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by Nesterov in 1983 for solving a class of smooth convex optimization problems. A typical
algorithm takes the following form:{

yk = xk + βk

(
xk − xk−1

)
,

xk+1 = yk − s∇f
(
yk

)
,

(1.2)

where s > 0 is the step size, which depends on the Lipschitz continuity modulus of ∇f ,
and the extrapolation coefficients βk satisfy 0 < βk < 1 for all k. It was shown in [15], by
choosing specific extrapolation coefficients sequence {βk} with supkβk = 1, this algorithm
has a faster convergence rate than the general gradient algorithm, which is

F
(
xk

)
− inf

x∈Rn
F = O

(
1

k2

)
,

where {xk} is generated by (1.2).
Recently Beck and Teboulle [1] proposed a fast iterative shrinkage-thresholding algorithm

(FISTA) for solving a class of nonsmooth convex minimization problems, which extends
Nesterov’s original accelerated gradient algorithm to nonsmooth case. A similar algorithm
was independently proposed by Nesterov [13]. Similar to (1.2), we just take the following
form as a general case,

yk = xk + βk

(
xk − xk−1

)
,

xk+1 = argmin
x∈Rn

{〈
∇f

(
yk

)
, x

〉
+

1

2s

∥∥x− yk
∥∥2 + g (x)

}
,

(1.3)

where s > 0 is a constant, which depends on the Lipschitz continuity modulus of ∇f , and
0 < βk < 1 for all k. By choosing specific extrapolation coefficients {βk} with supkβk = 1,
FISTA also exhibits a fast convergence rate, which is O

(
1
/
k2

)
. Besides these works, many

other accelerated algorithms based on Nesterov’s technique [16, 12, 13] have been proposed,
see [2, 18] and the references therein for an overview.

More recently, O’Donoghue and Candès [7] proposed an adaptive restart scheme for
FISTA. Specifically, instead of following the recurrence relation of βk in FISTA for all k, they
reset βk = β0 every K iterations, where K is a positive number. Although numerically the
algorithm obtained behaved well, no theoretical global convergence analysis was provided.
In this paper, we mainly study the global convergence of a proximal gradient algorithm
with extrapolation(PGe), which can take the FISTA with both fixed and adaptive restart
schemes as a special case.

In details, we first establish the global subsequential convergence of iterates generated
by PGe, then we prove that the global convergence rate of PGe is O (1/k). Hence, we can
conclude that the global convergence rate of FISTA with both fixed and adaptive restart
schemes is O (1/k). Finally, some numerical experiments have been performed to show the
efficiency of the proposed algorithm.

The contents of this paper are as follows. The notation and preliminary materials are
described in Section 2. We present the convergence analyses of the proximal gradient al-
gorithm with fixed extrapolation in Section 3. Numerical experiments are introduced in
Section 4.

2 Preliminaries

In the whole paper, the problem is considered in Rn space, and we denote its inner product
by ⟨·, ·⟩. We use ∥·∥, ∥·∥1 and ∥·∥∞ to denote the Euclidean norm, the ℓ1 norm and the ℓ∞
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norm, respectively. We define AT as the transpose of a matrix A ∈ Rm×n. For a symmetric
matrix A ∈ Rn×n, we denote λmax (A) and λmin (A) as its largest and smallest eigenvalues,
respectively.

For an extended-real-valued function h : Rn → [−∞,∞], we denote its domain as h =
{x ∈ Rn : h (x) < ∞}. The function h is said to be proper if it never equals −∞ and dom
h ̸= ∅. A proper function h is said to be closed if it is lower semicontinuous. For a proper
closed function h, we say it is level bounded if the lower level sets of h are bounded, which
means the set {x ∈ Rn : h (x) ≤ r} is bounded for any r ∈ R. We denote the subdifferential
of a proper closed convex function h : Rn → R ∪ {∞} at x ∈ dom h by

∂h (x) = {ξ ∈ Rn : h (u)− h (x)− ⟨ξ, u− x⟩ ≥ 0, ∀u ∈ Rn} .

If h is additionally continuously differentiable, then the subdifferential of h reduces to the
gradient of h denoted by ∇h.

