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continuous-time programming has been intensively investigated and a large number of opti-
mality conditions and dual models have been established. Unfortunately, it should be noted
that the validity of some results in the field of scalar and multiobjective continuous-time
programming was questioned in [2]. In the aforementioned paper, a transposition theorem
in the infinite-dimensional spaces is developed under a suitable regularity condition.

One of the earliest papers in the field of multiobjective continuous-time programming is
the paper by Singh [25] . In that paper, the author presented dual models for smooth
continuous-time programming problems, under generalized convexity/concavity assump-
tions. In [11], using the concept of Karush-Kuhn-Tucker invexity, the authors studied the
relationship of the multiobjective continuous-time programming problems with some related
scalar problems. Also, they showed that Karush-Kuhn-Tucker pseudoinvexity is a necessary
and sufficient condition for a vector Karush-Kuhn-Tucker solution to be a weakly efficient
solution. In [22, 21], the authors introduced a nonsmooth multiobjective continuous-time
programming problem and established the optimality conditions and duality theorems un-
der generalized convexity assumptions on the functions involved. In [10, 19], the authors
have established optimality conditions and duality theory for multiobjecitve continuous-
time programming problem with inequality constraints where the objective and inequality
constraint functions are preinvex in their second argument. In [23], the authors studied the
relationships between vector variational inequalities and multiobjective continuous-time pro-
gramming problems under generalized invexity assumptions. In that paper, the authors also
obtained optimality conditions for multiobjective continuous-time programming problems
and variational-like inequalities problems. Unfortunately, the results in the aforementioned
papers are not valid. See [2, 13, 14].

Finite-dimensional multiobjective fractional problems have been studied in [7, 6, 4, 15,
17, 28, 31, 30, 16]. Multiobjective continuous-time programming has been the subject of
numerous research endeavours, as stated in the previous paragraphs. Unfortunately, the
same can not be stated for multiobjective fractional continuous-time programming problems,
which is why the main focus of this paper is presenting a new approach for solving the smooth
multiobjective fractional continuous-time programming problem. Also, in the present paper,
necessary and sufficient optimality conditions are derived.

A brief overview of the previous work, in the field of study of the multiobjective fractional
continuous-time programming problems, will be provided, nevertheless, for more information
on the subject the reader is referred to [34, 35, 36]. In [35], necessary and sufficient saddle-
point and stationary-point-type proper efficiency conditions are established for a class of
continuous-time multiobjective fractional programming problems, defined in Sobolev space,
with convex operator inequality, affine operator equality constraints and nonnegativity con-
straints. In [36], both semiparametric and parametric saddle-point-type and stationary-
point-type necessary and sufficient proper efficiency conditions are established for a class of
nonsmooth continuous-time multiobjective fractional programming problems, defined in the
Banach space, with Volterra-type integral inequality and nonnegativity constraints.

In [34], the author has considered a smooth case, defined in the Banach space, with the
assumptions of convexity/concavity and nonnegativity constraints. Based on the concept
of properly efficient solutions, the author has also established optimality conditions and
parametric duality models.

Here, a more general multiobjective fractional continuous-time programming problem
with inequality constraints under weaker assumptions comparing to the assumptions in [34]
is considered. Necessary optimality conditions are obtained under a suitable constraint qual-
ification and a certain regularity condition without convexity/concavity assumptions. The
fundamental tools for deriving these conditions are a transposition theorem, given in [2] and
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results from [20]. It is important to emphasize that the hypotheses of convexity/concavity on
objective and constraint functions, for example in [34] or [36], are stronger than the assump-
tions in this paper. Here, there are no assumptions of convexity/concavity for obtaining
necessary optimality conditions. Also, it should be highlighted that in the aforementioned
papers, the nonegativity of the function x(·) on the interval [0, T ] is required, while this is
not required in our paper. Also, the constraint qualifications and a suitable regularity condi-
tion presented in this paper are much less restrictive and easier to verify than the constraint
qualifications given in [34] or [36]. This means that the necessary optimality conditions, set
in this paper, are obtained under the weakest possible assumptions that are known to date.

The layout of this paper is as follows. Some definitions are presented in Sect. 2. In
Sect. 3, the necessary optimality conditions are obtained. Also, an illustrative example is
provided to indicate the usefulness of these conditions. In Sect. 4, the sufficient optimality
criteria is established under concavity and generalized concavity assumptions.

2 Preliminaries and Statement of Problem

Let us consider the following multiobjective fractional continuous-time problem :

max

∫
∆
f(τ, v(τ))dτ∫

∆
g(τ, v(τ))dτ

=

(∫
∆
f1(τ, v(τ))dτ∫

∆
g1(τ, v(τ))dτ

, . . . ,

∫
∆
fk(τ, v(τ))dτ∫

∆
gk(τ, v(τ))dτ

)
s.t. hi(τ, v(τ)) ≧ 0, i ∈ I = {1, . . . ,m} a.e. in ∆,

v(·) ∈ L∞(∆;Rn).

(MFCTP)

Here, by L∞(∆;Rn) we denote the Banach space of all n-dimensional essentially bounded
Lebesgue measurable functions defined on ∆ = [0, T ] ⊂ R with the corresponding norm
∥ · ∥∞ defined by

∥v(·)∥∞ = max
1≦ i≦n

ess sup
τ∈∆

|vi(τ)|.

Further, fj , gj , hi : ∆×Rn → R, j ∈ J = {1, . . . , k}, i ∈ I, are given functions. If ν, µ ∈ Rk,
the following convention will be used:

(i) ν = µ ⇐⇒ νj = µj , j = 1, . . . , k,

(ii) ν ≦ µ ⇐⇒ νj ≦ µj , j = 1, . . . , k,

(iii) ν ≤ µ ⇐⇒ ν ≦ µ and ν ̸= µ,

(iv) ν < µ ⇐⇒ νj < µj , j = 1, . . . , k,

(v) ν ̸≤ µ is the negation of ν ≤ µ.

All integrals are given in the sense of Lebesgue and B denotes the open unit ball centered
at the origin in Rn. Also, all vectors in this paper are column vectors. Here, Rk

+ denotes
the positive orthant of Rk. Let

Φ = {v(·) ∈ L∞(∆;Rn) : h(τ, v(τ)) ≧ 0 a.e. in ∆}
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be the set of feasible solutions of (MFCTP). For v(·) ∈ Φ, we also assume that∫
∆

f(τ, v(τ))dτ ≧ 0 and

∫
∆

g(τ, v(τ))dτ > 0. (2.1)

Let ε > 0, v̂(·) ∈ Φ and ŵ =
∫
∆

f(τ,v̂(τ))dτ∫
∆

g(τ,v̂(τ))dτ
∈ Rk

+. Suppose the following assumption (A) is

valid:

(A) • f(τ, ·), g(τ, ·) and h(τ, ·) are continuously differentiable on v̂(τ) + εB̄ for almost
every τ ∈ ∆;

• f(·, v), g(·, v) and h(·, v) are Lebesgue measurable for each v, h(·, v(·)) is essen-
tially bounded in ∆ for all v(·) ∈ L∞(∆,Rn);

• ∃ K > 0, ∃ H > 0 such that ∥∇fj(τ, v̂(τ))− ŵj∇gj(τ, v̂(τ))∥ ≦ K,
∥∇hi(τ, v̂(τ))∥ ≦ H, a.e. in ∆, j ∈ J, i ∈ I.

