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problem, which projection to the feasible set C was replaced with projection to a half-space
Ck := {x ∈ H|c(xk)+⟨c′(xk), x−xk⟩ ≤ 0}. Under the mapping F is Lipschitz continuous and
strong monotone, the convergence of the algorithm is proved. In order to relax the strong
monotonicity of F , Censor [12] proposed relaxed subgradient extragradient algorithm, which
one projection to half-space Ck was replaced with twice projection to half-space. However,
the convergence of [12] is an open question. Combining the inertial technique with [12],
Cao and Guo [5] proposed the inertial subgradient extragradient method, and proved the
convergence of the algorithm. But, in [12], the step size λ is determined by a constant
which is depends on the solution of V I. He and Wu [16] proposed another way to relax
the strong monotonicity of F , which is called the subgradient extragradient method. The
difference between [16] and [12] is that, in [12], the second projection onto Ck is replaced
by a projection onto Tk, which is another half-space containing C. In order to speed up the
convergence rate of algorithms, in recent years, some scholars have combined the inertial
method with these subgradient extragradient projection algorithms, see [18, 7, 27, 28].

In fact, strong convergence results of algorithms are more valuable than weak ones
in practice, it is necessary to study strong convergence of algorithms. By introducing a
contraction mapping, some scholars proposed strong convergence algorithms, as shown in
[30, 31, 9, 26]. As far as we know, most of the algorithms for strong convergence are based
on computing the projection onto the set C. Recently, [6] proposed a strong convergence
algorithm for solving the monotone variational inequality, which needs to computing the
projection onto the half-space Ck twice in each iteration.

In this paper, we propose an relaxation inertial projection algorithm for solving the vari-
ational inequalities. In this algorithm, each iteration only needs to calculate the projection
onto the half-space Ck once, thus reducing the number of projections of previous algorithms,
and the selection of parameters is no longer dependent on the solution of the variational
inequality. The weak convergence and convergence rate of the algorithm is proved under
the mapping F is Lipschitz continuous and monotone. Further, by introducing a contrac-
tion mapping, a strong convergence algorithm is given for solving the monotone variational
inequality. Finally, we give some numerical examples to show the efficiency of our algorithm
over some other algorithms in the literature.

2 Preliminaries

Let H be a Hilbert space with inner product and norm denoted respectively by ⟨·, ·⟩ and
∥ · ∥, C be a nonempty closed and convex subset of H. Let N+ and R be the sets of positive
integers and real numbers, respectively. The weak convergence of {xk}+k=1∞ to x is denoted
by xk ⇀ x as k → +∞, while the strong convergence of {xk}+k=1∞ to x is denoted by
xk → x as k → +∞. In addition, we denote [t]+ by max{t, 0}.

Definition 2.1. Let C be a nonempty closed convex subset of H and F : H → H be a
mapping. Then

(i) F is said to be L-Lipschitz continuous on C, if there exists L > 0 such that

∥F (x)− F (y)∥ ≤ L∥x− y∥, ∀x , y ∈ C.

If L ∈ [0, 1), F is said to be contraction mapping.

(ii) F is said to be monotone on C if

⟨F (x)− F (y), x− y⟩ ≥ 0, ∀x , y ∈ C.
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Definition 2.2. A function c : H → R is said to be weakly lower semicontinuous (w-lsc) at
x ∈ H, if xk ⇀ x implies c(x) ≤ lim inf

k→+∞
c(xk). We say c is weakly lower semicontinuous on

H, if for each x ∈ H, c is weakly lower semicontinuous at x.

Definition 2.3. A function c : H → R is said to be Gâteaux differentiable at x ∈ H, if
there exists an element, denoted by c′(x) ∈ H, such that

lim
t→0

c(x+ tν)− c(x)

t
= ⟨ν, c′(x)⟩, ∀ν ∈ H,

where c′(x) is called the Gâteaux differential of c at x. We say c is Gâteaux differentiable
on H, if for each x ∈ H, c is Gâteaux differentiable at x.

If c is a convex function and Gâteaux differentiable at x, we have that c(y) ≥ c(x) +
⟨c′(x), y − x⟩, for any y ∈ H, see [19].

Definition 2.4. Let C be a nonempty closed convex subset of H. The normal cone to C
at x ∈ C is a multi-valued mapping defined by

NC(x) := {ξ ∈ H|⟨ξ, z − x⟩ ≤ 0, ∀z ∈ C}.

Definition 2.5. Let T : H → 2H be a multi-valued mapping defined on H and the following
two conditions hold:

(i) T is monotone, i.e.

⟨u− v, x− y⟩ ≥ 0, ∀u ∈ T (x), v ∈ T (y).

(ii) the graph G(T ) := {(x, u)|u ∈ T (x)} of T is not properly contained in the graph of
any other monotone operator, i.e. for every (x, u) ∈ H ×H,

(x, u) ∈ G(T )⇔ (∀(y, v) ∈ G(T )) ⟨x− y, u− v⟩ ≥ 0.

Then T is called a maximal monotone mapping.

Let C be a nonempty closed convex subset of H. For each point x ∈ H, there exists a
unique element in C, denoted by PC(x), such that

∥x− PC(x)∥ ≤ ∥x− y∥, ∀y ∈ C.

The mapping PC : H → C is called the metric projection, which has the following properties:

Lemma 2.6 ([3]). Let C be a nonempty closed convex subset of H. Given x ∈ H, then

(i) ⟨PC(x)− x, y − PC(x)⟩ ≥ 0, ∀y ∈ C.

(ii) ∥PC(x)− y∥2 ≤ ∥x− y∥2 − ∥x− PC(x)∥2, ∀y ∈ C.

The following lemmas are crucial for the proof of our convergence theorems.

Lemma 2.7 ([3]). For all x, y ∈ H, the following equality holds:

∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2, ∀α ∈ R.

Lemma 2.8 ([17]). Assume that the solution set SOL(C,F ) of V I(C,F ) is nonempty.
Given x∗ ∈ C, then x∗ ∈ SOL(C,F ) if and only if either
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(i) F (x∗) = 0, or

(ii) x∗ ∈ ∂C and there exists a positive constant η such that F (x∗) = −ηc′(x∗).

Lemma 2.9 ([1]). Let {φk}, {αk} and {δk} be sequences in [0,+∞) such that

φk+1 ≤ φk + αk(φk − φk−1) + δk,

+∞∑
k=1

δk < +∞,

and there exists a real number α with 0 ≤ αk ≤ α < 1, for all k ∈ N+, Then the following
results hold:

(i)
+∞∑
k=1

[φk − φk−1]+ < +∞;

(ii) there exists φ∗ ∈ [0,+∞) such that lim
k→+∞

φk = φ∗.

Lemma 2.10 ([24]). Let C be a nonempty closed convex subset of H. Let F : H → H be a
monotone and Lipschitz continuous mapping. Define

T (x) :=

{
F (x) +NC(x), x ∈ C;

∅, x /∈ C.

