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The Pareto efficient solution set and the weakly Pareto efficient solution set of
PVOP(K, f) are denoted by SOLs(K, f) and SOLw(K, f), respectively. Clearly,

SOLs(K, f) ⊆ SOLw(K, f).

When s = 1, PVOP(K, f) collapses to the polynomial scalar optimization problem:

PSOP(K, f) : Minx∈Kf(x),

whose optimal solution set is denoted by SOL(K, f).
In 1956, Frank and Wolfe [8] proved that a quadratic function attains its infimum on

a polyhedron provided that it is bounded from below on this polyhedron. This result has
been known as the Frank-Wolfe theorem. Since then, many authors have been focusing on
extensions and generalizations of the Frank-Wolfe theorem. For instance, in 1980, Perold
[25] proved a Frank-Wolfe type theorem for the minimization problem with a non-quadratic
objective function and a nonempty polyhedral constraint set. In 1999, Luo and Zhang [22]
established a Frank-Wolfe type theorem for the minimization problem where the objective
function is quadratic and the constraint set consists of finitely many quadratic inequalities.
In 2002, Belousov and Klatte [2] proved a Frank-Wolfe type Theorem for the minimiza-
tion problem with a convex polynomial objective function and a constraint set defined by
finitely many convex polynomial functions. In 2006, Obuchowska [24] obtained a Frank-
Wolfe type theorem for the minimization problem with a faithfully convex or quasiconvex
polynomial objective function and a constraint set defined by a system of faithfully convex
inequalities and/or quasiconvex polynomial inequalities. Dinh et al. [4] proved a Frank-
Wolfe type theorem for a non-convex polynomial optimization problem under convenience
and non-degeneracy conditions. For more results on Frank-Wolfe type theorems for scalar
optimization problems, we refer the reader to [18, 20, 23, 7, 26] and the reference therein.

Recently, some researchers focused on the study of Frank-Wolfe type theorems for vector
optimization problems. Kim et al. [16] proved the nonemptiness of the Pareto efficient
solution set of an unconstrained polynomial vector optimization problem when the Palais-
Smale condition holds and the objective function has a section bounded from below. Lee
et al. [19] proved that a constrained vector optimization problem with the constraint set
being a closed convex semi-algebraic set and the objective function being a convex vector
polynomial has a nonempty Pareto efficient solution set if and only if its objective function
has a section bounded from below.

Motivated by the above works, in this paper, we investigate Frank-Wolfe type theo-
rems for the polynomial vector optimization problem PVOP(K, f) under a weak section-
boundedness from below condition. The outline of this paper is as follows: In Section 2, we
give the definition and the property of weak section-boundedness from below and recall some
notations and preliminary results. In Section 3, we are devoted to establishing Frank-Wolfe
type theorems for PVOP(K, f) under the weak section-boundedness from below condition.

2 Preliminaries

In this section, we give some concepts and results that will be used in this paper.

2.1 Weak section-boundedness from below

Let C be a nonempty subset of Rn and F : Rn → Rs be a vector-valued function with

F (x) = (F1(x), F2(x), . . . , Fs(x)).
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Definition 2.1 (See, e.g., [3, 12, 13, 15, 16, 21]). Let A be a subset of Rs and t̄ ∈ Rs. The
set A

∩
(t̄ −Rs

+) is called a section of A at t̄ and denoted by [A]t̄. The section [A]t̄ is said
to be bounded if there exists a ∈ Rs such that

[A]t̄ ⊆ a+Rs
+.

Definition 2.2. A vector-valued function F : Rn → Rs is said to be section-bounded from
below on C if there exists x′ ∈ C such that the section [F (C)]F (x′) is bounded.

Remark that, by definition, a vector-valued function F is section-bounded from below on
C if and only if there exist x′ ∈ C and a = (a1, a2, . . . , as) ∈ Rs such that

Fi(x) ≥ ai

for any x ∈ C satisfying F (x) ≤ F (x′) and each i ∈ {1, 2, . . . , s}. In [16], the section-
boundedness from below has been used to derive Frank-Wolfe type theorem for a polynomial
vector optimization problem. In this paper, we consider the weak section-boundedness from
below on C for a vector-valued function F .

Definition 2.3. A vector-valued function F = (F1, F2, . . . , Fs) : Rn → Rs is said to be
weakly section-bounded from below on C if there exist x̄ ∈ C and ā ∈ Rs such that

F (x)− ā /∈ − int Rs
+, ∀x ∈ Cx̄,

where Cx̄ = {x ∈ C : Fi(x) ≤ Fi(x̄), i = 1, 2, . . . , s}.