Definition 2.1. [8] A feasible solution v̂(·) of (MFCTP) is said to be an efficient solution
EMFCTP (a weak efficient solution WEMFCTP) of (MFCTP) if there is no other v(·) ∈ Φ
such that ∫

∆
f(τ, v(τ))dτ∫

∆
g(τ, v(τ))dτ

≥
∫
∆
f(τ, v̂(τ))dτ∫

∆
g(τ, v̂(τ))dτ

.

(∫
∆
f(τ, v(τ))dτ∫

∆
g(τ, v(τ))dτ

>

∫
∆
f(τ, v̂(τ))dτ∫

∆
g(τ, v̂(τ))dτ

.

)
The definition below can be seen as a continuous-time version of the definition in [18].

Definition 2.2. [18] Let ε > 0. A feasible solution v̂(·) of (MFCTP) is said to be a locally
efficient solution LEMFCTP (a locally weak efficient solution LWEMFCTP) of (MFCTP)
if there exists a neighborhood

N (v̂(·), ϵ) =
{
v(·) ∈ L∞(∆;Rn) : v(τ) ∈ v̂(τ) + ϵB̄, a.e. in ∆

}
such that v̂(·) is an EMFCTP (WEMFCTP) on Φ ∩N(v̂(·), ε).

Obviously, an EMFCTP is necessarily a LEMFCTP. Also, a WEMFCTP is a LWEM-
FCTP and a LEMFCTP is a LWEMFCTP. Let b > 0 and v̂(·) ∈ Φ. Let Ib(τ) = { i ∈ I :
0 ≦ hi(τ, v̂(τ)) ≦ b }, for each τ ∈ ∆ and

δbi (τ) =

{
1, i ∈ Ib(τ)

0, otherwise.

In the sequel, we consider cones in L∞(∆;Rn). For more details about the cones and
calculating dual cones in the theory of extremal problems, the reader is referred to [12]. Let
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v̂(·) ∈ Φ be such that (A) is satisfied for some ε > 0. Let b > 0. Define:

TΦ(v̂(·)) =

{
ζ(·) ∈ L∞(∆;Rn) : ∃{vn(·)} ⊂ Φ, {αn} ⊂ R+ ↓ 0,

lim
n→∞

vn(·) = v̂(·), ζ(·) = lim
n→∞

vn(·)− v̂(·)
αn

}
,

Aj(v̂(·)) =

{
ζ(·) ∈ L∞(∆;Rn) :

∫
∆

(
∇fj(τ, v̂(τ))T ζ(τ)

−
∫
∆
fj(τ, v̂(τ))dτ∫

∆
gj(τ, v̂(τ))dτ

∇gj(τ, v̂(τ))T ζ(τ)
)
dτ > 0

}
, j ∈ J,

Fb(v̂(·)) =

{
ζ(·) ∈ L∞(∆;Rn) : hi(τ, v̂(τ)) + δbi (τ)∇hi(τ, v̂(τ))T ζ(τ) ≧ 0,

i ∈ I a.e. in ∆

}
,

where TΦ(v̂(·)), Aj(v̂(·)), j ∈ J and Fb(v̂(·)) denote Bouligand tangent cone (see [9]), the
cone of ascent directions and the feasible direction cone at v̂(·) in the continuous-time con-
text, respectively. Also, we give continuous-time versions of Mangasarian-Fromovitz and
Slater constraint qualification.

Definition 2.3. The constraint qualification (MFQ) is satisfied at v̂(·) ∈ Φ, if there exist

ζ̄(·) ∈ L∞(∆;Rn) and b̂ > 0 such that

∇hi(τ, v̂(τ))T ζ̄(τ) ≧ β, i ∈ Ib̂(τ) a.e. in ∆ (MFQ)

for some β > 0.

Definition 2.4. Assume that hi(τ, ·) is a concave almost everywhere in ∆, i ∈ I. We say

that (SQ) is satisfied, if there exists η̄(·) ∈ Φ and b̂ > 0 such that

hi(τ, η̄(τ)) ≧ β, i ∈ Ib̂(τ) a.e. in ∆ (SQ)

for some β > 0.

Remark 2.5. In [20], the authors showed that the constraint qualification (SQ) is a sufficient
condition for (MFQ) under an additional concavity assumption.

The following convention will be used:

∇f(τ, v̂(τ)) = (∇f1(τ, v̂(τ)), . . . ,∇fk(τ, v̂(τ)))T ,

∇g(τ, v̂(τ)) = (∇g1(τ, v̂(τ)), . . . ,∇gk(τ, v̂(τ)))T ,

∇h(τ, v̂(τ)) = (∇h1(τ, v̂(τ)), . . . ,∇hm(τ, v̂(τ)))
T
, e = (1, . . . , 1)T ∈ Rk,

Λ =
{
λ ∈ Rk : λT e = 1, λ ≥ 0

}
, Λ+ =

{
λ ∈ Rk : λT e = 1, λ > 0

}
.
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3 Necessary Conditions

We will be following the similar approach as in [20] to prove the following crucial lemma.

Lemma 3.1. Let v̂(·) ∈ Φ be a LEMFCTP (LWEMFCTP). Assume that (A) and (MFQ)
are satisfied at v̂(·). Then,

Fb(v̂(·)) ∩
k⋂

j=1

Aj(v̂(·)) = ∅. (3.1)

Proof. Auxiliary functionals Fj : L∞(∆;Rn) → R, j ∈ J , are defined by

Fj(v(·)) =
∫
∆

(
fj(τ, v(τ))−

∫
∆
fj(τ, v̂(τ))dτ∫

∆
gj(τ, v̂(τ))dτ

gj(τ, v(τ))

)
dτ.

We will suppose that (3.1) is not true. Let Fb(v̂(·)) ∩
⋂k

j=1 Aj(v̂(·)) ̸= ∅. Then, Proposition
3.2. [20] implies that

TΦ(v̂(·)) ∩
k⋂

j=1

Aj(v̂(·)) ̸= ∅.