Then T is maximal monotone and 0 ∈ T (x) if and only if x ∈ SOL(C,F ).

Lemma 2.11 ([23]). Assume that C is a nonempty subset of H and {xk} is a sequence in
H such that the following two conditions hold:

(i) ∀x ∈ C, lim
k→+∞

∥xk − x∥ exists;

(ii) every sequential weak cluster point of {xk} belongs to C.
Then {xk} converges weakly to a point in C.

Lemma 2.12 ([25]). Let {Φk} be a sequence of nonnegative real numbers, {sk} be a sequence

in (0, 1) such that
+∞∑
k=1

sk = +∞ and {Ωk} be a sequence of real numbers. Suppose that

Φk+1 ≤ (1− sk)Φk + skΩk, ∀k ≥ 1.

If lim sup
j→+∞

Ωkj
≤ 0 for every subsequence {Φkj

} of {Φk} satisfying lim inf
j→+∞

(Φkj+1 −Φkj
) ≥ 0,

then lim
k→+∞

Φk = 0.

3 Weak Convergence Algorithm

In this paper, the nonempty closed convex set C is defined as the

C := {x ∈ H|c(x) ≤ 0}.

We always assume that the following conditions are satisfied:

Assumption 3.1. The solution set SOL(C,F ) is nonempty.
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Assumption 3.2. The mapping F : H → H is monotone and L-Lipschitz continuous on
H.

Assumption 3.3. The function c : H → R satisfies the following conditions:

(i) c(x) is a convex function;

(ii) c(x) is weakly lower semicontinuous on H;

(iii) c(x)is Gâteaux differentiable on H and c′(x) is a L1-Lipschitz continuous mapping on
H;

(iv) there exists a positive constant M ′ such that ∥F (x)∥ ≤ M ′∥c′(x)∥, for any x ∈ ∂C,
where ∂C denotes the boundary of C.

3.1 Algorithm and Convergence Analysis

The following describes the framework structure of the algorithm:

Algorithm 3.1 (Weak convergence algorithm for (1.1)). Initialization: Choose x0, x1 ∈
H and σ > 0, γ ∈ (0, 1), M = M ′L1, µ ∈ (0, 1), α ∈ [0, 1).

Iterative Steps: Calculate xk+1 as follows:
Step 1. Given the iterates xk−1 and xk(k ≥ 1), Set

ωk = xk + αk(xk − xk−1),

where

αk =

{
min{ 1

k2∥xk−xk−1∥2 , α}, if xk ̸= xk−1;

α, otherwise.

Step 2. Construct the half-space

Ck := {x ∈ H|c(ωk) + ⟨c′(ωk), x− ωk⟩ ≤ 0}. (3.1)

Compute
yk = PCk

(ωk − λkF (ωk)),

where λk = σγlk , with lk is the smallest nonnegative integer l satisfying

(σγl)2∥F (ωk)− F (yk)∥2 + 2Mσγl∥ωk − yk∥2 ≤ µ2∥ωk − yk∥2. (3.2)

If yk = ωk then stop. Otherwise, go to Step 3.

Step 3. Calculate the next iterate,

xk+1 = yk + λk(F (ωk)− F (yk)).

Set k ← k + 1 and go to Step 1.

Remark 3.2. One can see that for each k ∈ N+, C ⊆ Ck in Algorithm 3.1. In fact, for
each x ∈ C, c(xk) + ⟨c′(xk), x− xk⟩ ≤ c(x) ≤ 0.

Remark 3.3. In Algorithm 3.1, by the definition of {αk}, the following conclusions hold:
(i) 0 ≤ αk ≤ α < 1, ∀k ∈ N+;

(ii) ∃M1 > 0,
+∞∑
k=1

αk∥xk − xk−1∥2 ≤
+∞∑
k=1

1
k2 < M1; lim

k→+∞
αk∥xk − xk−1∥2 = 0.



512 Y. ZHANG, D. YANG AND Y. ZHANG

Remark 3.4. Suppose that Assumption 3.2 holds, then the line search (3.2) is well defined.
In fact, from γ ∈ (0, 1), we have that there exists l such that σ2L2(γl)2+2Mσγl ≤ µ2. This
implies that

(σγl)2∥F (ωk)−F (PCk
(ωk − σγlF (ωk)))∥2 + 2Mσγl∥ωk − PCk

(ωk − σγlF (ωk))∥2

≤ (σ2L2(γl)2 + 2Mσγl)∥ωk − PCk
(ωk − σγlF (ωk))∥2

≤ µ2∥ωk − PCk
(ωk − σγlF (ωk))∥2.

In the following analysis, we assume that Algorithm 3.1 always generates infinite se-
quences. In fact, if Algorithm 3.1 terminates with in finite steps, i.e., there exists k0, such
that yk0 = ωk0 , then yk0 = PCk0

(yk0−λk0F (yk0)), which means yk0 is a solution of V I(C,F ).
First, we give the following lemma, which plays a crucial role in the proof of the conver-

gence of Algorithm 3.1.

Lemma 3.5. Suppose that Assumption 3.1, 3.2 and 3.3 hold. Let {xk}, {ωk} and {yk} be
sequences generated by Algorithm 3.1. Then for all x∗ ∈ SOL(C,F ) and k ∈ N+, we have

∥xk+1 − x∗∥2 ≤ ∥ωk − x∗∥2 − (1− µ2)∥ωk − yk∥2.

Proof. From the definition of xk+1, we obtain

∥xk+1 − x∗∥2 = ∥yk + λk(F (ωk)− F (yk))− x∗∥2

= ∥yk − x∗∥2 + 2λk⟨F (ωk)− F (yk), yk − x∗⟩+ λ2
k∥F (ωk)− F (yk)∥2

= ∥yk − ωk∥2 + 2⟨yk − ωk, ωk − x∗⟩+ ∥ωk − x∗∥2

+ 2λk⟨F (ωk)− F (yk), yk − x∗⟩+ λ2
k∥F (ωk)− F (yk)∥2

= ∥yk − ωk∥2 + 2⟨yk − ωk, ωk − yk⟩+ 2⟨yk − ωk, yk − x∗⟩+ ∥ωk − x∗∥2

+ 2λk⟨F (ωk)− F (yk), yk − x∗⟩+ λ2
k∥F (ωk)− F (yk)∥2 (3.3)

= ∥ωk − x∗∥2 − ∥ωk − yk∥2 + 2⟨ωk − λkF (ωk)− yk, x
∗ − yk⟩

+ 2λk⟨F (yk), x
∗ − yk⟩+ λ2

k∥F (ωk)− F (yk)∥2

(a)

≤ ∥ωk − x∗∥2 − ∥ωk − yk∥2 + 2λk⟨F (yk), x
∗ − yk⟩+ λ2

k∥F (ωk)− F (yk)∥2

(b)

≤ ∥ωk − x∗∥2 − ∥ωk − yk∥2 + 2λk⟨F (x∗), x∗ − yk⟩+ λ2
k∥F (ωk)− F (yk)∥2,

where (a) follows from the definition of yk, Lemma 2.6(i) and x∗ ∈ SOL(C,F ) ⊆ C ⊆ Ck,
and (b) holds because of the monotonicity of the mapping F .

