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achieves O( 1
k2 ) complexity. FISTA performs an extrapolation technique which has the fol-

lowing form {
yk = xk + βk(xk − xk−1),
xk+1 = argminx∈Rn{∇f(yk)Tx+ 1

2µ∥x− yk∥2 + r(x)}, (1.2)

where βk = tk−1
tk+1 , t

k+1 =
1+

√
1+4(tk)2

2 and t1 = 1. Besides achieving optimal convergence

rateO( 1
k2 ) for objective function value, Chambolle and Dossal [7] established the convergence

of the whole convergence of (1.2) with the extrapolation sequence

βk =
T k − 1

T k+1
, T k =

k + a− 1

a
, (1.3)

where a > 2. Tao, Boley and Zhang [16] established local linear convergence of ISTA and
FISTA and showed that FISTA’s convergence rate can slow down as it proceeds, eventually
becoming slower than ISTA when they are applied to solve the LASSO problem. Johnstone
and Moulin [9] established the convergence of the whole convergence generated by (1.2) with
extrapolation sequence 0 ≤ βk ≤ β̄ for some constant 0 ≤ β̄ < 1. They also showed that the
proposed algorithm is locally linearly convergent for the LASSO problem. O’Donoghue and
Candsè [14] proposed an adaptive restart scheme for βk based on FISTA for solving problem
(1.1) with r(x) = 0. The basic idea of restarting is that once the objective function value of
ϕ(xk) is about to increase, the algorithm resets the extrapolation parameter βk. Ochs and
Pock [15] proposed an adaptively FISTA algorithm and established that it is equivalent to a
proximal variant of the SR1 quasi-Newton method. They also proved that every limit point
of the sequence generated by the algorithm is a stationary point of problem (1.1) where f
is differentiable with gradient ∇f(x) being Lf -Lipschitz continuous and r(x) is lower-semi-
continuous. However, the adaptively FISTA can not guarantee an optimal convergence rate
of O( 1

k2 ) as for FISTA. Under the error bound condition [12], Wen et al.[17] showed that
if the extrapolation coefficients {βk} are chosen below a given threshold, then the sequence
generated converges R-linearly to a stationary point of problem (1.1) without convexity of
f . Moreover, the corresponding sequence of objective values is also R-linearly convergent.
Bareilles and Iutzeler [1] proposed two modified proximal gradient methods exhibiting a
stable identification behavior while maintaining the convergence rate of FISTA both in
theory and in practice. In their algorithm, efficient practical tests to determine whether or
not to perform the FISTA iteration. We refer to papers [1, 5, 10, 11] for more advances in
this area.

Recently, Liang et al. [11] proposed a modified FISTA scheme (1.2) with the extrapola-
tion sequence

βk =
tk − 1

tk+1
, tk+1 =

p+
√
q + 4(tk)2

2
, (1.4)

where p, q ∈ [0, 1] and t1 = 1. The modified FISTA scheme has the property that the objec-
tive value sequence achieves O( 1

k2 ) complexity. Numerical results in [11] and [7] showed that
different parameters seriously affect practical performance of their algorithm. To improve
the efficiency of the modified FISTA scheme of [11] and the algorithm of [7] further, by
the use of the convex combination of T k of (1.3) and tk of (1.4), we propose a class of fast
iterative shrinkage thresholding algorithm to solve problem (1.1). The proposed algorithm
includes FISTA, the algorithms of [7] and [11] as special cases. The main contributions of
our paper are summarized as follows
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(1) The sequence {∥xk−x∗∥} is convergent for any x∗ ∈ Argminϕ and any limit point
of xk is a solution of problem (1.1).

(2) The objective value sequence of the proposed algorithm possesses O( 1
k2 ) complexity.

(3) We give the possibility reason why algorithm of Chambolle and Dossal’s [7] with
relatively large values of a performs better than FISTA and Liang’s algorithm [11] do.

(4) We proposed a modified adaptive restart strategy which can be up to an order
faster than the original scheme.

The rest of the paper is organized as follows. Some notations and preliminary results
are given in Section 2. The proposed algorithm and its convergence results are presented in
Section 3. In Section 4, we propose a modified adaptive restart strategy. We report some
numerical results in Section 5 and make some conclusions in the last section.

Throughout the paper, ∥ · ∥ denotes the Euclidean norm of vectors. Let x∗ be a global
minimizer of the problem (1.1). Let xT denote the collection of columns and entries of x,
whose indices are in an index set T ⊆ {1, 2, 3, ..., n}, respectively. Denote the subdifferential
of r(x) at x by ∂r(x).

2 Preliminaries

In this section, we present some notations, lemmas and theorems which will be used in the
rest of the paper.

Lemma 2.1 (Lemma 2.1 of [2]). Suppose that f is continuously differentiable function with
Lipschitz continuous gradient and Lipschitz constant Lf . Then, for any γ ∈ (0, 1

Lf
],

f(x) ≤ f(y) +∇f(y)T (x− y) +
1

2γ
∥x− y∥2 (2.1)

for every x, y ∈ Rn.

