1

σuj∥((1− λj)ũ+ λj û)− ((1− λj+1)ũ+ λj+1û)∥U

≤ max
j∈[N̂ ]

σuj∥ũ− û∥U = σ′∥ũ− û∥U (3.8)

for all ũ, û ∈ U .

3.2 Statistical robustness of problem (3.1)

We now return to discuss statistical robustness of problem (3.1). To ease the exposition, let
uN := (µN ,ΣN , γ1, γ2). Let u

0 := (µ0,Σ0, γ01 , γ
0
2) ∈ IRk × IRk×k × IR× IR be fixed and δ > 0

be a positive number. Define

N (u0, δ) :=
{
uN ∈ IRk × IRk×k × IR× IR : ∥uN − u0∥ ≤ δ

}
, (3.9)

where we write succinctly ∥uN − u0∥ for ∥µN − µ0∥+ ∥ΣN − Σ0∥+ |γ1 − γ01 |+ |γ2 − γ02 |.
Next, we derive the Lipschitz continuity of the optimal value function ϑ(uN ) =

minx∈X v(x, uN ) of Problem (3.1). We do so by applying Lemma 3.1 to the specific prob-
lem (3.1). To this end, we require the Lipschitz continuity of EP [f(x, ξ)] and the feasible
set-valued mapping P(·).
Proposition 3.2. Let u0 = (µ0,Σ0, γ01 , γ

0
2) ∈ IRk × IRk×k × IR× IR be fixed. Assume: (a) Ξ

is a compact set, and (b) the Slater condition for the constraint in (3.2) holds for u0, i.e.,
there exists Pu0 ∈ P(Ξ) such that

EPu0 [Ψ(ξ, u0)] ∈ int

(
Sk+1
−

Sk
−

)
, (3.10)

where “int” denotes the interior of a set; (c) f(x, ξ) is globally Lipschitz continuous in (x, ξ),
i.e. there exists a positive constant L1 > 0 such that

|f(x, ξ)− f(x′, ξ′)| ≤ L1(∥x− x′∥+ ∥ξ − ξ′∥), ∀x, x′ ∈ X, ξ, ξ′ ∈ Ξ. (3.11)

Then the optimal value function ϑ(uN ) is Lipschitz continuous in uN , i.e., there exist a

positive constants Cu0

1 > 0 and δ1 > 0 such that

|ϑ(ũN )− ϑ(ûN )| ≤ Cu0

1 ∥ũN − ûN∥

for all ũN , ûN ∈ N (u0, δ1) with δ1 > 0.

Proof. We use Lemma 3.1 to prove the result. Thus, it is enough to verify the conditions of
the lemma.

First, EP [f(x, ξ)] satisfies property (3.5). By the Lipschitz continuity of f in ξ, we have
1
L1
f(x, ·) ∈ GL for all x ∈ X, and consequently

|EP̃ [f(x̃, ξ)]− EP̂ [f(x̂, ξ)]| = |EP̃ [f(x̃, ξ)]− EP̃ [f(x̂, ξ)]|+ |EP̃ [f(x̂, ξ)]− EP̂ [f(x̂, ξ)]|
≤ EP̃ [|f(x̃, ξ)− f(x̂, ξ)|] + L1 sup

g∈GL

|EP̃ [g(ξ)]− EP̂ [g(ξ)]|

≤ L1∥x̃− x̂∥+ L1dlK,k(P̃ , P̂ ),
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where the last inequality is due to (3.11), and this verifies (3.5).
Second, P(uN ) satisfies the property (3.6). Since Ξ is compact, then P(Ξ) is weakly

compact. By the Kantorovich-Rubinstein theorem, dlW,k coincides with the Kantorovich
metric dlK,k when (Ξ, d) is a metric space. It follows by [11, Theorem 4] that

dlK,k(P̃ , P̂ ) ≤ diam(Ξ)dlTV (P̃ , P̂ ), ∀P̃ , P̂ ∈ P(Ξ), (3.12)

where diam(Ξ) := supξ,ξ′∈Ξ ∥ξ− ξ′∥, and dlTV (P̃ , P̂ ) := supg∈G |EP̃ [g(ξ)]−EP̂ [g(ξ)]|, where

G :=

{
g : IRk → IR : g is B measurable, sup

ξ∈Ξ
|g(ξ)| ≤ 1

}
.

Next, we estimate dlTV (P̃ , P̂ ). We do so by utilizing [36, Theorem 2.1]. For this, we
need to show the Lipschitz continuity of Ψ w.r.t. parameters (µN ,ΣN , γ1, γ2). Let ũN , ûN ∈
N (u0, δ). Observe that

∥Ψ(ξ, ũN )−Ψ(ξ, ûN )∥

=

∥∥∥∥∥∥
 [

−Σ̃N µ̃N − ξ
(µ̃N − ξ)T −γ̃1

]
(ξ − µ̃N )(ξ − µ̃N )T − γ̃2Σ̃N

−

 [
−Σ̂N µ̂N − ξ
(µ̂N − ξ)T −γ̂1

]
(ξ − µ̂N )(ξ − µ̂N )T − γ̂2Σ̂N

∥∥∥∥∥∥
≤

∥∥∥∥[ −Σ̃N µ̃N − ξ
(µ̃N − ξ)T −γ̃1

]
−
[

−Σ̂N µ̂N − ξ
(µ̂N − ξ)T −γ̂1

]∥∥∥∥
+∥(ξ − µ̃N )(ξ − µ̃N )T − γ̃2Σ̃N − (ξ − µ̂N )(ξ − µ̂N )T + γ̂2Σ̂N∥

≤ ∥ − Σ̃N + Σ̂N∥+ 2∥µ̃N − µ̂N∥+ | − γ̃1 + γ̂1|
+2∥ξ∥∥µ̃N − µ̂N∥+ ∥µ̃N µ̃

T
N − µ̂N µ̂

T
N∥+ ∥ − γ̃2Σ̃N + γ̂2Σ̂N∥

≤ ∥ − Σ̃N + Σ̂N∥+ 2∥µ̃N − µ̂N∥+ | − γ̃1 + γ̂1|
+2∥ξ∥∥µ̃N − µ̂N∥+ ∥µ̃N∥∥µ̃N − µ̂N∥+ ∥µ̂N∥∥µ̃N − µ̂N∥
+|γ̃2|∥Σ̃N − Σ̂N∥+ ∥Σ̂N∥|γ̃2 − γ̂2|

