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least the 1970s [33], but were not well-established until the 1990s [5, 26]. More recent ideas
include the development of minimal Frobenius norm models for under-determined quadratic
models [6, 27, 28], non-polynomial models [18, 25, 30, 32], models for nonsmooth functions
[9, 12, 14, 17], and calculus-based approaches to gradient approximation [10, 11, 29].

Our research explores the idea of complex-step modelling. We introduce this through a
simple example first developed by Lyness and Moler [19].

For a complex-variable z = zre+ zimi, we shall use ℜ(z) = zre and ℑ(z) = zim to denote
the real and imaginary parts of z. Recall that a function is analytic at a fixed point, z̄ ∈ Cn,
if locally it agrees with its (infinite) Taylor expansion.

Consider an analytic single-variable function f : C → C at a real point x̄ ∈ R. By
Taylor’s theorem, the classical divided difference formula can be derived as follows,

f(x̄+ h) = f(x̄) + hf ′(x̄) +O(h2),
f(x̄+ h)− f(x̄) = hf ′(x̄) +O(h2),
f(x̄+ h)− f(x̄)

h
= f ′(x̄) +O(h).

This demonstrates that the divided difference formula, (f(x̄ + h) − f(x̄))/h, gives an ap-
proximation of the true derivative with an error of order O(h).

In [19], Lyness and Moler cleverly noted that using Taylor’s expansion in the direction
of the imaginary axis can provide an alternate formula. In particular, a Taylor expansion
centered at x̄ using a step of ih yields

f(x̄+ ih) = f(x̄) + ihf ′(x̄) + 1
2 (ih)

2f ′′(x̄) +O((ih)3),
f(x̄+ ih) = f(x̄) + ihf ′(x̄)− 1

2 (h
2)f ′′(x̄) + iO(h3),

ℑ(f(x̄+ ih)) = hf ′(x̄) +O(h3).

This yields the complex-step derivative approximation

ℑ(f(x̄+ ih))

h
= f ′(x̄) +O(h2).

Notice that, despite using only 1 function evaluation (instead of the 2 required in the divided
difference formula), the error term is now of order O(h2).

In [15], it was noted that this idea could easily be adapted to approximate the gradient
of an analytic multivariate complex-valued function. That is, if f : Cn → C, then

ℑ(f(x+ihe1))
h

ℑ(f(x+ihe2))
h
...

ℑ(f(x+ihen))
h

 = ∇f(x) +O(h2),

where ei is the ith coordinate vector.
Other approximations and approximating the Hessian for such a function is also possible;

we discuss this in Section 2.
Once approximations of gradients and Hessians are established, these approximations

can be applied in any classical smooth optimization method. The idea of using complex-
step approximate gradients in such a framework has arisen in a number of applications,
including, for example, Finance [2], Geophysics [1], Image Reconstruction [13], Sensitivity
Analysis [20], and Uncertainty Analysis [31]. In these applications, the researchers argue
that the complex-step approximation
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(i) provides higher accuracy, so improves the chances of solving a given problem;

(ii) avoids catastrophic cancellation and allows smaller step sizes to be applied safely;

(iii) is reduced work as it uses fewer function evaluations to solve the problem.

The first of these arguments has been examined through mathematical theory [15], but
not numerical testing with regards to optimization. The second of these arguments has been
established through both theoretical methods and numerical testing [21, 15]. However, the
value of the reduction in numerical error in optimization has not been fully studied. For
example, none of the above citations examine the value of using complex-step Hessian ap-
proximations. The third of these arguments is clearly focused on gradient approximations,
as we shall see in Table 1. The argument has not been explored with regards to using
complex-step Hessian approximations. Moreover, the argument ignores the fact that eval-
uating functions at complex points often requires additional computation, so can be more
time consuming.

In this research, our goal is to numerically explore the value of using complex-step ap-
proximate gradients and Hessians in optimization. We use four variations of complex-step
approximations within an approximate Newton method. We compare their effectiveness
against a classical approximation method and applying exact calculations within the same
Newton method. Analysis of speed (time and function calls) and final solution accuracy is
provided.

The remainder of this paper is organized as follows. In Section 2, we provide details
on the four complex-step methods examined. We include each method’s derivation and
error analysis. Table 1 provides a summary of methods’ properties. In Section 3, we briefly
overview the approximate Newton method that was adopted for the experiments. We also
provide details on the test problems and experimental set-up. In Section 4, we detail the
results of the experiment. Performance profiles and data profiles are provided therein. Full
details of the collected data can be obtained by contacting the corresponding author. In
Section 5, we provide some concluding thoughts.
Remark: This paper makes heavy use of both real and complex numbers. To aid reading,
throughout this paper we shall use h ∈ R and x ∈ Rn ⊆ Cn when variables/constants are
real, and use z ∈ Cn when variables/constants may be complex.

2 Quadratic Models

Consider a quadratic function

Q(z) = α0 + g⊤z +
1

2
z⊤Hz,

where α0 ∈ C, g ∈ Cn,H ∈ Cn×n. Suppose we desire this quadratic to agree with an
objective function f : Cn → C at a collection of points {z0, z1, . . . , zm}.

We begin by assuming, without loss of generality, that H = H⊤. From here, we can easily
derive that α0 has 2 unknown values (1 real and 1 imaginary part), g has 2n unknown values,

and H has 2
n(n+ 1)

2
= n(n+ 1) unknown values. Thus, we need a total of (n+ 1)(n+ 2)

pieces of information in order to construct Q. Note that each equation Q(zi) = f(zi) gives
us 2 pieces of information: ℜ(Q(zi)) = ℜ(f(zi)) and ℑ(Q(zi)) = ℑ(f(zi)). Thus, it would

Catastrophic cancellation is created by a near-zero subtraction combined with a near-zero division.
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appear that a minimum of (n + 1)(n + 2)/2 function evaluations are required to construct
a well-poised model.