For any γ > 0, consider the following quadratic approximation of ϕ(x) at a given y:

Qγ(x, y) := f(y) +∇f(y)T (x− y) +
1

2γ
∥x− y∥2 + r(x). (2.2)

It is obvious that Qγ(x, y) is strongly convex with respect to x, hence it admits a unique
minimizer

pγ(y) := arg min
x∈Rn

Qγ(x, y). (2.3)

Lemma 2.2 (Lemma 2.3 of [2]). Let y ∈ Rn and γ ∈ (0, 1
Lf

] such that

ϕ(pγ(y)) ≤ Qγ(pγ(y), y). (2.4)

Then for any x ∈ Rn, we have

ϕ(x)− ϕ(pγ(y)) ≥
1

2γ
∥pγ(y)− y∥2 + 1

γ
(pγ(y)− y)T (y − x). (2.5)

Lemma 2.3 (Lemma 4.2 of [2]). Let {ak} and {bk} be positive sequences of reals satisfying

ak − ak+1 ≥ bk+1 − bk, ∀k ≥ 1, with a1 + b1 ≤ c, c > 0. (2.6)

Then, ak ≤ c for every k ≥ 1.
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Suppose p ∈ (0, 1] and q > 0. Given a positive integer l, define the sum Sl =
q
4p

∑l
i=0

1
1+i

and a new sequence t̄k by

t̄k = 1 + Sl + (
p

2
+

q

4p(l + 1)
)k. (2.7)

Denote ⌈x⌉ the smallest integer that is larger than x, and define the following two constants

b = ⌈ p+ 2

p+ q
2p(l+1)

⌉, c = ⌈p+ 2 + 2Sl

p+ q
2p(l+1)

⌉. (2.8)

Lemma 2.4 (Lemma 3.6 of [11]). For the tk update rule (1.4) with q > 0 and 0 < p ≤ 1.
Let t0 = 1, then for all positive integer k, it holds that

tk ≥ (k + 1)p

2
. (2.9)

Lemma 2.5 (Lemma 3.11 of [11]). For the tk update rule (1.4) with p, q ∈ (0, 1]. it holds
that

tk ≤ t̄k (2.10)

for all positive integer k.

Lemma 2.6 (Lemma 3.12 of [11]). For all j ≥ 1, define βj,k =
∏k

i=j ai =
∏k

i=j
ti−1−1

ti
for

all j, k, and βj,k = 1 for all k < j. Let l ≥ ⌈ q
p(2−p)⌉, then for all j, it holds that

∞∑
k=j

βj,k ≤ j + c+ 2b. (2.11)

Lemma 2.7 (Lemma 4.1 of [7]). For all j ≥ 1, let us define βj,k =
∏k

l=j α
l =

∏k
i=j

l−1
l+a for

all k ≥ j, and βj,k = 1 for all k < j. Then, we have for all j

∞∑
k=j

βj,k ≤ j + 5

2
. (2.12)

Lemma 2.8 (Lemma 3.1 of [7]). Let γ ∈ (0, 1
Lf

], where Lf is the Lipschitz constant of ∇f ,

and x̄ = Pγ(y). Then

ϕ(x̄) +
∥x̄− x∥2

2γ
≤ ϕ(x) +

∥x− y∥2

2γ
, ∀x ∈ Rn. (2.13)

Theorem 2.9 (Theorem 3.2 of [7]). If the sequence {tn} satisfies ρn = (tn−1)2−(tn)2+tn ≥
0 and t1 = 1, if 0 < γ ≤ 1

Lf
, then for any N ≥ 2

(tN+1)2wN+1 +

N∑
n=1

ρn+1wn ≤ ν0 − νN+1

γ
(2.14)

where wn = ϕ(xn)− ϕ(x∗), νn = ∥un−x∗∥2

2 and un = xn−1 + tn(xn − xn−1).
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3 Algorithm and Its Convergence

As we all known, the modified FISTA scheme [11] and the algorithm [7] possess properties
(1) and (2). Moreover, numerical results show that the modified FISTA scheme [11] and
the algorithm [7] perform better than FISTA in practice. To improve the efficiency of the
modified FISTA scheme [11] and the algorithm [7] further, we propose a class of fast iterative
shrinkage thresholding algorithm which utilize the convex combination of T k of (1.3) and tk

of (1.4). Specifically, we set

βk =
wk − 1

wk+1
, wk = βT k + (1− β)tk, ∀β ∈ [0, 1] (3.1)

in (1.2). The new algorithm is described below.

Algorithm 3.1. (A class of FISTA schme)

Step 0. Given an initial point x0 = x1 ∈ Rn, constants p ∈ (0, 1], 0 < q ≤ (2 − p)2,
t1 = 1, a ≥ 2, β ∈ [0, 1] and 0 < γ ≤ 1

Lf
. Set k := 1.

Step 1. If the stopping condition is satisfied, then stop. Otherwise, go to Step 2.

Step 2. Compute βk by (3.1).

Step 3. Update yk = xk + βk(xk − xk−1) and xk+1 = Pγ(y
k).

Step 4. Set k := k + 1 and go to Step 1.

From Algorithm 3.1, it is easy to see that Algorithm 3.1 with β = 0 reduces to the
modified FISTA [11], while Algorithm 3.1 with β = 1 reduces to the algorithm [7].

3.1 Global convergence of function sequence

In this section, we shall establish that the new algorithm achieves the worst-case O( 1
k2 )

optimal convergence rate in terms of objective function value. The proof of the following
theorem heavily depends on the proof of Lemma 4.1 and Theorem 4.4 [2]. For completeness,
we presented the details of the proofs. We first give a useful lemma.