Consequently, there exists ζ(·) ∈ L∞(∆;Rn) such that∫
∆

∇ξ1(τ, v̂(τ))T ζ(τ)dτ > 0, . . . ,

∫
∆

∇ξk(τ, v̂(τ))T ζ(τ)dτ > 0,

ζ(·) = lim
n→∞

vn(·)− v̂(·)
αn

,

(3.2)

where

ξj(τ, v(τ)) = fj(τ, v(τ))−
∫
∆
fj(τ, v̂(τ))dτ∫

∆
gj(τ, v̂(τ))dτ

gj(τ, v(τ)), j ∈ J,

and {vn(·)} is a sequence in the feasible set, such that limn→∞ vn(·) = v̂(·). Also, {αn} is a
sequence of positive numbers converging to 0. Let C0 > 0. Then, there is N0 > 0 such that∥∥∥∥vn(·)− v̂(·)

αn
− ζ(·)

∥∥∥∥
∞

≦ C0, ∀n ≧ N0

and ∥ζ(·)∥∞ = C1. If hypothesis (A) is satisfied, functionals

F1(v(·)) =
∫
∆

ξ1(τ, v(τ))dτ, . . . , Fk(v(·)) =
∫
∆

ξk(τ, v(τ))dτ

are Fréchet differentiable. By construction of ξj and by the Mean Value Theorem (see [1, 3]),
there is λ ∈ (0, 1) such that∫

∆

(ξj(τ, vn(τ))− ξj(τ, v̂(τ))) dτ

=

∫
∆

ξj(τ, vn(τ))dτ

=

∫
∆

∇ξj(τ, (1− λ)vn(τ) + λv̂(τ))
T
(vn(τ)− v̂(τ)) dτ, j ∈ J.

(3.3)
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Note that limn→∞ ((1− λ)vn(·) + λv̂(·)) = v̂(·). Further, there exists N1 > 0, such that

∥∇ξj (τ, (1− λ)vn(τ) + λv̂(τ)) ∥ ≦ K, a.e. in ∆, ∀n ≧ N1, j ∈ J.

Setting N := max{N0, N1}, we have for j ∈ J ,

∥∇ξj (τ, (1− λ)vn(τ) + λv̂(τ)) ∥ ≦ K a.e. in ∆, ∀n ≧ N.

Also, we obtain∥∥∥∥vn(τ)− v̂(τ)

αn

∥∥∥∥ ≦
∥∥∥∥vn(τ)− v̂(τ)

αn
− ζ(τ)

∥∥∥∥+ ∥ζ(τ)∥ ≦ C, ∀n ≧ N, a.e. in ∆,

where C = C0 + C1. Consider the sequences {γ1n(τ)}∞n=N , . . . , {γkn(τ)}∞n=N , where
{γjn(τ)}∞n=N ⊂ L∞(∆;Rn) and

γjn(τ) = ∇ξj (τ, (1− λ)vn(τ) + λv̂(τ)))
T vn(τ)− v̂(τ)

αn
, j ∈ J, a.e. in ∆.

For B = C ·K we obtain

∥γjn(τ)∥ ≦
∥∥∥∥∥∇ξj (τ, (1− λ)vn(τ) + λv̂(τ)))

∥∥∥∥∥
∥∥∥∥∥vn(τ)− v̂(τ)

αn

∥∥∥∥∥ ≦ B,

∀n ≧ N, ∀j ∈ J, a.e. in ∆

and

lim
n→∞

γjn(τ) = lim
n→∞

∇ξj (τ, (1− λ)vn(τ) + λv̂(τ)))
T vn(τ)− v̂(τ)

αn

= ∇ξj(τ, v̂(τ))T ζ(τ), ∀j ∈ J.

Lebesgue Dominated Convergence Theorem and (3.2) imply

lim
n→∞

∫
∆

∇ξj (τ, (1− λ)vn(τ) + λv̂(τ)))
T vn(τ)− v̂(τ)

αn
dτ

=

∫
∆

lim
n→∞

∇ξj (τ, (1− λ)vn(τ) + λv̂(τ)))
T vn(τ)− v̂(τ)

αn
dτ

=

∫
∆

∇ξj(τ, v̂(τ))T ζ(τ)dτ > 0, ∀j ∈ J.

Therefore, ∫
∆

∇ξj (τ, (1− λ)vn(τ) + λv̂(τ)))
T vn(τ)− v̂(τ)

αn
dτ > 0, ∀j ∈ J, (3.4)

for all sufficiently large n. Hence, for all j ∈ J , (3.3) and (3.4) imply∫
∆

ξj(τ, vn(τ))dτ =

∫
∆

∇ξj(τ, (1− λ)vn(τ) + λv̂(τ))
T
(vn(τ)− v̂(τ)) dτ

=αn

∫
∆

∇ξj(τ, (1− λ)vn(τ) + λv̂(τ))
T vn(τ)− v̂(τ)

αn
dτ > 0,
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so that ∫
∆

ξj(τ, vn(τ))dτ > 0, ∀j ∈ J (3.5)

for all sufficiently large n. By construction, inequality (3.5) can be rewritten as∫
∆

(
fj(τ, vn(τ))−

∫
∆
fj(τ, v̂(τ))dτ∫

∆
gj(τ, v̂(τ))dτ

gj(τ, vn(τ))

)
dτ > 0 ∀j ∈ J, (3.6)

for all sufficiently large n.
Put

ŵ =

∫
∆
fj(τ, v̂(τ))dτ∫

∆
gj(τ, v̂(τ))dτ

≥ 0.

Then, inequality (3.6) can be rewritten as∫
∆

(fj(τ, vn(τ))− ŵgj(τ, vn(τ))) dτ

=

∫
∆

fj(τ, vn(τ))dτ − ŵ

∫ T

0

gj(τ, vn(τ))dτ > 0 ∀j ∈ J,

for all sufficiently large n. Previous inequality implies∫
∆
fj(τ, vn(τ))dτ∫

∆
gj(τ, vn(τ))dτ

>

∫
∆
fj(τ, v̂(τ))dτ∫

∆
gj(τ, v̂(τ))dτ

= ŵ ∀j ∈ J,

for all sufficiently large n. Thus, v̂(·) is not locally (weak) efficient solution of (MFCTP).
Thus, the proof is complete.

Let ζ ∈ Rn, v̂(·) be a locally efficient solution for (MFCTP) and suppose that (A),
(MFQ) are satisfied at v̂(·) and

ϕj(τ, ζ) = −
∫
∆

(
∇fj(τ, v̂(τ))T ζ − ŵj∇gj(τ, v̂(τ))T ζ

)
dτ, j ∈ J,

ϕi(τ, ζ) = −hi(τ, v̂(τ))− δb̂i (τ)∇hi(τ, v̂(τ))T ζ, i ∈ I,

where

ŵ =

∫
∆
f(τ, v̂(τ))dτ∫

∆
g(τ, v̂(τ))dτ

∈ Rk
+.