≤ max
{
|γ̃2|+ 1, 4 + ∥µ̃N∥+ ∥µ̂N∥, ∥Σ̂N∥

}
max{1, ∥ξ∥}∥ũN − ûN∥

≤ Cu0 max{1, ∥ξ∥}∥ũN − ûN∥, (3.13)

where Cu0 depends on u0 and δ, the last inequality follows from the fact that
|γ̃2|, ∥µ̃N∥, ∥µ̂N∥, ∥Σ̂N∥ ≤ ∥u0∥ + δ. By inequality (3.13) and the Slater condition (con-
dition (b)), we have, by [36, Theorem 2.1], that there exist positive constants C̄u0 > 0 and
δ1 > 0 such that

H(P(ũN ),P(ûN ); dlTV ) ≤ C̄u0
∥ũN − ûN∥, ∀ũN , ûN ,∈ N (u0, δ1). (3.14)

Combining (3.12) and (3.14), we have

H(P(ũN ),P(ûN ); dlK,k) ≤ diam(Ξ)C̄u0
∥ũN − ûN∥, (3.15)

which shows that P(uN ) satisfies the property (3.6). The conclusion follows by Lemma 3.1
with Cu0

1 := max{diam(Ξ)C̄u0
L1, L1}.

The Slater condition (3.10) plays a crucial role in the derivation of error bound (3.15).
Unfortunately the error bound holds only in a neighborhood of u0 which is inadequate for
us to establish the global Lipschitz continuity of v(u). To address the issue, we impose a
stronger condition in the following proposition.
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Proposition 3.3. Assume:(a) Ξ is a compact set; (b) the Slater condition for the constraint
in (3.2) holds for every u ∈ Ξ × {ξξT : ξ ∈ Ξ} × {γ1} × {γ2}, i.e., there exists Pu ∈ P(Ξ)
such that

EPu [Ψ(ξ, u)] ∈ int

(
Sk+1
−

Sk
−

)
, ∀u ∈ Ξ× {ξξT : ξ ∈ Ξ} × {γ1} × {γ2}, (3.16)

where P(Ξ) is the set of all probability distributions of ξ whose support sets are contained
in Ξ (or alternatively the set of all probability measures on Ξ induced by mapping ξ); (c) the
condition (c) in Proposition 3.2. Then the optimal value function ϑ(uN ) is globally Lipschitz
continuous in uN , i.e., there exists a positive constant C2 > 0 such that

|ϑ(ũN )− ϑ(ûN )| ≤ C2∥ũN − ûN∥

for all ũN , ûN ∈ Ξ× {ξξT : ξ ∈ Ξ} × {γ1} × {γ2}.

Proof. We use Lemma 3.1 (ii) to prove the result. It suffices to show P(uN ) is locally
Lipschitz continuous under the Kantorovich metric at every u ∈ Ξ×{ξξT : ξ ∈ Ξ}× {γ1}×
{γ2}. This property is guaranteed by Proposition 3.2 under conditions (a)-(c). Thus the
conclusion follows from Lemma 3.1 (ii).

Under conditions in Proposition 3.3, we are able to establish the main result of this

section. Let us write ξ⃗N for (ξ1, . . . , ξN ), ϑ̂(ξ⃗N ) for ϑ(uN ) and ϑ̂(
⃗̃
ξN ) for ϑ(ũN ) to indicate

their dependence on ξ⃗ and
⃗̃
ξ respectively. Then ϑ̂(ξ⃗) and ϑ̂(

⃗̃
ξ) are two statistical estimators

of the optimal value of (DRO-moment) and we are interested in the difference between laws

of the two estimators, that is, the difference between Q⊗N ◦ ϑ̂(ξ⃗)−1 and P⊗N ◦ ϑ̂(⃗̃ξ)−1, where
Q and P are the probability measures of ξ and ξ̃ respectively. The next theorem addresses
this.

Theorem 3.4 (Quantitative statistical robustness of model (3.1)). Assume the settings and

conditions in Proposition 3.3. Let γ1, γ2 be fixed and P,Q ∈ Mϕ
k , where ϕ(t) := ∥t∥. Then

there exists a constant C3 > 0 such that

dlK,1

(
P⊗N ◦ ϑ̂−1, Q⊗N ◦ ϑ̂−1

)
≤ C3dlK,k(P,Q) (3.17)

for all N ∈ N.