Remark 2.4. By definition, section-boundedness from below implies weak section-bounded-
ness from below. The following example shows that the inverse is not true in general.

Example 2.5. Consider the vector-valued function F = (F1, F2) defined by

F1(x1, x2) = x2, F2(x1, x2) = −x1

and

C = {(x1, x2) ∈ R2 : x1 ∈ R, x2 ≥ 0}.

Let x̄ = (1, 2) and ā = (0, 1). Then Cx̄ = {(x1, x2) ∈ R2 : x1 ≥ 1, 2 ≥ x2 ≥ 0}. It is
not difficult to see that (x2,−x1) − (0, 1) /∈ − int R2

+ for any (x1, x2) ∈ Cx̄. Thus, F is
weakly section-bounded from below on C. On the other hand, let y = (y1, y2) ∈ C. By
computation, we have Cy = {(x1, x2) ∈ R2 : x1 ≥ y1, y2 ≥ x2 ≥ 0}. It is easy to see that F2

is not bounded from below on Cy. As a result, F is not section-bounded from below on C.

Next, we give a characterization for the weak section-boundedness from below on C of a
vector-valued function F , which plays an important role in proving the existence of Pareto
efficient solutions.

Proposition 2.6. Let F = (F1, F2, . . . , Fs) : R
n → Rs be a vector-valued function. Then

F is weakly section-bounded from below on C if and only if there exist x∗ ∈ C and i0 ∈
{1, 2, . . . , s} such that Fi0 is bounded from below on Ci0

x∗ , where

Ci0
x∗ = {x ∈ C : Fi(x) ≤ Fi(x

∗), i = 1, 2, . . . , i0 − 1, i0 + 1, . . . , s}.
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Proof. Suppose that there exist x∗ ∈ C and i0 ∈ {1, 2, . . . , s} such that Fi0 is bounded from
below on Ci0

x∗ . Since Cx∗ ⊆ Ci0
x∗ , Fi0 is bounded from below on Cx∗ = {x ∈ C : Fi(x) ≤

Fi(x
∗), i = 1, 2, . . . , s}. Then there exists ai0 ∈ R such that Fi0(x) ≥ ai0 for all x ∈ Cx∗ .

Let ā = (ā1, . . . , ās) ∈ Rs with āi0 = ai0 . It follows that F (x) − ā /∈ − int Rs
+ for any

x ∈ Cx∗ . As a result, F is weakly section-bounded from below on C.
Now assume that F is weakly section-bounded from below on C. Suppose on the contrary

that for any x∗ ∈ C and any j ∈ {1, 2, . . . , s}, we have that Fj is unbounded from below on

Cj
x∗ where

Cj
x∗ = {x ∈ C : Fi(x) ≤ Fi(x

∗), i = 1, 2, . . . , j − 1, j + 1, . . . , s}.

Then there exists a sequence {ym} ⊆ Cj
x∗ such that Fj(ym) ≤ −m ≤ Fj(x

∗) for all suffi-
ciently large m. As a consequence, ym ∈ Cx∗ and Fj is unbounded from below on Cx∗ for

each j. Notice that Fj is unbounded from below on Cj
x∗ if and only if it is unbounded from

below on Cx∗ .
For j = 1, there exists a sequence {x1

k} ⊆ Cx∗ such that F1(x
1
k) ≤ −k for all k. For each

k, consider the following nonempty set

Cx1
k
= {x ∈ C : Fi(x) ≤ Fi(x

1
k), i = 1, 2, . . . , s}.

Then
Cx1

k
⊆ Cx∗ ⊆ C.

Since x1
k ∈ C, by assumption, F2 is unbounded from below on Cx1

k
. Then there exists

{x2
k} ⊂ Cx1

k
such that

F2(x
2
k) ≤ −k and F1(x

2
k) ≤ F1(x

1
k) ≤ −k, ∀k.

Similarly, consider the following nonempty set

Cx2
k
= {x ∈ C : Fi(x) ≤ Fi(x

2
k), i = 1, 2, . . . , s}.

Then, we have
Cx2

k
⊆ Cx1

k
⊆ Cx∗ ⊆ C,

and there exists {x3
k} ⊂ Cx2

k
such that

F3(x
3
k) ≤ −k, F2(x

3
k) ≤ F2(x

2
k) ≤ −k and F1(x

3
k) ≤ F1(x

2
k) ≤ F1(x

1
k) ≤ −k, ∀k.

