FRANK-WOLFE TYPE THEOREMS FOR POLYNOMIAL VECTOR OPTIMIZATION PROBLEMS*

Dan-Yang Liu, La Huang and Rong Hu ${ }^{\dagger}$

Abstract

In this paper, we study the solvability of a polynomial vector optimization problem under the weak section-boundedness from below condition. We give a characterization of the weak section-boundedness from below condition. Under the weak section-boundedness condition, we prove the existence of weakly Pareto efficient solutions for a convex polynomial vector optimization problem. For the non-convex case, we prove the existence of Pareto efficient solutions when the convenience, non-degeneracy, and weak sectionboundedness conditions are satisfied.

Key words: polynomial vector optimization problem, Newton polyhedron at infinity, convenience, nondegeneracy, Weak section-boundedness from below, Frank-Wolfe type theorems

Mathematics Subject Classification: 90C29, 90C46

1 Introduction

Throughout, \mathbf{R}^{n} denotes the n-dimensional Euclidean space with the norm $\|\cdot\|$ and the inner product $\langle\cdot, \cdot\rangle$, and \mathbf{R}_{+}^{n} denotes the non-negative orthant of \mathbf{R}^{n}. Let

$$
f_{1}, f_{2}, \ldots, f_{s}, g_{1}, g_{2}, \ldots, g_{p}: \mathbf{R}^{n} \rightarrow \mathbf{R}
$$

be polynomial functions. Consider the following polynomial vector optimization problem:

$$
\operatorname{PVOP}(K, f): \quad \mathbf{R}_{+}^{s}-\operatorname{Min}_{x \in K} f(x)
$$

where $f=\left(f_{1}, f_{2}, \ldots, f_{s}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{s}$ is a polynomial vector-valued function and

$$
K=\left\{x \in \mathbf{R}^{n}: g_{1}(x) \leq 0, g_{2}(x) \leq 0, \ldots, g_{p}(x) \leq 0\right\}
$$

In what follows, we always suppose that the constraint set K is nonempty.
Recall that a point $x^{*} \in K$ is a Pareto efficient solution of $\operatorname{PVOP}(K, f)$ if

$$
f(x)-f\left(x^{*}\right) \notin-\mathbf{R}_{+}^{s} \backslash\{0\}, \quad \forall x \in K
$$

and $x^{*} \in K$ is a weakly Pareto efficient solution of $\operatorname{PVOP}(K, f)$ if

$$
f(x)-f\left(x^{*}\right) \notin-\operatorname{int} \mathbf{R}_{+}^{s}, \quad \forall x \in K
$$

[^0](C) 2023 Yokohama Publishers

The Pareto efficient solution set and the weakly Pareto efficient solution set of $\operatorname{PVOP}(K, f)$ are denoted by $S O L^{s}(K, f)$ and $S O L^{w}(K, f)$, respectively. Clearly,

$$
S O L^{s}(K, f) \subseteq S O L^{w}(K, f)
$$

When $s=1, \operatorname{PVOP}(K, f)$ collapses to the polynomial scalar optimization problem:

$$
\operatorname{PSOP}(K, f): \quad \operatorname{Min}_{x \in K} f(x)
$$

whose optimal solution set is denoted by $S O L(K, f)$.
In 1956, Frank and Wolfe [8] proved that a quadratic function attains its infimum on a polyhedron provided that it is bounded from below on this polyhedron. This result has been known as the Frank-Wolfe theorem. Since then, many authors have been focusing on extensions and generalizations of the Frank-Wolfe theorem. For instance, in 1980, Perold [25] proved a Frank-Wolfe type theorem for the minimization problem with a non-quadratic objective function and a nonempty polyhedral constraint set. In 1999, Luo and Zhang [22] established a Frank-Wolfe type theorem for the minimization problem where the objective function is quadratic and the constraint set consists of finitely many quadratic inequalities. In 2002, Belousov and Klatte [2] proved a Frank-Wolfe type Theorem for the minimization problem with a convex polynomial objective function and a constraint set defined by finitely many convex polynomial functions. In 2006, Obuchowska [24] obtained a FrankWolfe type theorem for the minimization problem with a faithfully convex or quasiconvex polynomial objective function and a constraint set defined by a system of faithfully convex inequalities and/or quasiconvex polynomial inequalities. Dinh et al. [4] proved a FrankWolfe type theorem for a non-convex polynomial optimization problem under convenience and non-degeneracy conditions. For more results on Frank-Wolfe type theorems for scalar optimization problems, we refer the reader to $[18,20,23,7,26]$ and the reference therein.

Recently, some researchers focused on the study of Frank-Wolfe type theorems for vector optimization problems. Kim et al. [16] proved the nonemptiness of the Pareto efficient solution set of an unconstrained polynomial vector optimization problem when the PalaisSmale condition holds and the objective function has a section bounded from below. Lee et al. [19] proved that a constrained vector optimization problem with the constraint set being a closed convex semi-algebraic set and the objective function being a convex vector polynomial has a nonempty Pareto efficient solution set if and only if its objective function has a section bounded from below.

Motivated by the above works, in this paper, we investigate Frank-Wolfe type theorems for the polynomial vector optimization problem $\operatorname{PVOP}(K, f)$ under a weak sectionboundedness from below condition. The outline of this paper is as follows: In Section 2, we give the definition and the property of weak section-boundedness from below and recall some notations and preliminary results. In Section 3, we are devoted to establishing Frank-Wolfe type theorems for $\operatorname{PVOP}(K, f)$ under the weak section-boundedness from below condition.

2 Preliminaries

In this section, we give some concepts and results that will be used in this paper.

2.1 Weak section-boundedness from below

Let C be a nonempty subset of \mathbf{R}^{n} and $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{s}$ be a vector-valued function with

$$
F(x)=\left(F_{1}(x), F_{2}(x), \ldots, F_{s}(x)\right)
$$

Definition 2.1 (See, e.g., $[3,12,13,15,16,21])$. Let A be a subset of \mathbf{R}^{s} and $\bar{t} \in \mathbf{R}^{s}$. The set $A \bigcap\left(\bar{t}-\mathbf{R}_{+}^{s}\right)$ is called a section of A at \bar{t} and denoted by $[A]_{\bar{t}}$. The section $[A]_{\bar{t}}$ is said to be bounded if there exists $a \in \mathbf{R}^{s}$ such that

$$
[A]_{\bar{t}} \subseteq a+\mathbf{R}_{+}^{s}
$$

Definition 2.2. A vector-valued function $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{s}$ is said to be section-bounded from below on C if there exists $x^{\prime} \in C$ such that the section $[F(C)]_{F\left(x^{\prime}\right)}$ is bounded.