Given a proper closed convex function h, the proximal operator of h at any v ∈ Rn is
defined by

proxh (v) = argmin
x∈Rn

{
h(x) +

1

2
∥x− v∥2

}
. (2.1)

Before ending this section, we give the definition of the stationary point of (1.1). For an
optimal solution x̂ of (1.1), the following first-order necessary condition always holds:

0 ∈ ∇f (x̂) + ∂g (x̂) , (2.2)

where ∇f denotes the gradient of f , ∂g denotes the subdifferential of g. We say that x̃ is a
stationary point of (1.1) if it satisfies (2.2). We use χ to denote the set of stationary points
of F . Since (1.1) is a convex optimization problem, we immediately obtain from the above
discussion that χ also denotes the set of global minimizers of problem (1.1).

3 Convergence Analysis

In this section, we present the proximal gradient algorithm with extrapolation for solving
(1.1) and study the convergence properties of the sequence generated by the algorithm.

First, from the assumptions in our problem (1.1), we note that the function g is proper
closed convex and f has a Lipschitz continuous gradient; moreover, the function F = f + g
is level bounded. From these, we obtain that a minimizer of (1.1) exists and consequently,
inf F > −∞. Let L be a Lipschitz continuity modulus of ∇f . We are now ready to present
our algorithm.

Algorithm 1 Proximal gradient algorithm with extrapolation(PGe)

Require: x0 ∈ dom g, {βk} ⊆ (0, 1) . Set x−1 = x0.
1: for k = 0, 1, 2, ... do
2:

yk = xk + βk

(
xk − xk−1

)
xk+1 = prox 1

L g

(
yk − 1

L∇f
(
yk

)) (3.1)

3: end for

We shall discuss the convergence behavior of Algorithm 1. We note first that the x-
update in (3.1) is equivalent to the following relation

xk+1 = argmin
x∈Rn

{〈
∇f

(
yk

)
, x

〉
+

L

2

∥∥x− yk
∥∥2 + g (x)

}
, (3.2)
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which is due to the definition of proximal operator in (2.1). This fact will be used repeatedly
in our convergence analysis below. Our analysis also relies heavily on the following auxiliary
sequence:

Hk,γ = F
(
xk

)
+ γ · L

2

∥∥xk − xk−1
∥∥2, (3.3)

where γ ∈ (0, 1) is a constant,
{
xk

}
is generated by Algorithm 1. Next, we will give some

important lemmas used below.

3.1 Auxiliary lemmas.

Lemma 3.1. Suppose that there exists γ ∈ (0, 1) such that γ ≥ supkβk. Let
{
xk

}
be a

sequence generated by Algorithm 1. Then the following statements hold:

(i) The sequence {Hk,γ} is nonincreasing.

(ii) The sequence
{
xk

}
is bounded.

(iii) The sequence {Hk,γ} is convergent.

(iv)
∑∞

k=0

∥∥xk+1 − xk
∥∥2 < ∞.

Proof. We first prove (i). Fix any z ∈ dom g. Using the definition of xk+1 in (3.2) and the
strong convexity of the objective in the minimization problem (3.2), we obtain

g
(
xk+1

)
≤ g (z) +

〈
−∇f

(
yk

)
, xk+1 − z

〉
+

L

2

∥∥z − yk
∥∥2

−L

2

∥∥xk+1 − yk
∥∥2 − L

2

∥∥xk+1 − z
∥∥2. (3.4)

On the other hand, from the fact that ∇f is Lipschitz continuous with a Lipschitz continuity
modulus L, we have

f
(
xk+1

)
≤ f

(
yk

)
+
〈
∇f

(
yk

)
, xk+1 − yk

〉
+

L

2

∥∥xk+1 − yk
∥∥2. (3.5)

Summing (3.4) and (3.5), we see further that

f
(
xk+1

)
+ g

(
xk+1

)
≤ f

(
yk

)
+ g (z) +

〈
∇f

(
yk

)
, z − yk

〉
+

L

2

∥∥z − yk
∥∥2 − L

2

∥∥xk+1 − z
∥∥2.
(3.6)

Then using the convexity of f , we have

f
(
yk

)
− f (z) ≤

〈
∇f

(
yk

)
, yk − z

〉
. (3.7)