Repeating this process, we can obtain that for any x∗ ∈ C, there exists a sequence {xs
k}k

such that for all k,

xs
k ∈ Cxs−1

k
⊆ Cxs−2

k
⊆ · · · ⊆ Cx2

k
⊆ Cx1

k
⊆ Cx∗ ⊆ C

and

F1(x
s
k) ≤ F1(x

s−1
k ) ≤ · · · ≤ F1(x

1
k) ≤ −k,

F2(x
s
k) ≤ F2(x

s−1
k ) ≤ · · · ≤ F2(x

2
k) ≤ −k,

...

Fs−1(x
s
k) ≤ Fs−1(x

s−1
k ) ≤ −k,

Fs(x
s
k) ≤ −k.
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As a result, for any x∗ ∈ C and any a′ = (a′1, a
′
2, . . . , a

′
s) ∈ Rs, there exists a sequence

{xs
k}k ⊆ Cx∗ such that F (xs

k) < a′ for all sufficiently large k. By Definition 2.3, let x∗ = x̄
and a′ = ā. Then there exists a sequence {x̄s

k}k ⊆ Cx̄ such that F (x̄s
k) − ā ∈ − int Rs

+ for
all sufficiently large k. This contradicts to the weak section-boundedness from below on C
of F . The proof is completed.

Remark 2.7. If x∗ ∈ SOLw(C,F ), then F (x) − F (x∗) /∈ − int Rs
+ for any x ∈ C. Let

x̄ ∈ C. Since Cx̄ ⊆ C, we have F (x) − F (x∗) /∈ − int Rs
+ for any x ∈ Cx̄. So, F is

weakly section-bounded from below on C. Hence, the weak section-boundedness from below
condition of F is necessary for the existence of (weakly) Pareto efficient solutions.

2.2 Newton polyhedra at infinity, convenience and non-degeneracy

Let N be the set of all natural numbers. Given α = (α1, α2, . . . , αn) ∈ Nn, the mono-
mial xα1

1 xα2
2 . . . xαn

n is denoted by xα. For any polynomial h : Rn → R, we can write
h(x) =

∑
α hαx

α with hα ∈ R. Now, we recall the definition of Newton polyhedra following
Kouchnirenko and Khovanskii (see [14, 17]).

Definition 2.8 (See, e.g., [4, 5, 6, 10]). A set N ⊆ Rn
+ is said to be a Newton polyhedron

at infinity if there is some finite subset P of Nn such that N is equal to the convex hull
of the set P

∪
{0}. And the Newton polyhedron at infinity N is said to be convenient if it

intersects each coordinate axis in a point different from the origin.

We denote by N∞ the set of all the faces of N which do not contain the origin 0 in Rn.
Since the Newton polyhedron at infinity N is determined by the finite set P ⊆ Nn, we can
write N = N (P ). The support of the polynomial h(x) =

∑
α hαx

α, denoted by supp(h),
is a set of all α ∈ Nn such that hα ̸= 0. For simplicity the Newton polyhedron at infinity
N (supp(h)) is written by N (h). We say that N (h) is the Newton polyhedron at infinity of
the polynomial h. The polynomial h is said to be convenient if N (h) is convenient. The
set N∞(h) is defined as the set of all the faces of N (h) which do not contain the origin 0 in
Rn. Let ∆ be a face in N (h). We write h∆(x) =

∑
α∈∆ hαx

α with hα ̸= 0.
Next, let T = (T1, T2, . . . , Tm) : Rn → Rm be a vector polynomial. Let N (T ) be the

Minkowski sum N (T1) + N (T2) + · · · + N (Tm). Then N (T ) is also a Newton polyhedron
at infinity. We say that N (T ) is the Newton polyhedron at infinity of the vector polynomial
T . The set N∞(T ) is defined as the set of all the faces of N (T ) which do not contain the
origin 0 in Rn. The vector polynomial T is said to be convenient if N (Ti) is convenient for
each i = 1, 2, . . . ,m.

The following result follows from (ii1) and the proof of (ii2) of [4, Lemma 2.1].

