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Abstract: In this paper, we propose a class of fast iterative shrinkage thresholding algorithm which contains
the original FISTA scheme, the FISTA-CD scheme and the FISTA-Mod. We prove that the objective value
sequence achieves O(k%) complexity. Moreover, we prove that any limit point of the sequence generated by
the proposed algorithm is a minimizer of the objective function. At last, we propose a modified adaptive
restart strategy which can dramatically improve the convergence rate of the proposed algorithms. Numerical
results demonstrate that the proposed algorithm is competitive with several known methods.
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Introduction

In this paper, we focus on the following structured non-smooth optimization problem

min 6(z) = f(2) + r(2), (1.1)
where f is convex and differentiable with gradient V f(«) being L ¢-Lipschitz continuous and
r(x) is proper, convex and lower-semi-continuous. We assume that the set of minimizers of
problem (1.1) is non-empty, i.e. Argmin¢ # (). The problem (1.1) often appears in many
applications, such as in compressive sensing, machine learning, high-dimensional variable
selection, data fitting and image reconstruction [4, 6, 8].

A typical optimization strategy for solving large-scale problem (1.1) is a so-called prox-
imal gradient algorithm (PG). The proximal gradient algorithm has the property that the
objective value sequence achieves O(%) complexity and can be slow in practice in its orig-
inal form [14]. Acceleration techniques for PG has firstly been considered by Nesterov
[13] for projected gradient descent. Beck and Teboulle [2] proposed the fast iterative shrink-
age/thresholding algorithm (FISTA) and proved that the objective value sequence of FISTA
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achieves 0(1712) complexity. FISTA performs an extrapolation technique which has the fol-
lowing form
y* = ok BR(ak — 2k, 12)
aF = arg mingern {Vf(y*) x + 5 |z — y*|I* + r(2)}, '

k_ 14+4/1+4(tF)?2 . L. .
where g% = ttk—Jrll, thtl = % and t!' = 1. Besides achieving optimal convergence

rate O (7 ) for objective function value, Chambolle and Dossal [7] established the convergence
of the whole convergence of (1.2) with the extrapolation sequence

Tk — 1 k+a-—1
k __ k __
8 = T = — (1.3)

where a > 2. Tao, Boley and Zhang [16] established local linear convergence of ISTA and
FISTA and showed that FISTA’s convergence rate can slow down as it proceeds, eventually
becoming slower than ISTA when they are applied to solve the LASSO problem. Johnstone
and Moulin [9] established the convergence of the whole convergence generated by (1.2) with
extrapolation sequence 0 < 3* < j for some constant 0 < § < 1. They also showed that the
proposed algorithm is locally linearly convergent for the LASSO problem. O’Donoghue and
Candse [14] proposed an adaptive restart scheme for 4% based on FISTA for solving problem
(1.1) with r(«) = 0. The basic idea of restarting is that once the objective function value of
#(x%) is about to increase, the algorithm resets the extrapolation parameter 5*. Ochs and
Pock [15] proposed an adaptively FISTA algorithm and established that it is equivalent to a
proximal variant of the SR1 quasi-Newton method. They also proved that every limit point
of the sequence generated by the algorithm is a stationary point of problem (1.1) where f
is differentiable with gradient V f(x) being L ¢-Lipschitz continuous and r(z) is lower-semi-
continuous. However, the adaptively FISTA can not guarantee an optimal convergence rate
of O({%) as for FISTA. Under the error bound condition [12], Wen et al.[17] showed that
if the extrapolation coefficients {3*} are chosen below a given threshold, then the sequence
generated converges R-linearly to a stationary point of problem (1.1) without convexity of
f. Moreover, the corresponding sequence of objective values is also R-linearly convergent.
Bareilles and Tutzeler [1] proposed two modified proximal gradient methods exhibiting a
stable identification behavior while maintaining the convergence rate of FISTA both in
theory and in practice. In their algorithm, efficient practical tests to determine whether or
not to perform the FISTA iteration. We refer to papers [1, 5, 10, 11] for more advances in
this area.
Recently, Liang et al. [11] proposed a modified FISTA scheme (1.2) with the extrapola-
tion sequence
th —1 P+ g+ 4(tF)?
/Bk:W7 tk+1:f’ (14)
where p,q € [0,1] and t! = 1. The modified FISTA scheme has the property that the objec-
tive value sequence achieves O(7) complexity. Numerical results in [11] and [7] showed that
different parameters seriously affect practical performance of their algorithm. To improve
the efficiency of the modified FISTA scheme of [11] and the algorithm of [7] further, by
the use of the convex combination of T% of (1.3) and t* of (1.4), we propose a class of fast
iterative shrinkage thresholding algorithm to solve problem (1.1). The proposed algorithm
includes FISTA, the algorithms of [7] and [11] as special cases. The main contributions of
our paper are summarized as follows
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(1) The sequence {||z* — x*||} is convergent for any x* € Argmin ¢ and any limit point
of z¥ is a solution of problem (1.1).

(2) The objective value sequence of the proposed algorithm possesses O(k—lz,) complexity.