Combining (3.6) with (3.7) and the fact that F = f + g, we obtain that

F
(
xk+1

)
≤ F (z) +

L

2

∥∥z − yk
∥∥2 − L

2

∥∥xk+1 − z
∥∥2. (3.8)

Then using the definition of the y-update in (3.1) that yk − xk = βk

(
xk − xk−1

)
and (3.8)

with z = xk, we obtain that

F
(
xk+1

)
− F

(
xk

)
≤ Lβk

2

2

∥∥xk − xk−1
∥∥2 − L

2

∥∥xk+1 − xk
∥∥2. (3.9)
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From (3.9) and the definition of {Hk,γ}, we see further that

Hk+1,γ −Hk,γ = F
(
xk+1

)
+ γ · L

2

∥∥xk+1 − xk
∥∥2 − F

(
xk

)
− γ · L

2

∥∥xk − xk−1
∥∥2

⩽ (γ − 1) · L
2

∥∥xk+1 − xk
∥∥2 + (

βk
2 − γ

)
· L
2

∥∥xk − xk−1
∥∥2. (3.10)

Since γ ∈ (0, 1) and γ ≥ supkβk by our assumption, we have

γ − 1 ⩽ 0 and βk
2 − γ ⩽ 0.

Consequently, Hk+1,γ −Hk,γ ⩽ 0; i.e., {Hk,γ} is nonincreasing. This proves (i).
From the sequence {Hk,γ} is nonincreasing and the definition of Hk,γ , we see that

F
(
xk

)
≤ Hk,γ ≤ H0,γ < ∞.

Since F is level bounded, we conclude that
{
xk

}
is bounded, which proves (ii).

Next, recall that inf F > −∞. Hence, Hk,γ = F
(
xk

)
+ γ · L

2

∥∥xk − xk−1
∥∥2 is bounded

from below. This together with the fact that {Hk,γ} is nonincreasing, implies that {Hk,γ}
is convergent. This proves (iii).

Finally, since γ ∈ (0, 1), we have from (3.10) that

Hk+1,γ −Hk,γ ⩽ −
(
γ − βk

2
)
· L
2

∥∥xk − xk−1
∥∥2. (3.11)

Summing both sides of (3.11) from 1 to N , we see further that

0 ≤
N∑

k=1

(
γ − βk

2
)
· L
2

∥∥xk − xk−1
∥∥2 ≤

N∑
k=1

(Hk,γ −Hk+1,γ) = H1,γ −HN+1,γ , (3.12)

where the nonnegativity follows from the fact that γ ∈ (0, 1). Since {Hk,γ} is convergent,
letting N → ∞ in (3.12), we conclude that the infinite sum exists and is finite, i.e.,

∞∑
k=1

(
γ − βk

2
)
· L
2

∥∥xk − xk−1
∥∥2 < ∞.

Since γ ≥ supkβk, the conclusion in (iv) follows immediately. This completes the proof.

Lemma 3.2. Let w ∈ Rn and define an auxiliary sequence hk = 1
2

∥∥xk − w
∥∥2, then

hk − hk−1 =
〈
xk − w, xk − xk−1

〉
− 1

2

∥∥xk − xk−1
∥∥2. (3.13)

Proof. By calculating, we obtain that

hk−1 =
1

2

∥∥xk−1 − w
∥∥2 =

1

2

∥∥xk−1 − xk + xk − w
∥∥2

=
1

2

〈(
xk−1 − xk

)
+
(
xk − w

)
,
(
xk−1 − xk

)
+
(
xk − w

)〉
=

1

2

∥∥xk−1 − xk
∥∥2 + 1

2

∥∥xk − w
∥∥2 + 〈

xk − w, xk−1 − xk
〉

=
1

2

∥∥xk − xk−1
∥∥2 + hk +

〈
xk − w, xk−1 − xk

〉
,

which implies that

hk − hk−1 =
〈
xk − w, xk − xk−1

〉
− 1

2

∥∥xk − xk−1
∥∥2.
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3.2 Convergence analysis of
{
xk

}
and

{
F (xk)

}
.

Now we are ready to analyze the convergence behavior of the proposed algorithm PGe.