Lemma 2.9. Let T = (T1, T2, . . . , Tm) : Rn → Rm be a vector polynomial. If T is con-
venient, then for any face ∆ ∈ N∞(T ), there exists a unique collection of faces ∆1 ∈
N∞(T1),∆2 ∈ N∞(T2), . . . ,∆m ∈ N∞(Tm) such that

∆ = ∆1 +∆2 + · · ·+∆m.

Let ∆ be a face of N (T ). Again by (ii1) of [4, Lemma 2.1], we have the unique decom-
position ∆ = ∆1 + ∆2 + · · · + ∆m, where ∆i is a face of N (Ti) for i = 1, 2, . . . ,m. The
definition of the non-degeneracy at infinity of a vector polynomial T is given as follows:

Definition 2.10 ([4, Definition 2.3] (also see [5, 11])). Let T = (T1, T2, . . . , Tm) : Rn → Rm

be a vector polynomial. T is said to be non-degenerate at infinity if for any face ∆ ∈ N∞(T )
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and any x ∈ (R\{0})n, the rank of matrix H∆ is equal to m, where

H∆ =


x1

∂(T1)∆1

∂x1
(x) . . . xn

∂(T1)∆1

∂xn
(x) (T1)∆1

(x) . . . 0
... . . .

...
...

. . .
...

x1
∂(Tm)∆m

∂x1
(x) . . . xn

∂(Tm)∆m

∂xn
(x) 0 . . . (Tm)∆m

(x)

 .

3 Existence Results

In this section, we derive Frank-Wolfe type theorems for PVOP(K, f) under the weak
section-boundedness from below condition.

3.1 Frank-Wolfe type theorem for the convex case

In this subsection, we investigate the existence of the weakly Pareto efficient solutions for
PVOP(K, f) under convexity and weak section-boundedness from below conditions. To do
so, we need the following result.

Lemma 3.1 (See [2, Theorem 3] and [1, Chapter II, Section 4, Theorem 13]). Let Ti : R
n →

R be a convex polynomial, i = 0, 1, . . . ,m. Assume that

C := {x ∈ Rn : T1(x) ≤ 0, T2(x) ≤ 0, . . . , Tm(x) ≤ 0}

and T0 is bounded from below on C. Then T0 attains its infimum on C.

Theorem 3.2. Assume that f1, f2, . . . , fs, g1, g2, . . . , gp : Rn → R are convex polynomials.
Then f is weakly section-bounded from below on K if and only if SOLw(K, f) is nonempty.

Proof. ”⇐”: The result follows immediately from Remark 2.7.
”⇒”: By Definition 2.3, there exist x̄ ∈ K and ā ∈ Rs such that f(x) − ā /∈ − int Rs

+

for any x ∈ Kx̄, where Kx̄ = {x ∈ K : fi(x) ≤ fi(x̄), i = 1, 2, . . . , s}. Then (f(Kx̄) −
ā)

∩
(− int Rs

+) = ∅. It follows that ā /∈ f(Kx̄) + int Rs
+. Since f is convex, we can easily

check that the set f(Kx̄)+ int Rs
+ is convex. So, by the separation theorem of convex sets,

there exists α ∈ Rs\{0} such that

⟨α, ā⟩ ≤ ⟨α, v⟩

for any v ∈ f(Kx̄)+ int Rs
+. It is easy to verify that α ∈ Rs

+\{0} and so ⟨α, ā⟩ ≤ ⟨α, v′⟩ for
any v′ ∈ f(Kx̄). Define gα : Rn → R by gα(x) = ⟨α, f(x)⟩. Then gα is a convex polynomial
on Rn and is bounded from below on Kx̄. By Lemma 3.1, gα attains the infimum on Kx̄ at
some x∗ ∈ Kx̄. We claim that x∗ ∈ SOLw(K, f). If not, then there exists x0 ∈ K such that
fi(x0) < fi(x

∗) for all i ∈ {1, 2, . . . , s}. Then

gα(x0) = ⟨α, f(x0)⟩ < ⟨α, f(x∗)⟩ = gα(x
∗)

and x0 ∈ Kx̄ (since x∗ ∈ Kx̄). This contradicts to x∗ ∈ SOL(Kx̄, gα). The proof is
completed.

Remark 3.3. Recently, Lee et al. derived in [19, Theorem 3.1] a Frank-Wolfe type theorem
for a convex PVOP(K, f) by showing that SOLs(K, f) is nonempty if and only if there
exists z0 ∈ Rn such that f(K)

∩
(f(z0)−Rs

+) is nonempty and bounded. As a comparison,
we has shown in Theorem 3.2 that a convex PVOP(K, f) admits a nonempty weak Pareto
efficient solution set if and only if f is weakly section-bounded from below on K.
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The following example illustrates Theorem 3.2.