Remark that, by definition, a vector-valued function F is section-bounded from below on C if and only if there exist $x^{\prime} \in C$ and $a=\left(a_{1}, a_{2}, \ldots, a_{s}\right) \in \mathbf{R}^{s}$ such that

$$
F_{i}(x) \geq a_{i}
$$

for any $x \in C$ satisfying $F(x) \leq F\left(x^{\prime}\right)$ and each $i \in\{1,2, \ldots, s\}$. In [16], the sectionboundedness from below has been used to derive Frank-Wolfe type theorem for a polynomial vector optimization problem. In this paper, we consider the weak section-boundedness from below on C for a vector-valued function F.

Definition 2.3. A vector-valued function $F=\left(F_{1}, F_{2}, \ldots, F_{s}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{s}$ is said to be weakly section-bounded from below on C if there exist $\bar{x} \in C$ and $\bar{a} \in \mathbf{R}^{s}$ such that

$$
F(x)-\bar{a} \notin-\operatorname{int} \mathbf{R}_{+}^{s}, \quad \forall x \in C_{\bar{x}}
$$

where $C_{\bar{x}}=\left\{x \in C: F_{i}(x) \leq F_{i}(\bar{x}), i=1,2, \ldots, s\right\}$.
Remark 2.4. By definition, section-boundedness from below implies weak section-boundedness from below. The following example shows that the inverse is not true in general.

Example 2.5. Consider the vector-valued function $F=\left(F_{1}, F_{2}\right)$ defined by

$$
F_{1}\left(x_{1}, x_{2}\right)=x_{2}, F_{2}\left(x_{1}, x_{2}\right)=-x_{1}
$$

and

$$
C=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}: x_{1} \in \mathbf{R}, x_{2} \geq 0\right\}
$$

Let $\bar{x}=(1,2)$ and $\bar{a}=(0,1)$. Then $C_{\bar{x}}=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}: x_{1} \geq 1,2 \geq x_{2} \geq 0\right\}$. It is not difficult to see that $\left(x_{2},-x_{1}\right)-(0,1) \notin-\operatorname{int} \mathbf{R}_{+}^{2}$ for any $\left(x_{1}, x_{2}\right) \in C_{\bar{x}}$. Thus, F is weakly section-bounded from below on C. On the other hand, let $y=\left(y_{1}, y_{2}\right) \in C$. By computation, we have $C_{y}=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}: x_{1} \geq y_{1}, y_{2} \geq x_{2} \geq 0\right\}$. It is easy to see that F_{2} is not bounded from below on C_{y}. As a result, F is not section-bounded from below on C.

Next, we give a characterization for the weak section-boundedness from below on C of a vector-valued function F, which plays an important role in proving the existence of Pareto efficient solutions.

Proposition 2.6. Let $F=\left(F_{1}, F_{2}, \ldots, F_{s}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{s}$ be a vector-valued function. Then F is weakly section-bounded from below on C if and only if there exist $x^{*} \in C$ and $i_{0} \in$ $\{1,2, \ldots, s\}$ such that $F_{i_{0}}$ is bounded from below on $C_{x^{*}}^{i_{0}}$, where

$$
C_{x^{*}}^{i_{0}}=\left\{x \in C: F_{i}(x) \leq F_{i}\left(x^{*}\right), i=1,2, \ldots, i_{0}-1, i_{0}+1, \ldots, s\right\}
$$

Proof. Suppose that there exist $x^{*} \in C$ and $i_{0} \in\{1,2, \ldots, s\}$ such that $F_{i_{0}}$ is bounded from below on $C_{x^{*}}^{i_{0}}$. Since $C_{x^{*}} \subseteq C_{x^{*}}^{i_{0}}, F_{i_{0}}$ is bounded from below on $C_{x^{*}}=\left\{x \in C: F_{i}(x) \leq\right.$ $\left.F_{i}\left(x^{*}\right), i=1,2, \ldots, s\right\}$. Then there exists $a_{i_{0}} \in \mathbf{R}$ such that $F_{i_{0}}(x) \geq a_{i_{0}}$ for all $x \in C_{x^{*}}$. Let $\bar{a}=\left(\bar{a}_{1}, \ldots, \bar{a}_{s}\right) \in \mathbf{R}^{s}$ with $\bar{a}_{i_{0}}=a_{i_{0}}$. It follows that $F(x)-\bar{a} \notin-\operatorname{int} \mathbf{R}_{+}^{s}$ for any $x \in C_{x^{*}}$. As a result, F is weakly section-bounded from below on C.

Now assume that F is weakly section-bounded from below on C. Suppose on the contrary that for any $x^{*} \in C$ and any $j \in\{1,2, \ldots, s\}$, we have that F_{j} is unbounded from below on $C_{x^{*}}^{j}$ where

$$
C_{x^{*}}^{j}=\left\{x \in C: F_{i}(x) \leq F_{i}\left(x^{*}\right), i=1,2, \ldots, j-1, j+1, \ldots, s\right\}
$$

Then there exists a sequence $\left\{y_{m}\right\} \subseteq C_{x^{*}}^{j}$ such that $F_{j}\left(y_{m}\right) \leq-m \leq F_{j}\left(x^{*}\right)$ for all sufficiently large m. As a consequence, $y_{m} \in C_{x^{*}}$ and F_{j} is unbounded from below on $C_{x^{*}}$ for each j. Notice that F_{j} is unbounded from below on $C_{x^{*}}^{j}$ if and only if it is unbounded from below on $C_{x^{*}}$.

For $j=1$, there exists a sequence $\left\{x_{k}^{1}\right\} \subseteq C_{x^{*}}$ such that $F_{1}\left(x_{k}^{1}\right) \leq-k$ for all k. For each k, consider the following nonempty set

$$
C_{x_{k}^{1}}=\left\{x \in C: F_{i}(x) \leq F_{i}\left(x_{k}^{1}\right), i=1,2, \ldots, s\right\} .
$$

Then

$$
C_{x_{k}^{1}} \subseteq C_{x^{*}} \subseteq C
$$

Since $x_{k}^{1} \in C$, by assumption, F_{2} is unbounded from below on $C_{x_{k}^{1}}$. Then there exists $\left\{x_{k}^{2}\right\} \subset C_{x_{k}^{1}}$ such that

$$
F_{2}\left(x_{k}^{2}\right) \leq-k \text { and } F_{1}\left(x_{k}^{2}\right) \leq F_{1}\left(x_{k}^{1}\right) \leq-k, \quad \forall k
$$