Theorem 3.3. Suppose that there exists γ ∈ (0, 1) such that γ ≥ supkβk. Let
{
xk

}
be a

sequence generated by Algorithm 1. Then any accumulation point of
{
xk

}
is a minimizer of

F .

Proof. Let x̄ be an accumulation point. Then there exists a subsequence
{
xki

}
such that

limi→∞xki = x̄. Using the first-order optimality condition of the minimization problem
(3.2) at point xki+1, we obtain

−L
(
xki+1 − yki

)
∈ ∇f

(
yki

)
+ ∂g

(
xki+1

)
.

Combining this with the definition of yki , which is yki = xki + βki

(
xki − xki−1

)
, we see

further that

−L
[(
xki+1 − xki

)
− βki

(
xki − xki−1

)]
∈ ∇f

(
yki

)
+ ∂g

(
xki+1

)
. (3.14)

On the other hand, by the triangle inequality, we have∥∥xki+1 − x̄
∥∥ ≤

∥∥xki+1 − xki
∥∥+

∥∥xki − x̄
∥∥ ,

from the above relation and the fact that
∥∥xki+1 − xki

∥∥ → 0 from Lemma 3.1(iv) and
limi→∞xki = x̄, we immediately deduce that limi→∞xki+1 = x̄.

Taking limit in two sides of (3.14), and recalling that limi→∞xki+1 = x̄, which together
with the continuity of ∇f and the closedness of ∂g imply that

0 ∈ ∇f (x̄) + ∂g (x̄) ,

meaning that x̄ is a minimizer of F . This completes the proof.

Theorem 3.4. Suppose that there exists γ ∈ (0, 1) such that γ ≥ supkβk. Let
{
xk

}
be a

sequence generated by Algorithm 1. Then

F
(
xk+1

)
− F (x∗) ⩽ 1

k

{
L

2

∥∥x1 − x∗∥∥2 + Lγ2

2 (1− γ)

∥∥x1 − x0
∥∥2

+
γ

1− γ

(
F
(
x1

)
− F (x∗)

)
+ C

}
.

Proof. From (3.10) and γ ≥ supkβk, we have

Hk+1,γ −Hk,γ ⩽ (γ − 1) · L
2

∥∥xk+1 − xk
∥∥2 + (

γ2 − γ
)
· L
2

∥∥xk − xk−1
∥∥2,

then we obtain upon rearranging terms that∥∥xk+1 − xk
∥∥2 + γ

∥∥xk − xk−1
∥∥2 ⩽ 2

L (1− γ)
(Hk,γ −Hk+1,γ) . (3.15)

Using yk − xk = βk

(
xk − xk−1

)
and (3.8) with z = x∗, we have

F
(
xk+1

)
− F

(
x*

)
⩽L

2

∥∥yk − x∗∥∥2 − L

2

∥∥xk+1 − x∗∥∥2
=
L

2

∥∥xk − x∗∥∥2 + Lβk
2

2

∥∥xk − xk−1
∥∥2 + Lβk

〈
xk − x∗, xk − xk−1

〉
− L

2

∥∥xk+1 − x∗∥∥2.
(3.16)
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In the following, we show the sequence
k∑

i=1

(
Hi+1,γ − F

(
x*

))
is bounded. First, by the

definition of {Hk,γ}, we have

Hk+1,γ − F
(
x*

)
= F

(
xk+1

)
− F

(
x*

)
+ γ · L

2

∥∥xk+1 − xk
∥∥2

⩽L

2

∥∥xk − x∗∥∥2 + Lβk
2

2

∥∥xk − xk−1
∥∥2 + Lβk

〈
xk − x∗, xk − xk−1

〉
− L

2

∥∥xk+1 − x∗∥∥2
+ γ · L

2

∥∥xk+1 − xk
∥∥2

=
L

2

∥∥xk − x∗∥∥2 − L

2

∥∥xk+1 − x∗∥∥2 + Lβk
2

2

∥∥xk − xk−1
∥∥2 + γ · L

2

∥∥xk+1 − xk
∥∥2

+ Lβk

(
hk − hk−1 +

1

2

∥∥xk − xk−1
∥∥2)