Proof. Based on the Lipschitz continuity of ϑ(·) in Proposition 3.3, we can obtain the sta-

tistical robustness of the estimator ϑ̂(·) in the following result. By the definition of dlK,1,

dlK,1(P
⊗N ◦ ϑ̂−1, Q⊗N ◦ ϑ̂−1)

= sup
g∈GL

∣∣∣∣∫
IR

g(t)P⊗N ◦ ϑ̂−1(dt)−
∫
IR

g(t)Q⊗N ◦ ϑ̂−1(dt)

∣∣∣∣
= sup

g∈GL

∣∣∣∣∣
∫
(Ξ)⊗N

g(ϑ̂(ξ⃗N ))P⊗N (dξ⃗N )−
∫
(Ξ)⊗N

g(ϑ̂(ξ⃗N ))Q⊗N (dξ⃗N )

∣∣∣∣∣ , (3.18)

where GL is defined in (1.7). To show (3.17), it suffices to show the Lipschitz continuity of

g(ϑ̂(ξ⃗N )) and well-definedness of the integrals. Let R1 := ∥µ̃N − µ̂N∥ and R2 := ∥Σ̃N −Σ̂N∥.
Then

R1 =

∥∥∥∥∥ 1

N

N∑
i=1

ξ̃i − 1

N

N∑
i=1

ξ̂i

∥∥∥∥∥ ≤ 1

N

N∑
i=1

∥ξ̃i − ξ̂i∥ (3.19)
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and

R2 =

∥∥∥∥∥ 1

N

N∑
i=1

(ξ̃i − µ̃N )(ξ̃i − µ̃N )T − 1

N

N∑
i=1

(ξ̂i − µ̂N )(ξ̂i − µ̂N )T

∥∥∥∥∥
≤ 1

N

N∑
i=1

∥∥∥(ξ̃i − µ̃N )(ξ̃i − µ̃N )T − (ξ̂i − µ̂N )(ξ̂i − µ̂N )T
∥∥∥

=
1

N

N∑
i=1

∥∥∥ξ̃i(ξ̃i)T − ξ̃iµ̃T
N − µ̃N (ξ̃i)T + µ̃N µ̃

T
N − ξ̂i(ξ̂i)T − ξ̂iµ̂T

N − µ̂N (ξ̂i)T + µ̂N µ̂
T
N

∥∥∥
=

1

N

N∑
i=1

(
∥ξ̃i∥∥ξ̃i − ξ̂i∥+ ∥ξ̂i∥∥ξ̃i − ξ̂i∥+ 2∥ξ̃i∥∥µ̃N − µ̂N∥+ 2∥µ̂N∥∥ξ̃i − ξ̂i∥

+∥µ̃N∥∥µ̃N − µ̂N∥+ ∥µ̂N∥∥µ̃N − µ̂N∥)

≤ 3

N
sup

i=1,...,N

{
2∥ξ̃i∥, ∥ξ̂i∥, ∥µ̃N∥, 2∥µ̂N∥

} N∑
i=1

(
∥ξ̃i − ξ̂i∥+ ∥µ̃N − µ̂N∥

)
≤ 6

N
sup

i=1,...,N

{
2∥ξ̃i∥, ∥ξ̂i∥, ∥µ̃N∥, 2∥µ̂N∥

} N∑
i=1

∥ξ̃i − ξ̂i∥. (3.20)

Combining inequalities (3.19)-(3.20), we have

R1 +R2 ≤
(

1

N
+

6

N
sup

i=1,...,N

{
2∥ξ̃i∥, ∥ξ̂i∥, ∥µ̃N∥, 2∥µ̂N∥

}) N∑
i=1

∥ξ̃i − ξ̂i∥. (3.21)

Since f(x, ξ) is uniformly Lipschitz continuous in ξ and g is also Lipschitz continuous with
modulus being bounded by 1, it follows by (3.21) that

|g(ϑ̂(ξ̃1, . . . , ξ̃N ))− g(ϑ̂(ξ̂1, . . . , ξ̂N ))| ≤ |ϑ̂(ξ̃1, . . . , ξ̃N )− ϑ̂(ξ̂1, . . . , ξ̂N )|
= |ϑ(ũN )− ϑ(ûN )|
≤ C2(R1 +R2)

≤ C3

N

N∑
i=1

∥ξ̃i − ξ̂i∥,

where C3 := C2 + 12C2(∥ξ0∥+ diam(Ξ)), C2 is defined as in Proposition 3.3 and ξ0 is some
fixed element in Ξ.

This means that g(ϑ̂(·)) is Lipschitz continuous over (Ξ)⊗N with Lipschitz modulus

bounded by C3, and thus the well-definedness of
∫
(Ξ)⊗N g(ϑ̂(ξ⃗

N ))P⊗N (dξ⃗N ) and∫
(Ξ)⊗N g(ϑ̂(ξ⃗

N ))Q⊗N (dξ⃗N ) can be deduced from Theorem 2.2. The rest follows from Theo-

rem 2.2 by setting TN (ξ1, . . . , ξN ) = ϑ̂(ξ1, . . . , ξN ) in the theorem.

4 Statistical Robustness of the DRO Models with ζ-Ball

In this section, we consider a DRO model where the ambiguity set is constructed by ζ-ball
centered at QN with some fixed radius r:

(DRO-ball) min
x∈X

max
P ′∈BH1

(QN ,r)
EP ′ [f(x, ξ)], (4.1)
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where

BH1
(QN , r) := {P ′ ∈ P(Ξ) : dlH1

(P ′, QN ) ≤ r}

and H1 := {f(x, ·) : x ∈ X}. This corresponds to Example 1.2 with G := H1. Let ϑ(QN )
denote the optimal value of problem (4.1) and ϑ(PN ) the one with QN be replaced by PN ,
that is,

ϑ(QN ) := min
x∈X

max
P ′∈BH1

(QN ,r)
EP ′ [f(x, ξ)],

ϑ(PN ) := min
x∈X

max
P ′∈BH1

(PN ,r)
EP ′ [f(x, ξ)].

Then ϑ(QN ) and ϑ(PN ) are two statistical estimators of the optimal value of (DRO-ball)
and we are interested in the difference between laws of the two estimators, that is, the
difference between Q⊗N ◦ ϑ(QN )−1 and P⊗N ◦ ϑ(PN )−1. We write ξ⃗N for (ξ1, . . . , ξN ) and

ϑ̂(ξ⃗N ) for ϑ(PN ) to indicate its dependence on ξ1, . . . , ξN .