Example 3.4. Consider the convex vector polynomial f = (f1, f2) defined by

f1(x1, x2) = x2
1 + 2x2, f2(x1, x2) = −x1

and the constraint set K = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0}. Let x̄ = (1, 0). Then

Kx̄ = {(x1, x2) ∈ K : x2
1 + 2x2 ≤ 1, x1 ≥ 1}.

It is easy to see that f(x) − (0, 1) /∈ − int Rs
+ for any x ∈ Kx̄. So, f is weakly section-

bounded from below on K. By Theorem 3.2, SOLw(K, f) is nonempty. Indeed, it is easy
to verify that (0, 0) ∈ SOLw(K, f).

The following example shows that Theorem 3.2 may not hold if f is non-convex.

Example 3.5. Consider the vector polynomial f = (f1, f2) defined by

f1(x1, x2) = (x1x2 − 1)2 + 3x2
1, f2(x1, x2) = (x1x2 − 1)2 + 2x2

1

and the constraint set K = R2. Then f is non-convex. For any z = (z1, z2) ∈ R2,

Kz = {x ∈ R2 : f1(x) ≤ (z1z2 − 1)2 + 3z21 , f2(x) ≤ (z1z2 − 1)2 + 2z21}.

Clearly, f(x) − (0, 0) /∈ − int Rs
+ for any x ∈ Kz. So f is weakly section-bounded from

below on K. On the other hand, SOLw(K, f) = ∅ because f1 > 0, f2 > 0, and f( 1n , n) =
( 3
n2 ,

2
n2 ) → (0, 0) as n → +∞.

3.2 Frank-Wolfe type theorem for the non-convex case

In this subsection, we study the existence of the Pareto efficient solutions for a non-convex
PVOP(K, f) when the convenience, the non-degeneracy at infinity, and the weak section-
boundedness from below conditions are satisfied. We first give some lemmas.

Lemma 3.6 ([9, Proposition 13]). Given λ ∈ int Rs
+ and x′ ∈ K, define g(x) =∑s

j=1 λjfj(x) and Kx′ = {x ∈ K : fi(x) ≤ fi(x
′), i = 1, 2, . . . , s}. If x∗ ∈ SOL(Kx′ , g),

then x∗ ∈ SOLs(K, f).

The following result has been established in the proof of [4, Theorem 1.1 ].

Lemma 3.7. Let T ′ = (T0, T1, . . . , Tm) : Rn → Rm+1 be a vector polynomial. Assume that
T ′ is convenient and non-degenerate at infinity and T0 is bounded from below on the set

C := {x ∈ Rn : T1(x) ≤ 0, . . . , Tm(x) ≤ 0}.

Then T0 is coercive on C in the sense that

lim
r→∞

min
x∈C,∥x∥=r

T0(x) = +∞.

The following result is simple but useful. It gives the translation invariance of the
convenience and the non-degeneracy at infinity of a vector polynomial.

Lemma 3.8. Let T = (T1, T2, . . . , Tm) : Rn → Rm be a vector polynomial. If T is conve-
nient and non-degenerate at infinity, then Tb = (T1 + b1, T2 + b2, . . . , Tm + bm) : Rn → Rm

is convenient and non-degenerate at infinity for any b = (b1, b2, . . . , bm) ∈ Rm.
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Proof. Let b = (b1, b2, . . . , bm) ∈ Rm. By definition, we have N (Ti) = N (Ti + bi), i =
1, 2, . . . ,m. As a result, Tb is convenient (since T is convenient).

Next, we show that Tb is non-degenerate at infinity. Let ∆ ∈ N∞(Tb). Since N (Tb) =
N (T ), we get ∆ ∈ N∞(T ). Since Tb is convenient, by Lemma 2.9, we obtain ∆ = ∆1 +
∆2 + · · · + ∆m, where ∆i ∈ N∞(Ti + bi), i = 1, 2, . . . ,m. Since 0 /∈ ∪m

i=1∆i, we have
(Ti + bi)∆i = (Ti)∆i , i = 1, 2, . . . ,m. Since T is non-degenerate at infinity ∆ ∈ N∞(T ), the
rank of the matrix

x1
∂(T1+b1)∆1

∂x1
(x) . . . xn

∂(T1+b1)∆1

∂xn
(x) (T1 + b1)∆1(x) . . . 0

...
. . .

