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Many methods for solving LCP (1.1) have been proposed over the years, see, e.g., [18, 4,
14, 1, 17, 23] and references therein. From a continuous perspective, neural network (NN)
methods have been extensively investigated for solving many optimization problems, such
as LCP [10, 13, 15, 16], variational inequality [8, 21], horizontal LCP [7], linear projection
equations [25, 26, 24] and others; see e.g. [12, 2] and references therein.

Based on (1.2), Huang et al. [10] used the following NN method for solving LCP (1.1):

dx(t)

dt
= λ{PΩ[x(t)− (Mx(t) + q)]− x(t)} .

= g(x(t)), (1.3)

where λ > 0 is a scale parameter. It is easy to find that x∗ is a solution of LCP (1.1) if
and only if it is an equilibrium point of NN (1.3), i.e. g(x∗) = 0. To our knowledge, NN
(1.3) owes to Friesz et al. [5] and Xia et al. [25, 26, 24] have analyzed its stability in a more
general background.

The goals of this paper are twofold: to reanalyze the asymptotic stability of the equilib-
rium point of NN (1.3) in the condition that M is symmetric positive semi-definite and to
point out a fatal mistake in the paper [10].

The rest of this paper is arranged as follows. In section 2, we state a new look on
NN (1.3). Section 3 is devoted to the stability analysis of NN (1.3). In section 4, we make
some comments on the paper [10]. In section 5, we give some conclusions.

Notation. We use Rn×n to represent the set of all n× n real matrices and Rn = Rn×1.
I represents the identity matrix of order n. ·⊤ stands for the transpose of a matrix or
vector. |x| = [|x1|, |x2|, . . . , |xn|]⊤ denotes the component-wise absolute value of a vec-
tor x = [x1, x2, . . . , xn]

⊤ ∈ Rn. ⟨·, ·⟩ denotes the Euclidean inner product, which is de-
fined as ⟨x, y⟩ .

= x⊤y =
∑n

i=1 xiyi and ∥x∥ .
=

√
⟨x, x⟩ denotes the Euclidean norm of

a vector x ∈ Rn. ∥A∥ denotes the spectral norm of A and is defined by the formula
∥A∥ .

= max {∥Ax∥ : x ∈ Rn, ∥x∥ = 1}. A matrix A ∈ Rn×n is symmetric if A⊤ = A. A
matrix A ∈ Rn×n is said to be positive definite (positive semi-definite) if ⟨Ax, x⟩ > 0 (re-
spectively, ⟨Ax, x⟩ ≥ 0) for all 0 ̸= x ∈ Rn. A matrix A ∈ Rn×n is called a P -matrix if
every principal minor of A is positive. Evidently, a positive definite matrix is necessary a
P -matrix. A symmetric and positive semi-definite (symmetric and positive definite) matrix
X ∈ Rn×n is denoted by X ⪰ 0 (X ≻ 0). Let A,B ∈ Rn×n be symmetric, A ⪰ B(A ≻ B)
means A−B ⪰ 0(A−B ≻ 0).

2 A New Look on NN (1.3)

In this section, we will give a new derivation of NN (1.3).
As is known, LCP (1.1) is equivalent to (see [4])

min{x, f(x)} = 0.

Since, for a, b ∈ Rn,

min{a, b} =
1

2
(a+ b− |a− b|),

LCP (1.1) can be transformed into

(I +M)x− |(I −M)x− q| = −q, (2.1)

which is a special case of the following new generalized absolute value equations (NGAVE)
[22]

Cx− |Dx− c| − d = 0, (2.2)



A NEW STABILITY ANALYSIS ON A NEURAL NETWORK METHOD FOR LCP 365

where C,D ∈ Rn×n, c, d ∈ Rn are known, x ∈ Rn is to be determined and |Dx− c| denotes
the component-wise absolute value of the vector Dx− c.

We tentatively turn to study some properties of NGAVE (2.2). Throughout this paper,
we also assume that the solution set of NGAVE (2.2) is nonempty.

The following theorem is extended from [22, Lemma 3.1].

Theorem 2.1. NGAVE (2.2) is equivalent to the following extended vertical LCP (EVLCP)

G(x)
.
= (C +D)x− c− d ≥ 0, H(x)

.
= (C −D)x+ c− d ≥ 0, ⟨G(x),H(x)⟩ = 0. (2.3)

Proof. Actually, NGAVE (2.2) can be expressed as Cx− d = |Dx− c|. Let

s+ t = Cx− d, s− t = Dx− c,

then

s =
(C +D)x− c− d

2
, t =

(C −D)x+ c− d

2
.

In light of [22, Lemma 2.3], the assertion then follows immediately.