If F (x∗) = 0, according to (3.3), we have

∥xk+1 − x∗∥2 ≤ ∥ωk − x∗∥2 − ∥ωk − yk∥2 + λ2
k∥F (ωk)− F (yk)∥2

(c)

≤ ∥ωk − x∗∥2 − ∥ωk − yk∥2 + µ2∥ωk − yk∥2

= ∥ωk − x∗∥2 − (1− µ2)∥ωk − yk∥2,

where (c) holds because of (3.2).
If F (x∗) ̸= 0, from Lemma 2.8, we get x∗ ∈ ∂C and there exists a η > 0 such that

F (x∗) = −ηc′(x∗). Using Assumption 3.3(iv), we deduce that η ≤M ′. From the convexity
of c, we obtain

c(yk) ≥ c(x∗) + ⟨c′(x∗), yk − x∗⟩ (d)= ⟨c′(x∗), yk − x∗⟩ = ⟨−1

η
F (x∗), yk − x∗⟩,
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where (d) follows from x∗ ∈ ∂C. This implies that ⟨F (x∗), x∗ − yk⟩ ≤ ηc(yk). Using the
convexity of c again,

c(ωk) ≥ c(yk) + ⟨c′(yk), ωk − yk⟩.
Therefore,

c(yk) ≤ c(ωk)− ⟨c′(yk), ωk − yk⟩
(e)

≤ ⟨c′(ωk), ωk − yk⟩ − ⟨c′(yk), ωk − yk⟩
= ⟨c′(ωk)− c′(yk), ωk − yk⟩
≤ ∥c′(ωk)− c′(yk)∥∥ωk − yk∥
≤ L1∥ωk − yk∥2,

where (e) holds because of yk ∈ Ck. Thus, ⟨F (x∗), x∗ − yk⟩ ≤ ηc(yk) ≤ ηL1∥ωk − yk∥2 ≤
M ′L1∥ωk − yk∥2 = M∥ωk − yk∥2. Finally, from the relation (3.3), we get

∥xk+1 − x∗∥2 ≤ ∥ωk − x∗∥2 − ∥ωk − yk∥2 + 2λkM∥ωk − yk∥2 + λ2
k∥F (ωk)− F (yk)∥2

(f)

≤ ∥ωk − x∗∥2 − ∥ωk − yk∥2 + µ2∥ωk − yk∥2

= ∥ωk − x∗∥2 − (1− µ2)∥ωk − yk∥2,

where (f) holds due to (3.2). This completes the proof.

Lemma 3.6. Suppose that Assumption 3.1, 3.2 and 3.3 hold. Let Ck be as shown (3.1).
Assume that {λk} is a positive real number sequence and {(ωk, yk)} is the sequence that
satisfies yk = PCk

(ωk − λkF (ωk)). If there exists a subsequence {ωkj
} of {ωk} such that

ωkj
⇀ x̂ ∈ H and lim

j→+∞
∥ωkj

− ykj
∥ = 0, then x̂ ∈ SOL(C,F ).

Proof. Due to ykj
∈ Ckj

and the definition of Ck, we have

c(ωkj
) + ⟨c′(ωkj

), ykj
− ωkj

⟩ ≤ 0.

Then, using the Cauchy-Schwartz inequality,

c(ωkj ) ≤ ∥c′(ωkj )∥∥ωkj − ykj∥.

Since ωkj
⇀ x̂ and lim

j→+∞
∥ωkj

− ykj
∥ = 0, we get {ωkj

} and {ykj
} are bounded and

ykj
⇀ x̂. (3.4)

According to Assumption 3.3(iii) and the boundedness of {ωkj
}, we can deduce that {c′(ωkj

)}
is bounded, so there exists M2 > 0 such that ∥c′(ωkj

)∥ ≤M2 for all kj , and then

c(ωkj ) ≤M2∥ωkj − ykj∥.

From the weakly lower semicontinuous of c, we get

c(x̂) ≤ lim inf
j→+∞

c(ωkj
) ≤ lim

j→+∞
M2∥ωkj

− ykj
∥ = 0,

which means x̂ ∈ C. Now, we turn to showing x̂ ∈ SOL(C,F ). Define

T (x) :=

{
F (x) +NC(x), x ∈ C,

∅, x /∈ C,
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where NC(x) is the normal cone of C at x. We know from Lemma 2.10 that T is a maximal
monotone mapping. For arbitrary (x, u) ∈ G(T ), we have u ∈ T (x) = F (x) + NC(x).
Equivalently,

⟨u− F (x), z − x⟩ ≤ 0, ∀z ∈ C.

Setting z = x̂, we get
⟨u− F (x), x− x̂⟩ ≥ 0.

and then

⟨u, x− x̂⟩ ≥ ⟨F (x), x− x̂⟩
= ⟨F (x), x− ykj

⟩+ ⟨F (x), ykj
− x̂⟩

= ⟨F (x)− F (ykj
), x− ykj

⟩+ ⟨F (ykj
)− F (ωkj

), x− ykj
⟩

+ ⟨F (ωkj
), x− ykj

⟩+ ⟨F (x), ykj
− x̂⟩

(g)

≥ ⟨F (ykj )− F (ωkj ), x− ykj ⟩+ ⟨F (ωkj ), x− ykj ⟩+ ⟨F (x), ykj − x̂⟩,

(3.5)

where (g) holds due to the monotonicity of F . By the definition of ykj
and Lemma 2.6(i),

we have
⟨ykj − ωkj + λkjF (ωkj ), x− ykj ⟩ ≥ 0, ∀x ∈ Ckj .

Since C ⊆ Ckj
, we can deduce

⟨F (ωkj ), x− ykj ⟩ ≥
1

λkj

⟨ωkj − ykj , x− ykj ⟩, ∀x ∈ C. (3.6)

Combining (3.5) and (3.6), we obtain

⟨u, x− x̂⟩ ≥ ⟨F (ykj
)− F (ωkj

), x− ykj
⟩+ 1

λkj

⟨ωkj
− ykj

, x− ykj
⟩+ ⟨F (x), ykj

− x̂⟩

≥ −∥F (ykj
)− F (ωkj

)∥∥x− ykj
∥ − 1

λkj

∥ωkj
− ykj

∥∥x− ykj
∥+ ⟨F (x), ykj

− x̂⟩

≥ −L∥ωkj
− ykj

∥∥x− ykj
∥ − 1

λkj

∥ωkj − ykj∥∥x− ykj∥+ ⟨F (x), ykj − x̂⟩.

(3.7)

By virtue of ∥ωkj
− ykj

∥ → 0, the boundedness of yk and (3.4), taking j → +∞ in (3.7), we
have

⟨u, x− x̂⟩ ≥ 0.