Similarly, consider the following nonempty set

$$
C_{x_{k}^{2}}=\left\{x \in C: F_{i}(x) \leq F_{i}\left(x_{k}^{2}\right), i=1,2, \ldots, s\right\}
$$

Then, we have

$$
C_{x_{k}^{2}} \subseteq C_{x_{k}^{1}} \subseteq C_{x^{*}} \subseteq C
$$

and there exists $\left\{x_{k}^{3}\right\} \subset C_{x_{k}^{2}}$ such that

$$
F_{3}\left(x_{k}^{3}\right) \leq-k, F_{2}\left(x_{k}^{3}\right) \leq F_{2}\left(x_{k}^{2}\right) \leq-k \text { and } F_{1}\left(x_{k}^{3}\right) \leq F_{1}\left(x_{k}^{2}\right) \leq F_{1}\left(x_{k}^{1}\right) \leq-k, \quad \forall k
$$

Repeating this process, we can obtain that for any $x^{*} \in C$, there exists a sequence $\left\{x_{k}^{s}\right\}_{k}$ such that for all k,

$$
x_{k}^{s} \in C_{x_{k}^{s-1}} \subseteq C_{x_{k}^{s-2}} \subseteq \cdots \subseteq C_{x_{k}^{2}} \subseteq C_{x_{k}^{1}} \subseteq C_{x^{*}} \subseteq C
$$

and

$$
\begin{aligned}
& F_{1}\left(x_{k}^{s}\right) \leq F_{1}\left(x_{k}^{s-1}\right) \leq \cdots \leq F_{1}\left(x_{k}^{1}\right) \leq-k \\
& F_{2}\left(x_{k}^{s}\right) \leq F_{2}\left(x_{k}^{s-1}\right) \leq \cdots \leq F_{2}\left(x_{k}^{2}\right) \leq-k \\
& \vdots \\
& F_{s-1}\left(x_{k}^{s}\right) \leq F_{s-1}\left(x_{k}^{s-1}\right) \leq-k \\
& F_{s}\left(x_{k}^{s}\right) \leq-k
\end{aligned}
$$

As a result, for any $x^{*} \in C$ and any $a^{\prime}=\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{s}^{\prime}\right) \in \mathbf{R}^{s}$, there exists a sequence $\left\{x_{k}^{s}\right\}_{k} \subseteq C_{x^{*}}$ such that $F\left(x_{k}^{s}\right)<a^{\prime}$ for all sufficiently large k. By Definition 2.3, let $x^{*}=\bar{x}$ and $a^{\prime}=\bar{a}$. Then there exists a sequence $\left\{\bar{x}_{k}^{s}\right\}_{k} \subseteq C_{\bar{x}}$ such that $F\left(\bar{x}_{k}^{s}\right)-\bar{a} \in-$ int \mathbf{R}_{+}^{s} for all sufficiently large k. This contradicts to the weak section-boundedness from below on C of F. The proof is completed.

Remark 2.7. If $x^{*} \in S O L^{w}(C, F)$, then $F(x)-F\left(x^{*}\right) \notin-\operatorname{int} \mathbf{R}_{+}^{s}$ for any $x \in C$. Let $\bar{x} \in C$. Since $C_{\bar{x}} \subseteq C$, we have $F(x)-F\left(x^{*}\right) \notin-\operatorname{int} \mathbf{R}_{+}^{s}$ for any $x \in C_{\bar{x}}$. So, F is weakly section-bounded from below on C. Hence, the weak section-boundedness from below condition of F is necessary for the existence of (weakly) Pareto efficient solutions.

2.2 Newton polyhedra at infinity, convenience and non-degeneracy

Let \mathbf{N} be the set of all natural numbers. Given $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbf{N}^{n}$, the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}$ is denoted by x^{α}. For any polynomial $h: \mathbf{R}^{n} \rightarrow \mathbf{R}$, we can write $h(x)=\sum_{\alpha} h_{\alpha} x^{\alpha}$ with $h_{\alpha} \in \mathbf{R}$. Now, we recall the definition of Newton polyhedra following Kouchnirenko and Khovanskii (see [14, 17]).

Definition 2.8 (See, e.g., $[4,5,6,10]$). A set $\mathcal{N} \subseteq \mathbf{R}_{+}^{n}$ is said to be a Newton polyhedron at infinity if there is some finite subset P of \mathbf{N}^{n} such that \mathcal{N} is equal to the convex hull of the set $P \bigcup\{0\}$. And the Newton polyhedron at infinity \mathcal{N} is said to be convenient if it intersects each coordinate axis in a point different from the origin.

We denote by \mathcal{N}_{∞} the set of all the faces of \mathcal{N} which do not contain the origin $\mathbf{0}$ in \mathbf{R}^{n}. Since the Newton polyhedron at infinity \mathcal{N} is determined by the finite set $P \subseteq \mathbf{N}^{n}$, we can write $\mathcal{N}=\mathcal{N}(P)$. The support of the polynomial $h(x)=\sum_{\alpha} h_{\alpha} x^{\alpha}$, denoted by $\operatorname{supp}(h)$, is a set of all $\alpha \in \mathbf{N}^{n}$ such that $h_{\alpha} \neq 0$. For simplicity the Newton polyhedron at infinity $\mathcal{N}(\operatorname{supp}(h))$ is written by $\mathcal{N}(h)$. We say that $\mathcal{N}(h)$ is the Newton polyhedron at infinity of the polynomial h. The polynomial h is said to be convenient if $\mathcal{N}(h)$ is convenient. The set $\mathcal{N}_{\infty}(h)$ is defined as the set of all the faces of $\mathcal{N}(h)$ which do not contain the origin $\mathbf{0}$ in \mathbf{R}^{n}. Let Δ be a face in $\mathcal{N}(h)$. We write $h_{\Delta}(x)=\sum_{\alpha \in \Delta} h_{\alpha} x^{\alpha}$ with $h_{\alpha} \neq 0$.

Next, let $T=\left(T_{1}, T_{2}, \ldots, T_{m}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a vector polynomial. Let $\mathcal{N}(T)$ be the Minkowski sum $\mathcal{N}\left(T_{1}\right)+\mathcal{N}\left(T_{2}\right)+\cdots+\mathcal{N}\left(T_{m}\right)$. Then $\mathcal{N}(T)$ is also a Newton polyhedron at infinity. We say that $\mathcal{N}(T)$ is the Newton polyhedron at infinity of the vector polynomial T. The set $\mathcal{N}_{\infty}(T)$ is defined as the set of all the faces of $\mathcal{N}(T)$ which do not contain the origin $\mathbf{0}$ in \mathbf{R}^{n}. The vector polynomial T is said to be convenient if $\mathcal{N}\left(T_{i}\right)$ is convenient for each $i=1,2, \ldots, m$.