⩽L

2

∥∥xk − x∗∥∥2 − L

2

∥∥xk+1 − x∗∥∥2 + Lβk (hk − hk−1) +
Lγ

2

∥∥xk − xk−1
∥∥2

+
Lγ

2

(
γ
∥∥xk − xk−1

∥∥2 + ∥∥xk+1 − xk
∥∥2)

⩽L

2

∥∥xk − x∗∥∥2 − L

2

∥∥xk+1 − x∗∥∥2 + Lβk (hk − hk−1) +
Lγ

2

∥∥xk − xk−1
∥∥2

+
γ

1− γ
(Hk,γ −Hk+1,γ) ,

(3.17)
where the first inequality follows from (3.16), the second equality is due to Lemma 3.2 with
w = x∗, the last inequality holds from (3.15). And then summing both sides of (3.17) from
1 to k, we see further that

k∑
i=1

(
Hi+1,γ − F

(
x*

))
⩽L

2

∥∥x1 − x∗∥∥2 − L

2

∥∥xk+1 − x∗∥∥2 + γ

1− γ
(H1,γ −Hk+1,γ) +

k∑
i=1

Lβi (hi − hi−1)

+

k∑
i=1

Lγ

2

∥∥xi − xi−1
∥∥2

⩽L

2

∥∥x1 − x∗∥∥2 − L

2

∥∥xk+1 − x∗∥∥2 + γ

1− γ
(H1,γ −Hk+1,γ) + C

=
L

2

∥∥x1 − x∗∥∥2 + γ

1− γ

(
F
(
x1

)
− F

(
xk+1

))
+

Lγ2

2 (1− γ)

∥∥x1 − x0
∥∥2 + C

⩽L

2

∥∥x1 − x∗∥∥2 + γ

1− γ

(
F
(
x1

)
− F (x∗)

)
+

Lγ2

2 (1− γ)

∥∥x1 − x0
∥∥2 + C,

where the second inequality holds from Lemma 3.1 (ii) and (iv), there exists a constant C

such that
k∑

i=1

Lβi (hi − hi−1)+
k∑

i=1

Lγ
2

∥∥xi − xi−1
∥∥2 < C, the equality is due to the definition
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of Hk+1,γ and H1,γ , respectively. Then,

F
(
xk+1

)
− F (x∗)

= Hk+1,γ − F (x∗)− γ · L
2

∥∥xk+1 − xk
∥∥2

⩽ Hk+1,γ − F (x∗) ⩽ 1

k

k∑
i=1

(
Hi+1,γ − F

(
x*

))
⩽ 1

k

{
L

2

∥∥x1 − x∗∥∥2 + γ

1− γ

(
F
(
x1

)
− F (x∗)

)
+

Lγ2

2 (1− γ)

∥∥x1 − x0
∥∥2 + C

}
.

This completes the proof.

Remark 3.5. Since FISTA is a special extrapolation algorithm, whose extrapolation pa-

rameter is choose as βk = θk−1−1
θk

, θk+1 =
1+

√
1+4θ2

k

2 . By simply calculation, one can deduce

that 0 ≤ βk < 1 for all k, and the sequence {βk} is nondecreasing. But the supreme of
{βk} in FISTA is 1. FISTA with restart [7] is based on FISTA. The restart schemes include
fixed restart and adaptive restart. In the fixed restart scheme, one can choose a positive
integer K and restart every K iterations, while in the adaptive restart (gradient scheme),
the algorithm restarts whenever

〈
yk − xk+1, xk+1 − xk

〉
> 0. As K is a fixed number, using

this and the fact that the supreme of {βk} in FISTA is 1, we can immediately deduce that
supkβk < 1 if the fixed restart scheme is invoked in FISTA. Hence there must exist a γ > 0
such that the assumption supkβk ≤ γ holds in FISTA with fixed restart scheme. Hence,
by Theorem 3.4, one can immediately obtain that the global convergence rate of FISTA
with fixed restart scheme or FISTA with both fixed restart and adaptive restart schemes is
O(1/k).