(3) We give the possibility reason why algorithm of Chambolle and Dossal’s [7] with
relatively large values of a performs better than FISTA and Liang’s algorithm [11] do.

(4) We proposed a modified adaptive restart strategy which can be up to an order
faster than the original scheme.

The rest of the paper is organized as follows. Some notations and preliminary results
are given in Section 2. The proposed algorithm and its convergence results are presented in
Section 3. In Section 4, we propose a modified adaptive restart strategy. We report some
numerical results in Section 5 and make some conclusions in the last section.

Throughout the paper, || - || denotes the Euclidean norm of vectors. Let z* be a global
minimizer of the problem (1.1). Let z; denote the collection of columns and entries of z,
whose indices are in an index set T' C {1, 2,3, ...,n}, respectively. Denote the subdifferential
of r(z) at « by or(x).

Preliminaries

In this section, we present some notations, lemmas and theorems which will be used in the
rest of the paper.

Lemma 2.1 (Lemma 2.1 of [2]). Suppose that f is continuously differentiable function with

Lipschitz continuous gradient and Lipschitz constant Ly. Then, for any v € (0, L%],

fz) < f(y)+Vf(y)T(33—y)+%llﬂf—yll2 (2.1)

for every x,y € R™.

For any v > 0, consider the following quadratic approximation of ¢(x) at a given y:
1
Q- (z,y) = f(y) + VI(y) (x —y) + ﬂux —ylI* +r(2). (2.2)

It is obvious that Q(z,y) is strongly convex with respect to x, hence it admits a unique
minimizer
py(y) := arg min Q4 (z,y). (2.3)
Lemma 2.2 (Lemma 2.3 of [2]). Lety € R™ and v € (0, L%] such that
d(py(y)) < Qy(py(y),y)- (2.4)

Then for any x € R™, we have
o(z) — d(py(y)) = %pr(y) —yl*+ %(pw(y) )y —a). (2.5)

Lemma 2.3 (Lemma 4.2 of [2]). Let {a*} and {b*} be positive sequences of reals satisfying
ab —aF Tt > P bk WE > 1, with o' + bt <e¢, ¢>0. (2.6)

Then, a* < ¢ for every k > 1.
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l 1

Suppose p € (0,1] and g > 0. Given a positive integer [, define the sum S; = é D ico e

and a new sequence £* by

ﬁ:1+&+§+4pq ). (2.7)

(I+1)

Denote [z] the smallest integer that is larger than x, and define the following two constants

p+2 p+2+4+25
b= [—EF2 g oo E2E2N 28)
P+ 5pun P+ 50D

Lemma 2.4 (Lemma 3.6 of [11]). For the t* update rule (1.4) with ¢ >0 and 0 < p < 1.
Let t° = 1, then for all positive integer k, it holds that

th > @. (2.9)

Lemma 2.5 (Lemma 3.11 of [11]). For the t* update rule (1.4) with p,q € (0,1]. it holds
that

th <tk (2.10)

for all positive integer k.

Lemma 2.6 (Lemma 3.12 of [11]). For all j > 1, define g% = [[F_ . a; = [ % for

i=j i=j
all j,k, and B7* =1 for all k < j. Let 1 > [ 1, then for all j, it holds that

q
p(2—p)

oo
> B < i+t 2. (2.11)
k=j

. ; k -
Lemma 2.7 (Lgmma 4.1 of [7]). For all j > 1, let us define B3F = I, al = [Tz Lr—i for
all k> j, and B7* =1 for all k < j. Then, we have for all j

o0

St < jt+s (2.12)

/ 2
k=j

Lemma 2.8 (Lemma 3.1 of [7]). Let v € (0, Lif], where Ly is the Lipschitz constant of Vf,
and T = Py(y). Then

- 2
¢<x)+”””2f” < 9(a) +

= — ylI?
—, V. R™. 2.13

2, o € (2.13)
Theorem 2.9 (Theorem 3.2 of [7]). If the sequence {t"} satisfies p" = (t"~1)2 —(#")2 +t" >
0 andt' =1, ifO<7§L%_, then for any N > 2

N 0 _ N+1
(tN+1)2wN+1 + an+1wn < f (2_14>

n=1

where w"™ = ¢(x™) — d(x*), V" = w2l g yn = 271 4 t(am — ")
J 2 .
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Algorithm and Its Convergence

As we all known, the modified FISTA scheme [11] and the algorithm [7] possess properties
(1) and (2). Moreover, numerical results show that the modified FISTA scheme [11] and
the algorithm [7] perform better than FISTA in practice. To improve the efficiency of the
modified FISTA scheme [11] and the algorithm [7] further, we propose a class of fast iterative
shrinkage thresholding algorithm which utilize the convex combination of 7% of (1.3) and t*
of (1.4). Specifically, we set

wk —1

gr= Uk Wk =BT (1), B e 0,1] (3.1)

n (1.2). The new algorithm is described below.