By using Theorem 2.1, [22, Definition 2.3 and Lemma 2.1] and [20, Theorem 3], the
following theorem is gained.

Theorem 2.2. Let C + D be nonsingular. Then for any c, d ∈ Rn, NGAVE (2.2) has a
unique solution if and only if (C −D)(C +D)−1 is a P -matrix.

EVLCP (2.3) is a special case of the general variational inequality (GVI) problem:

find an x∗, such that G(x∗) ∈ Ω′, ⟨v −G(x∗),H(x∗)⟩ ≥ 0, ∀ v ∈ Ω′, (2.4)

where Ω′ is a closed convex subset of Rn. Indeed, EVLCP (2.3) is equivalent to GVI (2.4)
with Ω′ = Ω = {x ∈ Rn : x ≥ 0} (The proof can be inspired by that of [6, 1.1.3 Proposition.]).
If no otherwise specified, we remain Ω′ = Ω = {x ∈ Rn : x ≥ 0} in this paper.

For a nonempty closed convex subset Ω of Rn, a fundamental property of the projection
from Rn onto Ω is that

⟨u− PΩ[u], v − PΩ[u]⟩ ≤ 0, ∀u ∈ Rn, ∀ v ∈ Ω.

Using this property, we can observe that GVI (2.4) is equivalent to the following projection
equation [9]

G(x∗) = PΩ [G(x∗)−H(x∗)] . (2.5)

Let

r(x)
.
= G(x)− PΩ [G(x)−H(x)] (2.6)

be the residual of (2.5). Similar to the proof of [3, Theorem 2.1], we can obtain the following
basic theorem.

Theorem 2.3. For r(x) defined as in (2.6), we have

r(x) = Cx− |Dx− c| − d

and thus x∗ is a solution of NGAVE (2.2) if and only if r(x∗) = 0.
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On the basis of Theorem 2.3, we will construct the following NN method for solving
NGAVE (2.2):

dx(t)

dt
=

1

2
γ {PΩ [G(x(t))−H(x(t))]−G(x(t))} , (2.7)

where γ > 0 is a scale parameter. Substituting (2.6) and (2.3) into (2.7), it is reduced to

dx(t)

dt
=

1

2
γ[d+ |Dx(t)− c| − Cx(t)]

.
= h(x(t)). (2.8)

Now we turn back to LCP (1.1) or NGAVE (2.1). By setting C = I +M , D = I −M ,
c = q and d = −q, (2.8) becomes

dx(t)

dt
=

1

2
γ[|(I −M)x(t)− q| − (I +M)x(t)− q]. (2.9)

On the other hand, since Ω = {x ∈ Rn : x ≥ 0},

PΩ[x] = max{x, 0} =
1

2
(|x|+ x). (2.10)

Substituting (2.10) into (1.3), we have

dx(t)

dt
=

1

2
λ[|(I −M)x(t)− q| − (I +M)x(t)− q]. (2.11)

Evidently, (2.9) equals to (2.11) whenever λ = γ. In the following , we will always remain
λ = γ.

3 Stability Analysis

In this section, we will analyze the stability of NN (2.8) and then apply the results to
NN (1.3), or equivalently NN (2.11).

Firstly, we draw some concepts of dynamical systems. Consider the autonomous system

dz(t)

dt
= F (z(t)), (3.1)

where F : Rn → Rn is a mapping. Denoting z(t; z(t0)) is the solution of (3.1) determined by
the initial value condition z(t0) = z0. Recall that a point ze ∈ Rn is called an equilibrium
point of the dynamical system (3.1) if F (ze) = 0. The following statements can be found in
[11, Chapters 2 and 3].

Definition 3.1 (Lyapunov function). Assume that N ⊆ Rn is an open neighborhood of z̄.
A continuously differentiable function V : N → R is said to be a Lyapunov function at the
state z̄ (over the set N ) for (3.1) if

V (z̄) = 0 and V (z) > 0 for ∀z ∈ N , z ̸= z̄,

dV (z(t))

dt
= [∇V (z(t))]⊤F (z(t)) ≤ 0, ∀z ∈ N .

Theorem 3.2. (i) An isolated equilibrium point z∗ of (3.1) is Lyapunov stable if there
exists a Lyapunov function V over some neighborhood N of z∗.
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(ii) An isolated equilibrium point z∗ of (3.1) is asymptotically stable if there exists a
Lyapunov function V over some neighborhood N of z∗ such that

dV (z(t))

dt
< 0, ∀z(t) ∈ N , z(t) ̸= z∗.

(iii) An isolated equilibrium point z∗ of (3.1) is globally asymptotically stable if there exists
a Lyapunov function V in Rn satisfying

dV (z(t))

dt
< 0, ∀z(t) ∈ Rn, z(t) ̸= z∗,

∥z(t)− z∗∥ → ∞ ⇒ V (z(t)) → ∞.