The following result follows from (ii1) and the proof of (ii2) of [4, Lemma 2.1].
Lemma 2.9. Let $T=\left(T_{1}, T_{2}, \ldots, T_{m}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a vector polynomial. If T is convenient, then for any face $\Delta \in \mathcal{N}_{\infty}(T)$, there exists a unique collection of faces $\Delta_{1} \in$ $\mathcal{N}_{\infty}\left(T_{1}\right), \Delta_{2} \in \mathcal{N}_{\infty}\left(T_{2}\right), \ldots, \Delta_{m} \in \mathcal{N}_{\infty}\left(T_{m}\right)$ such that

$$
\Delta=\Delta_{1}+\Delta_{2}+\cdots+\Delta_{m}
$$

Let Δ be a face of $\mathcal{N}(T)$. Again by (ii1) of [4, Lemma 2.1], we have the unique decomposition $\Delta=\Delta_{1}+\Delta_{2}+\cdots+\Delta_{m}$, where Δ_{i} is a face of $\mathcal{N}\left(T_{i}\right)$ for $i=1,2, \ldots, m$. The definition of the non-degeneracy at infinity of a vector polynomial T is given as follows:

Definition 2.10 ([4, Definition 2.3] (also see [5, 11])). Let $T=\left(T_{1}, T_{2}, \ldots, T_{m}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a vector polynomial. T is said to be non-degenerate at infinity if for any face $\Delta \in \mathcal{N}_{\infty}(T)$
and any $x \in(\mathbf{R} \backslash\{0\})^{n}$, the rank of matrix H_{Δ} is equal to m, where

$$
H_{\Delta}=\left(\begin{array}{cccccc}
x_{1} \frac{\partial\left(T_{1}\right) \Delta_{1}}{\partial x_{1}}(x) & \ldots & x_{n} \frac{\partial\left(T_{1}\right) \Delta_{1}}{\partial x_{n}}(x) & \left(T_{1}\right)_{\Delta_{1}}(x) & \ldots & 0 \\
\vdots & \ldots & \vdots & \vdots & \ddots & \vdots \\
x_{1} \frac{\partial\left(T_{m}\right) \Delta_{m}}{\partial x_{1}}(x) & \ldots & x_{n} \frac{\partial\left(T_{m}\right) \Delta_{m}}{\partial x_{n}}(x) & 0 & \ldots & \left(T_{m}\right)_{\Delta_{m}}(x)
\end{array}\right) .
$$

3 Existence Results

In this section, we derive Frank-Wolfe type theorems for $\operatorname{PVOP}(K, f)$ under the weak section-boundedness from below condition.

3.1 Frank-Wolfe type theorem for the convex case

In this subsection, we investigate the existence of the weakly Pareto efficient solutions for $\operatorname{PVOP}(K, f)$ under convexity and weak section-boundedness from below conditions. To do so, we need the following result.

Lemma 3.1 (See [2, Theorem 3] and [1, Chapter II, Section 4, Theorem 13]). Let $T_{i}: \mathbf{R}^{n} \rightarrow$ \mathbf{R} be a convex polynomial, $i=0,1, \ldots, m$. Assume that

$$
C:=\left\{x \in \mathbf{R}^{n}: T_{1}(x) \leq 0, T_{2}(x) \leq 0, \ldots, T_{m}(x) \leq 0\right\}
$$

and T_{0} is bounded from below on C. Then T_{0} attains its infimum on C.
Theorem 3.2. Assume that $f_{1}, f_{2}, \ldots, f_{s}, g_{1}, g_{2}, \ldots, g_{p}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ are convex polynomials. Then f is weakly section-bounded from below on K if and only if $\operatorname{SOL}^{w}(K, f)$ is nonempty.
Proof. " \Leftarrow ": The result follows immediately from Remark 2.7.
$" \Rightarrow ":$ By Definition 2.3, there exist $\bar{x} \in K$ and $\bar{a} \in \mathbf{R}^{s}$ such that $f(x)-\bar{a} \notin-\operatorname{int} \mathbf{R}_{+}^{s}$ for any $x \in K_{\bar{x}}$, where $K_{\bar{x}}=\left\{x \in K: f_{i}(x) \leq f_{i}(\bar{x}), i=1,2, \ldots, s\right\}$. Then $\left(f\left(K_{\bar{x}}\right)-\right.$ $\bar{a}) \bigcap\left(-\operatorname{int} \mathbf{R}_{+}^{s}\right)=\emptyset$. It follows that $\bar{a} \notin f\left(K_{\bar{x}}\right)+\operatorname{int} \mathbf{R}_{+}^{s}$. Since f is convex, we can easily check that the set $f\left(K_{\bar{x}}\right)+$ int \mathbf{R}_{+}^{s} is convex. So, by the separation theorem of convex sets, there exists $\alpha \in \mathbf{R}^{s} \backslash\{0\}$ such that

$$
\langle\alpha, \bar{a}\rangle \leq\langle\alpha, v\rangle
$$

for any $v \in f\left(K_{\bar{x}}\right)+$ int \mathbf{R}_{+}^{s}. It is easy to verify that $\alpha \in \mathbf{R}_{+}^{s} \backslash\{0\}$ and so $\langle\alpha, \bar{a}\rangle \leq\left\langle\alpha, v^{\prime}\right\rangle$ for any $v^{\prime} \in f\left(K_{\bar{x}}\right)$. Define $g_{\alpha}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ by $g_{\alpha}(x)=\langle\alpha, f(x)\rangle$. Then g_{α} is a convex polynomial on \mathbf{R}^{n} and is bounded from below on $K_{\bar{x}}$. By Lemma 3.1, g_{α} attains the infimum on $K_{\bar{x}}$ at some $x^{*} \in K_{\bar{x}}$. We claim that $x^{*} \in S O L^{w}(K, f)$. If not, then there exists $x_{0} \in K$ such that $f_{i}\left(x_{0}\right)<f_{i}\left(x^{*}\right)$ for all $i \in\{1,2, \ldots, s\}$. Then

$$
g_{\alpha}\left(x_{0}\right)=\left\langle\alpha, f\left(x_{0}\right)\right\rangle<\left\langle\alpha, f\left(x^{*}\right)\right\rangle=g_{\alpha}\left(x^{*}\right)
$$

and $x_{0} \in K_{\bar{x}}$ (since $x^{*} \in K_{\bar{x}}$). This contradicts to $x^{*} \in S O L\left(K_{\bar{x}}, g_{\alpha}\right)$. The proof is completed.

