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deficiency, for every online algorithm, its optimality cannot be guaranteed. Thus, one cannot
resist asking:

What is the evaluation criterion for the quality of an online algorithm?
As far as we know, competitive ratio [9] is making an extremely important contribution
in this aspect. Let A be a feasible online algorithm for problem P, where P is an online
minimization problem. For a given instance I, suppose that GE (I) and GE ∗

(I) indicate the
objective value of the schedule produced by algorithm A and the optimal off-line algorithm,
respectively. Define

ρ(A ) = inf

{
ρ | GE (I)

GE ∗(I)
≤ ρ and I meets GE ∗

(I) > 0

}
as the competitive ratio of algorithm A . It is important to notice that, for every feasible
online algorithm A1, if ρ(A1) ≥ ρ(A ) holds, then A is referred to as optimal.

Generally speaking, the classical scheduling problems assume that the processing time
of every job is constant. Whereas, the processing times may be variable in reality. One
of the common situations is that every job gets deteriorated in the waiting process, which
could be found in steel production, maintenance, and fire fighting, etc. For instance, in the
manufacture of porcelain, the key is to model the raw material in the light of the design.
Notably, the raw material is made of china clay, which will get harder and harder with the
passage of time. Furthermore, the harder the raw material becomes, the more time will
be spent in modeling. Such a phenomenon is precisely the deterioration or degradation.
Obviously, scheduling with deterioration is more realistic, and thus, it is meaningful to
address such problems.

Problem formulation. In the paper, there is a group of jobs reaching online over time.
More specifically, the concerning information of every job Jl, including the release date
rl ≥ t0, the processing deterioration rate βl ≥ 0, the processing time pl ≥ 0, the transport
deterioration rate αl ≥ 0 and the transportation time ql ≥ 0, is not divulged until time
rl, where t0 ≥ 0. Noticeably, the processor can only handle one job in unison, and the
interruption is not permitted. Our goals are scheduling the jobs so as to minimize the
makespan and minimize the maximum delivery time. Define Sl and Cl as the starting
time and the completion time of job Jl, respectively. By applying the notation in [10], the
problems we focus on can be formulated as:

P1: 1|online, rl ≥ t0, pl = βl(E + FSl)|Cmax;
P2: 1|online, rl ≥ t0, pl = βl(E + FSl), ql|Dmax;
P3: 1|online, rl, ql = αl(E + FCl)|Dmax.
Note that, Cmax = max1≤l≤n Cl denotes the makespan, and Dmax = max1≤l≤n Dl indi-

cates the maximum delivery time among all jobs, where Cl = Sl+pl, and Dl = Cl+ql is the
delivery time of job Jl. More notably, for problems P1 and P2, if E = 0 and t0 = 0, then
the completion times may be 0, which is too trivial. Thus, we may assume without loss of
generality that t0 > 0 follows when E = 0. Besides, for problems P1 and P3, the condition
that E ≥ 0 and F ≥ 0 are constants meeting E + F > 0 is respected. For problem P2, the
conditions that E ≥ 0, F > 0 and E

F → 0 hold, where E and F are constants.
Related work. Scheduling with deterioration, to our knowledge, was first put forward

by Browne and Yechiali [1] and Gupta and Gupta [11] independently. From then on, such
problems have received a great quantity of attentions. Meanwhile, there have been more
and more scholars showing solicitude for the time-dependent models with various objective
functions [5, 15, 19, 24]. Now, we mainly review a few of the most related work with the goal
of minimizing the makespan. In 1994, for problem 1|rl = t0, pl = βlSl|Cmax, Mosheiov [20]
pointed out that the objective value is independent of the processing order. Later, Cheng



ONLINE SCHEDULING FOR DEGRADATION DATA PROCESSING 375

and Ding [4] testified that problem 1|rl, pl = al + βSl|Cmax is strongly NP-complete, where
al stands for the normal processing time of job Jl. For problem 1|pl = al+f(t)|Cmax, Wang
et al. [22] claimed that, for all t′ < t′′, if f(t′) ≥ f(t′′) and f(t′) + t′ ≤ f(t′′) + t′′ follow,
then there is an optimal schedule without processor idleness. Compared with the flourishing
of off-line scheduling research, there are relatively fewer results on online scheduling. For
problem 1|online, rl ≥ t0, pl = βlSl|Cmax, Liu et al. [17] attested that the Greedy algorithm
is optimal.

In most situations, the jobs need to be transported to the customer or the depository
after processing, and the transportation of every job will take some time, which implies that
the problem with delivery time is closely related to the reality. As we know, minimizing
the maximum delivery time is one of the significant objective functions in scheduling. And
hence, there has been a generous amount of scholars paying attention to such problems
[8, 14, 18]. For problem 1|online, rl|Dmax, Hoogeveen and Vestjens [13] offered an optimal

online algorithm DLDT (Delayed Largest Delivery Time) with a competitive ratio of
√
5+1
2 .