Lemma 3.2. Suppose that wk is defined by (3.1) with T 0 = 1 and t0 = 1.

(i) If a ≥ 2, 0 < p ≤ 1 and 0 < q ≤ (2− p)2, then wk ≥ (βa + 1−β
2 p)(k + 1).

(ii) If 0 < q ≤ (2− p)2, p ∈ (0, 1] and p+
√
q ≤ 1 and a ≥ 2, then we have

(wk+1)2 − wk+1 − (wk)2 ≤ β(1− β)((
k + a

a
)(p+

√
q − 1) + (

2

a
− 1)tk) ≤ 0. (3.2)

Proof. By Lemma 2.4, we have

wk = βT k + (1− β)tk ≥ (
β

a
+

1− β

2
p)(k + 1) +

β(a− 2)

a
≥ (

β

a
+

1− β

2
p)(k + 1). (3.3)
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Now, we begin to prove (ii). Since a ≥ 2, we have

(T k+1)2 − T k+1 − (T k)2 = (T k+1 + T k)(T k+1 − T k)− T k+1

=
2k + 2a+ 1

a2
− k + a+ 1

a

=
k(2− a)− ((a− 1

2 )
2 − 5

4 )

a2

≤ 0. (3.4)

On the other hand, by (1.4) and 0 < q ≤ (2− p)2, we have

(tk+1)2 − ptk+1 +
p2 − q

4
= (tk)2 ⇐⇒ (tk+1)2 − tk+1 + (1− p)tk+1 +

p2 − q

4
= (tk)2

=⇒ (tk+1)2 − tk+1 + (1− p)t0 +
p2 − q

4
≤ (tk)2

=⇒ (tk+1)2 − tk+1 +
(2− p)2 − q

4
≤ (tk)2

=⇒ (tk+1)2 − tk+1 ≤ (tk)2. (3.5)

By the definition of wk, we have

(wk+1)2 − wk+1 − (wk)2

= β2(T k+1)2 + (1− β)2(tk+1)2 + 2β(1− β)T k+1tk+1

−β2(T k)2 − (1− β)2(tk)2 − 2β(1− β)T ktk − βT k+1 − (1− β)tk+1

≤ β2T k+1 + (1− β)2tk+1 + 2β(1− β)T k+1tk+1 − 2β(1− β)T ktk − βT k+1 − (1− β)tk+1

= β(1− β)(2T k+1tk+1 − 2T ktk − T k+1 − tk+1)

≤ β(1− β)(2(T k +
1

a
)(tk +

p+
√
q

2
)− T k − 1

a
− tk+1 − 2T ktk)

= β(1− β)(2(T ktk + T k p+
√
q

2
+

tk

a
+

p+
√
q

2a
)− T k − 1

a
− tk+1 − 2T ktk)

≤ β(1− β)(T k(p+
√
q) +

2tk

a
+

p+
√
q

a
− T k − 1

a
− tk)

= β(1− β)((T k +
1

a
)(p+

√
q − 1) + (

2

a
− 1)tk),

where the first inequality uses (3.4) and (3.5), the second inequality uses tk+1 > tk +
p+

√
q

2
and the last inequality uses the monotonicity of tk.

Remark 3.3. As pointed out by [11], the practical performance of the modified FISTA
[11] depends on the speed of βk approaching 1. From Figure 1, we see that βk approaches
1 much slower for the choice of p = 1

20 , q = 0.1. This fact also shows that the condition
p+

√
q ≤ 1 may be a good choice for controlling the speed of βk approaching 1.

The following theorem shows that the proposed algorithm achieves the worst-case O( 1
k2 )

optimal convergence rate in terms of objective function value.

Theorem 3.4. Suppose that p ∈ (0, 1], 0 < q ≤ (2 − p)2, p +
√
q ≤ 1 and a ≥ 2 for the

proposed algorithm. Then

ϕ(xk)− ϕ(x∗) ≤ 1

2γc2(k + 1)2
∥x0 − x∗∥2, (3.6)
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Figure 1: p, q control the speed
of βk approaching its limits in
Algorithm 3.1
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Figure 2: p, q control the speed
of βk approaching its limits in
Algorithm 3.1

where c = β
a + 1−β

2 p and γ ∈ (0, 1
Lf

] and x∗ ∈ Argminϕ.

Proof. Define vk = ϕ(xk) − ϕ(x∗) and uk = wkxk − (wk − 1)xk−1 − x∗. Then we apply
Lemma 2.2 at the points (x = xk, y = yk) and at (x = x∗, y = yk) to get

2γ(vk − vk+1) ≥ ∥xk+1 − yk∥2 + 2(xk+1 − yk)T (yk − xk)

−2γvk+1 ≥ ∥xk+1 − yk∥2 + 2(xk+1 − yk)T (yk − x∗).