Algorithm 3.1. (A class of FISTA schme)
Step 0. Given an initial point 20 = 2 € R"™, constants p € (0,1], 0 < ¢ < (2 — p)?,
tt=1,a>2 8€l0,1] andO<7§Lif. Set k :=1.
Step 1. If the stopping condition is satisfied, then stop. Otherwise, go to Step 2.
Step 2. Compute $* by (3.1).
Step 3. Update y* = 2% + g¥(2* — 2F~1) and 2F*! = P, (y").
Step 4. Set k:=k + 1 and go to Step 1.

From Algorithm 3.1, it is easy to see that Algorithm 3.1 with § = 0 reduces to the
modified FISTA [11], while Algorithm 3.1 with 5 = 1 reduces to the algorithm [7].

Global convergence of function sequence

In this section, we shall establish that the new algorithm achieves the worst-case O(k—lz)
optimal convergence rate in terms of objective function value. The proof of the following
theorem heavily depends on the proof of Lemma 4.1 and Theorem 4.4 [2]. For completeness,
we presented the details of the proofs. We first give a useful lemma.

Lemma 3.2. Suppose that w* is defined by (3.1) with T =1 and t° = 1.

(i) Ifa>2,0<p<land0<q<(2-p)? thenwkz(ﬁ—&—%p)(kz—i—l).

a

(i) If0 < ¢ < (2 —p)?, p € (0,1] and p+./q <1 and a > 2, then we have

(W) — b @) < 0 - BT+ va- 1)+ G- <0, (32)

Proof. By Lemma 2.4, we have

wh = BT* + (1 — Btk > (g + #p)(k +1)

e A Y

Bla—2)
* a 2
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Now, we begin to prove (ii). Since a > 2, we have

(Tk+1)2 _ Tk+1 _ (Tk)2 _ (Tk+1 + Tk)(Tk+1 _ Tk) _ Tk—i—l
%k +2a+1 k+a+1

a? B a
k2-a)—((a—3)*-%)

< o (3.4)
On the other hand, by (1.4) and 0 < ¢ < (2 — p)?, we have

2
(tF1)2 — prktt 4 p 4_‘1 = (t%)?2

—
— (tk+1)2 _ tk+1 + (1 _ p)tO + P —q < (tk)2
-
-

By the definition of w¥, we have

(wk+1)2 7 ,warl _ (wk)2
— ,82(Tk+1)2 + (1 _ ﬁ)2(tk+1)2 + 2,8(1 _ B)Tk+1tk+1

BT = (1= B — 26(1 - H)TH — BT — (1 = )i+

< BQTIH-I + (1 o 5)2tk+1 + 25(1 _ ﬂ)Tk+1tk+1 _ 25(1 _ ﬁ)Tktk _ ﬁTk—i-l _ (1 _ ﬁ)tk+1
— 6(]— o /6)(2Tk+1tk+1 o QTktk o T}C+1 o tk+1)
< B(L=B)2AT" + é)(tk - W) — Tk — % — thtL _okek)
_ e R B AR V. N G
= B(l—ﬁ)(2(Tt+TT+E+ 5 )—T . t 2T ")
k
< BU-BTHp+ v+ T P e 2 gy

= BT+ )+ va- 1)+ (- 1Dib)

where the first inequality uses (3.4) and (3.5), the second inequality uses t*+! > ¢* + %ﬂ
and the last inequality uses the monotonicity of ¢*. O

Remark 3.3. As pointed out by [11], the practical performance of the modified FISTA
[11] depends on the speed of 3% approaching 1. From Figure 1, we see that 3* approaches
1 much slower for the choice of p = %,q = 0.1. This fact also shows that the condition
p++/q <1 may be a good choice for controlling the speed of B% approaching 1.

The following theorem shows that the proposed algorithm achieves the worst-case O(k%)
optimal convergence rate in terms of objective function value.

Theorem 3.4. Suppose that p € (0,1], 0 < ¢ < (2—p)?, p+/q <1 and a > 2 for the
proposed algorithm. Then

, (3.6)



A CLASS OF FAST ITERATIVE SHRINKAGE THRESHOLDING ALGORITHM 535

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

a
e p=

= 3=
—4— p=1/20,g=0.1,4=0

0 500 1000 1500 2000 0 500 1000 1500 2000

Value of 5% under different p.q Value of sdk under different p,q
Figure 1: p,q control the speed Figure 2: p,q control the speed
of B¥ approaching its limits in of B* approaching its limits in
Algorithm 3.1 Algorithm 3.1

where ¢ = g + %p and v € (0, L%] and x* € Argmin ¢.
Proof. Define v* = ¢(2*) — ¢(2*) and u* = wFz¥ — (w* — 1)2¥~! — 2*. Then we apply
Lemma 2.2 at the points (z = 2%,y = y*) and at (z = 2%,y = y*) to get

k UkJrl) ”xk+1 _ yk”Q + 2(l,k+1 _ yk)T(y

2y(v >
2 AN E e 7 i (C A T R (T o}

Multiplying the first inequality by w**! — 1 and then adding to the second inequality, we
get