Note that, over recent years, for the online scheduling with deterioration and delivery time,
some results have emerged. For problem 1|online, rl ≥ t0, pl = βlSl, ql = αlCl|Dmax, Liu
et al. [17] attested that no online algorithm A satisfies ρ(A ) < max{1 + βmax, 1 + αmax},
where βmax = max1≤l≤n βl and αmax = max1≤l≤n αl. In addition, they proved that the
Greedy algorithm is optimal. Subsequently, Chai et al. [3] addressed problem 1|online, rl ≥
t0, pl = βlSl, ql = αlSl|Dmax, and proposed an optimal online algorithm. Furthermore,
they designed an optimal 1+2βmax

1+βmax
-competitive online algorithm for problem 1|online, rl ≥

t0, pl = βlSl, ql|Dmax. Besides, for problem 1|online, rl, ql = αlCl|Dmax, when αmax > 1,
they provided an optimal algorithm with competitive ratio 2; when αmax ≤ 1, an optimal
1 + αmax-competitive online algorithm was given.

To the best of our knowledge, in some new models, the processing time is viewed as a
linear function of its starting time, i.e., pl = βl(E + FSl), where E ≥ 0 and F ≥ 0 are
constants satisfying E + F > 0 or other conditions. For example, the factory purchases a
batch of equipment, owing to improper operation or unsuitable material, the equipment may
have been damaged from the beginning. Therefore, the factory is forced to maintain them.
The maintenance will take a certain time, that is, the maintenance time is always no less than
0. Most notably, the longer the equipment is damaged, the more time it takes to maintain.
Undoubtedly, the above model covers almost all possible situations in real life, it follows that
it is much meaningful to consider such a model. In 2016, Ma et al. [19] considered problem
1|online, rl ≥ t0, pl = βl(E + FSl)|

∑
wlCl and offered an optimal algorithm DSWGR such

that the competitive ratio is µ(E), where, if E = 0, then µ(E) = 1 + βmaxF ; and if E > 0,
then µ(E) = 2 + βmaxF .

For clarity, the relevant results mentioned above will be shown in Table 1 and Table 2.

Table 1: The relevant results of off-line scheduling.
Problem Result Reference

1|rl = t0, pl = βlSl|Cmax The objective value is independent of the processing order. [20]
1|rl, pl = al + βSl|Cmax It is strongly NP-complete. [4]

1|pl = al + f(t)|Cmax
There is an optimal schedule without processor idleness
(for all t′ < t′′, f(t′) ≥ f(t′′) and f(t′) + t′ ≤ f(t′′) + t′′).

[22]
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Table 2: The relevant results of online scheduling.

Problem
Result

Reference

Algorithm Competitive ratio Optimal

1|online, rl ≥ t0, pl = βlSl|Cmax Greedy algorithm 1
√

[17]

1|online, rl|Dmax DLDT
√

5+1
2

√
[13]

1|online, rl ≥ t0, pl = βlSl, ql = αlCl|Dmax Greedy algorithm max{1 + βmax, 1 + αmax}
√

[17]
1|online, rl ≥ t0, pl = βlSl, ql = αlSl|Dmax - max{1 + βmax, 1 + αmax}

√
[3]

1|online, rl ≥ t0, pl = βlSl, ql|Dmax - 1+2βmax
1+βmax

√
[3]

1|online, rl, ql = αlCl|Dmax
-
-

2 (αmax > 1)
1 + αmax (αmax ≤ 1)

√
√ [3]

1|online, rl ≥ t0, pl = βl(E + FSl)|
∑

wlCl DSWGR µ(E)
√

[19]

Contribution. Competitive ratio, as far as we know, is one of the most momentous evalu-
ation criteria for the quality of an online algorithm. Unfortunately, for an online algorithm,
originating from information deficiency, it is very laborious to provide the competitive anal-
ysis. In the paper, to be precise, the main contribution is composed of the following three
aspects:

(1) For problem P1, an optimal online algorithm is presented.

(2) For problem P2, we show that there exists no online algorithm A such that ρ(A ) <
1+2βmaxF
1+βmaxF

; furthermore, we design an online algorithm with competitive ratio 1+2βmaxF
1+βmaxF

,
matching the lower bound we proposed, which means that our algorithm is optimal.

(3) For problem P3, we give an online algorithm with a competitive ratio of φ(E) when
αmaxF ≤ 1, where φ(E) = 1 + αmaxF or φ(E) = 2 + αmaxF depending on whether
E = 0 or E > 0; and we offer an optimal online algorithm and point out that its
competitive ratio is 2 when αmaxF > 1.

Organization. The remaining structure of the work is arranged as below: some funda-
mental notations and definitions are provided in Section 2; then, for problem P1, we provide
an optimal online algorithm in Section 3; next, two online scheduling problems with deteri-
oration and delivery time are addressed in Section 4; conclusively, a summary of the study
and the future prospects are presented in Section 5.

2 Preliminaries

As a matter of convenience, some basic notations supplied throughout the work will be
given.

• I: an instance.

• Jl: the job with index l, where l = 1, 2, . . . , n.

• rl: the release date of job Jl.