Multiplying the first inequality by wk+1 − 1 and then adding to the second inequality, we
get

2γ((wk+1−1)vk−wk+1vk+1) ≥ wk+1∥xk+1−yk∥2+2(xk+1−yk)T (wk+1yk−(wk+1−1)xk−x∗).
(3.7)

Multiplying above inequality by wk+1 and using (i) of Lemma 3.2, we get

2γ((wk)2vk − (wk+1)2vk+1) ≥ ∥wk+1(xk+1 − yk)∥2

+ 2wk+1(xk+1 − yk)T (wk+1yk − (wk+1 − 1)xk − x∗).
(3.8)

By the Pythagoras relation ∥b− a∥2 + 2(b− a)T (a− c) = ∥b− c∥2 − ∥a− c∥2, we get

2γ((wk)2vk − (wk+1)2vk+1) ≥ ∥wk+1xk+1 − (wk+1 − 1)xk − x∗∥2

− ∥wk+1yk − (wk+1 − 1)xk − x∗∥2.
(3.9)

Since yk = xk + wk−1
wk+1 (x

k − xk−1), we get

2γ(wk)2vk − 2γ(wk+1)2vk+1 ≥ ∥uk+1∥2 − ∥uk∥2. (3.10)

Define ak = 2γ(wk)2vk, bk = ∥uk∥2 and c = ∥y1−x∗∥2 = ∥x0−x∗∥2. Proceeding the similar
analysis as that of Theorem 4.4 of [2], we get a1 + b1 ≤ c. By Lemma 2.3, we get

2γ(wk)2vk ≤ ∥x0 − x∗∥2. (3.11)

Furthermore, by Lemma 3.2, we get the conclusion.
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3.2 Convergence analysis of {xk}

In this section, we shall show that {∥xk−x∗∥} is convergent and any limit point of {xk} is a
solution of problem (1.1). The proof of the following theorem heavily depends on the proof
of Lemma 4.1 and Theorem 4.1 of [7] and Lemma 3.12 and Theorem 3.5 of [11]. Before
presenting the result, we first present some supporting lemmas. By the definition of wk and
Lemma 2.5, we get the following the lemma.

Lemma 3.5. Let p ∈ (0, 1] and 0 < q ≤ (2− p)2. Then we have

wk ≤ (1− β)t̄k + βT k. (3.12)

Lemma 3.6. Let p ∈ (0, 1] and 0 < q ≤ (2 − p)2. If 2 < ap < 2a − 2, then there exists
k0 = 2a−2−ap

ap−2 such that for all k > k0

tk > T k. (3.13)

Proof. By (2.9) and 2 < ap < 2a− 2, we have

tk − T k ≥ k + 1

2
p− k + a− 1

a

= k(
p

2
− 1

a
) +

p

2
− a− 1

a

= k(
ap− 2

2a
) +

ap− 2a+ 2

2a
> 0,

when k > k0 = 2a−2−ap
ap−2 .

The following lemma shows that βk of (3.1) is a convex combination of Tk−1
Tk+1 and tk−1

tk+1 .

Moreover, the sequence {βk} of (3.1) is bounded above.

Lemma 3.7. Let p ∈ (0, 1], 0 < q ≤ (2− p)2 and a ≥ 2. Then we have

βk =
wk − 1

wk+1
= α

T k − 1

T k+1
+ (1− α)

tk − 1

tk+1
≤ α

k − 1

k + a
+ (1− α)(1− b

k + c
), (3.14)

where α ∈ [0, 1]. If 2 < ap < 2a− 2, and k > k0 = 2a−2−ap
ap−2 , then α < β. If a ≥ b− 1, then

βk ≤ 1− b
k+c . If 2 ≤ a < b− 1, then there exists a positive integer k1 such that

βk ≤ k − 1

k + a
, ∀k > k1. (3.15)

Proof.

wk − 1

wk+1
=

β(T k − 1) + (1− β)(tk − 1)

βT k+1 + (1− β)tk+1

=
βT k+1 Tk−1

Tk+1 + (1− β)tk+1 tk−1
tk+1

βT k+1 + (1− β)tk+1

= α
T k − 1

T k+1
+ (1− α)

tk − 1

tk+1
,
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where α = βTk+1

βTk+1+(1−β)tk+1 . By Lemma 3.6, we have tk > T k when k > k0 = a(2−p)
ap−2 . Thus

we have α < β when k > k0. By the definition of T k, we get Tk−1
Tk+1 = k−1

k+a . On the other
hand, by Lemma 2.5, we get

tk − 1

tk+1
=

2tk − 2

p+
√

q + 4(tk)2
≤ p+ 2tk − 2− p

p+ 2tk

= 1− 2 + p

p+ 2tk

≤ 1− 2 + p

p+ 2 + 2Sl + (p+ q
2p(l+1) )k

= 1− b

k + c
,

where b and c appears in (2.8). Now, we consider

1− b

k + c
≥ k − 1

k + a
= 1− a+ 1

k + a

⇔ b

k + c
≤ a+ 1

k + a
⇔ b(k + a) ≤ (k + c)(a+ 1)

⇔ k(b− a− 1) ≤ a(c− b) + c

⇐ a ≥ b− 1.

Thus, we get βk ≤ (1− b
k+c ) as a ≥ b− 1. In addition, we have

1− b

k + c
≤ k − 1

k + a
= 1− a+ 1

k + a
⇔ k(b− a− 1) ≥ a(c− b) + c.

Thus, we get

βk ≤ k − 1

k + a
(3.16)

when k > [a(c−b)+c
b−a−1 ] and 2 ≤ a < b− 1.