Now we prove the existence and uniqueness of trajectories of NN (2.8).

Lemma 3.3. The function h defined as in (2.8) is Lipschitz continuous in Rn.

Proof. For any x1, x2 ∈ Rn, using certain properties of vector norm and ∥|x| − |y|∥ ≤ ∥x−y∥,
we have

∥h(x1)− h(x2)∥ =

∥∥∥∥12γ[d+ |Dx1 − c| − Cx1]−
1

2
γ[d+ |Dx2 − c| − Cx2]

∥∥∥∥
=

1

2
γ∥C(x2 − x1) + (|Dx1 − c| − |Dx2 − c|)∥

≤ 1

2
γ(∥C∥+ ∥D∥)∥x1 − x2∥,

which indicates that h(x) is a Lipschitz continuous function in Rn with Lipschitz constant
1
2γ∥(∥C∥+ ∥D∥).

The following theorem then follows from Lemma 3.3 and [11, Theorem 2.3].

Theorem 3.4. There exists a unique solution x(t;x(t0)) with t ∈ [0,∞) for NN (2.8) with
any initial value x(t0) = x0.

The following theorem lays the foundation of the stability analysis of NN (2.8) and its
proof is inspired by that of [9, Theorem 2].

Theorem 3.5. If x∗ is a solution of NGAVE (2.2) and C⊤C ⪰ D⊤D, then

(x− x∗)⊤C⊤r(x) ≥ 1

2
∥r(x)∥2 , ∀x ∈ Rn. (3.2)

Proof. As mentioned previously, x∗ is also a solution of EVLCP (2.3) or GVI (2.4) with
Ω = {x ∈ Rn : x ≥ 0}. Since Ω = {x ∈ Rn : x ≥ 0} ⊆ Rn is a closed convex set and
G(x∗) ∈ Ω, it follows from (2) that

[v − PΩ(v)]
⊤[PΩ(v)−G(x∗)] ≥ 0, ∀ v ∈ Rn.

On one hand, taking v
.
= G(x)−H(x), we deduce that

[r(x)−H(x)]⊤{PΩ[G(x)−H(x)]−G(x∗)} ≥ 0. (3.3)
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On the other hand, due to x∗ is a solution of GVI (2.4), we have

G(x∗) ∈ Ω, H(x∗)⊤(v −G(x∗)) ≥ 0, ∀ v ∈ Ω,

where Ω = {x ∈ Rn : x ≥ 0}. Since PΩ(·) ∈ Ω, then we obtain

H(x∗)⊤{PΩ[G(x)−H(x)]−G(x∗)} ≥ 0. (3.4)

Adding (3.3) to (3.4) and utilizing

PΩ[G(x)−H(x)]−G(x∗) = [G(x)−G(x∗)]− r(x),

then it can be concluded that

{[G(x)−G(x∗)] + [H(x)−H(x∗)]}⊤ r(x)

≥ ∥r(x)∥2 + [G(x)−G(x∗)]⊤[H(x)−H(x∗)]. (3.5)

From the definitions of G and H in (2.3), we immediately obtain

G(x) +H(x) = 2(Cx− d) (3.6)

and

[G(x)−G(x∗)]⊤[H(x)−H(x∗)] = (x− x∗)⊤(C⊤C −D⊤D)(x− x∗). (3.7)

Combining (3.6) and (3.7) with the inequality (3.5) leads to

2(x− x∗)⊤C⊤r(x) ≥ ∥r(x)∥2 + (x− x∗)⊤(C⊤C −D⊤D)(x− x∗), ∀ x ∈ Rn,

which together with C⊤C ⪰ D⊤D yields the desired result.

Now we are in position to give the stability theorem of NN (2.8).

Theorem 3.6. If the coefficient matrix C is symmetric positive definite, C +D is nonsin-
gular and C⊤C ⪰ D⊤D, then the equilibrium point of NN (2.8) is asymptotically stable.
Furthermore, if C⊤C ≻ D⊤D, then the equilibrium point of NN (2.8) is unique and globally
asymptotically stable.

Proof. Let x(t) = x(t;x(t0)) be the solution of (2.8) with initial value x(t0) = x0 and x∗ is
the equilibrium point nearby x0. Consider the following Lyapunov function

V (x) = e(x−x∗)⊤C(x−x∗) − 1, x ∈ Rn.