Theorem 4.1 (Quantitative statistical robustness of model (4.1)). Assume that f(x, ξ)
is continuous in x for each fixed ξ and is globally Lipschitz continuous in ξ uniformly for
x ∈ X, i.e. there exists a positive constant L1 > 0 such that

sup
x∈X

|f(x, ξ)− f(x, ξ′)| ≤ L1∥ξ − ξ′∥, ∀ξ, ξ′ ∈ Ξ.

Let P,Q ∈ Mϕ
k , where ϕ(t) = ∥t∥. Then

dlK,1

(
P⊗N ◦ ϑ̂−1

N , Q⊗N ◦ ϑ̂−1
N

)
≤ L1dlK,k(P,Q) (4.2)

for all N ∈ N.

Proof. We will show (4.2) by applying Theorem 2.2. Thus it suffices to verify the Lips-

chitz continuity of ϑ̂(ξ̃1, . . . , ξ̃N ) w.r.t. (ξ̃1, . . . , ξ̃N ). Since f(x, ξ) is uniformly Lipschitz
continuous in ξ and then H1

L1
⊂ GL, which implies that

dlH1(Q̃N , Q̂N ) ≤ L1 sup
h∈GL

|EQ̃N
[h(ξ)]− EQ̂N

[h(ξ)]|,
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where Q̃N := 1
N

∑N
i=1 δξ̃i and Q̂N := 1

N

∑N
i=1 δξ̂i . We have

ϑ̂(ξ̃1, . . . , ξ̃N )− ϑ̂(ξ̂1, . . . , ξ̂N ) = min
x∈X

sup
P̃∈BH1

(Q̃N ,r)

EP̃ [f(x, ξ)]−min
x∈X

sup
P̂∈BH1

(Q̂N ,r)

EP̂ [f(x, ξ)]

≤ sup
x∈X

(
sup

P̃∈BH1
(Q̃N ,r)

EP̃ [f(x, ξ)]− sup
P̂∈BH1

(Q̂N ,r)

EP̂ [f(x, ξ)]

)
≤ sup

x∈X
sup

P̃∈BH1
(Q̃N ,r)

inf
P̂∈BH1

(Q̂N ,r)

∣∣EP̃ [f(x, ξ)]− EP̂ [f(x, ξ)]
∣∣

≤ sup
x∈X

sup
P̃∈BH1

(Q̃N ,r)

inf
P̂∈BH1

(Q̂N ,r)
sup
h∈H1

∣∣EP̃ [h(ξ)]− EP̂ [h(ξ)]
∣∣

= sup
x∈X

D(BH1
(Q̃N , r),BH1

(Q̂N , r); dlH1
)

≤ sup
x∈X

H(BH1
(Q̃N , r),BH1

(Q̂N , r); dlH1
)

≤ sup
x∈X

dlH1
(Q̃N , Q̂N )

≤ L1 sup
h∈GL

|EQ̃N
[h(ξ)]− EQ̂N

[h(ξ)]|

= L1 sup
h∈GL

∣∣∣∣∣ 1N
N∑
i=1

h(ξ̃i)− 1

N

N∑
i=1

h(ξ̂i)

∣∣∣∣∣
≤ L1

N

N∑
i=1

∥ξ̃i − ξ̂i∥,

where the last third inequality is due to [20, Theorem 1]. By swapping the roles of

ϑ̂(ξ̃1, . . . , ξ̃N ) and ϑ̂(ξ̂1, . . . , ξ̂N ), we obtain

ϑ̂(ξ̂1, . . . , ξ̂N )− ϑ̂(ξ̃1, . . . , ξ̃N ) = sup
x∈X

D(BH1(Q̂N , r),BH1(Q̃N , r); dlH1)

≤ sup
x∈X

H(BH1
(Q̃N , r),BH1

(Q̂N , r); dlH1
)

≤ L1

N

N∑
i=1

∥ξ̃i − ξ̂i∥,

and thus

|ϑ̂(ξ̃1, . . . , ξ̃N )− ϑ̂(ξ̂1, . . . , ξ̂N )| ≤ L1

N

N∑
i=1

∥ξ̃i − ξ̂i∥.

This means that ϑ̂(·) is Lipschitz continuous over (IRk)⊗N with Lipschitz modulus

being bounded by L1/N . The well-definedness of
∫
(Ξ)⊗N g(ϑ̂(ξ⃗

N ))P⊗N (dξ⃗N ) and∫
(Ξ)⊗N g(ϑ̂(ξ⃗

N ))Q⊗N (dξ⃗N ) can be subsequently deduced as in the proof of Theorem 2.2.

The rest follows from Theorem 2.2 by setting TN (ξ1, . . . , ξN ) = g(ϑ̂(ξ1, . . . , ξN )) in the
theorem.

As an application1 , we consider the DRO model in machine learning as described in

1This is not a direct application as the ambiguity set is defined in a different manner. However, the
DRO model in machine is essentially under the DRO framework where the ambiguity set is of ζ-structure.
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Example 1.3:

inf
w

sup
P ′∈B(PN ,r)

EP ′ [c(⟨w,x⟩, y)], (4.3)

where x ∈ X ⊂ IRk−1 and y ∈ Y ⊂ IR and

B(PN , r) = {P ′ ∈ P(Ξ) : dlK,k(P
′, PN ) ≤ r}.

Note that the Kantorovich ball coincides with the Wasserstein ball B̂(PN , r) defined in (1.10)
and it is a special ζ-ball [20].