Remark 3.8. As we mentioned in Remark 3.1, the practical performance of the modified
FISTA [11] and the algorithm [7] depend on the speed of βk approaching 1. For the algorithm

[7], βk = Tk−1−1
Tk = k−1

k+a is monotonically decreasing on a for fixed k. In addition, from the

proof of above lemma, we see that the speed of βk approaching 1 of the modified FISTA [11]
is slower than one of the algorithm [7] when 2 ≤ a < b− 1 and k is sufficiently large enough.
Thus, the algorithm [7] with a smaller a maybe lead to a weak performance. Meanwhile,
above lemma shows that the proposed algorithm with a larger a possibly leads to a faster
practical performance. Figure 2 shows graphically the behaviour of βk under different a and
β, which verifies above argument.

The following lemma shows that
∑∞

k=j β
j,k is bounded above where βj,k =

∏k
l=j β

l for

all j, k and βj,k = 1 for all k < j.

Lemma 3.9. For all j ≥ 1, define βj,k =
∏k

l=j β
l for all j, k, and βj,k = 1 for all k < j.
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(i) Let l ≥ ⌈ q
p(2−p)⌉ and a ≥ b− 1, then for all j ≥ 1, it holds that

∞∑
k=j

βj,k ≤ j + c+ 2b, (3.17)

where b and c appears in (2.8).

(ii) If 2 < a < b− 1, then for all j ≥ 1, it holds that

∞∑
k=j

βj,k ≤ max(
j + 5

2
,
k1 + 5

2
+ k1 − j). (3.18)

Proof. Item (i) follows from Lemma 2.6 and Lemma 3.7. If 2 < a < b− 1, we consider two
different cases. If j ≥ k1, then the conclusion follows from Lemma 2.7. Suppose j < k1.
Then we have

βj,k =

k∏
l=j

βl ≤
k∏

l=k1

βl =
k1 − 1

k1 + 2

k1

k1 + 3

k1 + 1

k1 + 4
· · · k − 3

k

k − 2

k + 1

k − 1

k + 2
≤ (

k1 + 1

k
)3 (3.19)

for all k − k1 ≥ 2. Observe that β1 = 0, then ∀k > 1, β1,k = 0. It follows that for all
2 ≤ j ≤ k1

∞∑
k=j

βj,k =

k1+1∑
k=j

βj,k +

∞∑
k=k1+2

βj,k

≤ k1 − j + 2 + (k1 + 1)3
∞∑

k=k1+2

1

k3

≤ k1 − j + 2 + (k1 + 1)3
∫ ∞

t=k1+1

dt

t3

≤ k1 − j + 2 + (k1 + 1)3
1

2(k1 + 1)2

= k1 − j +
k1 + 5

2
.

The proof is completed.

Define δk = ∥xk−xk−1∥2

2 . The following theorem shows that the series
∑∞

k=1 kδ
k is con-

vergent.

Lemma 3.10. Suppose p ∈ (0, 1], q ≤ (2−p)2, p+
√
q ≤ 1 and a ≥ 2. Then

∑∞
k=1 kδ

k < ∞.

In particular, there exists C > 0 such that for all k ≥ 1, δk ≤ C
k2 .

Proof. Applying Lemma 2.8 with y = yk = xk + βk(xk − xk−1) and x = xk leads to

ϕ(xk+1) +
∥xk+1 − xk∥2

2γ
≤ ϕ(xk) +

(βk)2∥xk − xk−1∥2

2γ
. (3.20)

Then we have
δk+1 − (βk)2δk ≤ γ(vk − vk+1) (3.21)
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where vk = ϕ(xk) − ϕ(x∗). Define ak = tk−1
tk+1 and bk = Tk−1

Tk+1 = k−1
k+a . By Lemma 3.7, we

have

(βk)2 = (αbk + (1− α)ak)2

= α2(bk)2 + (1− α)2(ak)2 + 2α(1− α)akbk

≤ α2(bk)2 + (1− α)2(ak)2 + α(1− α)((ak)2 + (bk)2)

= α(bk)2 + (1− α)(ak)2. (3.22)

We consider two different cases. If a ≥ b− 1, by Lemma 3.7, (3.21) and (3.22), we get

(βk)2 ≤ (āk)2 (3.23)

and

δk+1 − (āk)2δk ≤ γ(vk − vk+1), (3.24)

where

āk =

{
1− b

k+c , if k ≥ 2;

0, if k = 1.
(3.25)

Multiplying (3.24) by (k + c)2 and summing from k = 1 to N , we get

N∑
k=1

(k + c)2(δk+1 − (āk)2δk) ≤ γ

N∑
k=1

(k + c)2(vk − vk+1). (3.26)

Since ā1 = 0, we get

N∑
k=1

(k + c)2(δk+1 − (āk)2δk) =

N∑
k=1

(k + c)2δk+1 −
N∑

k=2

(k + c− b)2δk

= (N + c)2δN+1 +

N−1∑
k=1

(k + c)2δk+1 −
N∑

k=2

(k + c− b)2δk

= (N + c)2δN+1 +

N∑
k=2

((k + c− 1)2 − (k + c− b)2)δk

= (N + c)2δN+1 +

N∑
k=2

(2k + 2c− b− 1)(b− 1)δk

> (N + c)2δN+1 +

N∑
k=2

(2k)(b− 1)δk.
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By (3.26) and the last inequality, we get

(N + c)2δN+1 +

N∑
k=2

2k(b− 1)δk ≤ γ

N∑
k=1

(k + c)2(vk − vk+1)

= γ(1 + c)2v1 − γ(N + c)2vN+1 + γ

N∑
k=2

(k + c)2vk

−γ

N−1∑
k=1

(k + c)2vk+1

≤ γ(1 + c)2v1 + γ

N∑
k=2

((k + c)2 − (k + c− 1)2)vk

= γ(1 + c)2v1 + γ

N∑
k=2

(2k + 2c− 1)vk

≤ γ(1 + c)2v1 + γ

N∑
k=2

(2k + 2c)vk.