2’}/((wk+1—1)vk—wk+1’uk+l) > ’warl||:Ck+17yk||2+2(£Ek+17yk)T(’wk+1yk7(wk+171)xk7$*).
(3.7)
Multiplying above inequality by w**! and using (i) of Lemma 3.2, we get
2’y((wk)2vk _ (wk+1)2vk+1) > ||wk+1<xk+1 _ yk)HZ

3.8
+ 2wk+1(xk+1 — yk)T(wkHyk — (wlCJrl — 1)xk —z*). (8:8)

By the Pythagoras relation ||b — al|? +2(b—a)T(a —¢) = ||b — ¢[|* — ||a — ¢||?, we get

2,)/((wk)2vk _ (’wk+1)2’l}k+l) > Hwk+lxk+l _ (wk+1 _ 1).Tk _ .13*||2

_ Hwk+1yk _ (wk+1 _ l)xk _ x*HQ (3‘9)
Since y* = ¥ + Z’)I;—Ill(xk —zF 1), we get
2y (wF )20k — 2y (2R L > (L2 (2. (3.10)
Define a* = 2y(w*)?vk, b% = ||u*||? and ¢ = ||y' —2*||? = ||z — 2*||?. Proceeding the similar
analysis as that of Theorem 4.4 of [2], we get a! + b! < ¢. By Lemma 2.3, we get
2y(wk)?vk < |20 — 2*|2. (3.11)

Furthermore, by Lemma 3.2, we get the conclusion. O
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Convergence analysis of {z"}

In this section, we shall show that {||z* —2*||} is convergent and any limit point of {z*} is a
solution of problem (1.1). The proof of the following theorem heavily depends on the proof
of Lemma 4.1 and Theorem 4.1 of [7] and Lemma 3.12 and Theorem 3.5 of [11]. Before
presenting the result, we first present some supporting lemmas. By the definition of w* and
Lemma 2.5, we get the following the lemma.

Lemma 3.5. Letp € (0,1] and 0 < ¢ < (2 — p)?. Then we have
wh < (1 - B)t* + gT". (3.12)

Lemma 3.6. Let p € (0,1] and 0 < q < (2 —p)%. If 2 < ap < 2a — 2, then there exists
k0 = 2‘17:2”' such that for all k > k°

—2
ap
th > 1", (3.13)
Proof. By (2.9) and 2 < ap < 2a — 2, we have

k+1 _k—|—a—1

th — Tk 5 p1 . 1
o@—
i k(g_az)Jrg_ za 2
- k(ap2; )+ap_2aa+
> 0,
when k > k0 = 20-2-0p O

ap—2
The following lemma shows that 8* of (3.1) is a convex combination of % and tti;l
Moreover, the sequence {3*} of (3.1) is bounded above.

Lemma 3.7. Letp € (0,1], 0 < ¢ < (2 —p)? and a > 2. Then we have

wk —1 T -1 th—1 k-1 b

E _ —
,B = u}k+1 _aTk+1 +(1—Q)W_Oém+(l—a)(l—k+c), (314)

where a € [0,1]. If 2 < ap < 2a — 2, andk>k0:2aa_p+2ap, then o < 3. If a > b— 1, then

g <1— k%rc, If2<a <b—1, then there exists a positive integer k' such that

ko k-1 1
B < o VE >k (3.15)
Proof.
wk — 1 BTk —1)+ (1 —pB)(tk —1)
TwEL T BTHT 4+ (1 — B)th+1

BTk+1 ?F’;Ill +(1— 5)tk+1tt’;:11
BT+ (1 = B

TF -1 th—1
o (TG
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BTk+1

where oo = W By Lemma 3. 6 we have tk > Tk When k> k.O = % Thus

we have o < 3 when k > k°. By the definition of T%, we get L Tk+1 = k+a On the other
hand, by Lemma 2.5, we get

th—1 otk — 2 p+2tF —2—p
L g+ AR T p 2tk
2+p
Cp4 2tk
< 1- 2+p
B P+2+25 4 (P + 5k
_ b
B Ck+c

where b and ¢ appears in (2.8). Now, we consider

-1
1 b > k :1_a+1
k+c k+a k+a
b a+1

<

k+c ™ k
& bk+a)<(k+c)(at+1)
< kb—a—-1)<alc—b)+c
< a>b-—1.

Thus, we get 8% < (1 — LC) as a > b — 1. In addition, we have

b < k—l_l a+1

1— -1
k+c — k+a k+a
< k(b—a—1)>a(c—b)+c¢
Thus, we get
k—1

k
3.16
p “k+a (3.16)
whenk‘>[‘1(67bz+c]an(12§a<bfl. O

Remark 3.8. As we mentioned in Remark 3.1, the practical performance of the modified
FISTA [11] and the algorithm [7] depend on the speed of ¥ approaching 1. For the algorithm
7], BF = Tk =1 = k—jrl is monotonically decreasing on a for fixed k. In addition, from the
proof of above lemma, we see that the speed of 3¥ approaching 1 of the modified FISTA [11]
is slower than one of the algorithm [7] when 2 < a < b—1 and k is sufficiently large enough.
Thus, the algorithm [7] with a smaller a maybe lead to a weak performance. Meanwhile,
above lemma shows that the proposed algorithm with a larger a possibly leads to a faster
practical performance. Figure 2 shows graphically the behaviour of 8% under different a and
B, which verifies above argument.