Let 
ϕj(τ, ζ) < 0, j ∈ J,

ϕi(τ, ζ) ≦ 0, i ∈ I,

ζ ∈ Rn,

(3.7)

be a system corresponding to the problem (MFCTP), K = J ⊔ I, and

I(τ, ζ) =
{
i : ϕi(τ, ζ) = max

r∈K
ϕr(τ, ζ)

}
, τ ∈ ∆, ζ ∈ Rn.

Definition 3.2. (Regularity condition [2]) We say that the regularity condition (RC) is
satisfied at v̂(·), if there exist v̄(·) ∈ L∞(∆;Rn), reals R ≧ 0 and α > 0 such that for almost
every τ ∈ [0, 1],

∀ζ ∈ Rn, ∥ζ − v̄(τ)∥ ≧ R, ∃e = e(τ, ζ) ∈ Rn, ∥e∥ = 1 :

⟨∂ζϕi(τ, ζ), e⟩ ≧ α ∀i ∈ I(τ, ζ).
(RC)
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Now, we give necessary optimality conditions for (MFCTP), using preceding Lemma and
new tool presented in [2].

Theorem 3.3. Let v̂(·) ∈ Φ be a LEMFCTP (LWEMFCTP). Suppose that (A), (MFQ)

and (RC) are satisfied at v̂(·). Then, there exists (λ̂, û(·)) ∈ Λ × L∞(∆;Rm) such that the
following conditions are satisfied:

λ̂T

(
∇f(τ, v̂(τ))− e

(∫
∆
f(τ, v̂(τ))dτ∫

∆
g(τ, v̂(τ))dτ

)T

∇g(τ, v̂(τ))

)
+û(τ)T∇h(τ, v̂(τ)) = 0 a.e. in ∆,

(3.8)

û(τ)Th(τ, v̂(τ)) = 0, û(τ) ≧ 0 a.e. in ∆. (3.9)

Proof. By Lemma 3.1, we have that there is no ζ(·) ∈ L∞(∆;Rn) such that system
(3.7) is consistent. Then, by Theorem 1 [2], we have that there is a nonzero function
(φ̂1(·), . . . , φ̂k(·), µ̂1(·), . . . , µ̂m(·)) ∈ L∞(∆;Rk+m

+ ) with φ̂j(τ) ̸≡ 0 for some j ∈ J (τ ∈ ∆ ),
such that ∑

j∈J

φ̂j(τ)

∫
∆

(
∇fj(τ, v̂(τ))T ζ − ŵj∇gj(τ, v̂(τ))T ζ

)
dτ

+
∑
i∈I

µ̂i(τ)
(
hi(τ, v̂(τ)) + δb̂i (τ)∇hi(τ, v̂(τ))T ζ

)
≦ 0, ∀ζ ∈ Rn a.e. in ∆.

Setting ζ ≡ 0, we obtain
∑

i∈I µ̂i(τ)hi(τ, v̂(τ)) ≦ 0 a.e. in ∆. Since v̂(·) ∈ Φ, we have that
the opposite inequality is also satisfied. Therefore,

µ̂i(τ)hi(τ, v̂(τ)) = 0, i ∈ I, a.e. in ∆. (3.10)

Hence ∑
j∈J

φ̂j(τ)

∫
∆

(
∇fj(τ, v̂(τ))T ζ(τ)− ŵj∇gj(τ, v̂(τ))T ζ(τ)

)
dτ

+
∑
i∈I

µ̂i(τ)δ
b̂
i (τ)∇hi(τ, v̂(τ))T ζ(τ) ≦ 0 a.e. in ∆.

(3.11)

Integrating (3.11) on ∆, we obtain

∫
∆

∑
j∈J

φ̂j(τ)

∫
∆

(
∇fj(r, v̂(r))T ζ(r)− ŵj∇gj(r, v̂(r))T ζ(r)

)
dr

 dτ

+

∫
∆

(∑
i∈I

µ̂i(τ)δ
b̂
i (τ)∇hi(τ, v̂(τ))T ζ(τ)

)
dτ ≦ 0,

i.e., ∑
j∈J

∫
∆

φ̂j(τ)dτ

∫
∆

(
∇fj(τ, v̂(τ))T ζ(τ)− ŵj∇gj(τ, v̂(τ))T ζ(τ)

)
dτ

+

∫
∆

(∑
i∈I

µ̂i(τ)δ
b̂
i (τ)∇hi(τ, v̂(τ))T ζ(τ)

)
dτ ≦ 0.
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Setting

ψ̂j =

∫
∆

φ̂j(τ)dτ ≧ 0, j ∈ J, (3.12)

with at least one strict inequality in (3.12) (according to the assumption φ̂j(τ) ̸≡ 0 for some
j ∈ J), it follows

∫
∆

∑
j∈J

ψ̂j

(
∇fj(τ, v̂(τ))T ζ(τ)− ŵj∇gj(τ, v̂(τ))T ζ(τ)

) dτ

+

∫
∆

(∑
i∈I

µ̂i(τ)δ
b̂
i (τ)∇hi(τ, v̂(τ))T ζ(τ)

)
dτ ≦ 0.

(3.13)

Now, dividing all terms in (3.13) by
∑

j∈J ψ̂j > 0 and defining

λ̂j =
ψ̂j∑
j∈J ψ̂j

, ûi(τ) =
µ̂i(τ)δ

b̂
i (τ)∑

j∈J ψ̂j

, j ∈ J, i ∈ I, τ ∈ ∆, (3.14)

we have

∫
∆

∑
j∈J

λ̂j (∇fj(τ, v̂(τ))− ŵj∇gj(τ, v̂(τ))) +
∑
i∈I

ûi(τ)∇hi(τ, v̂(τ))

T

ζ(τ)dτ

≦ 0 ∀ζ(·) ∈ L∞(∆;Rn).

(3.15)

Since (3.15) is valid for all ζ(·) ∈ L∞(∆;Rn), we obtain∑
j∈J

λ̂j (∇fj(τ, v̂(τ))− ŵj∇gj(τ, v̂(τ))) +
∑
i∈I

ûi(τ)∇hi(τ, v̂(τ)) = 0 a.e. in ∆,

i.e.,

∑
j∈J

λ̂j

(
∇fj(τ, v̂(τ))−

∫
∆
fj(τ, v̂(τ))dτ∫

∆
gj(τ, v̂(τ))dτ

∇gj(τ, v̂(τ))
)

+
∑
i∈I

ûi(τ)∇hi(τ, v̂(τ)) = 0 a.e. in ∆.