From the proof of Theorem 3.3 of [11] and the last inequality, we get that
∑∞

k=1 kδ
k < ∞

and there exists C > 0 such that δk ≤ C
k2 for all k ≥ 1. If 2 ≤ a < b−1, by Lemma 3.7, then

there exists a positive integer k1 such that ak < bk. Further by (3.21) and (3.22) we have

δk+1 − (bk)2δk ≤ γ(vk − vk+1) (3.27)

for all k ≥ k1. Multiplying (3.27) by (k + a)2 and summing from k = k1 to N , we get

N∑
k=k1

(k + a)2(δk+1 − (bk)2δk) ≤ γ

N∑
k=k1

(k + a)2(vk − vk+1). (3.28)

Similarly, we get

(N + a)2δN+1 +

N−1∑
k=k1+1

((k + a− 1)2 − (k − 1)2)δk − (k1 − 1)δk
1

≤ γ((a+ k1)2v1 − (N + a)2vN+1 +

N∑
k=k1+1

((k + a)2 − (k + a− 1)2)vk).

That is,

(N + a)2δN+1 +

N∑
k=k1+1

a(2k + a− 2)δk − (k1 − 1)δk
1

≤ γ((a+ k1)2v1 − (N + a)2vN+1 +

N∑
k=k1+1

(2k + 2a− 1)vk).

By Theorem 2.9 and the last inequality, we get the conclusion.

The following theorem shows that {∥xk −x∗∥} is convergent and any limit point of {xk}
is a solution of problem (1.1).
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Theorem 3.11. Suppose p ∈ (0, 1], q ≤ (2− p)2, p+
√
q ≤ 1 and a ≥ 2. Then {∥xk − x∗∥}

is convergent and any limit point of {xk} is a solution of problem (1.1).

Proof. Define vk = ∥xk−x∗∥2

2 and T k = ∥xk+1−yk∥2

2 . By the definition of yk, we get

vk − vk+1 =
∥xk − xk+1 + xk+1 − x∗∥2

2
− ∥xk+1 − x∗∥2

2

= δk+1 + (xk − xk+1)T (xk+1 − x∗) (3.29)

= δk+1 + (yk − xk+1)T (xk+1 − x∗)− βk(xk − xk−1)T (xk+1 − x∗).(3.30)

By using the monotonicity of ∂r, the definition of x∗ and yk−xk+1−γ∇f(yk) ∈ γ∂r(xk+1),
we get

(yk − xk+1 − γ∇f(yk) + γ∇f(x∗))T (xk+1 − x∗) ≥ 0 (3.31)

which yields

(yk − xk+1)T (xk+1 − x∗) + γ(∇f(x∗)−∇f(yk))T (xk+1 − x∗) ≥ 0. (3.32)

The last inequality and (3.30) lead to

vk − vk+1 ≥ δk+1 + γ(∇f(yk)−∇f(x∗))T (xk+1 −x∗)−βk(xk −xk−1)T (xk+1 −x∗). (3.33)

Note that

(∇f(yk)−∇f(x∗))T (xk+1 − x∗)

= (∇f(yk)−∇f(x∗))T (xk+1 − yk + yk − x∗)

≥ 1

Lf
∥∇f(yk)−∇f(x∗)∥2 + (∇f(yk)−∇f(x∗))T (xk+1 − yk)

≥ 1

Lf
∥∇f(yk)−∇f(x∗)∥2 − 1

Lf
∥∇f(yk)−∇f(x∗)∥2 − Lf

2
T k

= −Lf

2
T k.

By the last inequality and (3.33), we get

vk − vk+1 ≥ δk+1 − γLf

2
T k − βk(xk − xk−1)T (xk+1 − x∗). (3.34)

Again using (3.29), we get

vk−1 − vk = δk + (xk−1 − xk)T (xk − x∗). (3.35)

The last inequality and (3.35) lead to

vk+1 − vk + βk(vk−1 − vk) ≤ −δk+1 + βkδk +
γLf

2
T k + βk(xk − xk−1)T (xk+1 − xk)

= −T k +
γLf

2
T k + (βk + (βk)2)δk,

where we used the fact

δk+1 − βk(xk − xk−1)T (xk+1 − xk) = −(βk)2
∥xk − xk−1∥2

2
+

∥xk+1 − yk∥2

2
. (3.36)
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Since 0 < βk ≤ 1 and 1− γLf

2 > 0, we get

vk+1 − vk − βk(vk − vk−1) ≤ −(1− γLf

2
)T k + 2βkδk ≤ 2βkδk. (3.37)

Letting θk = max(0, vk − vk−1), we get

θk+1 ≤ βk(θk + 2δk). (3.38)

Since β1 = 0, by applying the last inequality recursively, we obtain

θk+1 ≤ 2

k∑
j=2

(

k∏
l=j

βl)δj = 2

k∑
j=2

βj,kδj . (3.39)

By Lemma 3.9, we get

∞∑
k=2

θk ≤ 2

∞∑
j=1

k∑
j=2

βj,kδj

≤ 2

∞∑
j=2

δj(

∞∑
k=j

βj,k)

≤ 2

∞∑
j=1

δj(max(j + c+ 2b,max(
j + 5

2
, k1 − j +

k1 + 5

2
))).