The following lemma shows that Y77 . 37 is bounded above where 37 H _,; B for
all 7,k and 7% =1 for all k < j.

Lemma 3.9. For all j > 1, define p3F = Hz ]Blforall],k and B7% =1 for allk < j.
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(i) Let 1 > [ 1 and a > b—1, then for all j > 1, it holds that

q
p(2—p)
Y A< et 2, (3.17)
k=j

where b and ¢ appears in (2.8).
(ii) If 2 < a <b—1, then for all j > 1, it holds that

o~ i+5 k' +5 ‘
Yo gk < max(]T, K =), (3.18)
k=j

Proof. Ttem (i) follows from Lemma 2.6 and Lemma 3.7. If 2 < a < b — 1, we consider two
different cases. If j > k', then the conclusion follows from Lemma 2.7. Suppose j < k'.
Then we have

k k
j E'—1 k' k'4+1 k-3k—2k—1 _k'41
ik = b < - < 3 1

g gﬁ_lglﬁ kK1 +2k'+3k' +4 k k+1k+2—( A )° (3.19)

for all k — k' > 2. Observe that 3! = 0, then Vk > 1, g% = 0. It follows that for all
2<j<k!

) k1+1

Sor = Swer 5
k=j k=j k=k1+2
. — 1
< K-+ 41 > =
k=k'42
< kK —j+24+ (kP +1)? o
< —-J+ + P
t=k1+1
1
< K-j+2+ Gk + 1)
= J2t ke ) e
E'+5
= k'—j .
It
The proof is completed. O
Define 6 = M The following theorem shows that the series Y ;= | ké* is con-

vergent.

Lemma 3.10. Supposep € (0,1], ¢ < (2—p)?, p+/q <1 anda > 2. Then Y ;- ké* < oo.
In particular, there exists C > 0 such that for all k > 1, ok < k%

Proof. Applying Lemma 2.8 with y = y* = ¥ + g¥(2* — 2%71) and x = 2* leads to

L gk |2

2 (B%)?[la® — 212

< ¢(ah) + %

¢($k+1) 4

> (3.20)

Then we have
6k+1 _ (ﬁk)25k < ,Y(Uk _ Uk+1) (3.21)
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where vF = ¢(zF) — ¢(2*). Define a* = ttijll and bF = % = % By Lemma 3.7, we
have

(B2 = (ab+(1-a)ab)?
= 2" + (1 — @)%(a®)? + 2a(1 — a)a*b*
< a?(0)? + (1 - a)?(@")? + a(l - a)((a®)* + (b)?)
(

a(b®)? 4+ (1 — a)(a®)?. (3.22)

We consider two different cases. If @ > b — 1, by Lemma 3.7, (3.21) and (3.22), we get

(B)% < (@) (3.23)
and
FEFL  (aF)26F < y(uF — okt (3.24)
where
T o2

Multiplying (3.24) by (k + ¢)? and summing from k£ = 1 to N, we get

N N
> (k+0)?(0M - (a <Y (k) (wf — bt (3.26)
k=1 k=1

Since a' = 0, we get

N N N
D (k)@ = (@")26%) = Y (k4 )2 =) (k+c— )%
k=1 k=1 k=2
N-1 N
= (N+¢)?0" + ) (k406" = (k+c—b)**
k=1 k=2
N
= (N+020" ' 4+ > ((k+c—1)% = (k+c— b))
k=2
N
= (N+¢)?"+) (2k+2c—b—1)(b—1)5*
k=2
N

> (N 400N+ (2k) (b — 1)0".
k=2
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By (3.26) and the last inequality, we get

N N
(N 420N 4y 2k(b—1)6" < ) (k+c)*(vF —o*F)
k=2 k=1
N
= (1 +c)%' —y(N + )2V 4 vZ(k + )%k
k=2
N-1
— Z(k‘—l—c)%k“
k=1
< A1+ +wz (k+¢)? = (k4c—1)*)"
= y(1+c)*! +7 Z(Zk: +2¢ — 1)o*
k=2
N
< (14t + 4 Z(2k + 2¢)v”
k=2

From the proof of Theorem 3.3 of [11] and the last inequality, we get that Y ;- ké* < oo
and there exists C' > 0 such that 6* < k% forallk > 1. If 2 <a < b—1, by Lemma 3.7, then
there exists a positive integer k! such that a® < b*. Further by (3.21) and (3.22) we have

SEFL — (0%)26% < y(v* — 0Pt (3.27)

for all k> k'. Multiplying (3.27) by (k + a)? and summing from k = k' to N, we get