Remark 3.3. Recently, Lee et al. derived in [19, Theorem 3.1] a Frank-Wolfe type theorem for a convex $\operatorname{PVOP}(K, f)$ by showing that $S O L^{s}(K, f)$ is nonempty if and only if there exists $z_{0} \in \mathbf{R}^{n}$ such that $f(K) \bigcap\left(f\left(z_{0}\right)-\mathbf{R}_{+}^{s}\right)$ is nonempty and bounded. As a comparison, we has shown in Theorem 3.2 that a convex $\operatorname{PVOP}(K, f)$ admits a nonempty weak Pareto efficient solution set if and only if f is weakly section-bounded from below on K.

The following example illustrates Theorem 3.2.
Example 3.4. Consider the convex vector polynomial $f=\left(f_{1}, f_{2}\right)$ defined by

$$
f_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{2}, \quad f_{2}\left(x_{1}, x_{2}\right)=-x_{1}
$$

and the constraint set $K=\left\{x \in \mathbf{R}^{2}: x_{1} \geq 0, x_{2} \geq 0\right\}$. Let $\bar{x}=(1,0)$. Then

$$
K_{\bar{x}}=\left\{\left(x_{1}, x_{2}\right) \in K: x_{1}^{2}+2 x_{2} \leq 1, x_{1} \geq 1\right\}
$$

It is easy to see that $f(x)-(0,1) \notin-\operatorname{int} \mathbf{R}_{+}^{s}$ for any $x \in K_{\bar{x}}$. So, f is weakly sectionbounded from below on K. By Theorem $3.2, \operatorname{SOL}^{w}(K, f)$ is nonempty. Indeed, it is easy to verify that $(0,0) \in S O L^{w}(K, f)$.

The following example shows that Theorem 3.2 may not hold if f is non-convex.
Example 3.5. Consider the vector polynomial $f=\left(f_{1}, f_{2}\right)$ defined by

$$
f_{1}\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}-1\right)^{2}+3 x_{1}^{2}, \quad f_{2}\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}-1\right)^{2}+2 x_{1}^{2}
$$

and the constraint set $K=\mathbf{R}^{2}$. Then f is non-convex. For any $z=\left(z_{1}, z_{2}\right) \in \mathbf{R}^{2}$,

$$
K_{z}=\left\{x \in \mathbf{R}^{2}: f_{1}(x) \leq\left(z_{1} z_{2}-1\right)^{2}+3 z_{1}^{2}, f_{2}(x) \leq\left(z_{1} z_{2}-1\right)^{2}+2 z_{1}^{2}\right\}
$$

Clearly, $f(x)-(0,0) \notin-\operatorname{int} \mathbf{R}_{+}^{s}$ for any $x \in K_{z}$. So f is weakly section-bounded from below on K. On the other hand, $S O L^{w}(K, f)=\emptyset$ because $f_{1}>0, f_{2}>0$, and $f\left(\frac{1}{n}, n\right)=$ $\left(\frac{3}{n^{2}}, \frac{2}{n^{2}}\right) \rightarrow(0,0)$ as $n \rightarrow+\infty$.

3.2 Frank-Wolfe type theorem for the non-convex case

In this subsection, we study the existence of the Pareto efficient solutions for a non-convex $\operatorname{PVOP}(K, f)$ when the convenience, the non-degeneracy at infinity, and the weak sectionboundedness from below conditions are satisfied. We first give some lemmas.
Lemma 3.6 ([9, Proposition 13]). Given $\lambda \in \operatorname{int} \mathbf{R}_{+}^{s}$ and $x^{\prime} \in K$, define $g(x)=$ $\sum_{j=1}^{s} \lambda_{j} f_{j}(x)$ and $K_{x^{\prime}}=\left\{x \in K: f_{i}(x) \leq f_{i}\left(x^{\prime}\right), i=1,2, \ldots, s\right\}$. If $x^{*} \in \operatorname{SOL}\left(K_{x^{\prime}}, g\right)$, then $x^{*} \in S O L^{s}(K, f)$.

The following result has been established in the proof of [4, Theorem 1.1].
Lemma 3.7. Let $T^{\prime}=\left(T_{0}, T_{1}, \ldots, T_{m}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{m+1}$ be a vector polynomial. Assume that T^{\prime} is convenient and non-degenerate at infinity and T_{0} is bounded from below on the set

$$
C:=\left\{x \in \mathbf{R}^{n}: T_{1}(x) \leq 0, \ldots, T_{m}(x) \leq 0\right\}
$$

Then T_{0} is coercive on C in the sense that

$$
\lim _{r \rightarrow \infty} \min _{x \in C,\|x\|=r} T_{0}(x)=+\infty
$$

The following result is simple but useful. It gives the translation invariance of the convenience and the non-degeneracy at infinity of a vector polynomial.

Lemma 3.8. Let $T=\left(T_{1}, T_{2}, \ldots, T_{m}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a vector polynomial. If T is convenient and non-degenerate at infinity, then $T_{b}=\left(T_{1}+b_{1}, T_{2}+b_{2}, \ldots, T_{m}+b_{m}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is convenient and non-degenerate at infinity for any $b=\left(b_{1}, b_{2}, \ldots, b_{m}\right) \in \mathbf{R}^{m}$.

Proof. Let $b=\left(b_{1}, b_{2}, \ldots, b_{m}\right) \in \mathbf{R}^{m}$. By definition, we have $\mathcal{N}\left(T_{i}\right)=\mathcal{N}\left(T_{i}+b_{i}\right), i=$ $1,2, \ldots, m$. As a result, T_{b} is convenient (since T is convenient).