In practice, the perceived sample data may be contaminated which means that they
are not real data generated by the true distribution P , rather they are generated by some
distribution Q which is a perturbation of P . This motivates us to investigate statistical
robustness the optimal value of the DRO problem (4.3). Let

ϑ(PN ) := inf
w

sup
P ′∈B(PN ,r)

EP ′ [c(⟨w,x⟩, y)],

ϑ(QN ) := inf
w

sup
P ′∈B(QN ,r)

EP ′ [c(⟨w,x⟩, y)].

We are interested in the difference between laws of the two estimators, that is, the difference
between Q⊗N ◦ ϑ(QN )−1 and P⊗N ◦ ϑ(PN )−1. We can write ξ⃗N for (ξ1, . . . , ξN ) and write

ϑ̂(ξ⃗N ) for ϑ(PN ) and ϑ̂(
⃗̃
ξN ) for ϑ(QN ) to indicate their dependence on ξ⃗ and

⃗̃
ξ respectively.

Let ĉ(ξ,w) := c(⟨w,x⟩, y), where ξ = (x, y), and define H2 := {ĉ(·,w) : w ∈ IRk−1}.

Proposition 4.2 (Quantitative statistical robustness of model (4.3)). Assume that ĉ(ξ,w)
is globally Lipschitz continuous in ξ uniformly for w ∈ IRk−1, i.e. there exists a positive
constant L2 > 0 such that

sup
w∈IRk−1

|ĉ(ξ,w)− ĉ(ξ′,w)| ≤ L2∥ξ − ξ′∥, ∀ξ, ξ′ ∈ Ξ = X× Y. (4.4)

Let P,Q ∈ Mϕ
k , where ϕ(t) = ∥t∥, t ∈ IRk. Then

dlK,1

(
P⊗N ◦ ϑ̂−1, Q⊗N ◦ ϑ̂−1

)
≤ L2dlK,k(P,Q) (4.5)

for all N ∈ N.

Proof. We show (4.5) by applying Theorem 2.2, where the Lipschitz continuity of

ϑ̂(ξ̃1, . . . , ξ̃N ) w.r.t. (ξ̃1, . . . , ξ̃N ) is needed. Since ĉ(ξ,w) is Lipschitz continuous in ξ uni-
formly for w in (4.4), we have H2

L2
⊂ GL, which implies that for any P̃ , P̂ ∈ P(Ξ),

dlH2(P̃ , P̂ ) ≤ L2 sup
h∈GL

|EP̃ [h(ξ)]− EP̂ [h(ξ)]|. (4.6)
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Analogous to the proof of Theorem 4.1, we have

ϑ̂(ξ̃1, . . . , ξ̃N )− ϑ̂(ξ̂1, . . . , ξ̂N ) = inf
w

sup
P̃∈B(Q̃N ,r)

EP̃ [c(⟨w,x⟩, y)]− inf
w

sup
P̂∈B(Q̂N ,r)

EP̂ [c(⟨w,x⟩, y)]

≤ sup
w

(
sup

P̃∈B(Q̃N ,r)

EP̃ [c(⟨w,x⟩, y)]− sup
P̂∈B(Q̂N ,r)

EP̂ [c(⟨w,x⟩, y)]

)
= sup

w
sup

P̃∈B(Q̃N ,r)

inf
P̂∈B(Q̂N ,r)

(EP̃ [c(⟨w,x⟩, y)]− EP̂ [c(⟨w,x⟩, y)])

≤ sup
w

sup
P̃∈B(Q̃N ,r)

inf
P̂∈B(Q̂N ,r)

sup
h∈H2

|EP̃ [h(ξ)]− EP̂ [h(ξ)]|

≤ sup
P̃∈B(Q̃N ,r)

inf
P̂∈B(Q̂N ,r)

L2 sup
h∈GL

|EP̃ [h(ξ)]− EP̂ [h(ξ)]|

= L2D(B(Q̃N , r),B(Q̂N , r); dlK,k)

≤ L2H(B(Q̃N , r),B(Q̂N , r); dlK,k)

≤ L2dlK,k(Q̃N , Q̂N )

= L2 sup
h∈GL

∣∣∣∣∣ 1N
N∑
i=1

h(ξ̃i)− 1

N

N∑
i=1

h(ξ̂i)

∣∣∣∣∣
≤ L2

N

N∑
i=1

∥ξ̃i − ξ̂i∥,

where the second last inequality is due to the Lipschitz continuity of ζ-ball B(·, r) in [20, The-

orem 1], and the third inequality is due to (4.6). By swapping the positions of ϑ̂(ξ̃1, . . . , ξ̃N )

and ϑ̂(ξ̂1, . . . , ξ̂N ), we obtain

ϑ̂(ξ̂1, . . . , ξ̂N )− ϑ̂(ξ̃1, . . . , ξ̃N ) ≤ D(B(Q̂N , r),B(Q̃N , r); dlK,k)

≤ L2H(B(Q̃N , r),B(Q̂N , r); dlK,k)

≤ L2

N

N∑
i=1

∥ξ̃i − ξ̂i∥.

Summarizing the discussions above, we have

|ϑ̂(ξ̃1, . . . , ξ̃N )− ϑ̂(ξ̂1, . . . , ξ̂N )| ≤ L2

N

N∑
i=1

∥ξ̃i − ξ̂i∥.

The above relations mean that ϑ̂(·) is Lipschitz continuous over (Ξ)⊗N with Lipschitz mod-

ulus bounded by L2/N , and thus the well-definedness of
∫
(Ξ)⊗N g(ϑ̂(ξ⃗

N ))P⊗N (dξ⃗N ) and∫
(Ξ)⊗N g(ϑ̂(ξ⃗

N ))Q⊗N (dξ⃗N ) can be deduced from Theorem 2.2. The rest follows from Theo-

rem 2.2 by setting TN (ξ1, . . . , ξN ) := ϑ̂(ξ1, . . . , ξN ) in the theorem.