Suppose however that we have the additional information that f(x) ∈ R whenever x ∈ Rn

and therefore we desire Q(x) ∈ R whenever x ∈ Rn. Considering Q(0) = α0 = f(0), we know
α0 ∈ R. Note that we do not actually evaluate f(0) to harvest this information, we have
only applied our assumption that f(x) ∈ R whenever x ∈ Rn. Next, for each i = 1, 2, . . . , n,
consider 1

2 (Q(ei) − Q(−ei)) = gi. Thus, our assumption implies g ∈ Rn. Similarly, our
assumption implies H ∈ Rn×n. In summary, if we desire Q(x) ∈ R whenever x ∈ Rn, then
we must have α0 ∈ R, g ∈ Rn,H ∈ Rn×n. This effectively provides us with (n+1)(n+2)/2
pieces of information without evaluating f at a single point.

At this point, if we limit ourselves to evaluating f at points xi ∈ Rn, then this will
require (n+ 1)(n+ 2)/2 function evaluations. While each evaluation f(xi) still provides us
with ℜ(Q(xi)) = ℜ(f(xi)) and ℑ(Q(xi)) = ℑ(f(xi)), the second equation reduces to 0 = 0
and therefore gives no new information. We will label this as the real-step quadratic method
(RQM) for our calculations. More details on the method are presented in Section 3.

However, if we consider zi ∈ Cn, then both the real and imaginary information will be
valuable. This will allow us to construct gradient and Hessian approximations using less
than (n+ 1)(n+ 2)/2 function evaluations.

2.1 Multivariate Taylor’s theorem

Before developing complex-step quadratic methods, we recall Taylor’s theorem for multi-
variate functions. To express the multivariate version of Taylor’s theorem it is helpful to
first review multi-index notation. A multi-index, α = (α1, α2, . . . , αn), is an n-tuple of
non-negative integers. For z ∈ Cn, multi-index notation defines the following operations

|α| = α1 + α2 + · · ·+ αn,

α! = α1!α2! . . . αn!,

zα = zα1
1 zα2

2 . . . zαn
n ,

∂αf =
∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

f.

Applying multi-index notation, the multivariate version of Taylor’s theorem is as follows.
We remark that f being an analytic function tells us that locally it agrees with its infinite
Taylor expansion, Theorem 2.1 allows us to quantify the error of using a finite Taylor
expansion.

Theorem 2.1 (Multivariate Taylor’s theorem). Let f : Cn → C be analytic at z̄ ∈ Cn. Let
n ≥ 1 and define

Pn(z) = f(z̄) +

|α|=n∑
|α|=1

1

α!
(∂αf) (z̄)(z − z̄)α. (2.1)

Then, there exists a radius δ > 0 such that if ∥z − z̄∥ < δ, then

Pn(z)− f(z) =
∑

|α|≥n+1

1

α!
(∂αf) (z̄)(z − z̄)α. (2.2)

Consequently,
|Pn(z)− f(z)| = O((z − z̄)n+1),

|ℜ(Pn(z)− f(z))| = O((z − z̄)n+1), and
|ℑ(Pn(z)− f(z))| = O((z − z̄)n+1).

(2.3)
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This result will be most useful when z ∈ Cn is such that (z − z̄) = h exp(iθ)ej or
(z − z̄) = h exp(iθ)(ej + ek) with θ ∈ [0, 2π).

Corollary 2.2. Let f : Cn → C be analytic near z̄ ∈ Cn. Let n ≥ 1 and define Pn as in
equation (2.1).

i. If z = z̄ + h exp(iθ)ej, then

Pn(z) = f(z̄) +

n∑
k=1

exp(ikθ)
hk

k!

∂kf

∂xk
j

(z̄).

ii. If z = z̄ + h exp(iθ)(ej1 + ej2), then

Pn(z) = f(z̄) +

n∑
k=1

exp(ikθ)hk
∑

k1+k2=k

ki≥0

1

(k1!)(k2!)

∂kf

∂xk1
j1
∂xk2

j2

(z̄).

In either case, equation (2.3) reduces to

|Pn(z)− f(z)| = O(hn+1),
|ℜ(Pn(z)− f(z))| = O(hn+1), and
|ℑ(Pn(z)− f(z))| = O(hn+1).

(2.4)

2.2 Basic complex-step quadratic method (BCQM)

Suppose we desire to approximate ∇f(x̄) and ∇2f(x̄) for x̄ ∈ Rn and analytic function
f : Cn → C, where f is such that f(x) ∈ R whenever x ∈ Rn.

Select a step size h > 0. By Corollary 2.2(i) at θ = π/2, the 3rd-order complex-step
Taylor expansion of f at x̄ satisfies

f(x̄+ (ih)ej) = P3(x) +O(h4)

= f(x̄) +
∑3

k=1 i
k hk

k!
∂kf
∂xk

j

(x̄) +O(h4).

This provides

ℜ(f(x̄+ (ih)ej)) = f(x̄)− h2

2
e⊤j ∇2f(x̄)ej +O(h4).

Similarly, the 2nd-order complex-step Taylor expansion of f at x̄ provides

ℑ(f(x̄+ (ih)ej)) = h∇f(x̄)⊤ej +O(h3).