• βl: the processing deterioration rate of job Jl.

• βmax = max{βl | Jl ∈ I}: the largest processing deterioration rate among all jobs in I.

• αl: the transport deterioration rate of job Jl.

• αmax = max{αl | Jl ∈ I}: the largest transport deterioration rate among all jobs in I.

• E ∗(I): the schedule of I produced by an optimal off-line algorithm.
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• E (I): the schedule of I produced by a feasible algorithm A .

• SE
l : the starting time of job Jl in E (I).

• pE
l : the processing time of job Jl in E (I). Note that, if the processing time is a constant,

then it can be denoted as pl.

• qE
l : the transportation time of job Jl in E (I). Notice that, if the value of the trans-
portation time is given, then it can be shown as ql.

• CE
l = SE

l + pE
l : the completion time of job Jl in E (I).

• CE
max = max{CE

l | Jl ∈ I}: the makespan of I in E (I).

• DE
l = CE

l + qE
l : the delivery time of job Jl in E (I).

• DE
max = max{DE

l | Jl ∈ I}: the maximum delivery time among the jobs of I in E (I).

Assume that A ⊆ I, then

• |A|: the cardinality of A.

• SE
A = min{SE

l | Jl ∈ A}: the earliest starting time among all jobs of A in E (I).

• CE
A = max{CE

l | Jl ∈ A}: the latest completion time among all jobs of A in E (I).

Noticeably, at each time t, if job Jl has arrived and has not been processed, then it is
known as available. In the rest of the work, to simplify the presentation, define A(t) as the
available job set at time t.

3 Makespan Minimization

For an instance I, there is a group of deteriorating jobs reaching online over time. Notice
that, the processing time of each job Jl is denoted as pl = βl(E + FSl), where E ≥ 0 and
F ≥ 0 are constants meeting E + F > 0. In this section, we want to schedule the jobs
so as to minimize the makespan. As we know, Liu et al. [17] presented an optimal online
algorithm for problem 1|online, rl ≥ t0, pl = βlSl|Cmax, a special case of problem P1. Next,
we will offer an online algorithm for problem P1, which works as below:

Algorithm 3.1. A1

Step 1: If the processor is available and A(t) ̸= ∅, then choose an arbitrary job in A(t) to
process;

Step 2: If all jobs have been handled, stop; otherwise, go to Step 1.

Let F (I) stand for the schedule of I produced by algorithm A1. For ease of description,
some useful definitions will be provided as follows:

Suppose that A = {Ja, Ja+1, . . . , Jb} is the maximal job set such that the processor
retains busy in [SF

A , CF
A ), then A is referred to as a block, where Jl is the lth job in F (I),

1 ≤ a ≤ l ≤ b ≤ n. Undoubtedly, F (I) may consist of plenty of blocks. Now, we first
consider the situation that the number of blocks is one, which plays a crucial role in the
algorithm analysis.
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Lemma 3.2. For problem P1, if F (I) is composed of one block, then, we have

CF
max =


S + E

∑n
l=1 βl, F = 0;(

S +
E

F

)∏n
l=1(βlF + 1)− E

F , F > 0;
(3.1)

where S = min{SF
l | Jl ∈ I}.

Proof. We proceed by induction concerning the cardinality of I. Without loss of generality,
we may assume that Jl indicates the lth job in F (I).

Step 1: |I| = 1. It is clear that, CF
max = CF

1 = S + β1E when F = 0, and CF
max = CF

1 =

S + β1(E + FS) = β1E + (1 + β1F )S =

(
S +

E

F

)
(β1F + 1) − E

F when F > 0,

which means that equation (3.1) holds.

Step 2: Assume that equation (3.1) follows when |I| = m− 1. That is,

CF
max =

 S + E
∑m−1

l=1 βl, F = 0,

(S + E
F )
∏m−1

l=1 (βlF + 1)− E
F , F > 0.

Step 3: |I| = m. If F = 0, then, we derive that

CF
max = CF

m = CF
m−1 + pF

m = S + E

m−1∑
l=1

βl + Eβm = S + E

m∑
l=1

βl.

If F > 0, then, we infer that

CF
max =CF

m = CF
m−1 + pF

m = βmE + (1 + βmF )CF
m−1

=βmE + (1 + βmF )

[(
S +

E

F

)m−1∏
l=1

(βlF + 1)− E

F

]

=βmE +

(
S +

E

F

) m∏
l=1

(βlF + 1)− E

F
− βmE

=

(
S +

E

F

) m∏
l=1

(βlF + 1)− E

F
.

The lemma is true.

With the help of Lemma 3.2, the competitive ratio will be received more smoothly.
Thereby, we obtain the following conclusion.

Theorem 3.3. For problem P1, algorithm A1 is optimal.

Proof. For each instance I, the number of blocks in F (I) may be k, where k ≥ 1. In
consideration of our objective function, it follows that, it is ample to consider the last block
Bk in F (I). Let Bk = {Ja, Ja+1, . . . , Jn}, where Jl is the lth job in F (I), 1 ≤ a ≤ l ≤ n.
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According to algorithm A1, we deduce that SF
Bk

= r, where r = min{rl | Jl ∈ Bk}. From
Lemma 3.2, we gain that

CF
max =


r + E

∑n
l=a βl, F = 0,(

r +
E

F

)∏n
l=a(βlF + 1)− E

F , F > 0.