(3.16)

Hence, (3.8) holds and (3.14) implies that λ ∈ Λ. Also, (3.10) and (3.14) imply (3.9).

Here, there are no hypotheses of convexity/concavity for obtaining necessary optimal-
ity conditions. It is important to highlight that the hypotheses of convexity/concavity on
objective and constraint functions in [34, 36] are stronger than the assumptions in this paper.

From Remark 2.5 we obtain the following necessary conditions for (MFCTP).

Theorem 3.4. Let v̂(·) ∈ Φ be a LEMFCTP (LWEMFCTP). Assume that (A), (RC) are
satisfied at v̂(·) and hi(τ, ·) is a concave almost everywhere in ∆, i ∈ I. If (SQ) is satisfied,

then there exists (λ̂, û(·)) ∈ Λ× L∞(∆;Rm) such that (3.8)-(3.9) are satisfied.

Corollary 3.5. The conditions (3.8)-(3.9) of the Theorem 3.3 (Theorem 3.4) are also nec-
essary for v̂(·) to be an efficient solution of (MFCTP).



NSOC AND A NEW APPROACH FOR SOLVING THE SMFCTP 451

Let us consider the following example.

Example 3.6.

(MFCTP)

max

(∫ 1

0
e2τ−v1(τ)dτ∫ 1

0
ev2(τ)dτ

,

∫ 1

0

(
2− v2(τ)

)
dτ∫ 1

0

(
2v2(τ) +

1
2v

2
1(τ) +

2τ
3

)
dτ

)
2τ + 2v2(τ)− v22(τ)− v1(τ) ≧ 0 a.e. in [0, 1],

−2τ + 2v2(τ)− v22(τ) + v1(τ) ≧ 0 a.e. in [0, 1],

v1(τ)− v2(τ)− 2τ ≧ 0 a.e. in [0, 1],

v(·) ∈ L∞([0, 1];R2).

It is obvious that for almost every τ ∈ [0, 1], v̂(τ) = (v̂1(τ), v̂2(τ)) = (2τ, 0) is an EMFCTP,

ŵ1 = 1, ŵ2 = 2 and Ib̂(τ) = {1, 2, 3} for b̂ = 1
2 . It can be easily verified that for almost

every τ ∈ [0, 1],

∇f1(τ, v̂(τ)) =
(
−1
0

)
,∇f2(τ, v̂(τ)) =

(
0

−1

)
,∇g1(τ, v̂(τ)) =

(
0
1

)
,

∇g2(τ, v̂(τ)) =
(
2τ
2

)
,∇h1(τ, v̂(τ)) =

(
−1
2

)
,∇h2(τ, v̂(τ)) =

(
1
2

)
,

∇h3(τ, v̂(τ)) =
(

1
−1

)
.

Take ζ̄(τ) =

(
4
5
3
5

)
a.e. in [0, 1] and β = 1

6 . It follows ∇hi(τ, v̂(τ))T ζ̄(τ) ≧ β, i = 1, 2, 3,

a.e. in [0, 1]. Thus, the constraint qualification (MFQ) is satisfied. Now, show that (RC) is
satisfied. Let (ζ1, ζ2) ∈ R2 and for almost everywhere in [0, 1],

ϕ1(τ, ζ) = ζ1 + ζ2, ϕ2(τ, ζ) = 2ζ1 + 5ζ2, ϕ3(τ, ζ) = ζ1 − 2ζ2,

ϕ4(τ, ζ) = −ζ1 − 2ζ2, ϕ5(τ, ζ) = −ζ1 + ζ2.

Define the following sets:

A2 = {(ζ1, ζ2) ∈ R2 :
1

7
ζ1 + ζ2 ≧ 0,

3

4
ζ1 + ζ2 ≧ 0},

A3 = {(ζ1, ζ2) ∈ R2 :
1

7
ζ1 + ζ2 ≦ 0, ζ1 ≧ 0},

A4 = {(ζ1, ζ2) ∈ R2 : ζ1 ≦ 0, ζ2 ≦ 0},

A5 = {(ζ1, ζ2) ∈ R2 :
3

4
ζ1 + ζ2 ≦ 0, ζ2 ≧ 0}.

It can be easily verified that for (ζ1, ζ2) ∈ intAi, I(τ, ζ) = {i} a.e. in [0, 1], i = 2, 3, 4, 5

and
⋃5

i=2Ai = R2. We have that 2 /∈ I(τ, ζ) for (ζ1, ζ2) ∈ int (A3 ∪A4 ∪A5). For (ζ1, ζ2) ∈
int(A2 ∪ A5), I(τ, ζ) = {2, 5} a.e. in [0, 1]. For (ζ1, ζ2) ∈ int(A2 ∪ A3), I(τ, ζ) = {2, 3}
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a.e. in [0, 1]. Further, we consider the system

ϕ1(τ, ζ) =ζ1 + ζ2 < 0,

ϕ2(τ, ζ) =2ζ1 + 5ζ2 < 0,

ϕ3(τ, ζ) =ζ1 − 2ζ2 ≦ 0,

ϕ4(τ, ζ) =− ζ1 − 2ζ2 ≦ 0,

ϕ5(τ, ζ) =− ζ1 + ζ2 ≦ 0,

ζ ∈ R2.

(3.17)

Regularity condition (RC) is checked with v̄ ≡ (0, 0), R ≧ 0, α = 1
10 and for almost every

τ ∈ [0, 1],

(i) e = e(τ, ζ) = (− 4
5 ,−

3
5 ) for (ζ1, ζ2) ∈ int (A3 ∪A4 ∪A5),

(ii) e = e(τ, ζ) = (0, 1) for (ζ1, ζ2) ∈ int (A2 ∪A5) or (ζ1, ζ2) ∈ intA2, and

(iii) e = e(τ, ζ) = ( 1920 ,
√
39
20 ) for (ζ1, ζ2) ∈ int (A2 ∪A3).

We have that necessary optimality conditions are satisfied for λ̂1 = 1, λ̂2 = 0, û1(τ) = 1,
û2(τ) =

1
3 and û3(τ) =

5
3 a.e. in [0, 1].

We conclude that the constraint qualifications (MFQ), (SQ) and regularity condition
(RC) are much less restrictive and easier to verify than the constraint qualifications given
in [34] or [36].

In the following example, we will show that the necessary conditions may not hold
without constraint qualification (MFQ).

Example 3.7.

(MFCTP)

max

(∫ 1

0

(
1− v2(τ)

)
dτ∫ 1

0
ev(τ)dτ

,

∫ 1

0

(
τ − v(τ)

)
dτ∫ 1

0
(1 + v2(τ)) dτ

)
−v2(τ) ≧ 0 a.e. in [0, 1],

v(·) ∈ L∞([0, 1];R).