4 Numerical Experiments

In this section, we perform numerical experiments to study the behaviors of PGe. Since
FISTA with both fixed restart scheme and adaptive restart scheme is a special case of PGe,
we use FISTA with both fixed restart scheme and adaptive restart scheme to represent PGe.
All codes are written in Matlab, and the experiments are performed in Matlab 2016a on a
64-bit PC with an Intel(R) Core(TM) i5-8250U CPU (1.80GHz) and 8GB of RAM.

we consider the l1 regularized logistic regression problem:

vlog := min
x̃∈Rn,x0∈R

m∑
i=1

log
(
1 + exp

(
−bi

(
aTi x̃+ x0

)))
+ λ∥x̃∥1, (4.1)

where ai ∈ Rn, bi ∈ {−1, 1} , i = 1, 2, ...,m, with bi not all the same, m < n, and λ > 0 is
the regularization parameter. It is easy to see that (4.1) is in the form of (1.1) with

f (x) =

m∑
i=1

log (1 + exp (−bi(Dx)i)), g (x) = λ∥x̃∥1, (4.2)

where x := (x̃, x0) ∈ Rn+1, and D is the matrix whose ith row is given by
(
aTi 1

)
. Moreover,

one can show that ∇f is Lipschitz continuous with modulus 0.25λmax

(
DTD

)
. Thus, in our

algorithms below we take L = 0.25λmax

(
DTD

)
.
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We now compare the numerical performance of PGe with proximal gradient algorithm
(PG) and FISTA. And we consider random instances for our experiments. For each (m,n, s)
= (500, 5000, 50) and (800, 8000, 80), we generate an m× n matrix A with i.i.d. standard
Gaussian entries. We then choose a support set T of size s uniformly at random and generate
an s-sparse vector x̂ supported on T with i.i.d. standard Gaussian entries. The vector b is
then generated as b = sign (Ax̂+ ce), where c is chosen uniformly at random from [0, 1].

Our computational results are presented in Figures 1 and 2. In part (a) of each figure, we
plot

∥∥xk − x∗
∥∥ against the number of iterations, where x∗ denotes the approximate solution

obtained at termination of the respective algorithm, while in part (b) of each figure, we plot∣∣F (
xk

)
− Fmin

∣∣ against the number of iterations, where Fmin denotes the minimum of the
three objective values obtained from the above three algorithms. Moreover, compared with
FISTA and the proximal gradient algorithm, PGe performs better.

Figure 1: n = 5000,m = 500, s = 50

Figure 2: n = 8000,m = 800, s = 80

5 Conclusions

In this paper, we mainly study the convergence behavior of proximal gradient algorithm with
extrapolation (PGe) for solving problem (1.1). We first prove the subsequential convergence
of the iterate sequence {xk} generated by PGe, then under the assumption supk βk ≤ γ, we
establish the global convergence rate of PGe, which is O (1/k). Hence, we can obtain the
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convergence rate of FISTA with fixed restart scheme is O (1/k) as a corollary. At last, some
numerical experiments have been performed to illustrate the theoretical results.
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[11] M. Mäkelä, Survey of bundle methods for nonsmooth optimization, Optim. Methods
Softw. 17 (2002) 1–29.

[12] Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program. 103 (2005)
127–152.

[13] Y. Nesterov, Dual extrapolation and its applications to solving variational inequalities
and related problems, Math. Program. 109 (2007) 319–344.

[14] Y. Nesterov, Gradient Methods for Minimizing Composite Objective Function, CORE
Discussion Paper, 2007.



PROXIMAL GRADIENT ALGORITHM WITH EXTRAPOLATION 487

[15] Y. Nesterov, A method of solving a convex programming problem with convergence
rate O

(
1/k2

)
, Soviet Math. Dokl. 27 (1983) 372–376.

[16] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer
Academic Publishers, Boston, 2004.

[17] H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth
functions: conceptual idea, convergence analysis, numercial results, SIAM J. Optim. 2
(1992) 121–152.

[18] P. Tseng, Approximation accuracy, gradient methods, and error bound for structured
convex optimization, Math. Program. 125 (2010) 263–295.

Manuscript received 11 November 2021
revised 2 February 2022

accepted for publication 2 March 2022

Mengxi Pan
School of Science
Hebei University of Technology, Tianjin, China
E-mail address: panmengxi21@163.com

Bo Wen
Institute of Mathematics
Hebei University of Technology, Tianjin, China
E-mail address: wenbohit@163.com