By Lemma 3.10, we obtain
∑∞

k=1 θ
k < ∞. Define sk = vk −

∑k
i=1 θ

i. Since vk ≥ 0, θi ≥ 0

and
∑∞

k=1 θ
k < ∞, we get sk ≥ −

∑k
i=1 θ

i, which shows sk is bounded below. Furthermore,
by the definition of sk, we get

sk+1 = vk+1 − θk+1 −
k∑

i=1

θi ≤ vk+1 − vk+1 + vk −
k∑

i=1

θi = sk, (3.40)

which implies that {sk} is a nondecreasing sequence. Hence {sk} is convergent. It follows
that {vk} is convergent, meaning that lim

k∞
∥xk−x∗∥ exists for any x∗ such that 0 ∈ ∇f(x∗)+

∂r(x∗).
Let x̄ be any limit point of {xk}. Then there exists an infinite set K ⊂ {1, 2, · · · , n} such

that xk → x̄ for k ∈ K. By the optimal condition of Pγ(y
k), we get

yk − xk+1 − γ∇f(yk) ∈ γ∂r(xk+1) (3.41)

for any k ∈ K. Note that Lemma 3.7 shows that 0 ≤ βk < 1 and Lemma 3.10 shows that
xk − xk−1 → 0 as k → ∞. Since ∇f(.) is Lipschitz continuous, yk = xk + βk(xk − xk−1)
and ∂r(x) is closed, we get 0 ∈ ∇f(x̄) + ∂r(x̄), i.e. x̄ is a solution of (1.1). The proof is
completed.

4 A Modified Restarting Strategy

As pointed out by Tao, Boley and Zhang [16] that ISTA and FISTA have the local lin-
ear convergence, but FISTA’s convergence rate can slow down as it proceeds, eventually
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becoming slower than ISTA when they are applied to solve the LASSO problem. This is
mainly caused by the oscillatory behavior of scheme [10]. An efficient way to deal way with
oscillation is the restart technique developed in [14]. The basic idea of restart is that if the
condition

(yk − xk+1)T (xk+1 − xk) > 0 (4.1)

is satisfied, then the algorithm resets tk and yk in (1.2). Many numerical experiments
[11, 10, 14] show that this restart strategy is very efficient. Moreover, the restart technique
(4.1) has also been adopted in the popular software TFOCS [3]. Note that if yk = xk in
(1.2), then (4.1) reduces to

(yk − xk+1)T (xk+1 − xk) = −∥yk − xk+1∥2 > 0. (4.2)

It seems reasonable to use the following restart condition

(yk − xk+1)T (xk+1 − xk) > −c∥yk − xk+1∥2, (4.3)

where 0 ≤ c ≤ 1. Clearly, the condition (4.3) is weaker than the condition (4.1) and (4.3)
with c = 0 reduces to the condition (4.1). Moreover, the condition (4.3) is equivalent to

(yk − xk+1)T ((1− c)xk+1 − xk + cyk) > 0. (4.4)

which implies that the condition (4.1) does not add extra computation cost when it was
compared with the condition (4.1).

5 Numerical Experiments

In this section, we state some numerical experiments to test the performance of the restart
strategy (4.3) and the proposed algorithm. We now briefly describe the implementation
details of Algorithm 3.1. We implement Algorithm 3.1 with the following parameters β = 0.5,
p = 0.98, q = 10−4 and a = 2.1. For convenience, we abbreviate Algorithm 3.1 as FISTA-c,
Algorithm 3.1 with the restart technique (4.3) as FISTA-c-new-ar, FISTA with the restart
technique (4.1) as FISTA-ar and FISTA with the restart technique (4.3) as FISTA-new-
ar respectively. All codes are written in MATLAB 7.0 and all tests described in this section
are performed on a PC with Intel I5-3230 2.6GHZ CPU processor and 16G RAM memory
with a Windows operating system.

In first numerical experiment, we test the efficiency of the restart condition (4.3). We
consider the simple least square problem:

min
x∈Rn

ϕ(x) =
1

2
∥Ax∥2, (5.1)

where A is of the form

A =


2 − 2
−2 2 − 2

. . .
. . .

. . .

−2 2

 . (5.2)

This problem has a unique minimizer x∗ = 0. Choose Lf = ∥A∥2 = 16. We set c = γ = 1
16

and the initial point x0 = 104 in all tested four algorithms. We stop all tested algorithm if
ϕ(xk) ≤ 10−7 or the number of iteration exceeds 15000. Figures 5-6 plot the evolution of the
objective function value ϕ(xk) in log2 scale versus the iteration number and CPU time and
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Figure 3: Performance profiles m = n = 501 for two different adaptive restart strategy

0 5000 10000 15000
Number of iteration

-15

-10

-5

0

5

10

15

20

O
je

ct
iv

e 
fu

n
ct

io
n

FISTA
FISTA-ar
FISTA-new-ar

0 5000 10000 15000
Number of iteration

-5

0

5

10

15
FISTA
FISTA-ar
FISTA-new-ar

Figure 4: Performance profiles m = n = 1001 for two different adaptive restart strategy

the value ∥xk − x∗∥ in log2 scale versus the number of iteration. Tables 1-2 list the number
of iteration (iter), the final function value (fun), the CPU time (time) and the number of
restarting (restart). From Figures 3-4 and Tables 1-2, we see that FISTA-new-ar requires
least the number of iteration and the CPU time. This shows the new restart strategy (4.3)
is competitive with the restart strategy (4.1).