Then by the maximality of T , we know 0 ∈ T (x̂). Thanks to Lemma 2.10, we have x̂ ∈
SOL(C,F ).

Theorem 3.7. Under Assumption 3.1, 3.2 and 3.3, the sequence {xk} generated by the
Algorithm 3.1 converges weakly to a point in SOL(C,F ).

Proof. For any x∗ ∈ SOL(C,F ), we have

∥xk+1 − x∗∥2
(h)

≤ ∥wk − x∗∥2

= ∥xk + αk(xk − xk−1)− x∗∥2

= ∥(1 + αk)(xk − x∗)− αk(xk−1 − x∗)∥2

(i)
= (1 + αk)∥xk − x∗∥2 − αk∥xk−1 − x∗∥2 + (1 + αk)αk∥xk − xk−1∥2

(j)

≤ ∥xk − x∗∥2 + αk(∥xk − x∗∥2 − ∥xk−1 − x∗∥2) + (1 + α)αk∥xk − xk−1∥2,
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where (h) holds because of Lemma 3.5 and µ ∈ (0, 1), (i) follows from Lemma 2.7, and (j)
holds due to Remark 3.3(i). Letting φk := ∥xk − x∗∥2 and δk := (1 +α)αk∥xk − xk−1∥2, by

Remark 3.3(ii), we have
+∞∑
k=1

δk < +∞. Applying Lemma 2.9, we obtain lim
k→+∞

∥xk − x∗∥2

exists and
+∞∑
k=1

[∥xk − x∗∥2 − ∥xk−1 − x∗∥2]+ < +∞.

Therefore, the sequence {xk} is bounded and

lim
k→+∞

[∥xk − x∗∥2 − ∥xk−1 − x∗∥2]+ = 0. (3.8)

By the definition of ωk, we get

0 ≤ ∥ωk − xk∥2 = α2
k∥xk − xk−1∥2

(k)

≤ α · αk∥xk − xk−1∥2
(l)→ 0 (k → +∞),

where (k) holds because of Remark 3.3(i) and (l) follows from Remark 3.3(ii). And then we
obtain

∥ωk − xk∥ → 0 (k → +∞). (3.9)

This implies that the sequence {ωk} is bounded thanks to the boundedness of {xk}. We
also have

0 ≤ (1− µ2)∥ωk − yk∥2
(m)

≤ ∥ωk − x∗∥2 − ∥xk+1 − x∗∥2

(n)
= (1 + αk)∥xk − x∗∥2 − αk∥xk−1 − x∗∥2

+ (1 + αk)αk∥xk − xk−1∥2 − ∥xk+1 − x∗∥2

(o)

≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + (1 + α)αk∥xk − xk−1∥2

+ αk(∥xk − x∗∥2 − ∥xk−1 − x∗∥2)
≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + (1 + α)αk∥xk − xk−1∥2

+ αk[∥xk − x∗∥2 − ∥xk−1 − x∗∥2]+
(p)→ 0 (k → +∞),

where (m) follows from Lemma 3.5, (n) holds due to the definition of {ωk} and Lemma 2.7,
(o) follows from Remark 3.3(i) and (p) holds thanks to Remark 3.3(ii) and (3.8). Thus,

∥wk − yk∥ → 0 (k → +∞). (3.10)

Due to the boundedness of {xk}, there exists a subsequence {xkj} of {xk} such that xkj ⇀
x̄ ∈ H. Since (3.9), we also have ωkj ⇀ x̄ (j → +∞). Combining (3.10) with Lemma 3.6,
we get x̄ ∈ SOL(C,F ).
Therefore, we prove that:

(i) For any x∗ ∈ SOL(C,F ), lim
k→+∞

∥xk − x∗∥ exists;

(ii) Every sequential weak cluster point of {xk} belongs to SOL(C,F ).
By Lemma 2.11, the sequence {xk} converges weakly to an element of SOL(C,F ). This
completes the proof.
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3.2 Convergence rate of Algorithm 3.1

In this section, we establish the convergence rate of Algorithm 3.1. Our result is based on
ωk ̸= yk. Otherwise, yk is a solution of V I(C,F ).

Theorem 3.8. Suppose that Assumption 3.1, 3.2 and 3.3 hold. Let the sequences {xk}, {ωk}
and {yk} be generated by Algorithm 3.1. Then for any x∗ ∈ SOL(C,F ), there exist constants
M3, ϵ > 0 such that the following estimate holds:

min
1≤i≤k

∥ωi − yi∥2 ≤
(1− α)∥x1 − x∗∥2 + [∥x1 − x∗∥2 − ∥x0 − x∗∥2]+ +M3

ϵ(1− α)k
.

Proof. Letting ϵ satisfies 0 < ϵ < 1− µ2 thanks to 0 < µ < 1. Then,

∥xk+1 − x∗∥2
(q)

≤ ∥wk − x∗∥2 − (1− µ2)∥wk − yk∥2

≤ ∥wk − x∗∥2 − ϵ∥wk − yk∥2,
(3.11)

where (q) follows from Lemma 3.5. Therefore,

ϵ∥ωk − yk∥2 ≤ ∥wk − x∗∥2 − ∥xk+1 − x∗∥2

(r)
= (1 + αk)∥xk − x∗∥2 − αk∥xk−1 − x∗∥2 + (1 + αk)αk∥xk − xk−1∥2

− ∥xk+1 − x∗∥2

≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + αk[∥xk − x∗∥2 − ∥xk−1 − x∗∥2]+
+ (1 + αk)αk∥xk − xk−1∥2

(s)

≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + α[∥xk − x∗∥2 − ∥xk−1 − x∗∥2]+
+ (1 + α)αk∥xk − xk−1∥2,

where (r) holds because of the definition of ωk and Lemma 2.7 and (s) follows from Remark
3.3(i). Letting Υk := ∥xk − x∗∥2 and ∆k := (1 + α)αk∥xk − xk−1∥2, we obtain

ϵ∥wk − yk∥2 ≤ Υk −Υk+1 + α[Υk −Υk−1]+ +∆k.