Note that, for each job Jl ∈ Bk, rl ≥ r, and the objective value is independent of the
processing order of the jobs in Bk, therefore, we get that

CE ∗

max ≥


r + E

∑n
l=a βl, F = 0,(

r +
E

F

)∏n
l=a(βlF + 1)− E

F , F > 0.

In the light of the minimality of the value of CE ∗

max, we conclude that CF
max = CE ∗

max, which
means that algorithm A1 is optimal. The proof is completed.

4 Maximum Delivery Time Minimization

In the majority of cases, the jobs may need to be transported to the customer or the
depository after processing, and the transportation of every job will take some time. There
is no doubt that the problem with delivery time is closely relevant to practice. As far
as we know, minimizing the maximum delivery time is one of the momentous objective
functions in scheduling. In this section, we will consider two online scheduling problems
with deterioration and delivery time.

To facilitate narration, we will provide some fundamental definitions, which will be em-
ployed in the this section.

Note that, in E (I), if D
E

max = D
E

m holds, then job Jm is said to be decisive, where
1 ≤ m ≤ n. Suppose that Jl is the lth job in E (I). Set A = {Ja, Ja+1, . . . , Jm} and
A1 = {Ja−1, Ja, . . . , Jm}, where 1 ≤ a ≤ m ≤ n. In E (I), if the processor keeps available in
[t1, t2) ⊂ [SE

A1
, CE

A1
), and it retains busy in [SE

A , C
E
A), then A is referred to as a significant

set.

4.1 Deteriorating processing time

For an instance I, there exists a series of deteriorating jobs reaching online over time.
Notably, for each job Jl, its processing time pl is defined as pl = βl(E +FSl), where E ≥ 0,
F > 0, and E

F → 0. In 2020, Chai et al. [3] addressed problem 1|online, rl ≥ t0, pl =
βlSl, ql|Dmax, a special case of problem P2. Next, we will offer the lower bound for problem
P2. Furthermore, we will introduce an online algorithm, whose competitive ratio matches
the lower bound we propose, which means that our online algorithm is optimal.

Before providing the lower bound, a fundamental lemma with proof is put forward, which
is central for our work.

Lemma 4.1. Let a, b, c and d be four positive numbers. Then, we have

a+ c

b+ d
≥ min

{a
b
,
c

d

}
.
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Proof. Consider two cases as below:
Case A: a

b ≤ c
d , which signifies ad ≤ bc. Combining with the property that all numbers

are positive, we derive that

a+ c

b+ d
− a

b
=

b(a+ c)− a(b+ d)

b(b+ d)
=

bc− ad

b(b+ d)
≥ 0.

Case B: a
b > c

d , which implies ad > bc. Recall that all numbers are positive, we infer
that

a+ c

b+ d
− c

d
=

d(a+ c)− c(b+ d)

d(b+ d)
=

ad− bc

d(b+ d)
> 0.

The lemma is true.

Next, we will employ the adversary strategy to present the lower bound for problem P2.
Benefiting from Theorem 4.1, the lower bound will be obtained more smoothly.

Theorem 4.2. For problem P2, there is no online algorithm A with ρ(A ) < 1+2βmaxF
1+βmaxF

.

Proof. Define A as an arbitrary feasible online algorithm for problem P2. Let E (I) indicate
the schedule of I produced by algorithm A . Suppose that job J1 with β1 = β and q1 = 0
is released at time t0. We may assume that SE

1 = t, where t ≥ t0, then the adversary will
release job J2 with β2 = 0 and q2 = β(E + Ft) at time t+ ϵ, where ϵ → 0.

Case A: E = 0. Then, we deduce that DE
1 = CE

1 + q1 = t + βFt + 0 = (1 + βF )t and
DE

2 = CE
2 + q2 = (1 + βF )t+ βFt = (1 + 2βF )t, which means that

DE
max = DE

2 = (1 + 2βF )t.

Noticeably, in E ∗(I), the scheduler will assign job J2 at time t + ϵ followed by job J1.
Hence, we infer that DE ∗

1 = CE ∗

1 + q1 = t + ϵ + βF (t + ϵ) + 0 = (1 + βF )(t + ϵ) and
DE ∗

2 = CE ∗

2 + q2 = t+ ϵ+ βFt = (1 + βF )t+ ϵ, it follows that

DE ∗

max = max{(1 + βF )(t+ ϵ), (1 + βF )t+ ϵ} → (1 + βF )t (ϵ → 0).

Therefore, we obtain that

DE
max

DE ∗
max

→ (1 + 2βF )t

(1 + βF )t
=

1 + 2βF

1 + βF
=

1 + 2βmaxF

1 + βmaxF
.