5 Statistical Robustness of the Distributionally Robust Shortfall
Risk Optimization Model

We consider distributionally robust shortfall risk optimization model where the ambiguity
set is constructed by Kantorovich ball centered at a nominal distribution PN with some
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fixed radius r

min
t∈IR

t

s.t. sup
P ′∈B(PN ,r)

EP ′ [l(−ξ − t)] ≤ λ, (5.1)

where ξ ∈ IR, and

B(PN , r) := {P ′ ∈ P(Ξ) : dlK,1(P
′, PN ) ≤ r}.

In order to investigate the statistical robustness of model (5.1), let ϑ(PN ) denote the optimal
value of problem (5.1) and ϑ(QN ) the one with PN be replaced by QN , that is,

ϑ(PN ) := min
t∈IR

{
t : sup

P ′∈B(PN ,r)

EP ′ [l(−ξ − t)] ≤ λ

}
,

ϑ(QN ) := min
t∈IR

{
t : sup

P ′∈B(QN ,r)

EP ′ [l(−ξ − t)] ≤ λ

}
.

Then ϑ(PN ) and ϑ(QN ) are two statistical estimators of the optimal value of (5.1) and we
are interested in the difference between laws of the two estimators, that is, the difference
between Q⊗N ◦ ϑ(QN )−1 and P⊗N ◦ ϑ(PN )−1. To this end, we need to make the following
assumption.

Assumption 5.1. Assume that

(a) Ξ is compact;

(b) there exists a point z0 < 0 such that l is strictly increasing over [z0,∞);

(c) λ ∈ int range l, where range l := {l(t) : t ∈ IR}.

Under Assumption 5.1, inequality in (5.1) satisfies the Slater condition, i.e., there exists
a point tP ∈ IR such that

sup
P ′∈B(P,r)

EP ′ [l(−ξ − tP )]− λ < 0. (5.2)

To see this, notice that since λ ∈ int range l, there exists a constant ε > 0 such that
λ + (−ε, ε) ⊂ range l. We can then choose a positive constant ε1 ∈ (0, ε) such that (λ −
ε, λ − ε1) ⊂ range l. Consequently, we can find t̄ ∈ IR such that l(t̄) ≤ λ − ε1. Let
tP := −ess inf ξ − t̄. Then

sup
P ′∈B(P,r)

EP ′ [l(−ξ − tP )]− λ ≤ sup
ξ∈Ξ

l(−ξ − tP )− λ

≤ l(−ess inf ξ − tP )− λ = l(t̄)− λ ≤ −ε1
< 0,

which shows (5.2).
Under Assumption 5.1, the optimal value ϑ(QN ) of problem (5.1) has a lower bound

uniformly for all QN . To see this, we note that since l(·) is increasing,

l (−ess sup ξ − t) = sup
P ′∈B(QN ,r)

EP ′ [l (−ess sup ξ − t)] ≤ sup
P ′∈B(QN ,r)

EP ′ [l(−ξ − t)].
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Let t1 := min {t ∈ IR : l (−ess sup ξ − t) ≤ λ}. Then the inequality above implies that
ϑ(QN ) ≥ t1 for all QN . We assert that t1 > −∞. Indeed, by Assumption 5.1 (c), there
exists a constant α > 0 such that

l (−ess sup ξ − tP ) = sup
P ′∈B(P,r)

EP ′ [l (−ess sup ξ − tP )] ≤ sup
P ′∈B(P,r)

EP ′ [l(−ξ − tP )] ≤ λ− α.

Since l(·) is strictly increasing over [z0,∞), we have

lim
t→−∞

l (−ess sup ξ − t) = +∞,

which implies t1 > −∞. This shows

ϑ(QN ) ≥ t1 > −∞, ∀QN . (5.3)

Proposition 5.1. Let r be fixed. Assume: (a) Assumption 5.1 holds, (b) l(·) is a con-
vex function over IR, (c) l(·) is Lipschitz continuous over the interval I := [−ess sup ξ −
tP ,−ess inf ξ − t1], i.e., there exists a positive constant L3 > 0 such that

|l(z1)− l(z2)| ≤ L3|z1 − z2|, ∀z1, z2 ∈ I. (5.4)

Then the optimal value function of problem (5.1) is Lipschitz continuous, i.e., there exist
constants δ2 > 0 and ĈP such that

|ϑ(Q̃N )− ϑ(Q̂N )| ≤ ĈP dlK,1(Q̃N , Q̂N ) (5.5)

for all Q̃N , Q̂N ∈ B(P, δ2).

Proof. We first show that the optimal value ϑ(QN ) also has a uniform upper bound for all
QN near P . Note that it follows from [20, Theorem 1] that

H
(
B(Q̃N , r),B(Q̂N , r); dlK,1

)
≤ dlK,1(Q̃N , Q̂N ). (5.6)

Let H3 := {l(−ξ − t) : t ∈ [t1, tP ]}. Then by the Lipschitz continuity of loss function l(·)
(see (5.4)), we have H3

L3
⊂ GL. For any t ∈ [t1, tP ],

sup
P̃∈B(Q̃N ,r)

EP̃ [l(−ξ − t)]− sup
P̂∈B(Q̂N ,r)

EP̂ [l(−ξ − t)]

= sup
P̃∈B(Q̃N ,r)

inf
P̂∈B(Q̂N ,r)

(EP̃ [l(−ξ − t)]− EP̂ [l(−ξ − t)])