Hence, we have

ϵ

k∑
i=1

∥ωi − yi∥2 ≤
k∑

i=1

(Υi −Υi+1) + α

k∑
i=1

[Υi −Υi−1]+ +

k∑
i=1

∆i

(t)

≤ Υ1 −Υk+1 + α

k∑
i=1

[Υi −Υi−1]+ +M3

(u)

≤ Υ1 + α

k∑
i=1

[Υi −Υi−1]+ +M3 (3.12)

= Υ1 + α

k∑
i=1

[Υi+1 −Υi]+ + α[Υ1 −Υ0]+ − α[Υk+1 −Υk]+ +M3

≤ Υ1 + α

k∑
i=1

[Υi+1 −Υi]+ + [Υ1 −Υ0]+ +M3,
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where (t) follows from Remark 3.3(ii) and M3 = (1+ α)M1 and (u) holds due to Υk+1 ≥ 0.
On the other hand, by (3.11), we get

∥xk+1 − x∗∥2 ≤ ∥ωk − x∗∥2

= (1 + αk)∥xk − x∗∥2 − αk∥xk−1 − x∗∥2 + (1 + αk)αk∥xk − xk−1∥2

≤ ∥xk − x∗∥2 + αk(∥xk − x∗∥2 − ∥xk−1 − x∗∥2) + (1 + αk)αk∥xk − xk−1∥2

≤ ∥xk − x∗∥2 + α[∥xk − x∗∥2 − ∥xk−1 − x∗∥2]+ + (1 + α)αk∥xk − xk−1∥2.

or equivalently:

Υk+1 −Υk ≤ α[Υk −Υk−1]+ +∆k.

Therefore,

[Υk+1 −Υk]+ ≤ α[Υk −Υk−1]+ +∆k ≤ αk[Υ1 −Υ0]+ +

k∑
i=1

αi−1∆k+1−i.

Then, we have

+∞∑
k=1

[Υk+1 −Υk]+ ≤
+∞∑
k=1

αk[Υ1 −Υ0]+ +

+∞∑
k=1

k∑
i=1

αi−1∆k+1−i

≤ α

1− α
[Υ1 −Υ0]+ +

1

1− α

+∞∑
k=1

∆k

≤ α

1− α
[Υ1 −Υ0]+ +

1

1− α
M3.

In light of (3.12) and the above inequality, we have

ϵ

k∑
i=1

∥ωi − yi∥2 ≤ Υ1 + α(
α

1− α
[Υ1 −Υ0]+ +

1

1− α
M3) + [Υ1 −Υ0]+ +M3

= Υ1 +
α2 − α+ 1

1− α
[Υ1 −Υ0]+ +

1

1− α
M3

≤ Υ1 +
1

1− α
[Υ1 −Υ0]+ +

1

1− α
M3

= ∥x1 − x∗∥2 + 1

1− α
[∥x1 − x∗∥2 − ∥x0 − x∗∥2]+ +

1

1− α
M3.

which implies

min
1≤i≤k

∥ωi − yi∥2 ≤
(1− α)∥x1 − x∗∥2 + [∥x1 − x∗∥2 − ∥x0 − x∗∥2]+ +M3

ϵ(1− α)k
.

This completes the proof.

4 Strong Convergence Algorithm

In this section, we give a strong convergence algorithm for (1.1). Let f : H → H be a
contraction mapping with a coefficient ρ ∈ [0, 1), then we introduce the following algorithm:
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Algorithm 4.1 (Strong convergence algorithm for (1.1)). Initialization: Let x0, x1 ∈ H
and σ > 0, γ ∈ (0, 1), M = M ′L1, µ ∈ (0, 1), α ≥ 0. Choose three positive sequences
{εk} ⊆ [0,+∞) and {βk} ⊆ (0, 1) satisfying

lim
k→+∞

βk = 0,

+∞∑
k=1

βk = +∞,

+∞∑
k=1

εk < +∞, εk = o(βk).

Iterative Steps: Calculate xk+1 as follows:

Step 1. Assume that xk−1, xk ∈ H for each k ≥ 1, Set

ωk = xk + αk(xk − xk−1),

where

αk =

{
min{ εk

∥xk−xk−1∥ , α}, if xk ̸= xk−1;

α, otherwise.

Step 2. Construct the half-space

Ck := {x ∈ H|c(ωk) + ⟨c′(ωk), x− ωk⟩ ≤ 0}.

Compute
yk = PCk

(ωk − λkF (ωk)),

where λk = σγlk , with lk is the smallest nonnegative integer l satisfying

(σγl)2∥F (ωk)− F (yk)∥2 + 2Mσγl∥ωk − yk∥2 ≤ µ2∥ωk − yk∥2.

If yk = ωk then stop and yk ∈ SOL(C,F ). Otherwise, go to Step 3.

Step 3. Compute

zk = yk + λk(F (ωk)− F (yk)).

Step 4. Calculate the next iterate,

xk+1 = βkf(zk) + (1− βk)zk.

Set k ← k + 1 and go to Step 1.

Remark 4.2. In Algorithm 4.1, the following conclusions hold:

(i) lim
k→+∞

αk

βk
∥xk − xk−1∥ = 0;

(ii) ∃M4 > 0, αk

βk
∥xk − xk−1∥ ≤M4.

Indeed, by the definition of {αk}, we have αk∥xk − xk−1∥ ≤ εk for all k, which implies that

lim
k→+∞

αk

βk
∥xk − xk−1∥ ≤ lim

k→+∞

εk
βk

= 0.

Thus (i) and (ii) hold.
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Remark 4.3. By the similar argument of Remark 3.4, we have that the line search is well
defined.

We still assumed that Algorithm 4.1 generates infinite sequences. First, we introduce
the following lemma. The proof of this lemma is the same as that of Lemma 3.5 and Lemma
3.6. Here we omit it.

Lemma 4.4. Suppose that Assumption 3.1, 3.2 and 3.3 hold. Let {zk}, {ωk} and {yk} be
sequences generated by Algorithm 4.1. Then the following results hold:

(i) ∥zk − x∗∥2 ≤ ∥ωk − x∗∥2 − (1− µ2)∥ωk − yk∥2, ∀x∗ ∈ SOL(C,F ), k ∈ N+.

(ii) If there exists a subsequence {ωkj
} of {ωk} such that ωkj

⇀ x̂ and lim
j→+∞

∥ωkj
−ykj

∥ =

0, then x̂ ∈ SOL(C,F ).

Next, we show that the sequences generated by the Algorithm 4.1 is bounded.

Lemma 4.5. Suppose that Assumption 3.1, 3.2 and 3.3 hold. Let f : H → H be a con-
traction mapping with a coefficient ρ ∈ [0, 1). Then the sequences {xk}, {ωk}, {zk} and
{f(xk)} generated by Algorithm 4.1 are bounded.