Case B: E > 0. Then, we derive that DE
1 = CE

1 +q1 = t+β(E+Ft)+0 = (1+βF )t+βE
and DE

2 = CE
2 + q2 = (1+ βF )t+ βE + β(E+Ft) = (1+ 2βF )t+2βE, which signifies that

DE
max = DE

2 = (1 + 2βF )t+ 2βE.

Notably, in E ∗(I), job J2 will be processed at time t+ ϵ followed by job J1. Thus, we have
DE ∗

1 = CE ∗

1 + q1 = t+ ϵ+β[E+F (t+ ϵ)]+0 = (1+βF )(t+ ϵ)+βE and DE ∗

2 = CE ∗

2 + q2 =
t+ ϵ+ β(E + Ft) = (1 + βF )t+ ϵ+ βE, which implies that

DE ∗

max = max{(1 + βF )(t+ ϵ) + βE, (1 + βF )t+ ϵ+ βE} → (1 + βF )t+ βE (ϵ → 0).

Along with Lemma 4.1, we get that

DE
max

DE ∗
max

→ (1 + 2βF )t+ 2βE

(1 + βF )t+ βE
≥ min

{
1 + 2βF

1 + βF
, 2

}
=

1 + 2βF

1 + βF
=

1 + 2βmaxF

1 + βmaxF
.

The proof is completed.
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From Theorem 4.2, we know that the lower bound for problem P2 is 1+2βmaxF
1+βmaxF

. Now, an
online algorithm A2 is given, which works as below:

Algorithm 4.3. A2

Step 1: If the processor is available and A(t) ̸= ∅, then choose a job with the largest trans-
portation time from A(t) to process, and transport it instantly after processing;

Step 2: If all jobs have been transported, stop; otherwise, go to Step 1.

Define F (I) as the schedule of I produced by algorithm A2. In order to facilitate the
description, we may assume that Jl is the lth job in F (I), where 1 ≤ l ≤ n. Next, we will
analyze the competitive ratio of algorithm A2.

Lemma 4.4.
DF

max

DE∗
max

≤ 1+2βmaxF
1+βmaxF

.

Proof. Suppose that job Jm is the decisive job in F (I), which signifies that DF
max = DF

m .
Let B = {Ja, Ja+1, . . . , Jm} be a significant set in F (I). According to algorithm A2, we
infer that, SF

a = min{ rl | Jl ∈ B} follows, which means that, for every job Jl ∈ B, the
condition rl ≥ SF

a is respected. Set qmin(B) = min{ ql | Jl ∈ B}.
Case A: E = 0. Hence, we have

DF
max = DF

m = SF
a

m∏
l=a

(1 + βlF ) + qm. (4.1)

Case A1: qmin(B) = qm. It is clear that

DE ∗

max ≥ SF
a

m∏
l=a

(1 + βlF ) + qm.

In consideration of the minimality of the value of DE ∗

max, we receive that

DE ∗

max = DF
max.

Case A2: qmin(B) < qm. Suppose that, in F (I), job Jb is the last job of B meeting
qb < qm. Let E = {Jb+1, Jb+2, . . . , Jm}. There is no doubt that qm = qmin(E) > qb. From
algorithm A2, we observe that S

F
b < rmin(E), where rmin(E) = min{ rl | Jl ∈ E}. It follows

that

DE ∗

max ≥ rmin(E)

m∏
l=b+1

(1 + βlF ) + qm > SF
b

m∏
l=b+1

(1 + βlF ) + qm. (4.2)

In view of the definition of significant set, we have

DE ∗

max ≥ SF
a

m∏
l=a

(1 + βlF ) = SF
b

m∏
l=b

(1 + βlF ). (4.3)

Together with equation (4.1), we deduce that

DF
max = DF

m = SF
a

m∏
l=a

(1 + βlF ) + qm = SF
b

m∏
l=b

(1 + βlF ) + qm. (4.4)
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Combining with inequalities (4.2)–(4.4), we get that

DF
max −DE ∗

max

DE ∗
max

<
SF
b

∏m
l=b(1 + βlF ) + qm − (SF

b

∏m
l=b+1(1 + βlF ) + qm)

SF
b

∏m
l=b(1 + βlF )

=
SF
b

∏m
l=b(1 + βlF )− SF

b

∏m
l=b+1(1 + βlF )

SF
b

∏m
l=b(1 + βlF )

=
βbF

1 + βbF
≤ βmaxF

1 + βmaxF
,

which signifies that

DF
max

DE ∗
max

≤ 1 + 2βmaxF

1 + βmaxF
.

Case B: E > 0. In view of F > 0, along with equation (3.1), we infer that

DF
max = DF

m =

(
SF
a +

E

F

) m∏
l=a

(1 + βlF )− E

F
+ qm. (4.5)

Case B1: qmin(B) = qm. It is obvious that

DE ∗

max ≥
(
SF
a +

E

F

) m∏
l=a

(1 + βlF )− E

F
+ qm.

In view of the minimality of the value of DE ∗

max, we gain that

DE ∗

max = DF
max.