...
...

. . .
...

x1
∂(Tm+bm)∆m

∂x1
(x) . . . xn

∂(Tm+bm)∆m

∂xn
(x) 0 . . . (Tm + bm)∆m

(x)


is equal to m for any x ∈ (R\{0})n. So, Tb is non-degenerate at infinity.

As shown in the proof of Lemma 3.8, the translation invariance of the non-degeneracy
at infinity of a vector polynomial depends on its convenience. The following example shows
that if a vector polynomial is not convenience, then its translation invariance of the non-
degeneracy at infinity may not hold.

Example 3.9. Consider the vector polynomial T = (T1, T2) defined by

T1(x1, x2) = x1x2 + 1, T2(x1, x2) = x2 + 1.

Then
N (T1) = co{(0, 0), (1, 1)},N (T2) = co{(0, 0), (0, 1)}.

It is easy to see that neither T1 nor T2 are convenient. Next, we check that T = (T1, T2) is
non-degenerate at infinity. Note that

N (T ) = N (T1) +N (T2) = co{(0, 0), (0, 1), (1, 1), (1, 2)}.

Then N∞(T ) has five faces as follows:

∆1 = co{(1, 1), (1, 2)} = ∆1
1 +∆2

1 = (1, 1) + co{(0, 0), (0, 1)},

∆2 = co{(0, 1), (1, 2)} = ∆1
2 +∆2

2 = co{(0, 0), (1, 1)}+ (0, 1),

∆3 = (0, 1) = ∆1
3 +∆2

3 = (0, 0) + (0, 1),

∆4 = (1, 2) = ∆1
4 +∆2

4 = (1, 1) + (0, 1),

∆5 = (1, 1) = ∆1
5 +∆2

5 = (1, 1) + (0, 0),

where the face ∆j
i ∈ N (Tj) for each i = 1, 2, 3, 4, 5, j = 1, 2. The matrix

H∆1 =

x1

∂(T1)∆1
1

∂x1
(x) x2

∂(T1)∆1
1

∂x2
(x) (T1)∆1

1
(x) 0

x1

∂(T2)∆2
1

∂x1
(x) x2

∂(T2)∆2
1

∂x2
(x) 0 (T2)∆2

1
(x)

 =

(
x1x2 x1x2 x1x2 0
0 x2 0 x2 + 1

)
.

By similar calculations, we have

H∆2
=

(
x1x2 x1x2 x1x2 + 1 0
0 x2 0 x2

)
,
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H∆3 =

(
0 0 1 0
0 x2 0 x2

)
,

H∆4
=

(
x1x2 x1x2 x1x2 0
0 x2 0 x2

)
,

H∆5
=

(
x1x2 x1x2 x1x2 0
0 0 0 1

)
.

It is easy to see that the rank of matrix H∆j
is equal to 2 for any x = (x1, x2) ∈ (R\{0})2

and each j = 1, 2, . . . , 5. Let b = (−1,−1), by similar calculations, we can easily check that
Tb is not non-degenerate at infinity.

Theorem 3.10. Assume that G = (f1, f2, . . . , fs, g1, g2, . . . , gp) : R
n → Rs+p is convenient

and non-degenerate at infinity. Then f is weakly section-bounded from below on K if and
only if SOLs(K, f) is nonempty.

Proof. ”⇐”: Since ∅ ̸= SOLs(K, f) ⊆ SOLw(K, f), the result follows immediately from
Remark 2.7.

”⇒”: The conclusion holds trivially when K is bounded. We now assume that K is
unbounded. Since f is weakly section-bounded from below on K, by Proposition 2.6, there
exist x∗ ∈ K and i0 ∈ {1, 2, . . . , s} such that fi0 is bounded from below on Ki0

x∗ , where

Ki0
x∗ = {x ∈ K : fi(x) ≤ fi(x

∗), i = 1, 2, . . . , i0 − 1, i0 + 1, . . . , s}.

Recall that Kx∗ = {x ∈ K : fi(x) − fi(x
∗) ≤ 0, i = 1, 2, . . . , s}. Since G is convenient and

non-degenerate at infinity, by Lemma 3.8, we have that Gb is convenient and non-degenerate
at infinity, where Gb = G+ b and

b = (−f1(x
∗), . . . ,−fi0−1(x

∗), 0,−fi0+1(x
∗), . . . ,−fs(x

∗), 0, . . . , 0).