It is easy to see that V (x∗) = 0 and C is positive definite implies that V (x) > 0 for all
x ̸= x∗. In addition, it follows from (2.3), (2.7), (3.2) and the symmetry of C that

dV (x(t))

dt
= ∇V (x(t))⊤

dx(t)

dt

= −1

2
γe(x(t)−x∗)⊤C(x(t)−x∗)

[
C(x(t)− x∗) + C⊤(x(t)− x∗)

]⊤
r(x(t))

≤ −1

2
γe(x(t)−x∗)⊤C(x(t)−x∗) ∥r(x(t))∥2 < 0, ∀x(t) ̸= x∗.

According to Theorem 3.2 (ii), the equilibrium point x∗ of NN (2.8) is asymptotically stable.
In addition, one can prove that the nonsingularity of C + D and C⊤C ≻ D⊤D imply

that NGAVE (2.2) has a unique solution (according to Theorem 2.2) and thus NN (2.8) has
a unique equilibrium point. Since V (x) → ∞ as ∥x−x∗∥ → ∞, it follows from Theorem 3.2
(iii) that the unique equilibrium point x∗ of NN (2.8) is globally asymptotically stable.
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Before ending this section, we turn to NN (2.11). Since C = I + M and D = I − M ,
C+D = 2I is nonsingular. In addition, C is symmetric positive definite and C⊤C−D⊤D =
2(M + M⊤) is symmetric positive semi-definite if M is symmetric semi-positive definite.
Moreover, if M is symmetric positive definite, then both C and C⊤C−D⊤D are symmetric
positive definite. Thus, we have the following corollary.

Corollary 3.7. If M is symmetric positive semi-definite, then the equilibrium point of
NN (2.11) is asymptotically stable. Furthermore, if M is symmetric positive definite, then
the equilibrium point of NN (2.11) is unique and globally asymptotically stable.

4 Comments on the Paper [10]

In [10], Huang et al. tried to discuss the global asymptotic stability of the equilibrium
point of NN (1.3), under the condition that M is positive definite (unsymmetry is possible).
However, their proof of [10, Theorem 3.4] may contain at least one fatal error, as pointed
out below. For the sake of completeness, part of [10, Theorem 3.4] is included here.

Theorem 4.1 ([10, Theorem 3.4]). If the matrix M is positive definite, then NN (1.3) is
stable in the sense of Lyapunov and is globally convergent to the unique equilibrium point of
NN (1.3).

Theorem 4.1 attempts to get rid of the symmetry of M . However, there exists at least
one fatal error in the proof of [10, Theorem 3.4].

During the proof of [10, Theorem 3.4], a Lyapunov function candidate

V0(x) =
1

2
∥PΩ(x−Mx− q)− x∥2 − (Mx+ q)⊤[PΩ(x−Mx− q)− x] (4.1)

was used, where Ω = {x ∈ Rn : x ≥ 0}. From which they got

dV0(x)

dx
= −[PΩ(x−Mx− q)− x]−M⊤[PΩ(x−Mx− q)− x] +Mx+ q. (4.2)

However, we assert that (4.2) is generally incorrect. The reason may be that the authors
overlooked the fact that PΩ(x−Mx− q) is depend on x. Here, we give a counterexample to
point out this fatal mistake. Concretely, let x−Mx−q ≥ 0, then PΩ(x−Mx−q) = x−Mx−q
and (4.1) becomes

V0(x) =
1

2
∥Mx+ q∥2 + (Mx+ q)⊤(Mx+ q) =

3

2
∥Mx+ q∥2,

from which we obtain
dV0(x)

dx
= 3M⊤(Mx+ q). (4.3)

On the other hand, (4.2) reduces to

dV0(x)

dx
= (2I +M⊤)(Mx+ q). (4.4)

Obviously, in general, (4.3) is not equal to (4.4). Specially, (4.3) equals to (4.4) if M = I,
in which case PΩ[q] has nothing to do with x.
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Figure 1: Phase diagrams of (1.3) with λ = 2. “ode45” is used to solve the ordinary
differential equation.

The symmetric positive semi-definiteness of M is also used in [25, 26, 24], however, our
proof here differs from theirs. In addition, symmetry seems necessary for the result. For
example, consider the following LCP (1.1) [7] with

M =

 0 0.5 −0.1
−0.5 0 0.1
0.1 −0.1 0

 , q =

 0
−0.25
0.2

 .

One can easy to see that this M is asymmetric positive semi-definite and the LCP has
unique solution [0, 2, 2.5]⊤. NN (1.3) is used to solve this LCP and the initial point
is [0.51,−0.49,−2.5]⊤. Numerical simulation is shown in Figure 1, which indicates that
NN (1.3) is not stable.

5 Brief Conclusion

Based on a new look on the neural network method proposed in [5] for solving linear com-
plementarity problems, a new proof of a sufficient condition for its stability is given from
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the perspective of generalized variational inequalities. A counterexample is found to demon-
strate the necessary of symmetry in the sufficient condition.
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