Case B2: qmin(B) < qm. Suppose that, in F (I), job Jb is the last job of B with qb < qm.
Set E = {Jb+1, Jb+2, . . . , Jm}. It is clear that qm = qmin(E) > qb. By algorithm A2, we
derive that SF

b < min{ rl | Jl ∈ E} holds. Thereby, we obtain that

DE ∗

max ≥ (SF
b +

E

F
)

m∏
l=b+1

(1 + βlF )− E

F
+ qm. (4.6)

Note that,

DE ∗

max ≥
(
SF
a +

E

F

) m∏
l=a

(1 + βlF )− E

F
=

(
SF
b +

E

F

) m∏
l=b

(1 + βlF )− E

F
. (4.7)

In addition, along with equation (4.5), we have

DF
max = DF

m =

(
SF
a +

E

F

) m∏
l=a

(1+βlF )−E

F
+qm =

(
SF
b +

E

F

) m∏
l=b

(1+βlF )−E

F
+qm. (4.8)
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In the light of E
F → 0, together with inequalities (4.6)–(4.8), we get that

DF
max −DE ∗

max

DE ∗
max

≤

(
SF
b +

E

F

)∏m
l=b(1 + βlF )− E

F + qm −
[(

SF
b +

E

F

)∏m
l=b+1(1 + βlF )− E

F + qm

]
(
SF
b +

E

F

)∏m
l=b(1 + βlF )− E

F

=

(
SF
b +

E

F

)∏m
l=b(1 + βlF )−

(
SF
b +

E

F

)∏m
l=b+1(1 + βlF )(

SF
b +

E

F

)∏m
l=b(1 + βlF )− E

F

→ βbF

1 + βbF
≤ βmaxF

1 + βmaxF
,

which implies that
DF

max

DE ∗
max

≤ 1 + 2βmaxF

1 + βmaxF
.

The proof is completed.

From Lemma 4.4, we receive that the upper bound of ρ(A2) is
1+2βmaxF
1+βmaxF

, matching the
lower bound shown in Theorem 4.2, which signifies that our algorithm is optimal. As a
result, we draw a conclusion as below:

Theorem 4.5. For problem P2, algorithm A2 is an optimal online algorithm with a com-
petitive ratio of 1+2βmaxF

1+βmaxF
.

4.2 Deteriorating transportation time

For an instance I, there exists a set of jobs reaching online over time. Noticeably, for
every job Jl, its transportation time ql is denoted as ql = αl(E + FCl), where E ≥ 0 and
F ≥ 0 are constants respecting E + F > 0. Recall that Chai et al. [3] considered problem
1|online, rl, ql = αlCl|Dmax, a special case of problem P3. In addition, they pointed out
that every online algorithm A meets ρ(A ) ≥ min{2, 1 + αmax}. Therefore, we obtain the
following conclusion.

Theorem 4.6. For problem P3, there exists no online algorithm A such that

ρ(A ) <

 2, αmaxF > 1,

1 + αmaxF, αmaxF ≤ 1.

From Theorem 4.6, we receive that the lower bound for problem P3. In the following, we
will provide online algorithms and performance analysis for two cases as below: αmaxF > 1
and αmaxF ≤ 1.

When αmaxF > 1, we introduce an optimal online algorithm, which works as follows:

Algorithm 4.7. A3

Step 1: When the processor is available and A(t) ̸= ∅, choose the job with the largest
transport deterioration rate in A(t), say Jl;
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Step 2: If t ≥ pl, then process job Jl, and transport it instantly after processing; otherwise,
wait until time pl or a new job reaches, whichever comes first, and go to Step 1;

Step 3: If all jobs have been transported, stop; otherwise, go to Step 1.

Let F (I) indicate the schedule of I produced by algorithm A3. For simplicity, we suppose
that Jl stands for the lth job in F (I), where 1 ≤ l ≤ n. Now, we begin to analyze the
competitive ratio of algorithm A3.

Lemma 4.8.
DF

max

DE∗
max

≤ 2.

Proof. Let Jm be the decisive job in F (I), which means that DF
max = DF

m . Define B =
{Ja, Ja+1, . . . , Jm} as a significant set in F (I). There is no doubt that,

DF
max = DF

m = CF
m + qF

m = SF
a +

m∑
l=a

pl + αm

[
E + F

(
SF
a +

m∑
l=a

pl

)]

= (1 + αmF )

(
SF
a +

m∑
l=a

pl

)
+ αmE.

(4.9)

Set αmin(B) = min{ αl | Jl ∈ B}.
Case A: αm = αmin(B). By algorithm A3, we observe that αa ≥ αm. Notice that, if

SF
a > ra + pa, then the scheduler will assign job Ja before time SF

a in F (I), and thus, we
have SF

a ≤ ra + pa. In addition, we infer that

DE ∗

max ≥ CE ∗

a + qE ∗

a ≥ ra + pa + αa[E + F (ra + pa)]

≥ (1 + αaF )(ra + pa) + αaE

≥ (1 + αmF )SF
a + αmE.