≤ sup
P̃∈B(Q̃N ,r)

inf
P̂∈B(Q̂N ,r)

sup
l∈H3

|EP̃ [l(−ξ − t)]− EP̂ [l(−ξ − t)]|

≤ L3 sup
P̃∈B(Q̃N ,r)

inf
P̂∈B(Q̂N ,r)

sup
h∈GL

|EP̃ [h(ξ)]− EP̂ [h(ξ)]|

= L3D(B(Q̃N , r),B(Q̂N , r); dlK,1), (5.7)

where GL is defined in (1.7). Swapping the positions of Q̂N and Q̃N , we have

sup
P̂∈B(Q̂N ,r)

EP̂ [l(−ξ − t)]− sup
P̃∈B(Q̃N ,r)

EP̃ [l(−ξ − t)] ≤ L3D(B(Q̂N , r),B(Q̃N , r); dlK,1). (5.8)

Combining inequalities (5.7) and (5.8), we obtain for any t ∈ [t1, tP ],∣∣∣∣∣ sup
P̃∈B(Q̃N ,r)

EP̃ [l(−ξ − t)]− sup
P̂∈B(Q̂N ,r)

EP̂ [l(−ξ − t)]

∣∣∣∣∣ ≤ L3H(B(Q̃N , r),B(Q̂N , r); dlK,1). (5.9)
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A combination of (5.6) and (5.9) yields∣∣∣∣∣ sup
P̃∈B(Q̃N ,r)

EP̃ [l(−ξ − t)]− sup
P̂∈B(Q̂N ,r)

EP̂ [l(−ξ − t)]

∣∣∣∣∣ ≤ L3dlK,1(Q̃N , Q̂N ) (5.10)

for all t ∈ [t1, tP ]. It follows from (5.10) and the Salter condition that

sup
P ′∈B(QN ,r)

EP ′ [l(−ξ−tP )] ≤ sup
P ′∈B(P,r)

EP ′ [l(−ξ−tP )]+L3dlK,k(QN , P ) ≤ λ−α+L3dlK,k(QN , P ),

and thus

sup
P ′∈B(QN ,r)

EP ′ [l(−ξ − tP )] ≤ λ− α

2
< λ (5.11)

for QN ∈ B(P, δ2) with δ2 = α
2L3

, which means tP is a feasible solution of problem (5.1)
with PN being replaced by QN ∈ B(P, δ2). This shows

ϑ(QN ) ≤ tP , ∀QN ∈ B(P, δ2). (5.12)

Combining (5.3) and (5.12), we have

ϑ(QN ) ∈ [t1, tP ], ∀QN ∈ B(P, δ2),

and thus problem (5.1) with parameter QN ∈ B(P, δ2) can be written equivalently as

min
t∈[t1,tP ]

t

s.t. sup
P ′∈B(QN ,r)

EP ′ [l(−ξ − t)] ≤ λ. (5.13)

Next, we investigate the Lipschitz continuity of the restricted feasible set

F(QN ) ∩ T :=

{
t ∈ [t1, tP ] : sup

P ′∈B(QN ,r)

EP ′ [l(−ξ − t)] ≤ λ

}
.

Note that the convexity of l ensures that supP̂∈B(Q̂N ,r) EP̂ [l(−ξ− t)−λ] is convex in t. Since

t ∈ F(Q̃N )∩T is equivalent to supP̃∈B(Q̃N ,r) EP̃ [l(−ξ− t)]−λ ≤ 0, it follows by Robinson’s

error bound for convex system of inequality (see [27, Section 3]) that

d(t,F(Q̂N ) ∩ T )

≤ κP max

{
0, sup

P̂∈B(Q̂N ,r)

EP̂ [l(−ξ − t)]− λ

}

≤ κP max

{
0, sup

P̂∈B(Q̂N ,r)

EP̂ [l(−ξ − t)]− λ−

(
sup

P̃∈B(Q̃N ,r)

EP̃ [l(−ξ − t)]− λ

)}

for all t ∈ F(Q̃N )∩T , where κP = 2(tP−t1)/α, d(t′, t′′) := |t′−t′′|, d(t′, A) := inft′′∈A |t′−t′′|,
and thus

D(F(Q̃N ) ∩ T,F(Q̂N ) ∩ T ; d) ≤ κP sup
t∈T

∣∣∣∣∣ sup
P̃∈B(Q̃N ,r)

EP̃ [l(−ξ − t)]− sup
P̂∈B(Q̂N ,r)

EP̂ [l(−ξ − t)]

∣∣∣∣∣
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for all Q̃N , Q̂N ∈ B(P, δ2). Similarly, we have

D(F(Q̂N ) ∩ T,F(Q̃N ) ∩ T ; d) ≤ κP sup
t∈T

∣∣∣∣∣ sup
P̃∈B(Q̃N ,r)

EP̃ [l(−ξ − t)]− sup
P̂∈B(Q̂N ,r)

EP̂ [l(−ξ − t)]

∣∣∣∣∣
for all Q̃N , Q̂N ∈ B(P, δ2). Combining the above two inequalities and (5.10), we have

H(F(Q̃N ) ∩ T,F(Q̂N ) ∩ T ; d) ≤ ĈP dlK,1(Q̃N , Q̂N ) (5.14)

for all Q̃N , Q̂N ∈ B(P, δ2), where ĈP = κPL3. It follows by [16, Theorem 1] that the optimal
value function of problem (5.1) is Lipschitz continuous, i.e.,

|ϑ(Q̃N )− ϑ(Q̂N )| ≤ ĈP dlK,1(Q̃N , Q̂N )

for all Q̃N , Q̂N ∈ B(P, δ2).

The Slater condition (5.2) plays a crucial role in the Lipschitz continuity of the restricted
feasible set-valued mapping F(·) ∩ T in (5.14). Unfortunately the latter holds only in a
neighborhood of the true probability measure P which is inadequate for us to establish
“global” Lipschitz continuity of ϑ(·). To address the issue, we impose a stronger Slater
condition for the inequality in (5.1). Specifically, we require that for every Q ∈ P(Ξ), there
exists a point tQ ∈ IR such that

sup
P ′∈B(Q,r)

EP ′ [l(−ξ − tQ)]− λ < 0. (5.15)

It is easy to observe that this kind of Slater condition is guaranteed by Assumption 5.1.