It is obvious that for almost every τ ∈ [0, 1], v̂(τ) = 0 is an EMFCTP, ŵ1 = 1, ŵ2 = 1
2 and

Ib̂(τ) = {1} for b̂ > 0, where h1(τ, v(τ)) := −v2(τ), f1(τ, v(τ)) := 1 − v2(τ), g1(τ, v(τ)) :=

ev(τ), f2(τ, v(τ)) := τ − v(τ) and g2(τ, v(τ)) := 1 + v2(τ). It can be easily verified that for
almost every τ ∈ [0, 1],

∇f1(τ, v̂(τ)) = 0, ∇g1(τ, v̂(τ)) = 1, ∇f2(τ, v̂(τ)) = −1, ∇g2(τ, v̂(τ)) = 0, ∇h1(τ, v̂(τ)) = 0.

Therefore, we conclude that constraint qualification (MFQ) is not valid for all γ̄(·) ∈
L∞([0, 1];Rn) and β > 0. Further, the condition (3.8) in the function v̂(τ) ≡ 0 can be
rewritten as

λ̂1 + λ̂2 = 0.

But, on the other hand,
λ̂1 + λ̂2 = 1,

and such a λ̂ =
(
λ̂1, λ̂2

)
does not exist. Therefore, the necessary conditions (3.8)-(3.9) are

not satisfied.
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4 Sufficient Conditions

The next results establish sufficient optimality conditions for (MFCTP). The proofs of these
results will be based on the concavity/ convexity and generalized concavity assumptions
imposed on the functions involved. In the following, we will use the basic properties of
concave/convex and quasiconcave functions.

Theorem 4.1. Assume that there exist v̂(·) ∈ Φ for (MFCTP) and (λ̂, û(·)) ∈ Λ+ ×
L∞(∆;Rm) such that the following conditions are satisfied:

λ̂T

(
∇f(τ, v̂(τ))− e

(∫
∆
f(τ, v̂(τ))dτ∫

∆
g(τ, v̂(τ))dτ

)T

∇g(τ, v̂(τ))

)
+û(τ)T∇h(τ, v̂(τ)) = 0 a.e. in ∆,

(4.1)

û(τ)Th(τ, v̂(τ)) = 0, û(τ) ≧ 0 a.e. in ∆. (4.2)

If the function f(τ, ·) is concave almost everywhere in ∆, g(τ, ·) is convex almost everywhere
in ∆ and û(τ)Th(τ, ·) is quasiconcave almost everywhere in ∆, then v̂(·) is an EMFCTP.

Proof. Suppose that v̂(·) is not EMFCTP. Then there exists v̄(·) ∈ Φ such that∫
∆
fj(τ, v̄(τ))dτ∫

∆
gj(τ, v̄(τ))dτ

≧
∫
∆
fj(τ, v̂(τ))dτ∫

∆
gj(τ, v̂(τ))dτ

= ŵj , ∀j ∈ J, (4.3)

and ∫
∆
fi(τ, v̄(τ))dτ∫

∆
gi(τ, v̄(τ))dτ

>

∫
∆
fi(τ, v̂(τ))dτ∫

∆
gi(τ, v̂(τ))dτ

= ŵi, for some i ∈ J. (4.4)

So, (4.3) and (4.4) can be rewritten as∫
∆

(fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ))) dτ ≧ 0, ∀j ∈ J (4.5)

and ∫
∆

(fi(τ, v̄(τ))− ŵigi(τ, v̄(τ))) dτ > 0, for some i ∈ J. (4.6)

Since λ̂ ∈ Λ+, (4.5) and (4.6) imply

λ̂j

∫
∆

(fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ))) dτ ≧ 0, ∀j ∈ J (4.7)

and

λ̂i

∫
∆

(fi(τ, v̄(τ))− ŵigi(τ, v̄(τ))) dτ > 0, for some i ∈ J. (4.8)

From (4.7) and (4.8) we have∑
j∈J

λ̂j

∫
∆

(fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ))) dτ > 0. (4.9)

Since v̄(·) ∈ Φ and (4.2) holds, we have∑
i∈I

ûi(τ)hi(τ, v̄(τ)) ≧
∑
i∈I

ûi(τ)hi(τ, v̂(τ)), ∀v̄(·) ∈ Φ, a.e. in ∆. (4.10)
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Since û(τ)Th(τ, ·) is quasiconcave almost everywhere in ∆, (4.10) yields∑
i∈I

ûi(τ)∇hi(τ, v̂(τ))T (v̄(τ)− v̂(τ)) ≧ 0 ∀v̄(·) ∈ Φ, a.e. in ∆. (4.11)

Then, (4.1) and (4.11) imply∑
j∈J

λ̂j (∇fj(τ, v̂(τ))− ŵj∇gj(τ, v̂(τ)))T (v̄(τ)− v̂(τ)) ≦ 0 ∀v̄(·) ∈ Φ, a.e. in ∆.

Since, ŵ ≧ 0, fj(τ, ·) and −gj(τ, ·) are concave almost everywhere in ∆, it follows that∑
j∈J

λ̂j (fj(τ, ·)− ŵjgj(τ, ·))

is concave almost everywhere in ∆. Therefore,∑
j∈J

λ̂j (fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ)))−
∑
j∈J

λ̂j (fj(τ, v̂(τ))− ŵjgj(τ, v̂(τ))) ≦ 0, a.e. in ∆.

(4.12)

Integrating (4.12) on ∆, we have∑
j∈J

λ̂j

∫
∆

(fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ))) dτ −
∑
j∈J

λ̂j

∫
∆

(fj(τ, v̂(τ))− ŵjgj(τ, v̂(τ))) dτ ≦ 0,

i.e., ∑
j∈J

λ̂j

∫
∆

(fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ))) dτ ≦ 0.

This inequality contradicts (4.9). Therefore, v̂(·) must be an EMFCTP.

Example 4.2.

(MFCTP)

max

(∫ 1

0

(
2 + 2τ − v2(τ)

)
dτ∫ 1

0
ev(τ)dτ

,

∫ 1

0

(
2 + τ − v(τ)

)
dτ∫ 1

0
(1 + v2(τ)) dτ

)
v(τ) ≧ 0 a.e. in [0, 1],

τ + 1− v(τ) ≧ 0 a.e. in [0, 1],

v(·) ∈ L∞([0, 1];R).