Proof. Let x∗ ∈ SOL(C,F ), we have

∥zk − x∗∥
(v)

≤ ∥ωk − x∗∥
= ∥xk + αk(xk − xk−1)− x∗∥

≤ ∥xk − x∗∥+ βk ·
αk

βk
∥xk − xk−1∥ (4.1)

(w)

≤ ∥xk − x∗∥+ βkM4,

where (v) follows from Lemma 4.4(i) and µ ∈ (0, 1), and (w) holds due to Remark 4.2(ii).
From the definition of xk+1, we have

∥xk+1 − x∗∥ = ∥βkf(zk) + (1− βk)zk − x∗∥
(x)

≤ βk∥f(zk)− x∗∥+ (1− βk)∥zk − x∗∥
(y)

≤ βk∥f(zk)− f(x∗)∥+ βk∥f(x∗)− x∗∥+ (1− βk)∥zk − x∗∥
≤ βkρ∥zk − x∗∥+ βk∥f(x∗)− x∗∥+ (1− βk)∥zk − x∗∥
= (1− (1− ρ)βk)∥zk − x∗∥+ βk∥f(x∗)− x∗∥
(z)

≤ (1− (1− ρ)βk)(∥xk − x∗∥+ βkM4) + βk∥f(x∗)− x∗∥
(a1)

≤ (1− (1− ρ)βk)∥xk − x∗∥+ βk(M4 + ∥f(x∗)− x∗∥)

= (1− (1− ρ)βk)∥xk − x∗∥+ (1− ρ)βk
M4 + ∥f(x∗)− x∗∥

(1− ρ)

≤ max{∥xk − x∗∥, M4 + ∥f(x∗)− x∗∥
(1− ρ)

}

≤ max{∥x0 − x∗∥, M4 + ∥f(x∗)− x∗∥
(1− ρ)

},
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where (x) and (y) hold by the triangle inequality, (z) folllows from (4.1), and (a1) holds due
to ρ ∈ [0, 1) and βk ∈ (0, 1). Therefore, {xk} is bounded.

Using (4.1), we also have {zk} and {ωk} are bounded thanks to the boundedness of {xk}
and {βk}. Moreover, {f(xk)} is bounded by the fact that f is a contraction mapping. This
completes the proof.

Then, we give the following two lemmas which are important to the proof of strong
convergence of Algorithm 4.1.

Lemma 4.6. Suppose that Assumption 3.1, 3.2 and 3.3 hold. Let f : H → H be a contrac-
tion mapping with a coefficient ρ ∈ [0, 1) and {βk} be defined in Algorithm 4.1. Then for all
x∗ ∈ SOL(C,F ), there exists M5 > 0 such that

(1− µ2)∥ωk − yk∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + βkM5, ∀k ∈ N+.

Proof. According to x∗ ∈ SOL(C,F ) and the definition of xk+1, we have

∥xk+1 − x∗∥2 = ∥βkf(zk) + (1− βk)zk − x∗∥2

(b1)

≤ βk∥f(zk)− x∗∥2 + (1− βk)∥zk − x∗∥2

≤ βk(∥f(zk)− f(x∗)∥+ ∥f(x∗)− x∗∥)2 + (1− βk)∥zk − x∗∥2

≤ βk(ρ∥zk − x∗∥+ ∥f(x∗)− x∗∥)2 + (1− βk)∥zk − x∗∥2

≤ βk(∥zk − x∗∥+ ∥f(x∗)− x∗∥)2 + (1− βk)∥zk − x∗∥2

= βk∥zk − x∗∥2 + βk(2∥zk − x∗∥∥f(x∗)− x∗∥+ ∥f(x∗)− x∗∥2)
+ (1− βk)∥zk − x∗∥2

≤ ∥zk − x∗∥2 + βkM6

(c1)

≤ ∥ωk − x∗∥2 − (1− µ2)∥ωk − yk∥2 + βkM6

(d1)

≤ (∥xk − x∗∥+ βkM4)
2 − (1− µ2)∥ωk − yk∥2 + βkM6

≤ ∥xk − x∗∥2 + βkM7 − (1− µ2)∥ωk − yk∥2 + βkM6,

where (b1) follows from Lemma 2.7, (c1) holds due to Lemma 4.4(i), (d1) holds thanks to
(4.1), M6 := sup

k∈N+

{2∥zk − x∗∥∥f(x∗) − x∗∥ + ∥f(x∗) − x∗∥2} and M7 := sup
k∈N+

{2M4∥xk −

x∗∥+βkM
2
4 }. By the boundedness of {xk} and {zk}, we get M6 ∈ (0,+∞), M7 ∈ (0,+∞).

Letting M5 := M6 +M7, then

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − (1− µ2)∥ωk − yk∥2 + βkM5.

Therefore, we get

(1− µ2)∥ωk − yk∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + βkM5.

This completes the proof.

Lemma 4.7. Under the conditions of Lemma 4.6, there exists M8 > 0 such that

∥xk+1 − x∗∥2 ≤ (1− (1− ρ)βk)∥xk − x∗∥2 + (1− ρ)βk

· ( M8

1− ρ
· αk

βk
∥xk − xk−1∥+

2

1− ρ
⟨f(x∗)− x∗, xk+1 − x∗⟩).
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Proof. For all x∗ ∈ SOL(C,F ), we have

∥xk+1 − x∗∥2 = ∥βkf(zk) + (1− βk)zk − x∗∥2

= ∥βk(f(zk)− f(x∗)) + (1− βk)(zk − x∗) + βk(f(x
∗)− x∗)∥2

(e1)

≤ ∥βk(f(zk)− f(x∗))+(1− βk)(zk − x∗)∥2+2βk⟨f(x∗)− x∗, xk+1−x∗⟩
(f1)

≤ βk∥f(zk)− f(x∗)∥2+(1− βk)∥zk − x∗∥2+2βk⟨f(x∗)− x∗, xk+1−x∗⟩
≤ βkρ

2∥zk − x∗∥2+(1− βk)∥zk − x∗∥2+2βk⟨f(x∗)− x∗, xk+1−x∗⟩ (4.2)

(g1)

≤ βkρ∥zk − x∗∥2 + (1− βk)∥zk − x∗∥2 + 2βk⟨f(x∗)− x∗, xk+1 − x∗⟩
= (1− (1− ρ)βk)∥zk − x∗∥2 + 2βk⟨f(x∗)− x∗, xk+1 − x∗⟩
(h1)

≤ (1− (1− ρ)βk)∥ωk − x∗∥2 + 2βk⟨f(x∗)− x∗, xk+1 − x∗⟩,

where (e1) holds according to ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, (f1) follows from Lemma 2.7,
(g1) holds due to ρ ∈ [0, 1), and (h1) holds because (4.1). According to the definition of ωk,
we deduce

∥ωk − x∗∥2 = ∥xk + αk(xk − xk−1)− x∗∥2

= ∥xk − x∗∥2 + 2αk∥xk − x∗∥∥xk − xk−1∥+ α2
k∥xk − xk−1∥2.