This immediately yields

∇f(x̄)⊤ =
[
ℑ(f(x̄+ihe1))

h
ℑ(f(x̄+ihe2))

h · · · ℑ(f(x̄+ihen))
h

]
+O(h2). (2.5)

Focusing on the real part of the Taylor expansion, we find that

∂2f

∂x2
j

(x̄) =
2(f(x̄)−ℜ(f(x̄+ (ih)ej)))

h2
+O(h2). (2.6)
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To find the remaining terms of the Hessian, consider Corollary 2.2(ii) at θ = π/2 to see

ℜ(f(x̄+ ih(ej + ek)))
= f(x̄)− 1

2h
2(ej + ek)

⊤∇2f(x̄)(ej + ek) +O(h4)

= f(x̄)− 1
2h

2

(
∂2f

∂x2
j

(x̄) + 2
∂2f

∂xjxk
(x̄) +

∂2f

∂x2
k

(x̄)

)
+O(h4).

Combining this with equation (2.6) shows that

∂2f

∂xjxk
(x̄) =

(f(x̄)−ℜf(x̄+ih(ej+ek)))
h2 − 1

2
∂2f
∂x2

j
(x̄)− 1

2
∂2f
∂x2

k
(x̄) +O(h2)

=
ℜ(f(x̄+(ih)ej))−ℜ(f(x̄+ih(ej+ek)))+ℜ(f(x̄+(ih)ek))−f(x̄)

h2 +O(h2).

(2.7)

Equations (2.5), (2.6), and (2.7) provide us with a method to approximate the gradient
and Hessian of the function. We call this the Basic Complex-step Quadratic Method (BCQM)
for constructing approximations of ∇f and ∇2f .

The total number of distinct function evaluations used in the BCQM is (n2 + n+ 2)/2.
This is only a minor improvement over the (n2 + 3n + 2)/2 function evaluations required
if we limit ourselves to only using real-valued points. However, we should also notice that
quadratic interpolation using real-valued points results in a Hessian approximation with an
error term that is O(h), whereas the BCQM results in a Hessian approximation with an
error term that is O(h2). So, our minor reduction in function evaluations has resulted in an
increased curvature accuracy.

Remark 2.3. BCQM returns approximations for ∇f and ∇2f , which we shall label G and
H respectively. If one desires to create a quadratic model Q(z) = α0 + g⊤z + 1

2z
⊤Hz, then

it is necessary to remember that

H = ∇2Q(x̄) = H,
g = ∇Q(x̄)−Hx̄ = G−Hx̄,

α0 = Q(x̄)− g⊤x̄− 1
2 x̄

⊤Hx̄ = F − g⊤x̄− 1
2 x̄

⊤Hx̄,

where F = f(x̄). (Note, we overload the variable H as it is consistent in both usages.)

2.3 General complex-step quadratic methods (GCQM)

The BCQM uses the imaginary-coordinate directions in order to generate gradient and
Hessian approximations, which then can be used to generate a quadratic model. Like real-
valued approaches, except for the simplicity in presentation, there is very little special about
the coordinate directions. Indeed, in [16], Lai and Crassidis presented a variety of alternate
methods. We present some of them here. The methods presented herein represent the
methods with either the least required function evaluations or the highest quality error
bound.

By Corollary 2.2(i) using n ≥ 2

f(z̄ + h exp(iθ)ej) = f(z̄) +
∑n

k=1 exp(ikθ)
hk

k!
∂kf
∂xk

j

(z̄) +O(hn+1),

f(z̄ + h exp(i(θ + π))ej) = f(z̄) +
∑n

k=1 exp(ik(θ + π)))h
k

k!
∂kf
∂xk

j

(z̄) +O(hn+1).

Subtracting and recalling that exp(iθ) = − exp(i(θ + π)) yields

f(z̄ + h exp(iθ)ej)− f(z̄ + h exp(i(θ + π))ej)

= 2 exp(iθ)h ∂f
∂xj

(z̄) +
∑n

k=2 (exp(ikθ)− exp(ik(θ + π))) hk

k!
∂kf
∂xk

j

(z̄) +O(hn+1).
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Rearranging and applying exp(ik(θ+π)) = exp(ikθ) exp(ikπ) = (−1)k exp(ikθ) leads to the
formula

exp(iθ) ∂f
∂xj

(z̄) =
f(z̄+h exp(iθ)ej)−f(z̄+h exp(i(θ+π))ej)

2h

−
∑n

k=2 exp(ikθ)
1−(−1)k

2
hk−1

k!
∂kf
∂xk

j

(z̄) +O(hn).

This reduces to the final formula

exp(iθ) ∂f
∂xj

(z̄) =
f(z̄+h exp(iθ)ej)−f(z̄+h exp(i(θ+π))ej)

2h

−
n∑

k=2

k odd

exp(ikθ)h
k−1

k!
∂kf
∂xk

j

(z̄) +O(hn). (2.8)

Notice, if θ = 0 and n = 2, then this returns the classic centred-divided difference formula
and error bound. But, if we select other values of θ, we get novel methods to approximate
the gradient. Examples are given in the next subsections.

Returning to Corollary 2.2(i), this time with n ≥ 3, following similar arguments it is
straightforward to confirm the following equation that can be used to approximate the
diagonal elements of the Hessian,

exp(i2θ)∂
2f

∂x2
j
(z̄) = 1

h2 (f(z̄ + h exp(iθ)ej)− 2f(z̄) + f(z̄ + h exp(i(θ + π))ej))

−
n∑

k=3

k even

2 exp(ikθ)h
k−2

k!
∂kf
∂xk

j

(z̄) +O(hn−1).
(2.9)

Notice, if z̄ = x̄ ∈ Rn, θ = 0, and n = 3, then this recovers the classic second derivative
midpoint formula. Examples that use other values for θ are given in the next subsections.