We write ξ⃗N for (ξ1, . . . , ξN ) and write ϑ̂(
⃗̃
ξN ) for ϑ(Q̃N ) and ϑ̂(

⃗̂
ξN ) for ϑ(Q̂N ) to indicate

their dependence on
⃗̃
ξ and

⃗̂
ξ respectively.

Theorem 5.2 (Quantitative statistical robustness of model (5.1)). Assume: (a) Assumption
5.1 holds, (b) l(·) is a convex function on IR, (c) l(·) is Lipschitz continuous over a compact
set, i.e., there exists a positive constant L3 > 0 such that (5.4) holds. Then there exists a

positive constant Ĉ > 0 such that for P,Q ∈ Mϕ
k with ϕ(t) := |t|, t ∈ IR,

dlK,1

(
P⊗N ◦ ϑ̂−1, Q⊗N ◦ ϑ̂−1

)
≤ ĈdlK,k(P,Q). (5.16)

for all N ∈ N.

Proof. Under Assumptions 5.1 and conditions (b) and (c), for any Q̃N , Q̂N ∈ P(Ξ), since

P(Ξ) is a weakly compact set under metric dK,1, we can construct a δ2-net {Q1, . . . , QÑ}
in P(Ξ) such that

{
QN (λ) := (1− λ)Q̃N + λQ̂N : λ ∈ [0, 1]

}
⊂

J̃⋃
j=1

B(Qj , δj2)

with J̃ ≤ Ñ and P(Ξ) ⊂ ∪Ñ
j=1B(Qj , δj2). Similar to the proof of Lemma 3.1 (ii), we can select

an increasing sequence {λ}J̃+1
j=1 ⊂ [0, 1], with λ1 = 0, λJ̃+1 = 1, Q1j := (1− λj)Q̃N + λjQ̂N

and Q2j := (1− λj+1)Q̃N + λj+1Q̂N , j = 1, . . . , J̃ such that

Q2j = Q1j+1 , for j ∈ [J̃ − 1], Q1j , Q2j ∈ B(Qj , δj2) for j ∈ [J̃ ],
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where we write [J̃ ] for {1, . . . , J̃}. It follows by Proposition 5.1 that there exist positive
constants Ĉj , j ∈ [J̃ ] such that

|ϑ(Q1j )− ϑ(Q2j )| ≤ ĈjdlK,1(Q1j , Q2j ), for j ∈ [J̃ ].

Let Ĉ := max
j∈[Ñ ]

{Ĉj}. Consequently, we have

|ϑ(Q̃N )− ϑ(Q̂N )| ≤
J̃∑

j=1

|ϑ(Q1j )− ϑ(Q2j )| ≤
J̃∑

j=1

ĈjdlK,1(Q1j , Q2j )

=

J̃∑
j=1

ĈjdlK,1((1− λj)Q̃N + λjQ̂N , (1− λj+1)Q̃N + λj+1Q̂N )

=

J̃∑
j=1

Ĉj(λj+1 − λj)dlK,1(Q̃N , Q̂N )

≤ Ñ max
j∈[J̃]

ĈjdlK,1(Q̃N , Q̂N ) =: ĈdlK,1(Q̃N , Q̂N ) (5.17)

for all Q̃N , Q̂N ∈ P(Ξ). We show (5.16) by applying Theorem 2.2, where the Lipschitz

continuity of ϑ̂(ξ̃1, . . . , ξ̃N ) w.r.t. (ξ̃1, . . . , ξ̃N ) is needed. Note that

|ϑ̂(ξ̃1, . . . , ξ̃N )− ϑ̃(ξ̂1, . . . , ξ̂N )| =
∣∣∣ϑ(Q̃N )− ϑ(Q̂N )

∣∣∣
≤ ĈdlK,1(Q̃N , Q̂N )

= Ĉ sup
g∈GL

|EQ̃N
[g(ξ)]− EQ̂N

[g(ξ)]|

= Ĉ sup
g∈GL

∣∣∣∣∣ 1N
N∑
i=1

g(ξ̃i)− 1

N

N∑
i=1

g(ξ̂i)

∣∣∣∣∣
≤ Ĉ

N

N∑
i=1

∥ξ̃ − ξ̂∥,

where the first inequality is due to (5.17).

The above relations mean that ϑ̂(·) is Lipschitz continuous over (Ξ)⊗N with Lipschitz

modulus bounded by Ĉ/N , and thus the well-definedness of
∫
(Ξ)⊗N g(ϑ̂(ξ⃗

N ))P⊗N (dξ⃗N ) and∫
(Ξ)⊗N g(ϑ̂(ξ⃗

N ))Q⊗N (dξ⃗N ) can be deduced from Theorem 2.2. The rest follows from Theo-

rem 2.2 by setting TN (ξ1, . . . , ξN ) = ϑ̂(ξ1, . . . , ξN ) in the theorem.

6 Concluding Remarks

In this paper, we study quantitative statistical robustness in distribution robust optimization
models and demonstrate under some moderate conditions that it is safe to use the DRO
models as long as the topological structure of perceived data does not deviate significantly
from that of the real data. Our theoretical results are presented for the optimal values of
the DRO models, it might be interesting to extend them to the optimal solutions. Moreover,
the sample data are assumed to be iid, it might be interesting to explore the case when the
same data are not iid. Finally, it might be interesting to carry out some numerical tests to
verify the established theoretical results, we leave all these for interested readers to explore.
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