Combining (4.2) and the above equality, we obtain

∥xk+1 − x∗∥2 ≤ (1− (1− ρ)βk)(∥xk − x∗∥2 + 2αk∥xk − x∗∥∥xk − xk−1∥+ α2
k∥xk − xk−1∥2)

+ 2βk⟨f(x∗)− x∗, xk+1 − x∗⟩
(i1)

≤ (1− (1− ρ)βk)∥xk − x∗∥2 + 2αk∥xk − x∗∥∥xk − xk−1∥+ α2
k∥xk − xk−1∥2

+ 2βk⟨f(x∗)− x∗, xk+1 − x∗⟩
= (1− (1− ρ)βk)∥xk − x∗∥2 + αk∥xk − xk−1∥(2∥xk − x∗∥+ αk∥xk − xk−1∥)
+ 2βk⟨f(x∗)− x∗, xk+1 − x∗⟩

(j1)

≤ (1− (1− ρ)βk)∥xk − x∗∥2 + αk∥xk − xk−1∥(2∥xk − x∗∥+ α∥xk − xk−1∥)
+ 2βk⟨f(x∗)− x∗, xk+1 − x∗⟩
≤ (1− (1− ρ)βk)∥xk − x∗∥2+αk∥xk − xk−1∥M8+2βk⟨f(x∗)− x∗, xk+1 − x∗⟩
= (1− (1− ρ)βk)∥xk − x∗∥2+(1− ρ)βk

· ( M8

1− ρ
· αk

βk
∥xk − xk−1∥+

2

1− ρ
⟨f(x∗)− x∗, xk+1 − x∗⟩),

where (i1) holds because βk ∈ (0, 1) and ρ ∈ [0, 1), (j1) follows from 0 ≤ αk ≤ α and
M8 := sup

k∈N+

{2∥xk − x∗∥+ α∥xk − xk−1∥}. Since {xk} is bounded, we know M8 ∈ (0,+∞).

This completes the proof.

Finally, we prove the strong convergence of Algorithm 4.1.

Theorem 4.8. Suppose that Assumption 3.1, 3.2 and 3.3 hold. Let f : H → H be a contrac-
tion mapping with a coefficient ρ ∈ [0, 1). Then, the sequence {xk} generated by Algorithm
4.1 converges strongly to an element x∗ ∈ SOL(C,F ), where x∗ = PSOL(C,F )(f(x

∗)).
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Proof. Letting Φk := ∥xk−x∗∥2, sk := (1−ρ)βk and Ωk := M8

1−ρ ·
αk

βk
∥xk−xk−1∥+ 2

1−ρ ⟨f(x
∗)−

x∗, xk+1 − x∗⟩, by Lemma 4.7, we obtain that

Φk+1 ≤ (1− sk)Φk + skΩk,

where sk ∈ (0, 1) and
+∞∑
k=1

sk = +∞. In order to prove Φk = ∥xk − x∗∥ → 0, by Lemma

2.12, we only need to show lim sup
j→+∞

Ωkj ≤ 0 for every subsequence {Φkj} of {Φk} satisfying

lim inf
j→+∞

(Φkj+1 −Φkj
) ≥ 0. For this, suppose that there exists a subsequence {∥xkj

− x∗∥} of

{∥xk − x∗∥} such that

lim inf
j→+∞

(∥xkj+1 − x∗∥ − ∥xkj
− x∗∥) ≥ 0. (4.3)

Thus,

0 ≤ lim sup
j→+∞

(1− µ2)∥ωkj
− ykj

∥2

(k1)

≤ lim sup
j→+∞

[∥xkj
− x∗∥2 − ∥xkj+1 − x∗∥2 + βkj

M5]

≤ lim sup
j→+∞

[∥xkj
− x∗∥2 − ∥xkj+1 − x∗∥2] + lim

j→+∞
βkj

M5

= − lim inf
j→+∞

[∥xkj+1 − x∗∥2 − ∥xkj − x∗∥2]

= − lim inf
j→+∞

[(∥xkj+1 − x∗∥ − ∥xkj − x∗∥)(∥xkj+1 − x∗∥+ ∥xkj − x∗∥)]

(l1)

≤ 0,

where (k1) follows from Lemma 4.6, and (l1) holds due to (4.3) and the boundedness of
{xk}. This implies that

lim
j→+∞

∥ωkj
− ykj

∥ = 0. (4.4)

Therefore,

∥zkj
− ωkj

∥ = ∥ykj
+ λkj

(F (ωkj
)− F (ykj

))− ωkj
∥

≤ ∥ykj
− ωkj

∥+ λkj
∥F (ωkj

)− F (ykj
)∥ (m1)→ 0 (j → +∞),

(4.5)

where (m1) holds due to (4.4) and Lipschitz continuity of F . Furthermore, according to the
definition of xk+1, lim

k→+∞
βk = 0 and the boundedness of {f(zk)} and {zk}, we get

∥xkj+1− zkj
∥ = ∥βkj

f(zkj
)+(1−βkj

)zkj
− zkj

∥ = βkj
∥f(zkj

)− zkj
∥ → 0 (j → +∞). (4.6)

From the definition of ωk, we obtain

∥ωkj
−xkj

∥ = ∥xkj
+αkj

(xkj
−xkj−1)−xkj

∥ = βkj
·
αkj

βkj

∥xkj
−xkj−1∥

(n1)→ 0 (j → +∞), (4.7)

where (n1) follows from the boundedness of {βk} and Remark 4.2(i). Therefore, we have

∥xkj+1 − xkj∥ ≤ ∥xkj+1 − zkj∥+ ∥zkj − ωkj∥+ ∥ωkj − xkj∥ → 0 (j → +∞), (4.8)
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Since the sequence {xkj
} is bounded, it follows that there exists a subsequence {xkji

} of
{xkj
} converging weakly to a point x̄ ∈ H such that

lim sup
j→+∞

⟨f(x∗)− x∗, xkj
− x∗⟩ = lim

i→+∞
⟨f(x∗)− x∗, xkji

− x∗⟩ = ⟨f(x∗)− x∗, x̄− x∗⟩. (4.9)

From (4.7), we obtain ωkji
⇀ x̄ (i → +∞). Combining (4.4) and Lemma 4.4(ii), we get

x̄ ∈ SOL(C,F ). Therefore,

lim sup
j→+∞

Ωkj = lim sup
j→+∞

(
M8

1− ρ
·
αkj

βkj

∥xkj − xkj−1∥+
2

1− ρ
⟨f(x∗)− x∗, xkj+1 − x∗⟩)

(o1)
=

2

1− ρ
lim sup
j→+∞

⟨f(x∗)− x∗, xkj+1 − x∗⟩

≤ 2

1− ρ
lim sup
j→+∞

⟨f(x∗)− x∗, xkj+1 − xkj
⟩+ 2

1− ρ
lim sup
j→+∞

⟨f(x∗)− x∗, xkj
− x∗⟩

(p1)
=

2

1− ρ
lim sup
j→+∞

⟨f(x∗)− x∗, xkj
− x∗⟩

(q1)
=

2

1− ρ
⟨f(x∗)− x∗, x̄− x∗⟩

(r1)

≤ 0,

where (o1) holds because of Remark 4.2(i), (p1) follows from (4.8), (q1) holds according to
(4.9), and (r1) is true in view of x∗ = PSOL(C,F )f(x

∗), x̄ ∈ SOL(C,F ) and Lemma 2.6(i).
In view of Lemma 2.12 we have lim

k→+∞
∥xk − x∗∥ = 0. This completes the proof.

5 Numerical Experiments

Numerical experiments will be presented in this section to illustrate the performance of our
proposed methods. All programs are written in Matlab R2019a and performed on a PC
Desktop Intel(R) Core(TM) i5-6200U CPU@2.30GHz 2.30GHz, RAM 4.00GB.