N N
Z (k4 a)?(0%F — (b)%6%) < v Z (k + a)?(v* —o*H), (3.28)
k=k! k=k1
Similarly, we get
N-1 )
(N+a)?" ™+ > ((k+a—1)% = (k—1)%)8" — (k' = 1)6*
k=k1+1

N
<A((a+ k) = (N+a)0V ™+ Y ((k+a)? = (k+a—1)*)").

k=k14+1

That is,

(N +a)26N+1 4 Z a(2k + a — 2)6F — (k' — 1)6%

k=kl+1
N
<7((a+ k)% = (N +a)?oN T 4 Z (2k 4 2a — 1)o").
k=k'+1

By Theorem 2.9 and the last inequality, we get the conclusion. O

The following theorem shows that {||z* —z*||} is convergent and any limit point of {x*}
is a solution of problem (1.1).
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Theorem 3.11. Suppose p € (0,1], ¢ < (2—p)?, p+/q <1 and a > 2. Then {||z* —2*||}
is convergent and any limit point of {x*} is a solution of problem (1.1).

Proof. Define v* = M and 7% = M By the definition of y*, we get
v’f B vk+1 ka — gkt + k1 m*HQ B ka-i—l _ -75*”2
2 2
= oML (aF — 2FTHT (g - %) (3.29)

(5k+l T (yk _ xk+1)T($k+1 _ $*) _ ﬁk(l‘k _ J,‘k_l)T(l‘k_H _ Qf*)(330)

By using the monotonicity of dr, the definition of z* and y* — 2%+ — AV f(y*) € yOr(zF+1),
we get
(" — 2™ =4V f(Y*) + V@) @ —at) >0 (3.31)

which yields
(vF — )T (@ —a) £ (V) = V) @ —a) 2 0. (3.32)
The last inequality and (3.30) lead to
vF —f L > SR (U () — V()T (@R — 2*) — B (ak — DT (2 2%). (3.33)
Note that

(Vf(") = V(@) (" —a%)
= (V") = V@) @ —y* +y" )

1 * *
2 fl\vf(yk) = V)P + (V) = V) @ = yb)
f
1 . 1 . L
> Vi) = V)P - T IVAEY) - Vi) - 50T
f f
_ Ly
=- T".
By the last inequality and (3.33), we get
ofF — Tt > Sk _ IVTLka _ Bk(xk o xkfl)T(karl o .’E*) (334)
Again using (3.29), we get
Pt —F = 6k (g — P T (2 — o). (3.35)
The last inequality and (3.35) lead to
,Uk+1 _ ’Uk + Bk(kal _ Uk) < _5k+1 + ﬂk(Sk + ’YTLJCTIC —|—,Bk(33k _ xkfl)T(karl _ .I‘k)
L
= STh SLTR (85 (80",

where we used the fact

e O et "l

2 2

skl _ Bk(xk - xk—l)T(xk-&-l _ xk) _ _(ﬂk)2 | (3.36)
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Since0<,6kglandl—%>0,weget

P b gER — k) < (1 - %)T’f 4 28ks% < 2% 5", (3.37)
Letting 0% = max(0,v* — v*~1), we get
oF 1 < gF (0" 4 26%). (3.38)

Since B! = 0, by applying the last inequality recursively, we obtain

k Kk k
oFt <2 ([ 8o =2 prtel. (3.39)
Jj=2

i=2 I=j

By Lemma 3.9, we get

0
k=2

IN

oo k
2303 it

j=1j=2
S
=2 k=j

< 2 Z 67 (max(j + ¢ + 2b, max(
j=1

IN

i +5 . kY45
J 7k17]+ 5

))-

By Lemma 3.10, we obtain 3>, §% < co. Define s = vF — 3% 9%, Since v* > 0, 67 > 0

and Zzozl 6F < oo, we get sk > — Zle 6%, which shows s* is bounded below. Furthermore,
by the definition of s*, we get

k k
B Y S B S o VS (3.40)
i=1

i=1

which implies that {s*} is a nondecreasing sequence. Hence {s*} is convergent. It follows
that {v*} is convergent, meaning that llim ||z* —*|| exists for any o* such that 0 € Vf(z*)+
o0
or(z*).
Let 7 be any limit point of {z*}. Then there exists an infinite set K C {1,2,--- ,n} such
that 2% — 7 for k € K. By the optimal condition of P, (y*), we get

y* — M — V(YY) € o™t (3.41)

for any k£ € K. Note that Lemma 3.7 shows that 0 < 8% < 1 and Lemma 3.10 shows that
% — k=1 — 0 as k — co. Since Vf(.) is Lipschitz continuous, y* = z¥ 4+ g*(2F — z*F~1)
and Or(x) is closed, we get 0 € Vf(Z) + Or(Z), i.e. Z is a solution of (1.1). The proof is
completed. O

A Modified Restarting Strategy

As pointed out by Tao, Boley and Zhang [16] that ISTA and FISTA have the local lin-
ear convergence, but FISTA’s convergence rate can slow down as it proceeds, eventually
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becoming slower than ISTA when they are applied to solve the LASSO problem. This is
mainly caused by the oscillatory behavior of scheme [10]. An efficient way to deal way with
oscillation is the restart technique developed in [14]. The basic idea of restart is that if the
condition