By Lemma 3.7, fi0 is coercive on Ki0
x∗ . As a consequence,

Kx∗ = {x ∈ Ki0
x∗ : fi0(x) ≤ fi0(x

∗)}

is compact. Let γ = (γ1, γ2, . . . , γn) ∈ int Rn
+. Consider the following polynomial scalar

optimization problem:

inf
x∈Kx∗

s∑
i=1

γifi(x).

Since Kx∗ is compact, we obtain that the above problem have an optimal solution x0 on
Kx∗ . By Lemma 3.6, we get x0 ∈ SOLs(K, f). The proof is completed.

Remark 3.11.
(i) Theorem 3.10 can be regarded as a vectorial version of [4, Theorem 1.1] (also see [11,

Theorem 4.3]);
(ii) The assumption that G is convenient in Theorem 3.10 is essential. Indeed, consider

Example 3.5. It is easy to check that the vector polynomial f = (f1, f2) is non-degenerate
at infinity, but not convenient. Furthermore, f is weakly sectioned-bounded from below.
However, SOLs(K, f) = ∅.

Next, we give an example to illustrate Theorem 3.10.
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Example 3.12. Consider the vector polynomial f = (f1, f2) defined by

f1(x1, x2) = x6
1 + 2x6

2 +M1(x1, x2), f2(x1, x2) = x4
1 − x4

2 +M2(x1, x2),

where M1 is a polynomial of degree at most 5 and M2 is a polynomial of degree at most 3.
The constraint set K is given by

K = {x ∈ R2 : f3(x1, x2) = 1− x2
1 − 2x2

2 ≤ 0}.

Then
N (f1) = co{(0, 0), (6, 0), (0, 6)},N (f2) = co{(0, 0), (4, 0), (0, 4)}

and
N (f3) = co{(0, 0), (2, 0), (0, 2)}.

So f1, f2 and f3 are convenient. Next, we need to check that the vector polynomial G =
(f1, f2, f3) is non-degenerate at infinity. It is worth noting that the Newton polyhedra at
infinity of G is

N (G) = N (f1) +N (f2) +N (f3) = co{(0, 0), (12, 0), (0, 12)}.

Then N∞(G) has three faces as follows:

∆1 = co{(12, 0), (0, 12)} = ∆1
1 +∆2

1 +∆3
1

= co{(6, 0), (0, 6)}+ co{(4, 0), (0, 4)}+ co{(2, 0), (0, 2)},

∆2 = (12, 0) = ∆1
2 +∆2

2 +∆3
2 = (6, 0) + (4, 0) + (2, 0),

∆3 = (0, 12) = ∆1
3 +∆2

3 +∆3
3 = (0, 6) + (0, 4) + (0, 2),

where the face ∆j
i ∈ N∞(fj) for each i = 1, 2, 3, j = 1, 2, 3. The matrix

H∆1 =


x1

∂(f1)∆1
1

∂x1
(x) x2

∂(f1)∆1
1

∂x2
(x) (f1)∆1

1
(x) 0 0

x1

∂(f2)∆2
1

∂x1
(x) x2

∂(f2)∆2
1

∂x2
(x) 0 (f2)∆2

1
(x) 0

x1

∂(f2)∆3
1

∂x1
(x) x2

∂(f2)∆3
1

∂x2
(x) 0 0 (f3)∆3

1
(x)



=

 6x6
1 12x6

2 x6
1 + 2x6

2 0 0
4x4

1 −4x4
2 0 x4

1 − x4
2 0

−2x2
1 −4x2

2 0 0 −x2
1 − 2x2

2

 .

By similar calculations, we have

H∆2
=

 6x6
1 0 x6

1 0 0
4x4

1 0 0 x4
1 0

−2x2
1 0 0 0 −x2

1


and

H∆3
=

0 12x6
2 2x6

2 0 0
0 −4x4

2 0 −x4
2 0

0 −4x2
2 0 0 −2x2

2

 .

It is easy to see that the rank of matrix H∆1
, H∆2

and H∆3
are all equal to 3 for any

x = (x1, x2) ∈ (R\{0})2. By definition, G is non-degenerate at infinity. On the other hand,
f1 is bounded from below on K. By Proposition 2.6, f is weakly section-bounded from
below on K. Hence, SOLs(K, f) is nonempty by Theorem 3.10.
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