Example 5.1. Consider the linear mapping F (x) = Kx. The feasible set C ⊆ Rn is an
ellipsoid in Rn defined as

C := {x ∈ Rn : (x− d)TP (x− d) ≤ r2},

where K and P are positive definite matrices, d( ̸= 0) ∈ Rn and r > 0.

Define c : Rn → R by c(x) = 1
2 [(x − d)TP (x − d) − r2], then C is a level set of c, i.e.,

C = {x ∈ Rn : c(x) ≤ 0}. It is easy to verify that c′(x) = P (x− d). Obviously,

∥c′(x)− c′(y)∥ = ∥P (x− d)− P (y − d)∥ = ∥P (x− y)∥ ≤ ∥P∥∥x− y∥, ∀x, y ∈ Rn.

So, c′(x) is a ∥P∥-Lipschitz continuous mapping, i.e., L1 = ∥P∥. We use λmax and λmin to
represent the maximum and minimum eigenvalues of P , respectively. Then,

λmin∥x− d∥2 ≤ (x− d)TP (x− d) ≤ λmax∥x− d∥2, ∀x ∈ Rn.

Note that (x− d)TP (x− d)− r2 = 0 holds for all x ∈ ∂C, we have

r√
λmax

≤ ∥x− d∥ ≤ r√
λmin

, ∀x ∈ ∂C.
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Therefore, we get

∥F (x)∥
∥c′(x)∥

=
∥Kx∥

∥P (x− d)∥
≤ ∥K∥(∥x− d∥+ ∥d∥)

λmin∥x− d∥
≤ ∥K∥

√
λmax(r +

√
λmin∥d∥)

λ
3
2

minr
, ∀x ∈ ∂C.

This implies that

M ′ =
∥K∥
√
λmax(r +

√
λmin∥d∥)

λ
3
2

minr
.

Hence, we obtain

M = M ′L1 =
∥P∥∥K∥

√
λmax(r +

√
λmin∥d∥)

λ
3
2

minr
.

We compare [16, Algorithm 3.4],[15, Algorithm 1] with Algorithm 3.1, and use their
corresponding parameters as following. The numerical experimental results are shown in
Figure 1.

1. [16, Algorithm 3.4]: σ = 1, ρ = 0.9, ν = 0.91, Dk = ∥xk − yk∥.
2. [15, Algorithm 1]: ξ = 1, η = 2, θ = 0.99, γ = 1.5, Dk = ∥xk − yk∥.
3. Algorithm 3.1: σ = 5, γ = 0.1, µ = 0.9, α = 0.6, Dk = ∥ωk − yk∥.

Figure 1: Numerical results of Example 5.1, n = 100, x0 = x1 random.

Example 5.2. Consider H := L2[0, 1] with inner product

⟨x, y⟩ :=
∫ 1

0

x(t)y(t)dt,

and induced norm

∥x∥ := (

∫ 1

0

|x(t)|2dt) 1
2 .

Define a mapping F : H → H by F (x(t)) = max{0, x(t)}, ∀x ∈ H. Denote by C[0, 1]
the continuous function space defined on the interval [0,1] and choose an arbitrary fixed
φ ∈ C[0, 1]. Let C := {x ∈ H : ∥φx∥ ≤ 1}. It is very easy to verify that C is a nonempty
closed convex subset of H. In particular, if we choose φ(t) = 1, ∀t ∈ [0, 1], then C becomes
the unit closed ball of H, i.e., C = {x ∈ H : ∥x∥ ≤ 1}.

Define c : H → R by c(x) = 1
2 (∥φx∥

2 − 1), ∀x ∈ H, then c is a convex function and C is
a level set of c, i.e., C = {x ∈ H : c(x) ≤ 0}. Also, it is easy to see that c is differentiable on
H and c′(x) = φ2x, ∀x ∈ H. In addition, for any x, y ∈ H we have

∥c′(x)− c′(y)∥ = ∥φ2(x− y)∥ ≤ ( max
t∈[0,1]

|φ(t)|)2∥x− y∥,
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thus c is a ( max
t∈[0,1]

|φ(t)|)2−Lipschitz continuous mapping, i.e., L1 = ( max
t∈[0,1]

|φ(t)|)2.

In practical calculation, we choose φ(t) := e−t, ∀t ∈ [0, 1]. Then we get L1 = 1. Define

x+(t) =

{
x(t), if x(t) ≥ 0;

0, if x(t) < 0.

We deduce that

∥Fx∥
∥c′(x)∥

=
∥x+(t)∥
∥φ2x∥

≤ ∥x∥
( min
t∈[0,1]

|φ(t)|)2∥x∥
= e2.

So we have M ′ = e2. Hence, we obtain M = M ′L1 = e2.
For weak convergence algorithms, we compare [16, Algorithm 3.4], [15, Algorithm 1]

with Algorithm 3.1. The respective parameters are consistent with those in Example 5.1.
The numerical experimental results are shown in Figure 2.

Figure 2: Numerical results of Example 5.2, x0 = x1 = 20e−t.

For strong convergence algorithms, we compare [29, Algorithm 3.2], [4, Algorithm 5.1]
with Algorithm 4.1. Note that [29, Algorithm 3.2] and [4, Algorithm 5.1] are difficult to
implement because it seems not easy to find the explicit expression of projection operator
PC . So, here we use the technique proposed in this paper, that is, to replace C with Ck

in k − th step iteration. We call [29, Algorithm 3.2] and [4, Algorithm 5.1] with Ck the
relaxed-Algorithm 3.2 and relaxed-Algorithm 5.1, respectively. The parameters are
shown below and the numerical experimental results are shown in Figure 3.

1. relaxed-Algorithm 3.2: τ = α = 1, µ = 0.9, βk = 1
k+1 , εk = β2

k, f(x) =
1
2x, Dk =

∥ωk − yk∥.
2. Algorithm 4.1: σ = 5, γ = 0.1, µ = 0.9, α = 0.6, βk = 1

2(k+1) , εk = β2
k, f(x) =

9
10x, Dk = ∥ωk − yk∥.

6 Conclusion

In this paper, we present relaxation inertial projection algorithms for solving monotone
variational inequality problem in Hilbert space. In these algorithms, each iteration only
needs to calculate the projection onto the half-space Ck once, thus reducing the number of
projections of previous algorithms, and the selection of parameters is no longer dependent
on the solution of the variational inequality. Besides, the step size can be selected in some
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Figure 3: Numerical results of Example 5.2, x0 = x1 = 20e−t.

adaptive ways, which means that we have no need to know or to estimate the Lipschitz
constant of the mapping. Hence, we improve and extend some recent results in the literature.
In order to ensure the convergence of algorithms, Assumption 3.3(iv) is needed. Sometimes,
this condition is not easy to verify, so how to weaken or remove this condition will be an
interesting question.
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