(yF — 2T (M — 2%y >0 (4.1)
is satisfied, then the algorithm resets t* and y* in (1.2). Many numerical experiments
[11, 10, 14] show that this restart strategy is very efficient. Moreover, the restart technique
(4.1) has also been adopted in the popular software TFOCS [3]. Note that if y* = 2* in
(1.2), then (4.1) reduces to

(v — 2 )T (@M = k) = gt = P > 0. (42)

It seems reasonable to use the following restart condition
<yk _ xk—&-l)T(xk-i-l _ mk) > _cHyk _ $k+1H2, (43)

where 0 < ¢ < 1. Clearly, the condition (4.3) is weaker than the condition (4.1) and (4.3)
with ¢ = 0 reduces to the condition (4.1). Moreover, the condition (4.3) is equivalent to

(y* — " HT (1 = )zt — 2 4+ eyF) > 0. (4.4)

which implies that the condition (4.1) does not add extra computation cost when it was
compared with the condition (4.1).

Numerical Experiments

In this section, we state some numerical experiments to test the performance of the restart
strategy (4.3) and the proposed algorithm. We now briefly describe the implementation
details of Algorithm 3.1. We implement Algorithm 3.1 with the following parameters g = 0.5,
p=0.98, ¢ =10~* and a = 2.1. For convenience, we abbreviate Algorithm 3.1 as FISTA-c,
Algorithm 3.1 with the restart technique (4.3) as FISTA-c-new-ar, FISTA with the restart
technique (4.1) as FISTA-ar and FISTA with the restart technique (4.3) as FISTA-new-
ar respectively. All codes are written in MATLAB 7.0 and all tests described in this section
are performed on a PC with Intel 15-3230 2.6GHZ CPU processor and 16G RAM memory
with a Windows operating system.

In first numerical experiment, we test the efficiency of the restart condition (4.3). We
consider the simple least square problem:

min o(x) = 5| Az, (5.1)

where A is of the form

—-22

This problem has a unique minimizer z* = 0. Choose Ly = [|A[|> = 16. We set ¢ = = &

and the initial point 2 = 10* in all tested four algorithms. We stop all tested algorithm if
#(z*) < 1077 or the number of iteration exceeds 15000. Figures 5-6 plot the evolution of the

objective function value ¢(x*) in log2 scale versus the iteration number and CPU time and
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Figure 3: Performance profiles m = n = 501 for two different adaptive restart strategy
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Figure 4: Performance profiles m = n = 1001 for two different adaptive restart strategy

the value ||z* — 2*|| in log2 scale versus the number of iteration. Tables 1-2 list the number
of iteration (iter), the final function value (fun), the CPU time (time) and the number of
restarting (restart). From Figures 3-4 and Tables 1-2, we see that FISTA-new-ar requires
least the number of iteration and the CPU time. This shows the new restart strategy (4.3)
is competitive with the restart strategy (4.1).

In second numerical experiment, we consider the following regularized logistic regression
problem:

: 1 &
min ¢(z) = — leog(l +exp(—biaw;) + Allz||1, (5.3)
=
where w; € R™, i = 1,2,--- ,m, are the training samples and b; € {—1,1} are the corre-

sponding labels. Problem (5.3) is used for training a linear classifier. We first test some
simulated data. Specifically, b; € {—1,1}, ¢ = 1,2,--- ;m, A = 0.01 and A € R™*" are

Table 1: Data for m = n = 501

iter fun time  restart
FISTA 15000 69.9267 43.71 O
FISTA-ar 7799  4.99e-08 19.20 4
FISTA-new-ar | 6688  4.99¢-08 17.89 4
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Table 2: Data for m = n = 701
iter fun time  restart
FISTA 15000 116.2188 55.71 0
FISTA-ar 6397  4.97¢e-08 19.32 3
FISTA-new-ar | 6367  4.97e-08 18.31 3
w0 . FISTA ‘ 09 T -“"1 -« FISTA
——FISTA-new-ar —— FISTA-new-ar
8 —+—FISTAC 7 08F ——FISTAC
° FISTA-c-new-ar = o FISTA-c-new-ar
§ 6 207
o ]
L 0.41
2 500 1000 1500 2000 2500 3000 107 10° 10!
Number of iteration CPU time (seconds)
Figure 5: Performance profiles Figure 6: Performance profiles
based on iteration number. based on CPU time.
constructed randomly as follows:
A = randn(m, n);x_hat = zeros(n, 1);
y = randperm(n); x_hat(y(1 : s)) = randn(s, 1); (5.4)
¢ =rand(1,1);b = sgn(Ax_hat + ¢ * ones(m, 1));
where s is a given positive number. Choose Ly = [|A|? and w; = A(4,:). At last, we