(4.10)

Furthermore, we derive that

DE ∗

max ≥
m∑
l=a

pl +αm

(
E + F

m∑
l=a

pl

)
= (1+αmF )

m∑
l=a

pl +αmE ≥ (1+αmF )

m∑
l=a

pl. (4.11)

According to inequalities (4.9)–(4.11), we receive that

DF
max −DE ∗

max ≤ (1 + αmF )

(
SF
a +

m∑
l=a

pl

)
+ αmE − [(1 + αmF )SF

a + αmE]

= (1 + αmF )

m∑
l=a

pl

≤ DE ∗

max,

that is,
DF

max

DE ∗
max

≤ 2.

Case B: αm > αmin(B). Let Jb be the last job of B with αb < αm in F (I). Set
E = {Jb+1, Jb+2, . . . , Jm}. It is obvious that αm = αmin(E) > αb. From algorithm A3, we



ONLINE SCHEDULING FOR DEGRADATION DATA PROCESSING 385

know that SF
b < min{ rl | Jl ∈ E} follows. Hence, we gain that

DE ∗

max ≥ SF
b +

m∑
l=b+1

pl+αm

[
E + F

(
SF
b +

m∑
l=b+1

pl

)]
= (1+αmF )

(
SF
b +

m∑
l=b+1

pl

)
+αmE.

(4.12)
In view of the definition of significant set, it follows that SF

a +
∑m

l=a pl = SF
b +

∑m
l=b pl.

Together with equation (4.9), we have

DF
max = DF

m = (1 + αmF )

(
SF
a +

m∑
l=a

pl

)
+ αmE = (1 + αmF )

(
SF
b +

m∑
l=b

pl

)
+ αmE.

(4.13)
By algorithm A3, we deduce that SF

b ≥ pb. Combining with inequalities (4.12) and (4.13),
we obtain that

DF
max

DE ∗
max

≤
(1 + αmF )(SF

b +
∑m

l=b pl) + αmE

(1 + αmF )(SF
b +

∑m
l=b+1 pl) + αmE

= 1 +
(1 + αmF )pb

(1 + αmF )(SF
b +

∑m
l=b+1 pl) + αmE

≤ 2.

The proof is completed.

From Lemma 4.8, we receive that, 2 is an upper bound of ρ(A3). Next, we will propose
a simple example to show the bound is tight.

Example 4.9. Let I = {(r1 = 0, p1 = p, α1 = 0)}, where p > 0. Obviously, qE ∗

1 = qF
1 = 0.

In addition, we observe that SE ∗

1 = 0, CE ∗

1 = SE ∗

1 +p1 = p and DE ∗

max = DE ∗

1 = CE ∗

1 +qE ∗

1 =
p + 0 = p. According to algorithm A3, we have SF

1 = p, CF
1 = SF

1 + p1 = 2p and

DF
max = DF

1 = CF
1 + qF

1 = 2p+ 0 = 2p. Thus, we gain that
DF

max

DE∗
max

= 2p
p = 2.

For the sake of intuition, we give Figure 1 to show the corresponding schedules.

Figure 1: The corresponding schedules.

Combining with Theorem 4.6 and Example 4.9, we come to the following conclusion:

Theorem 4.10. For problem P3, if αmaxF > 1, then algorithm A3 is an optimal online
algorithm with a competitive ratio of 2.

When αmaxF ≤ 1, we design an online algorithm, which can be described as below:

Algorithm 4.11. A4

Step 1: If the processor is available and A(t) ̸= ∅, then choose an arbitrary job in A(t) to
process, and transport it instantly after processing;
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Step 2: If all jobs have been transported, stop; otherwise, go to Step 1.

Define F (I) as the schedule of I produced by algorithm A4. For ease of description, we
assume that Jl denotes the lth job in F (I), where 1 ≤ l ≤ n. Set φ(E) = 1 + αmaxF when
E = 0 and φ(E) = 2 + αmaxF when E > 0.

Next, we will provide the competitive analysis for algorithm A4.

Lemma 4.12.
DF

max

DE∗
max

≤ φ(E).

Proof. Suppose that Jm is the decisive job in F (I), it follows that DF
max = DF

m . Let
B = {Ja, Ja+1, . . . , Jm} be a significant set in F (I). Thus, we obtain that

DF
max = DF

m = CF
m + qF

m = SF
a +

m∑
l=a

pl + αm

[
E + F

(
SF
a +

m∑
l=a

pl

)]

= (1 + αmF )

(
SF
a +

m∑
l=a

pl

)
+ αmE.

(4.14)

From algorithm A4, we have SF
a = min{ rl | Jl ∈ B}, which signifies that, rl ≥ SF

a holds
for every job Jl ∈ B. Hence, we infer that

DE ∗

max ≥ SF
a +

m∑
l=a

pl. (4.15)

Case A: E = 0. Combining with inequalities (4.14) and (4.15), we get that

DF
max

DE ∗
max

≤
(1 + αmF )(SF

a +
∑m

l=a pl)

SF
a +

∑m
l=a pl

= 1 + αmF ≤ 1 + αmaxF.