To approximate the off-diagonal elements of the Hessian we use Corollary 2.2(ii) with
n ≥ 3 to find

exp(2iθ) ∂2f
∂xj∂xk

(z̄) =
1

2h2 (f(z̄ + h exp(iθ)(ej + ek)) + f(z̄ + h exp(i(θ + π))(ej + ek))− 2f(z̄))

− exp(2iθ)
2

(
∂2f
∂x2

j
+ ∂2f

∂x2
k

)
(z̄)− 2

n∑
|α|=3

|α| even

exp(i|α|θ)h|α|−2 1

α!
∂αf(z̄) +O(hn−1).

(2.10)

Using equations (2.8), (2.9), and (2.10), we can construct a wide variety of gradient and
Hessian approximation techniques. For a given θ, we shall call this the General Complex-step
Quadratic Method-θ (GCQM-θ). Two of the most interesting of these are when θ = π/4 and
θ = π/3. The details are presented in the following subsections. Section 2.6 further presents
the use of Richardson extrapolation on the first variation of GCQM.

Note that GCQM-θ constructs gradient and Hessian approximations. If a quadratic
model is desired, then the process in Remark 2.3 should be applied.

2.4 GCQM-π/4

Substituting θ = π
4 and n = 2 in (2.8) at the point x̄ ∈ Rn, and combining it with exp(iθ) =

i2θ/π, we obtain

exp(iπ/4)
∂f

∂xj
(x̄) =

1

2h
(f(x̄+ hi

1/2ej)− f(x̄+ hi
5/2ej)) +O(h2).
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Using exp(iπ/4) = (i+ 1)/
√
2 and taking imaginary parts on both sides yields

∂f

∂xj
(x̄) =

1√
2h
ℑ(f(x̄+ hi

1/2ej)− f(x̄+ hi
5/2ej)) +O(h2). (2.11)

The error bound for this gradient approximation is equivalent to that of BCQM.
Substituting θ = π

4 and n = 5 in (2.9), again using exp(iθ) = i2θ/π, we obtain

exp(iπ/2)∂
2f

∂x2
j
(x̄) = 1

h2

(
f(x̄+ hi1/2ej)− 2f(x̄) + f(x̄+ hi5/2ej)

)
−2 exp(iπ)h

2

4!
∂4f
∂x4

j
(x̄) +O(h4),

i∂
2f

∂x2
j
(x̄) = 1

h2

(
f(x̄+ hi1/2ej)− 2f(x̄) + f(x̄+ hi5/2ej)

)
+2h2

4!
∂4f
∂x4

j
(x̄) +O(h4).

Taking the imaginary parts on both sides, recalling that x ∈ Rn implies f(x) ∈ R by
assumption, yields

∂2f

∂x2
j

(x̄) =
1

h2
ℑ(f(x̄+ hi

1/2ej) + f(x̄+ hi
5/2ej)) +O(h4).

Note that, here, the error bound is O(h4) as compared to the O(h2) obtained in BCQM
calculations.

Finally, for off-diagonal elements of the Hessian, substituting θ = π
4 and n = 5 in (2.10)

yields

exp(iπ/2) ∂2f
∂xj∂xk

(x̄) = 1
2h2

(
f(x̄+ hi1/2(ej + ek))− 2f(x̄) + f(x̄+ hi5/2(ej + ek))

)
− exp(iπ/2)

2

(
∂2f
∂x2

j
+ ∂2f

∂x2
k

)
(x̄)− 2 exp(iπ)h2

∑
|α|=4

1

α!
∂αf(x̄) +O(h4),

i ∂2f
∂xj∂xk

(x̄) = 1
2h2

(
f(x̄+ hi1/2(ej + ek))− 2f(x̄) + f(x̄+ hi5/2(ej + ek))

)
− i

2

(
∂2f
∂x2

j
(x̄) + ∂2f

∂x2
k
(x̄)
)
+ 2h2

∑
|α|=4

1

α!
∂αf(x̄) +O(h4).

Taking the imaginary parts of both sides, recalling that x̄ ∈ Rn implies f(x̄) ∈ R by
assumption, yields

∂2f

∂xj∂xk
(x̄) =

1

2h2
ℑ(f(x̄+ hi

1/2(ej + ek)) + f(x̄+ hi
5/2(ej + ek)))

− 1

2

(
∂2f

∂x2
j

(x̄) +
∂2f

∂x2
k

(x̄)

)
+O(h4).

Note that, again the error bound is O(h4) as compared to the O(h2) obtained in BCQM
calculations.

Examining the function evaluations used, notice that the gradient approximation and
the diagonal elements of the Hessian approximation both use the same objective function
values: f(x̄ + hi1/2ej) and f(x̄ + hi5/2ej). These sum up to 2n function evaluations. The
off-diagonal elements of the Hessian approximation each use two more function evaluations:
f(x̄+ hi1/2(ej + ek)) and f(x̄+ hi5/2(ej + ek)). Through symmetry, only the upper portion
of the Hessian approximation needs to be constructed, this requires 2n(n − 1)/2 = n2 −
n function evaluations. Therefore, the total number of function evaluations used in this
complex-step method is n2 + n.
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2.5 GCQM-π/3

Another proposed variation of the general complex-step quadratic method is at θ = π
3 . An

alternate derivation can be found in [16].
Similar to previous calculations, substituting θ = π

3 and n = 4 in equation (2.8) at the
point x ∈ Rn, we obtain

∂f

∂xj
(x̄) =

1√
3h
ℑ(f(x̄+ hi

2/3ej)− f(x̄+ hi
8/3ej)) +O(h4).