test two problems which are downloaded from the website: https://www.csie.ntu.edu.tw/
cjlin/libsvmtools
/datasets/. The input data w; in each example has been normalized, that is ||w;|| = 1 for
all i = 1,2,---m, which leads to the Lipschitz constant Ly = 1. We set ¢ = v = Lif and
the initial point 2 = 0 in all tested algorithms. In this test, we stop all tested algorithms
if o) —oE | - q5-10
max{[¢(zF)[,[¢(zF=1)[} =
the evolution of the objective function value ¢(z*) in log2 scale versus the iteration number

and the evolution of the objective function value ¢(z*) versus the CPU time in log2 scale.
Tables 3-6 list the number of iteration (iter), the final function value (fun), the CPU time
(time) and the number of restart (restart). As far as the number of iteration and the CPU
time are concerned, it is easy to see from Figures 5-12 and Tables 3-6 that FISTA-c-new-ar
is the best in all tested four algorithms, followed by the FISTA-new-ar.

or the number of iteration exceeds 15000. Figures 5-12 plot

(6] Conclusion

In this paper, we proposed a class of fast iterative shrinkage thresholding algorithm which
contains the original FISTA scheme, the FISTA-CD scheme and the FISTA-Mod. We proved
that the objective value sequence possesses O(k%) complexity. Moreover, we showed that
{||z* — x*||} is convergent for any z* € Argmin ¢ and any limit point of {z*} is a solution of



546 H. ZHOU, W. CHENG, J. YE AND J. ZHANG

12
--%-- FISTA
10 —v—FISTA-new-ar
—*—FISTA-c
- FISTA-c-new-ar
c 8
2
g
Ei 6
%)
; a4
3]
2
o 2
AL
2 . . .
0 1000 2000 3000 4000

Number of iteration

Figure 7: Performance profiles
based on iteration number.

20 T T T T
--+-- FISTA
——FISTA-new-ar
15 ——FISTAC
o FISTA-c-new-ar
=
2 10
=]
3]
c
2
o 5
=
=]
3]
2 0
O
5t
-10

0 50 100 150 200 250
Number of iteration

Figure 9: Performance profiles
based on iteration number for
abalone.

12 T T r
--4-- FISTA
10 —~—FISTA-new-ar
—*—FISTA-c
° FISTA-c-new-ar
c 8
Q
g
Ei 6
[
=]
©
L
O 2
o —
2 . . .
0 50 100 150 200

Number of iteration

Figure 11: Performance profiles
based on iteration number for
space_ga.

-,
- ~ FISTA
11 —v—FISTA-new-ar
: —4+—FISTA-c
C -+ @+ FISTA-C-new-ar
=]
Z09¢
c
2
0 0871
=
°
2071
rs)
O
0.6
102 101 10° 10t

CPU time (seconds)

Figure 8: Performance profiles
based on error in log scale.

10?

20 T T T T -
= = FISTA
—v— FISTA-new-ar
15 —+—FISTA-C 1
-0+ FISTA-c-new-ar
5
= 10 1
5]
c
2
o 5 1
2
=
3
=z 0 1
[®]
5} 1
-10

0 10 20 30 40 50 60
CPU time (seconds)
Figure 10: Performance profiles
based on CPU time for abalone.
12 T T T T T
= = FISTA
10 ——FISTA-new-ar
—4—FISTA-Cc
-9+ FISTA-c-new-ar
c 8 4
°
5
(]
Z 4 ]
s
5 2| |
1
OF 1
2 . . 1 1 1
0 5 10 15 20 25 30

CPU time (seconds)

Figure 12: Performance profiles
based on CPU time for space_ga.



A CLASS OF FAST ITERATIVE SHRINKAGE THRESHOLDING ALGORITHM 547

Table 3: Data for m = 200,n = 1000, s = 10

iter fun time restart
FISTA 1610 0.1596 8.34 0
FISTA-new-ar 1248 0.1595 5.37 4
FISTA-c 2778 0.1589 7.12 O
FISTA-c-new-ar | 1121 0.1595 4.39 7

Table 4: Data for m = 500,n = 1000, s = 20

iter fun time  restart
FISTA 2858 0.3203 29.65 0
FISTA-new-ar 1243 0.3195 18.57 3
FISTA-c 3776 0.3171 40.21 0
FISTA-c-new-ar | 876 0.3195 14.35 7

Table 5: Problem abalone with m = 4177,n =8

iter fun time  restart
FISTA 130 1.44e-02 39.06 O
FISTA-new-ar 139 1.43e-02 35.19 4
FISTA-c 209 1.43e-02 50.34 0
FISTA-c-new-ar | 96 1.43e-02 31.78 4

Table 6: Problem space_ga with m = 3107,n =6

iter fun time  restart
FISTA 181 5.03e-01 25.41 O
FISTA-new-ar 134 5.02e-01 18.02 1
FISTA-c 163  5.05e-01 23.52 0
FISTA-c-new-ar | 111  5.02e-01 1858 1
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problem (1.1). At last, we proposed a modified adaptive restart strategy which can dramat-
ically improve the convergence rate of the proposed algorithm. The numerical comparisons
with several state-of-art methods demonstrated the efficiency of the proposed algorithm.
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