Next, we show that T_{b} is non-degenerate at infinity. Let $\Delta \in \mathcal{N}_{\infty}\left(T_{b}\right)$. Since $\mathcal{N}\left(T_{b}\right)=$ $\mathcal{N}(T)$, we get $\Delta \in \mathcal{N}_{\infty}(T)$. Since T_{b} is convenient, by Lemma 2.9, we obtain $\Delta=\Delta_{1}+$ $\Delta_{2}+\cdots+\Delta_{m}$, where $\Delta_{i} \in \mathcal{N}_{\infty}\left(T_{i}+b_{i}\right), i=1,2, \ldots, m$. Since $\mathbf{0} \notin \cup_{i=1}^{m} \Delta_{i}$, we have $\left(T_{i}+b_{i}\right)_{\Delta_{i}}=\left(T_{i}\right)_{\Delta_{i}}, i=1,2, \ldots, m$. Since T is non-degenerate at infinity $\Delta \in \mathcal{N}_{\infty}(T)$, the rank of the matrix

$$
\left(\begin{array}{cccccc}
x_{1} \frac{\partial\left(T_{1}+b_{1}\right)_{\Delta_{1}}}{\partial x_{1}}(x) & \ldots & x_{n} \frac{\partial\left(T_{1}+b_{1}\right)_{\Delta_{1}}}{\partial x_{n}}(x) & \left(T_{1}+b_{1}\right)_{\Delta_{1}}(x) & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
x_{1} \frac{\partial\left(T_{m}+b_{m}\right)_{\Delta_{m}}}{\partial x_{1}}(x) & \ldots & x_{n} \frac{\partial\left(T_{m}+b_{m}\right)_{\Delta_{m}}}{\partial x_{n}}(x) & 0 & \ldots & \left(T_{m}+b_{m}\right)_{\Delta_{m}}(x)
\end{array}\right)
$$

is equal to m for any $x \in(\mathbf{R} \backslash\{0\})^{n}$. So, T_{b} is non-degenerate at infinity.
As shown in the proof of Lemma 3.8, the translation invariance of the non-degeneracy at infinity of a vector polynomial depends on its convenience. The following example shows that if a vector polynomial is not convenience, then its translation invariance of the nondegeneracy at infinity may not hold.

Example 3.9. Consider the vector polynomial $T=\left(T_{1}, T_{2}\right)$ defined by

$$
T_{1}\left(x_{1}, x_{2}\right)=x_{1} x_{2}+1, T_{2}\left(x_{1}, x_{2}\right)=x_{2}+1
$$

Then

$$
\mathcal{N}\left(T_{1}\right)=\operatorname{co}\{(0,0),(1,1)\}, \mathcal{N}\left(T_{2}\right)=\operatorname{co}\{(0,0),(0,1)\}
$$

It is easy to see that neither T_{1} nor T_{2} are convenient. Next, we check that $T=\left(T_{1}, T_{2}\right)$ is non-degenerate at infinity. Note that

$$
\mathcal{N}(T)=\mathcal{N}\left(T_{1}\right)+\mathcal{N}\left(T_{2}\right)=\operatorname{co}\{(0,0),(0,1),(1,1),(1,2)\}
$$

Then $\mathcal{N}_{\infty}(T)$ has five faces as follows:

$$
\begin{aligned}
& \Delta_{1}=\operatorname{co}\{(1,1),(1,2)\}=\Delta_{1}^{1}+\Delta_{1}^{2}=(1,1)+\operatorname{co}\{(0,0),(0,1)\}, \\
& \Delta_{2}=\operatorname{co}\{(0,1),(1,2)\}=\Delta_{2}^{1}+\Delta_{2}^{2}=\operatorname{co}\{(0,0),(1,1)\}+(0,1), \\
& \Delta_{3}=(0,1)=\Delta_{3}^{1}+\Delta_{3}^{2}=(0,0)+(0,1), \\
& \Delta_{4}=(1,2)=\Delta_{4}^{1}+\Delta_{4}^{2}=(1,1)+(0,1) \text {, } \\
& \Delta_{5}=(1,1)=\Delta_{5}^{1}+\Delta_{5}^{2}=(1,1)+(0,0),
\end{aligned}
$$

where the face $\Delta_{i}^{j} \in \mathcal{N}\left(T_{j}\right)$ for each $i=1,2,3,4,5, j=1,2$. The matrix

$$
\begin{gathered}
H_{\Delta_{1}}=\left(\begin{array}{cccc}
x_{1} \frac{\partial\left(T_{1}\right)_{\Delta_{1}^{1}}}{\partial x_{1}}(x) & x_{2} \frac{\partial\left(T_{1}\right)_{\Delta_{1}^{1}}}{\partial x_{2}}(x) & \left(T_{1}\right)_{\Delta_{1}^{1}}(x) & 0 \\
x_{1} \frac{\partial\left(T_{2} \Delta_{1}^{2}\right.}{\partial x_{1}}(x) & x_{2} \frac{\partial\left(T_{2}\right)_{\Delta_{1}^{2}}^{2}}{\partial x_{2}}(x) & 0 & \left(T_{2}\right)_{\Delta_{1}^{2}}(x)
\end{array}\right)= \\
\left(\begin{array}{cccc}
x_{1} x_{2} & x_{1} x_{2} & x_{1} x_{2} & 0 \\
0 & x_{2} & 0 & x_{2}+1
\end{array}\right) .
\end{gathered}
$$

By similar calculations, we have

$$
H_{\Delta_{2}}=\left(\begin{array}{cccc}
x_{1} x_{2} & x_{1} x_{2} & x_{1} x_{2}+1 & 0 \\
0 & x_{2} & 0 & x_{2}
\end{array}\right)
$$

$$
\begin{aligned}
H_{\Delta_{3}} & =\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & x_{2} & 0 & x_{2}
\end{array}\right) \\
H_{\Delta_{4}} & =\left(\begin{array}{cccc}
x_{1} x_{2} & x_{1} x_{2} & x_{1} x_{2} & 0 \\
0 & x_{2} & 0 & x_{2}
\end{array}\right) \\
H_{\Delta_{5}} & =\left(\begin{array}{cccc}
x_{1} x_{2} & x_{1} x_{2} & x_{1} x_{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

It is easy to see that the rank of matrix $H_{\Delta_{j}}$ is equal to 2 for any $x=\left(x_{1}, x_{2}\right) \in(\mathbf{R} \backslash\{0\})^{2}$ and each $j=1,2, \ldots, 5$. Let $b=(-1,-1)$, by similar calculations, we can easily check that T_{b} is not non-degenerate at infinity.

Theorem 3.10. Assume that $G=\left(f_{1}, f_{2}, \ldots, f_{s}, g_{1}, g_{2}, \ldots, g_{p}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{s+p}$ is convenient and non-degenerate at infinity. Then f is weakly section-bounded from below on K if and only if $\operatorname{SOL}^{s}(K, f)$ is nonempty.