Notice the error term in this approximation is O(h4), in comparison with the O(h2) in the
previous methods.

To calculate diagonal elements of Hessian, we substitute θ = π
3 and n = 3 in equation

(2.9) to obtain

∂2f
∂x2

j
(x̄) = 2√

3h2
ℑ(f(x̄+ hi2/3ej) + f(x̄+ hi8/3ej)) +O(h2).

The off-diagonal elements of the Hessian are generated by substituting θ = π
3 and n = 3 in

equation (2.10),

∂2f
∂xj∂xk

(x̄) = 1√
3h2
ℑ(f(x̄+ hi2/3(ej + ek)) + f(x̄+ hi8/3(ej + ek)))

− 1
2

(
∂2f
∂x2

j
+ ∂2f

∂x2
k

)
(x̄) +O(h2).

The Hessian approximation for this method has error O(h2).
The number of function evaluations required by this method are identical to GCQM-π/4

from Subsection 2.4. The gradient vector and the diagonal elements of the Hessian are
computed using the same objective function values f(x̄ + hi2/3ej) and f(x̄ + hi8/3ej). The
off-diagonal elements of the Hessian use function values f(x̄ + hi2/3(ej + ek)) and f(x̄ +
hi8/3(ej+ek)). Therefore, the total number of function evaluations used in the complex-step
method with θ = π

3 is n2 + n.

2.6 GCQM-π/4 using Richardson Extrapolation

We next present a variation of the GCQM-π/4 that provides an error term of O(h4) for both
gradient and Hessian approximations. This improvement in accuracy is achieved through
Richardson extrapolation.

Applying θ = π/4 and n = 4 in equation (2.8) with yields

exp(iπ/4)
∂f

∂xj
(z̄) =

f(z̄+hi
1/2ej)−f(z̄+hi

5/2ej)
2h − i3/2 h2

6
∂3f
∂x3

j
(z̄) +O(h4) (2.12)

and (by substituting h with h/2)

exp(iπ/4)
∂f

∂xj
(z̄) =

f(z̄+ 1
2hi

1/2ej)−f(z̄+ 1
2hi

5/2ej)

h − i3/2 h2

24
∂3f
∂x3

j
(z̄) +O(h4). (2.13)

Multiplying equation (2.13) by 4 and subtracting equation (2.12), after simplification, pro-
duces

∂f

∂xj
=

ℑ
(
8(f(x+h

2 i
1/2ej)−f(x+h

2 i
5/2ej))−(f(x+hi

1/2ej)−f(x+hi
5/2ej))

)
3
√
2h

+O(h4).

This method uses 4n function evaluations to approximate the gradient, instead of the 2n
used by GCQM-π/4, but provides a gradient error of O(h4). The Hessian calculations are
unchanged from Subsection 2.4. Therefore, total number of function evaluations required
are n2 + 3n. Henceforth we shall refer to this method as GCQM-π/4-R.
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3 Using Complex-step Methods in an Approximate Newton’s Al-
gorithm

In Section 2, we outlined 4 methods to approximate gradients and Hessians: BCQM, GCQM-
π/4, GCQM-π/3, and GCQM-π/4-R. Our goal is to use these 4 methods in a Newton style
algorithm to gauge their effectiveness to help solve optimization problems. In addition to
the 4 complex-variable based methods, we shall consider 2 other methods.

The first will be to use the true gradient and true Hessian. In evaluating this approach
with regards to function evaluations, we consider each required value to be the result of
1 function call. That is, the gradient vector at x̄ costs n function calls (to n different
functions). Since Hessian is symmetric, the diagonal and off-diagonal elements of Hessian
are evaluated through n(n + 1)/2 function calls. Thus, we consider the total number of
function calls used in this method to be n+n(n+1)/2 = (n2 +3n)/2. Henceforth, we shall
refer to this as the TVQM (True Valued Quadratic Method).

Remark 3.1. We note that (n2 + 3n)/2 is an inaccurate surrogate for the amount of
function call equivalents used in TVQM. One referee stated that “Depending on f and the
implementation of the gradient and Hessian functions, the function calls required for TVQM
could be as low as 1 or as high as (n2 + 3n)/2.” There is no correct answer to this, as any
real-world comparison would be oracle dependent. As such, our analysis will primarily focus
on the approximation based methods, while we maintain TVQM as a baseline. All results
involving comparing function evaluations used by TVQM should be read with this in mind.

We also remark that, similar to BCQM, GCQM-π/4, GCQM-π/3, and GCQM-π/4-R, when
considering TVQM, we only consider the number of function evaluations to construct the
gradient and Hessian. As we shall be using Newton’s method (see Subsection 3.1), the actual
value of f is not used.

The second real-valued method we shall consider will be constructed via quadratic in-
terpolation using only real-valued points. Consider a quadratic function defined via

Q(x) = α0 + g⊤x+
1

2
x⊤Hx

where α0 ∈ R, g ∈ Rn, and H ∈ Rn×n. Section 2 outlines that a well-poised problem
requires (n+ 1)(n+ 2)/2 = (n2 + 3n+ 2)/2 function evaluations.

By Corollary 2.2(i) at θ = 0, the 2nd-order Taylor expansion of f at a fixed point x̄ ∈ R
satisfies

f(x̄+ hej) = f(x̄) + h ∂f
∂xj

(x̄) + h2

2!
∂2f
∂x2

j
(x̄) +O(h3).

Similarly, at θ = π,

f(x̄− hej) = f(x̄)− h ∂f
∂xj

(x̄) + h2

2!
∂2f
∂x2

j
(x̄) +O(h3).