Case B: E > 0. Notice that

DE ∗

max ≥ CE ∗

m + qE ∗

m = CE ∗

m + αm(E + FCE ∗

m ) = (1 + αmF )CE ∗

m + αmE ≥ αmE. (4.16)

From inequalities (4.14)–(4.16), we derive that

DF
max − (1 + αmF )DE ∗

max

DE ∗
max

≤
(1 + αmF )(SF

a +
∑m

l=a pl) + αmE − (1 + αmF )(SF
a +

∑m
l=a pl)

αmE

= 1,

which implies that

DF
max

DE ∗
max

≤ 2 + αmF ≤ 2 + αmaxF.

The lemma is true.

According to Lemma 4.12, we get that, φ(E) is an upper bound for the competitive ratio
of algorithm A4. Now, two simple examples are given to attest that the bound is tight.
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Example 4.13. Let I = {(rl, pl, αl) | l = 1, 2}, E = 0 and F = 1
2 . Furthermore, the

information of each job will be shown in Table 3.

Table 3: The information of each job.
Jl rl pl αl

J1 1 2 0
J2 1 + ϵ 0 2

It is clear that, αmaxF = 2 × 1
2 = 1 and qE ∗

1 = qF
1 = 0. From algorithm A4, we know

that DF
1 = CF

1 + qF
1 = 1 + 2 + 0 = 3 and DF

2 = CF
2 + qF

2 = 3 + 2 × (0 + 1
2 × 3) = 6,

which means that DF
max = DF

2 = 6. Note that, in E ∗(I), job J2 is processed at time 1 + ϵ,
and followed by job J1. Hence, we infer that DE ∗

1 = CE ∗

1 + qE ∗

1 = 1 + ϵ + 2 + 0 = 3 + ϵ,
DE ∗

2 = CE ∗

2 + qE ∗

2 = 1+ ϵ+2× [0+ 1
2 × (1+ ϵ)] = 2(1+ ϵ), and DE ∗

max = DE ∗

1 = 3+ ϵ. Thus,
we receive that

DF
max

DE ∗
max

=
6

3 + ϵ
→ 2 = 1 + 2× 1

2
= 1 + αmaxF (ϵ → 0).

For intuition, we provide Figure 2 to show the corresponding schedules.

Figure 2: The corresponding schedules.

Example 4.14. Set I = {(rl, pl, αl) | l = 1, 2}, E = 1 and F = 1
2 . Moreover, the

information of I will be provided in Table 4.

Table 4: The information of each job.
Jl rl pl αl

J1 0 2 0
J2 ϵ 0 2

Undoubtedly, αmaxF = 2× 1
2 = 1 and qE ∗

1 = qF
1 = 0. According to algorithm A4, we derive

that DF
1 = CF

1 + qF
1 = 0+2+ 0 = 2 and DF

2 = CF
2 + qF

2 = 2+ 2× (1+ 1
2 × 2) = 6, which

signifies that DF
max = DF

2 = 6. Notice that, in E ∗(I), we will assign job J2 to process at time
ϵ, and followed by job J1. Therefore, we deduce that DE ∗

1 = CE ∗

1 + qE ∗

1 = ϵ+ 2+ 0 = 2+ ϵ,
DE ∗

2 = CE ∗

2 + qE ∗

2 = ϵ+ 2× (1 + 1
2 × ϵ) = 2(1 + ϵ), and DE ∗

max = DE ∗

2 = 2(1 + ϵ). Thus, we
obtain that

DF
max

DE ∗
max

=
6

2(1 + ϵ)
→ 3 = 2 + 2× 1

2
= 2 + αmaxF (ϵ → 0).

To be more intuitive, we propose Figure 3 to show the corresponding schedules.
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Figure 3: The corresponding schedules.

In view of the lower bound, together with Examples 4.13 and 4.14, we conclude the final
conclusion as below:

Theorem 4.15. For problem P3, if αmaxF ≤ 1, then the algorithm A4 is an online algorithm
with competitive ratio φ(E), where φ(E) = 1 + αmaxF or φ(E) = 2 + αmaxF depending on
whether E = 0 or E > 0.

5 Conclusions

In this paper, three online scheduling problems with deterioration on a single processor are
discussed. Our goals are to minimize the makespan and minimize the maximum delivery
time. It is novel and realistic to consider such problems. For clarity, the results proposed in
the work will be shown in Table 5.

Table 5: The results of the work.
Problem Lower bound Competitive ratio Optimal

P1 1
√

P2
1+2βmaxF
1+βmaxF

1+2βmaxF
1+βmaxF

√

P3(αmaxF > 1) 2 2
√

P3(αmaxF ≤ 1) 1 + αmaxF φ(E)

Notice that, for problem 1|online, rl, ql = αl(E + FCl)|Dmax, there exists an unsatisfac-
tory gap between the competitive ratio and the lower bound when αmaxF ≤ 1. Hence, it is
necessary to study it further. In addition, it will be interesting to generalize the results to
multi-processor scheduling. Furthermore, it is meaningful to investigate other objectives.
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