Proof. " \Leftarrow ": Since $\emptyset \neq S O L^{s}(K, f) \subseteq S O L^{w}(K, f)$, the result follows immediately from Remark 2.7.
$" \Rightarrow "$: The conclusion holds trivially when K is bounded. We now assume that K is unbounded. Since f is weakly section-bounded from below on K, by Proposition 2.6 , there exist $x^{*} \in K$ and $i_{0} \in\{1,2, \ldots, s\}$ such that $f_{i_{0}}$ is bounded from below on $K_{x^{*}}^{i_{0}}$, where

$$
K_{x^{*}}^{i_{0}}=\left\{x \in K: f_{i}(x) \leq f_{i}\left(x^{*}\right), i=1,2, \ldots, i_{0}-1, i_{0}+1, \ldots, s\right\}
$$

Recall that $K_{x^{*}}=\left\{x \in K: f_{i}(x)-f_{i}\left(x^{*}\right) \leq 0, i=1,2, \ldots, s\right\}$. Since G is convenient and non-degenerate at infinity, by Lemma 3.8, we have that G_{b} is convenient and non-degenerate at infinity, where $G_{b}=G+b$ and

$$
b=\left(-f_{1}\left(x^{*}\right), \ldots,-f_{i_{0}-1}\left(x^{*}\right), 0,-f_{i_{0}+1}\left(x^{*}\right), \ldots,-f_{s}\left(x^{*}\right), 0, \ldots, 0\right)
$$

By Lemma 3.7, $f_{i_{0}}$ is coercive on $K_{x^{*}}^{i_{0}}$. As a consequence,

$$
K_{x^{*}}=\left\{x \in K_{x^{*}}^{i_{0}}: f_{i_{0}}(x) \leq f_{i_{0}}\left(x^{*}\right)\right\}
$$

is compact. Let $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right) \in$ int \mathbf{R}_{+}^{n}. Consider the following polynomial scalar optimization problem:

$$
\inf _{x \in K_{x^{*}}} \sum_{i=1}^{s} \gamma_{i} f_{i}(x)
$$

Since $K_{x^{*}}$ is compact, we obtain that the above problem have an optimal solution x_{0} on $K_{x^{*}}$. By Lemma 3.6, we get $x_{0} \in S O L^{s}(K, f)$. The proof is completed.

Remark 3.11.

(i) Theorem 3.10 can be regarded as a vectorial version of [4, Theorem 1.1] (also see [11, Theorem 4.3]);
(ii) The assumption that G is convenient in Theorem 3.10 is essential. Indeed, consider Example 3.5. It is easy to check that the vector polynomial $f=\left(f_{1}, f_{2}\right)$ is non-degenerate at infinity, but not convenient. Furthermore, f is weakly sectioned-bounded from below. However, $S O L^{s}(K, f)=\emptyset$.

Next, we give an example to illustrate Theorem 3.10.

Example 3.12. Consider the vector polynomial $f=\left(f_{1}, f_{2}\right)$ defined by

$$
f_{1}\left(x_{1}, x_{2}\right)=x_{1}^{6}+2 x_{2}^{6}+M_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)=x_{1}^{4}-x_{2}^{4}+M_{2}\left(x_{1}, x_{2}\right),
$$

where M_{1} is a polynomial of degree at most 5 and M_{2} is a polynomial of degree at most 3 . The constraint set K is given by

$$
K=\left\{x \in \mathbf{R}^{2}: f_{3}\left(x_{1}, x_{2}\right)=1-x_{1}^{2}-2 x_{2}^{2} \leq 0\right\} .
$$

Then

$$
\mathcal{N}\left(f_{1}\right)=\operatorname{co}\{(0,0),(6,0),(0,6)\}, \mathcal{N}\left(f_{2}\right)=\operatorname{co}\{(0,0),(4,0),(0,4)\}
$$

and

$$
\mathcal{N}\left(f_{3}\right)=\operatorname{co}\{(0,0),(2,0),(0,2)\} .
$$

So f_{1}, f_{2} and f_{3} are convenient. Next, we need to check that the vector polynomial $G=$ $\left(f_{1}, f_{2}, f_{3}\right)$ is non-degenerate at infinity. It is worth noting that the Newton polyhedra at infinity of G is

$$
\mathcal{N}(G)=\mathcal{N}\left(f_{1}\right)+\mathcal{N}\left(f_{2}\right)+\mathcal{N}\left(f_{3}\right)=\operatorname{co}\{(0,0),(12,0),(0,12)\}
$$

Then $\mathcal{N}_{\infty}(G)$ has three faces as follows:

$$
\begin{aligned}
& \Delta_{1}=\operatorname{co}\{(12,0),(0,12)\}=\Delta_{1}^{1}+\Delta_{1}^{2}+\Delta_{1}^{3} \\
& =\operatorname{co}\{(6,0),(0,6)\}+\operatorname{co}\{(4,0),(0,4)\}+\operatorname{co}\{(2,0),(0,2)\}, \\
& \Delta_{2}=(12,0)=\Delta_{2}^{1}+\Delta_{2}^{2}+\Delta_{2}^{3}=(6,0)+(4,0)+(2,0), \\
& \Delta_{3}=(0,12)=\Delta_{3}^{1}+\Delta_{3}^{2}+\Delta_{3}^{3}=(0,6)+(0,4)+(0,2),
\end{aligned}
$$

where the face $\Delta_{i}^{j} \in \mathcal{N}_{\infty}\left(f_{j}\right)$ for each $i=1,2,3, j=1,2,3$. The matrix

$$
\begin{gathered}
H_{\Delta_{1}}=\left(\begin{array}{ccccc}
x_{1} \frac{\partial\left(f_{1}\right)_{\Delta_{1}^{1}}}{\partial x_{1}}(x) & x_{2} \frac{\partial\left(f_{1}\right)_{\Delta}^{1}}{\partial x_{2}}(x) & \left(f_{1}\right)_{\Delta_{1}^{1}}(x) & 0 & 0 \\
x_{1} \frac{\partial\left(f_{2}\right)_{1}^{2}}{\partial x_{1}^{2}}(x) & x_{2} \frac{\partial\left(f_{2}\right)_{\Delta}^{2}}{\partial x_{2}}(x) & 0 & \left(f_{2}\right)_{\Delta_{1}^{2}}(x) & 0 \\
x_{1} \frac{\partial\left(f_{2}\right)_{1}^{3}}{\partial x_{1}}(x) & x_{2} \frac{\partial\left(f_{2}\right)_{1}^{3}}{\partial x_{2}}(x) & 0 & 0 & \left(f_{3}\right)_{\Delta_{1}^{3}}(x)
\end{array}\right) \\
=\left(\begin{array}{ccccc}
6 x_{1}^{6} & 12 x_{2}^{6} & x_{1}^{6}+2 x_{2}^{6} & 0 & 0 \\
4 x_{1}^{4} & -4 x_{2}^{4} & 0 & x_{1}^{4}-x_{2}^{4} & 0 \\
-2 x_{1}^{2} & -4 x_{2}^{2} & 0 & 0 & -x_{1}^{2}-2 x_{2}^{2}
\end{array}\right) .
\end{gathered}
$$