Combining these, the first-order partial derivatives are given by

∂f
∂xj

(x̄) = 1
2h (f(x̄+ hej) + f(x̄− hej)) +O(h2).

Using the above result, we also obtain the second-order partial derivatives,

∂2f
∂x2

j
(x̄) = 2

h2 (f(x̄+ hej)− f(x̄))− 2
h (

∂f
∂xj

(x̄)) +O(h).
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Finally, using Corollary 2.2(ii) at θ = 0 with the above results yields,

∂2f
∂xj∂xk

(x̄) = 1
h2 (f(x̄+ h(ej + ek))− f(x̄))− 1

h (
∂f
∂xj

+ ∂f
∂xk

)(x̄)

− 1
2 (

∂2f
∂x2

j
+ ∂2f

∂x2
k
)(x̄) +O(h).

Henceforth, we shall refer to this as the RQM (Real-step Quadratic Method).
RQM uses a total number of 1 + 2n + n(n − 1)/2 = (n2 + 3n + 2)/2 distinct function

evaluations.
Table 1 summarizes the methods used, the order of the error bounds, and the number

of function calls required by the method. This summary will provide us a better view for
comparison of the performance of these methods in terms of complexity and accuracy.

Table 1: The error bounds and function calls used by proposed methods as used with
Newton’s method; h denotes the real step-size and n is the dimension of the optimization
problem. See Remark 3.1 regarding function calls for TVQM.

Approximation Method Gradient error Hessian error Function Calls

TVQM O(0) O(0) 1
2 (n

2 + 3n)
RQM O(h2) O(h) 1

2 (n
2 + 3n+ 2)

BCQM O(h2) O(h2) 1
2 (n

2 + n+ 2)
GCQM-π/4 O(h2) O(h4) n2 + n
GCQM-π/3 O(h4) O(h2) n2 + n
GCQM-π/4-R O(h4) O(h4) n2 + 3n

3.1 Newton’s Optimization Algorithm

In order to gauge the value of different methods in an optimization algorithm, the six
methods in Table 1 were used in a Newton style algorithm. Assuming a true Hessian and
gradient, the classical Newton step for minimization is provided by

xk+1 = xk − (∇2f(xk))
−1∇f(xk).

Our approximate Newton’s methods simply replaces the true gradient/Hessian values with
approximations.

We shall use a target-based approach to evaluate the performance. That is, how many
resources are required to achieve a solution with a target accuracy. As we are using a
target-based approach, our stopping criterion will be that a desired relative-reduction has
been achieved. We can do this, as all of our test problems have known solutions. To avoid
infinite looping, a maximum number of function calls is also enforced.

Details of our test algorithm are provided in Algorithm 1.
The approximation methods and optimization algorithm are implemented in Matlab

version 2021a.

3.2 Test Problems

The methods were tested on 40 optimization problems from [23]. It is well known that
Newton’s method is quadratically convergent provided that the function is well-behaved and
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Algorithm 1 Newton’s optimization algorithm

1: Inputs:
x0 : Initial point
Method : Method for gradient/Hessian approximation
h : Step size used in approximation methods
MaxFCall : Maximum number of function calls allowed
StopTol : Stopping tolerance for relative reduction
f∗ : True optimal value

2: Initialize:
k ← 0 : Iteration counter
FCall ← 0 : Function call counter

3: Iterations:
xk+1 ← xk − (H)−1g
k ← k + 1
where,

g = Approximated gradient by Method at xk

H = Approximated Hessian by Method at xk

Increment FCall by number of function calls used
4: Stopping Conditions:

If
|f(xk)− f∗|
|f(x0)− f∗|

< StopTol, then STOP (Success)

If FCall > MaxFCall, then STOP (Failure)

the initial point is sufficiently close to a minimizer [24]. On the other hand, if the function
is misbehaved, or the initial point is too far from a local minimizer, then Newton’s method
can fail spectacularly [24]. Therefore, we begin by running TVQM on all test problems,
using the recommended initial point, to see if Newton’s method will converge under ideal
conditions (i.e., when the gradient and Hessian are exact).

If Newton’s method converges for the TVQM in less than 50n2 function evaluations,
where n is the dimension of each problem, then we keep the problem as an intriguing test
problem. Recalling Table 1, we can see that all approximation techniques use O(n2) evalua-
tions, which explains the n2 in this value. Recalling that Newton’s method is quadratically
convergent, as the dimension increases, the number of iterations is not expected in increase
dramatically. The 50 is chosen as a constant that should be well above the convergence
needs for Newton’s method.

If Newton’s method fails under these ideal conditions, then we have no expectation of
convergence when the gradient and Hessian approximations contains errors. In this case, we
remove the test problem. This left 26 test problems.

Table 2 lists the names and dimensions of the 26 test problems that were found intriguing
and therefore used for the remaining tests.

4 Numerical Tests and Results

To gauge the impact of gradient and Hessian accuracy, various values of the step-size h and
stopping tolerance StopTol were tested. In particular, h ∈ {1/2, 1/22, 1/24, 1/28, 1/216, 1/232}
and StopTol ∈ {10−3, 10−6, 10−9} were tested. We consider an algorithm successful if it
identifies a minimum value with relative reduction less than StopTol (see Algorithm 1 step
4) in less than 5Nit iterations, where Nit is the number of iterations required by TVQM to
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Table 2: Test Problems

No. Function Name n
1 Rosenbrock 2
2 Jennrich and Sampson 2
3 Helical valley 3
4 Bard 3
5 Box three-dimensional 3
6 Powell singular 4
7 Brown and Dennis 4
8 Osborne 1 5
9 Watson 6
10 Watson 9
11 Extended Rosenbrock 6
12 Extended Powell 4
13 Extended Powell 8

No. Function Name n
14 Extended Powell 12
15 Penalty 4
16 Penalty 10
17 Penalty II 4
18 Variably dim. 4
19 Variably dim. 8
20 brown almost linear 4
21 Discrete boundary value 4
22 Discrete integral eq. 4
23 Broyden Tridiagonal 4
24 Broyden Tridiagonal 12
25 Broyden banded 4
26 Linear - full rank 4

solve the same problem with the same stopping tolerance.