Let f1(τ, v(τ)) := 2+2τ−v2(τ), g1(τ, v(τ)) := ev(τ), f2(τ, v(τ)) := 2+τ−v(τ), g2(τ, v(τ)) :=
1+v2(τ), h1(τ, v(τ)) := v(τ) and h2(τ, v(τ)) := τ+1−v(τ). Note that λ̂ =

(
λ̂1, λ̂2

)
=
(
1
2 ,

1
2

)
,

v̂(τ) = 0, û(τ) = (û1(τ), û2(τ)) = (2, 0) a.e. τ ∈ [0, 1], satisfy sufficient conditions (4.1)-
(4.2). Also, f1(τ, ·), f2(τ, ·), g1(τ, ·), g2(τ, ·), h1(τ, ·) and h2(τ, ·) satisfy all the assumptions
of Theorem 4.1. Hence, we conclude that v̂(τ) is an EMFCTP.

Theorem 4.3. Assume that there exist v̂(·) ∈ Φ for (MFCTP) and (λ̂, û(·)) ∈ Λ+ ×
L∞(∆;Rm) such that the following conditions are satisfied:

λ̂T

(
∇f(τ, v̂(τ))− e

(∫
∆
f(τ, v̂(τ))dτ∫

∆
g(τ, v̂(τ))dτ

)T

∇g(τ, v̂(τ))

)
+û(τ)T∇h(τ, v̂(τ)) = 0 a.e. in ∆,

(4.13)
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û(τ)Th(τ, v̂(τ)) = 0, û(τ) ≧ 0 a.e. in ∆. (4.14)

If the function λ̂T
(
f(τ, ·)− eŵT g(τ, ·)

)
is pseudoconcave almost everywhere in ∆ and

û(τ)Th(τ, ·) is quasiconcave almost everywhere in ∆, then v̂(·) is an EMFCTP.

Proof. Suppose that v̂(·) is not EMFCTP. Then there exists v̄(·) ∈ Φ such that∫
∆
fj(τ, v̄(τ))dτ∫

∆
gj(τ, v̄(τ))dτ

≧
∫
∆
fj(τ, v̂(τ))dτ∫

∆
gj(τ, v̂(τ))dτ

= ŵj , ∀j ∈ J, (4.15)

and ∫
∆
fi(τ, v̄(τ))dτ∫

∆
gi(τ, v̄(τ))dτ

>

∫
∆
fi(τ, v̂(τ))dτ∫

∆
gi(τ, v̂(τ))dτ

= ŵi, for some i ∈ J. (4.16)

So, (4.15) and (4.16) can be rewritten as∫
∆

(fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ))) dτ ≧ 0, ∀j ∈ J (4.17)

and ∫
∆

(fi(τ, v̄(τ))− ŵigi(τ, v̄(τ))) dτ > 0, for some i ∈ J. (4.18)

Since λ̂ ∈ Λ+, (4.17) and (4.18) imply∑
j∈J

λ̂j

∫
∆

(fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ))) dτ > 0. (4.19)

Since v̄(·) ∈ Φ and (4.14) holds, we have∑
i∈I

ûi(τ)hi(τ, v̄(τ)) ≧
∑
i∈I

ûi(τ)hi(τ, v̂(τ)), ∀v̄(·) ∈ Φ, a.e. in ∆. (4.20)

Since û(τ)Th(τ, ·) is quasiconcave almost everywhere in ∆, (4.20) yields∑
i∈I

ûi(τ)∇hi(τ, v̂(τ))T (v̄(τ)− v̂(τ)) ≧ 0 ∀v̄(·) ∈ Φ, a.e. in ∆. (4.21)

Then, (4.13) and (4.21) imply∑
j∈J

λ̂j (∇fj(τ, v̂(τ))− ŵj∇gj(τ, v̂(τ)))T (v̄(τ)− v̂(τ)) ≦ 0 ∀v̄(·) ∈ Φ, a.e. in ∆.

Since, λ̂T
(
f(τ, ·)− eŵT g(τ, ·)

)
is pseudoconcave almost everywhere in ∆, we have∑

j∈J

λ̂j (fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ)))−
∑
j∈J

λ̂j (fj(τ, v̂(τ))− ŵjgj(τ, v̂(τ))) ≦ 0, a.e. in ∆.

(4.22)

Integrating (4.22) on ∆, we have∑
j∈J

λ̂j

∫
∆

(fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ))) dτ −
∑
j∈J

λ̂j

∫
∆

(fj(τ, v̂(τ))− ŵjgj(τ, v̂(τ))) dτ ≦ 0,
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i.e., ∑
j∈J

λ̂j

∫
∆

(fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ))) dτ ≦ 0.

This inequality contradicts (4.19). Therefore, v̂(·) must be an EMFCTP.

We also derive sufficient conditions for (MFCTP), where λ̂ ∈ Λ.

Theorem 4.4. Assume that there exist v̂(·) ∈ Φ for (MFCTP) and (λ̂, û(·)) ∈ Λ ×
L∞(∆;Rm) such that the following conditions are satisfied:

λ̂T

(
∇f(τ, v̂(τ))− e

(∫
∆
f(τ, v̂(τ))dτ∫

∆
g(τ, v̂(τ))dτ

)T

∇g(τ, v̂(τ))

)
+û(τ)T∇h(τ, v̂(τ)) = 0 a.e. in ∆,

(4.23)

û(τ)Th(τ, v̂(τ)) = 0, û(τ) ≧ 0 a.e. in ∆. (4.24)

If the function f(τ, ·) is concave almost everywhere in ∆, g(τ, ·) is convex almost everywhere

in ∆, û(τ)Th(τ, ·) is quasiconcave almost everywhere in ∆ and λ̂T (f(τ, ·) − eŵT g(τ, ·)) is
strictly concave almost everywhere in ∆, then v̂(·) is an EMFCTP.

Proof. Suppose that v̂(·) is not EMFCTP. Then there exists v̄(·) ∈ Φ such that∫
∆

(fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ))) dτ ≧ 0, ∀j ∈ J (4.25)

and ∫
∆

(fi(τ, v̄(τ))− ŵigi(τ, v̄(τ))) dτ > 0, for some i ∈ J. (4.26)

Since λ̂ ∈ Λ, (4.25) and (4.26) imply∑
j∈J

λ̂j

∫
∆

(fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ))) dτ ≧ 0. (4.27)

From v̄(·) ∈ Φ and (4.24), we obtain∑
i∈I

ûi(τ)hi(τ, v̄(τ)) ≧
∑
i∈I

ûi(τ)hi(τ, v̂(τ)), ∀v̄(·) ∈ Φ, a.e. in ∆. (4.28)

Since û(τ)Th(τ, ·) is quasiconcave almost everywhere in ∆, (4.28) yields∑
i∈I

ûi(τ)∇hi(τ, v̂(τ))T (v̄(τ)− v̂(τ)) ≧ 0, ∀v̄(·) ∈ Φ, a.e. in ∆. (4.29)

Then, (4.23) and (4.29) imply∑
j∈J

λ̂j (∇fj(τ, v̂(τ))− ŵj∇gj(τ, v̂(τ)))T (v̄(τ)− v̂(τ)) ≦ 0 ∀v̄(·) ∈ Φ, a.e. in ∆.