By similar calculations, we have

$$
H_{\Delta_{2}}=\left(\begin{array}{ccccc}
6 x_{1}^{6} & 0 & x_{1}^{6} & 0 & 0 \\
4 x_{1}^{4} & 0 & 0 & x_{1}^{4} & 0 \\
-2 x_{1}^{2} & 0 & 0 & 0 & -x_{1}^{2}
\end{array}\right)
$$

and

$$
H_{\Delta_{3}}=\left(\begin{array}{ccccc}
0 & 12 x_{2}^{6} & 2 x_{2}^{6} & 0 & 0 \\
0 & -4 x_{2}^{4} & 0 & -x_{2}^{4} & 0 \\
0 & -4 x_{2}^{2} & 0 & 0 & -2 x_{2}^{2}
\end{array}\right) .
$$

It is easy to see that the rank of matrix $H_{\Delta_{1}}, H_{\Delta_{2}}$ and $H_{\Delta_{3}}$ are all equal to 3 for any $x=\left(x_{1}, x_{2}\right) \in(\mathbf{R} \backslash\{0\})^{2}$. By definition, G is non-degenerate at infinity. On the other hand, f_{1} is bounded from below on K. By Proposition 2.6, f is weakly section-bounded from below on K. Hence, $\operatorname{SOL}^{s}(K, f)$ is nonempty by Theorem 3.10.

Acknowledgments

The authors would like to thank the referees and the editors for their helpful comments and suggestions which have led to the improvement of this paper.

References

[1] E.G. Belousov, Introduction to Convex Analysis and Integer Programming, Moscow University Publ., Moscow, 1977 (in Russian).
[2] E.G. Belousov and D. Klatte, A Frank-Wolfe type theorem for convex programmings, Comput. Optim. Appl. 22 (2002) 37-48.
[3] J.M. Borwein, On the existence of Pareto efficient points, Math. Oper. Res. 8 (1983) 64-73.
[4] S.T. Dinh,, H.V. Hà and T.S. Pham, A Frank-Wolfe type theorem for nondegenerate polynomial programs, Math. Program. Ser. A 147 (2014) 519-538.
[5] S.T. Dinh, H.V. Hà, and T.S. Pham, Hölder-Type global error bounds for nondegenerate polynomial systems, Acta Math Vietnam 42 (2017) 563-585.
[6] D. V. Doat, H. V. Hà and T.S. Pham, Well-posedness in unconstrained polynomial optimization problems, SIAM J. Optim. 26 (2016) 1411-1428.
[7] F. Flores-Bazán and G. Cárcamo, A geometric characterization of strong duality in nonconvex quadratic programming with linear and nonconvex quadratic constraints, Math. Program. 145 (2014) 263-290.
[8] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Res. Logist. Quar. 3 (1956) 95-110.
[9] F. Giannessi, G. Mastroeni and L. Pellegrini, On the Theory of Vector Optimization and Variational Inequalities, Image Space Analysis and Separation, in: Vector Variational Inequalities and Vector Equilibria, F. Giannessi (ed), Nonconvex Optimization and Its Applications, vol 38. Springer, Boston, MA. 2000.
[10] H.V. Hà, Global Hölderian error bound for non-degenerate polynomials, SIAM J. Optim. 23 (2013) 917-933.
[11] H.V. Hà, T. S. Pham, Genericity in Polynomial Optimization, World Scientific Publishing, Singapore, 2017.
[12] T.X. D. Hà, Variants of the Ekeland variational principle for a set-valued map involving the Clarke normal cone, J. Math. Anal. Appl. 316 (2006) 346-356.
[13] J. Jahn, Vector Optimization: Theory, Applications and Extensions, Series Oper. Res., Springer, Berlin, 2004.
[14] A. G. Khovanskii, Newton polyhedra and toroidal varieties, Funct. Anal. Appl. 11 (1978) 289-296.
[15] D.S. Kim, B.S. Mordukhovich, T.S. Pham et al., Existence of efficient and properly efficient solutions to problems of constrained vector optimization, Math. Program. 190 (2021) 259-283.
[16] D.S. Kim, T.S. Pham and V.T. Tuyen, On the existence of Pareto solutions for polynomial vector optimization problems, Math. Program. 177 (2019) 321-341.
[17] A.G. Kouchnirenko, Polyhèdres de Newton et nombre de Milnor, Invent. math. 32 (1976) 1-31.
[18] D. Klatte, On a Frank-Wolfe type theorem in cubic optimization, Optimization 68 (2019) 539-547.
[19] J.H. Lee, N. Sisarat and L.G. Jiao, Multi-objective convex polynomial optimization and semidefinite programming relaxations, J. Global Optim. 80 (2021) 117-138.
[20] G.M. Lee, N.N. Tam and N.D. Yen, Quadratic Programming and Affine Variational Inequalities: a Qualitative Study, Series: Nonconvex Optimization and Its Application, Springer-Verlag, New York, 2005.
[21] D.T. Luc, Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, 1989.
[22] Z. Q. Luo and S. Zhang, On the extensions of Frank-Wolfe theorem, Comput. Optim. Appl. 13 (1999) 87-110.
[23] J.E. Martínez-Legaz, D. Noll and W. Sosa, Non-polyhedral extensions of the Frank and Wolfe theorem, in: Splitting Algorithms, Modern Operator Theory, and Applications, H. Bauschke, R. Burachik, D. Luke (eds), Springer, Cham, 2019.
[24] W.T. Obuchowska, On generalizations of the Frank-Wolfe theorem to convex and quasiconvex programmes, Comput. Optim. Appl. 33 (2006) 349-364.
[25] A.F. Perold, A generalization of the Frank-Wolfe type theorem, Math. Program. 18 (1980) 215-227.
[26] N.N. Tam and T.V. Nghi, On the solution existence and stability of quadratically constrained nonconvex quadratic programs, Optim. Lett. 12 (2018) 1045-1063.

DAN-YANG LIU
School of Mathematics
Sichuan University, Chengdu, Sichuan 610064, China
School of Mathematics and Information
China West Normal University, Nanchong, Sichuan 637000, China
E-mail address: 394898525@qq.com.

La Huang
School of Mathematics
Sichuan University, Chengdu
Sichuan 610064, China
E-mail address: angelabjy111@163.com

Rong Hu
School of Applied Mathematics
Chengdu University of Information Technology
Chengdu, Sichuan 610225, China
E-mail address: ronghumath@aliyun.com

[^0]: *This work was partially supported by National Natural Science Foundation of China (No. 11471230).
 ${ }^{\dagger}$ Corresponding author