Complete testing data and software is available upon request to the corresponding author.
Herein we limit ourselves to analysis via data and performance profiles. We present data
profiles [22] (based on function calls) and performance profiles [7] (based on cpu time) for
interpretation of our results.

4.1 Data Profiles

Data profiles were developed especially for numerical comparison of algorithms in derivative-
free optimization [22]. The x-axis counts the number of function evaluations divided by the
dimension of the problem plus 1: f-evals/(n + 1). The division by n + 1 represents the
number of function evaluations required to construct a simplex gradient in Rn. The y-axis
gives the portion of problems solved for that ratio. Please see [22] for further details.

With 6 values of h and 3 stopping tolerances tested, there are 18 data profiles. All data
profiles are available by request to the corresponding author. Herein we focus on two key
trends that arise when examining the profiles: the impact of StopTol and the impact of h.

Impact of StopTol

The first trend is the unsurprising result that as StopTol is decreased from 10−3 to 10−9 the
performance of every algorithm decreases. This is visualized in Figure 1, which compares
the three data profiles using h = 1/24.

Examining Figure 1, notice that while every algorithm is impacted by changing StopTol,
the amount of impact is not equal. The TVQM is barely impacted. In fact, on most problems
TVQM only takes 1 or 2 more iterations to achieve StopTol = 10−6 as it took to achieve
StopTol = 10−3. Similarly TVQM only takes 1 or 2 more iterations to achieve StopTol

= 10−9 as it took to achieve StopTol = 10−6. This is expected in light of the quadratic
convergence of Newton’s method.

Interestingly, GCQM-π/4-R also shows a very robust convergence. Although the change
in function calls required is more dramatic, the GCQM-π/4-R solves the same number of
problems regardless of StopTol. The remaining methods (RQM, BCQM, GCQM-π/4, and
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Figure 1: Data profiles resulting from h = 1/24.

GCQM-π/3) all see a decrease in the number of problems that they are able to solve as the
value of StopTol decreases.

Notice that when StopTol=10−3 the algorithms are fairly clustered with no clear winner
from among the approximation methods. But, when StopTol=10−9 there is a very clear
ranking across the methods. From best to worst we have GCQM-π/4-R, GCQM-π/3, GCQM-
π/4, RQM, and BCQM. Compare this to Table 1, it appears that the improved accuracy of the
approximations used in GCQM-π/4-R, GCQM-π/3, GCQM-π/4 are allowing for more accurate
final solutions. Surprisingly, the BCQM is ranking last, instead of second last. However,
both RQM and BCQM are doing exceedingly poorly, solving less than 25% of problems, so
this result is more likely due to random aspects of the problems than of attributes of the
approximation methods. I.e., it is more likely that this result is due to RQM getting ‘lucky’
on some test problems, than due to RQM actually having some advantage over BCQM
for h = 1/24. Indeed, when h becomes smaller, we shall see BCQM outperform RQM. We
explore this next.

Overall, these results support claim (i) on page 393 that higher accuracy approximations
improve the chances of solving a given problem.

Impact of h

Examining the impact of h, the trend becomes more complex. We select the three data
profiles using h ∈ {1/28, 1/216, 1/232} and StopTol= 10−9 to illustrate this trend. These are
presented in Figure 2.

Comparing h = 1/28 to h = 1/24 (from Figure 1), we see that both RQM and BCQM are
now solving over 50% of problems and that BCQM is now outperforming RQM.

For all of the complex step methods (BCQM, GCQM-π/4, GCQM-π/3, and GCQM-π/4-R),
we see a steady trend that as h decreases the number of test problems solved increases. RQM
also follows this trend for h ∈ {1/28, 1/216}, but when h = 1/232 RQM solves no problems.
In fact, RQM crashes from numerical errors on every test problem when h = 1/232. This
supports the fact that complex step methods are less prone to numerical errors than real
valued methods.

Perhaps surprising is that when h = 1/232, we still do not have any of the approximation
methods solve all problems. Examining Table 1, notice that when h = 1/232, errors O(h4)
result in theoretical errors of order 1/2128 ≈ 10−39. As this value is well below machine pre-
cision, floating-point errors are inevitably invoked [16]. As such, while we might theoretical
hope to achieve a final precision of 10−9, it is not numerically ensured and should not be
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Figure 2: Select data profiles resulting from StopTol= 10−9.

expected on a standard machine. Interestingly, BCQM fails to solve problem 8, while the
GCQM-∗ methods fail to solve problem 3. (TVQM solved all problems and RQM failed on
all problems using h = 1/232, as mentioned above.)

Overall, these results support claim (ii) on page 393 that avoiding catastrophic cancella-
tion allows smaller step sizes to be applied safely.

4.2 Performance Profiles

Examining the data profiles in Figures 1 and 2, notice that all profiles tend to climb at
approximately the same slope. The implies that in terms of number of function calls, all
methods converge similarly. I.e., the main difference lies in whether a method can solve
a problem, not how fast (in terms of function calls) that solution is obtained. However,
this conclusion ignores the fact that function evaluations at complex-valued points can be
more time consuming than function evaluations at real-valued points. Therefore we perform
further analysis examining performance in terms of time.