Since λ̂ ∈ Λ, ŵ ≧ 0 and
∑

j∈J λ̂j(fj(τ, ·)− ŵjgj(τ, ·)) is strictly concave almost everywhere
in ∆, it follows∑

j∈J

λ̂j (fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ)))−
∑
j∈J

λ̂j (fj(τ, v̂(τ))− ŵjgj(τ, v̂(τ))) < 0

a.e. in ∆.

(4.30)
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Integrating (4.30) on ∆, we obtain∑
j∈J

λ̂j

∫
∆

(fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ))) dτ < 0.

This inequality contradicts (4.27). Therefore, v̂(·) must be an EMFCTP.

Example 4.5.

(MFCTP)

max

(∫ 1

0

(
2− v2(τ)

)
dτ∫ 1

0
ev(τ)dτ

,

∫ 1

0

(
1− v(τ)

)
dτ∫ 1

0
(1 + v2(τ)) dτ

)
v(τ) ≧ 0 a.e. in [0, 1],

1

2
− v(τ) ≧ 0 a.e. in [0, 1],

v(·) ∈ L∞([0, 1];R).

Let f1(τ, v(τ)) := 2 − v2(τ), g1(τ, v(τ)) := ev(τ), f2(τ, v(τ)) := 1 − v(τ), g2(τ, v(τ)) :=

1 + v2(τ), h1(τ, v(τ)) := v(τ) and h2(τ, v(τ)) :=
1
2 − v(τ). Note that λ̂ =

(
λ̂1, λ̂2

)
= (0, 1),

v̂(τ) = 0, û(τ) = (û1(τ), û2(τ)) = (1, 0) a.e. τ ∈ [0, 1], satisfy sufficient conditions (4.23)-
(4.24). Also, f1(τ, ·), f2(τ, ·), g1(τ, ·), g2(τ, ·), h1(τ, ·) and h2(τ, ·) satisfy all the assumptions
of Theorem 4.4. Hence, we conclude that v̂(τ) is an EMFCTP.

Theorem 4.6. Assume that there exist v̂(·) ∈ Φ for (MFCTP) and (λ̂, û(·)) ∈ Λ ×
L∞(∆;Rm) such that the following conditions are satisfied:

λ̂T

(
∇f(τ, v̂(τ))− e

(∫
∆
f(τ, v̂(τ))dτ∫

∆
g(τ, v̂(τ))dτ

)T

∇g(τ, v̂(τ))

)
+û(τ)T∇h(τ, v̂(τ)) = 0 a.e. in ∆,

(4.31)

û(τ)Th(τ, v̂(τ)) = 0, û(τ) ≧ 0 a.e. in ∆. (4.32)

If the function λ̂T
(
f(τ, ·)− eŵT g(τ, ·)

)
is quasiconcave almost everywhere in ∆ and

û(τ)Th(τ, ·) is strictly quasiconcave almost everywhere in ∆, then v̂(·) is an EMFCTP.

Proof. Suppose that v̂(·) is not EMFCTP. Then there exists v̄(·) ∈ Φ such that∫
∆
fj(τ, v̄(τ))dτ∫

∆
gj(τ, v̄(τ))dτ

≧
∫
∆
fj(τ, v̂(τ))dτ∫

∆
gj(τ, v̂(τ))dτ

= ŵj , ∀j ∈ J, (4.33)

and ∫
∆
fi(τ, v̄(τ))dτ∫

∆
gi(τ, v̄(τ))dτ

>

∫
∆
fi(τ, v̂(τ))dτ∫

∆
gi(τ, v̂(τ))dτ

= ŵi, for some i ∈ J. (4.34)

So, (4.33) and (4.34) can be rewritten as∫
∆

(fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ))) dτ ≧ 0, ∀j ∈ J (4.35)

and ∫
∆

(fi(τ, v̄(τ))− ŵigi(τ, v̄(τ))) dτ > 0, for some i ∈ J. (4.36)
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Since λ̂ ∈ Λ, (4.35) and (4.36) imply∑
j∈J

λ̂j

∫
∆

(fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ))) dτ ≧ 0. (4.37)

Since v̄(·) ∈ Φ and (4.32) holds, we have∑
i∈I

ûi(τ)hi(τ, v̄(τ)) ≧
∑
i∈I

ûi(τ)hi(τ, v̂(τ)), ∀v̄(·) ∈ Φ, a.e. in ∆. (4.38)

Since û(τ)Th(τ, ·) is strictly quasiconcave almost everywhere in ∆, (4.38) yields∑
i∈I

ûi(τ)∇hi(τ, v̂(τ))T (v̄(τ)− v̂(τ)) > 0 ∀v̄(·) ∈ Φ, a.e. in ∆, (4.39)

for all v̄(·) ∈ Φ such that v̄(τ) ̸= v̂(τ) a.e. in [0, T ]. Then, (4.31) and (4.39) imply∑
j∈J

λ̂j (∇fj(τ, v̂(τ))− ŵj∇gj(τ, v̂(τ)))T (v̄(τ)− v̂(τ)) < 0 ∀v̄(·) ∈ Φ, a.e. in ∆.

Since, λ̂T
(
f(τ, ·)− eŵT g(τ, ·)

)
is quasiconcave almost everywhere in ∆, we have∑

j∈J

λ̂j (fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ)))−
∑
j∈J

λ̂j (fj(τ, v̂(τ))− ŵjgj(τ, v̂(τ))) < 0, a.e. in ∆.

(4.40)

Integrating (4.40) on ∆, we have∑
j∈J

λ̂j

∫
∆

(fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ))) dτ −
∑
j∈J

λ̂j

∫
∆

(fj(τ, v̂(τ))− ŵjgj(τ, v̂(τ))) dτ < 0,

i.e., ∑
j∈J

λ̂j

∫
∆

(fj(τ, v̄(τ))− ŵjgj(τ, v̄(τ))) dτ < 0.

This inequality contradicts (4.37). Therefore, v̂(·) must be an EMFCTP.

5 Conclusion

This paper has presented the optimality conditions and a new approach to smooth mul-
tiobjective fractional continuous-time programming. The necessary conditions have been
obtained without convexity assumptions. What was not under the paper’s intention are
duality results of the initial nonsmooth problem and developing its optimality conditions
without convexity assumptions. To this end, the necessary and sufficient conditions in this
paper are good starting points.

Numerical methods for linear fractional continuous-time problem have been proposed
in [33, 32]. Also, there does not exist a numerical algorithm to solve the multiobjective
fractional continuous-time programming problem. This could possibly be a significant path
for some future work.
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