Before presenting the time-based analysis, let us demonstrate how function evaluations at
complex-valued points can be more time consuming than function evaluations at real-valued
points.

Example 4.1. Consider the following simple experiment in Matlab. First, use a simple
for-loop to sum the squares of the numbers k ∈ {1, 2, ...,MAX}. Next, use similar for-loop
to sum the squares of the numbers k ∈ {1 + i, 2 + i, ...,MAX + i}. In Table 3 we present
the time results for MAX ∈ {102, 104, 106, 108}.
Notice that the time to work with complex variables is consistently one order of magintude
higher than the time to work with just real variables.

Returning to our numerical experiments, we now present performance profiles focused
on cpu time.

Performance profiles provide a comprehensive visualization of the different optimization
methods on the entire set of test problems [7]. The x-axis gives the ratio of cpu time used in
comparison to the best solver for a given problem. The y-axis gives the portion of problems
solved for that ratio. Please see [7] for further details.

In Figure 3 we present the performance profiles corresponding to h = 1/24 for the three
values of StopTol. Note, the performance profiles use log-base-10 on the x-axis.

We note that for-loops in Matlab can be highly inefficient, but the purpose of this is demonstration so
the approach is justified.
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Table 3: Time differences arising through the use of complex variables

MAX Time (s) to find Time (s) to find∑MAX
k=1 (k)2

∑MAX
k=1 (k + i)2

102 6.2e-04 1.4e-03
104 1.8e-04 1.8e-03
106 7.9e-03 3.8e-02
108 1.1e-01 2.5e+00

Figure 3: Performance profiles based on cpu time resulting from h = 1/24.

Comparing Figure 1 to Figure 3, notice the changes in slope in various methods.
For example, examining RQM with StopTol=10−3, we see that the data profile suggests

RQM has one of the slowest speeds of solving (in terms of function calls). However, the
performance profile suggests that RQM has a faster speed of solving (in terms of cpu time)
than TVQM.

Another clear example comes from examining GCQM-π/4-R. The data profiles all suggest
that (in terms of function calls), GCQM-π/4-R takes about twice as long as TVQM to solve
80% of problems. However, the performance profiles make it clear that this solve time (in
terms of cpu time) is closer to 80 times as long.

The performance profiles involving other values of h show a similar trend, although less
dramatically.

Overall, these results contradict claim (iii) on page 393. In particular, it appears that
the use of complex variable requires an increased cpu time that outstrips any reduction in
function calls or iterations.

In Figure 4 we present the performance profiles corresponding to h = 1/216 for the three
values of StopTol. Like Figure 1, the performance profiles use log-base-10 on the x-axis.

Examining Figure 4, we again see that RQM is faster in terms of cpu time than other
methods. However, when StopTol= 10−9, RQM struggles to solve as many problems as
other methods.

4.3 Impact of dimension

It is natural to wonder if dimension impacts the solve time of each method equally. In Table
4 we present the average solve time for each method (in seconds) over varying dimensions
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Figure 4: Performance profiles based on cpu time resulting from h = 1/216.

when StopTol = 10−6 and h = 1/216. Only problems solved by all solvers are considered.

Table 4: Average time (seconds) to solve problems of varying dimension to an accuracy of
10−6 for each method. Only problems solved by all solvers are considered.

Dim. TVQM RQM BCQM GCQM-π/4 GCQM-π/3 GCQM-π/4-R

2-3 0.97 0.47 0.63 1.23 1.27 2.02
4-5 2.12 1.07 0.91 1.81 1.81 3.05
6-9 241.66 6.15 5.57 10.06 10.10 12.19
10-12 21.69 13.46 12.29 23.00 23.07 26.55

Examining Table 4, we remark that TVQM took an excessively long time to solve prob-
lems 9 and 10 (Watson 6-variable and Watson 9-variables). This skews the data for TVQM
when considering problem of with dimensions from 6 to 9. Setting this value aside, we see
that GCQM-π/4, GCQM-π/3, and GCQM-π/4-R, generally take about twice as long as RQM
or BCQM regardless of dimension. So, this limited data set suggests that all of the methods
are impacted equally by dimension.

5 Conclusions

In this research, we have explored the value of using complex-variables in a gradient and Hes-
sian approximation for derivative-free optimization. Our analysis has presented 4 methods
of approximating gradients and Hessians making use of complex-variables. Other methods
can be found in [16]. Our numerical tests have used these methods, along with a classical
real-variable method for gradient and Hessian approximation and a method using the true
gradient and Hessians. These methods were embedded into a Newton style algorithm and
tested on a suite of 26 test problems.

The results suggest that while complex-step approximations,

• provide higher accuracy, so improve the chances of solving a given problem; and

• avoid catastrophic cancellation, so allow smaller step sizes to be applied safely;
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complex-step approximations

• require an increased cpu time that outstrips any reduction in function calls used or
iterations applied.

As such, complex-step approximations should be reserved for environments where solution
quality is of greater importance than solve time.

It is worth noting that, unless Hessians are easily provided, Newton’s method is seldom
applied. Instead, quasi-Newton methods, such as BFGS, are more likely to be applied [24,
Chpt 6]. Indeed, instead of attempting to approximate an accurate Hessian every iteration,
the BFGS method uses one additional gradient to slightly improve an approximate Hessian
every iteration. Future research could explore whether any conclusions of this research
change when an alternate method is considered.
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