In second numerical experiment, we consider the following regularized logistic regression
problem:

min
x∈Rn

ϕ(x) =
1

m

m∑
i=1

log(1 + exp(−bix
Twi) + λ∥x∥1, (5.3)

where wi ∈ Rn, i = 1, 2, · · · ,m, are the training samples and bi ∈ {−1, 1} are the corre-
sponding labels. Problem (5.3) is used for training a linear classifier. We first test some
simulated data. Specifically, bi ∈ {−1, 1}, i = 1, 2, · · · ,m, λ = 0.01 and A ∈ Rm×n are

Table 1: Data for m = n = 501
iter fun time restart

FISTA 15000 69.9267 43.71 0
FISTA-ar 7799 4.99e-08 19.20 4
FISTA-new-ar 6688 4.99e-08 17.89 4



A CLASS OF FAST ITERATIVE SHRINKAGE THRESHOLDING ALGORITHM 545

Table 2: Data for m = n = 701
iter fun time restart

FISTA 15000 116.2188 55.71 0
FISTA-ar 6397 4.97e-08 19.32 3
FISTA-new-ar 6367 4.97e-08 18.31 3
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Figure 5: Performance profiles
based on iteration number.
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Figure 6: Performance profiles
based on CPU time.

constructed randomly as follows:

A = randn(m, n); x hat = zeros(n, 1);
y = randperm(n); x hat(y(1 : s)) = randn(s, 1);
c = rand(1, 1); b = sgn(Ax hat + c ∗ ones(m, 1));

(5.4)

where s is a given positive number. Choose Lf = ∥A∥2 and wi = A(i, :). At last, we
test two problems which are downloaded from the website: https://www.csie.ntu.edu.tw/
cjlin/libsvmtools
/datasets/. The input data wi in each example has been normalized, that is ∥wi∥ = 1 for
all i = 1, 2, · · ·m, which leads to the Lipschitz constant Lf = 1. We set c = γ = 1

Lf
and

the initial point x0 = 0 in all tested algorithms. In this test, we stop all tested algorithms

if |ϕ(xk)−ϕ(xk−1)|
max{|ϕ(xk)|,|ϕ(xk−1)|} ≤ 10−10 or the number of iteration exceeds 15000. Figures 5-12 plot

the evolution of the objective function value ϕ(xk) in log2 scale versus the iteration number
and the evolution of the objective function value ϕ(xk) versus the CPU time in log2 scale.
Tables 3-6 list the number of iteration (iter), the final function value (fun), the CPU time
(time) and the number of restart (restart). As far as the number of iteration and the CPU
time are concerned, it is easy to see from Figures 5-12 and Tables 3-6 that FISTA-c-new-ar
is the best in all tested four algorithms, followed by the FISTA-new-ar.

6 Conclusion

In this paper, we proposed a class of fast iterative shrinkage thresholding algorithm which
contains the original FISTA scheme, the FISTA-CD scheme and the FISTA-Mod. We proved
that the objective value sequence possesses O( 1

k2 ) complexity. Moreover, we showed that
{∥xk−x∗∥} is convergent for any x∗ ∈ Argminϕ and any limit point of {xk} is a solution of
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Figure 7: Performance profiles
based on iteration number.
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Figure 8: Performance profiles
based on error in log scale.
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Figure 9: Performance profiles
based on iteration number for
abalone.
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Figure 10: Performance profiles
based on CPU time for abalone.
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Figure 11: Performance profiles
based on iteration number for
space ga.
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Figure 12: Performance profiles
based on CPU time for space ga.
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Table 3: Data for m = 200, n = 1000, s = 10
iter fun time restart

FISTA 1610 0.1596 8.34 0
FISTA-new-ar 1248 0.1595 5.37 4
FISTA-c 2778 0.1589 7.12 0
FISTA-c-new-ar 1121 0.1595 4.39 7

Table 4: Data for m = 500, n = 1000, s = 20
iter fun time restart

FISTA 2858 0.3203 29.65 0
FISTA-new-ar 1243 0.3195 18.57 3
FISTA-c 3776 0.3171 40.21 0
FISTA-c-new-ar 876 0.3195 14.35 7

Table 5: Problem abalone with m = 4177, n = 8
iter fun time restart

FISTA 130 1.44e-02 39.06 0
FISTA-new-ar 139 1.43e-02 35.19 4
FISTA-c 209 1.43e-02 50.34 0
FISTA-c-new-ar 96 1.43e-02 31.78 4

Table 6: Problem space ga with m = 3107, n = 6
iter fun time restart

FISTA 181 5.03e-01 25.41 0
FISTA-new-ar 134 5.02e-01 18.02 1
FISTA-c 163 5.05e-01 23.52 0
FISTA-c-new-ar 111 5.02e-01 18.58 1
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problem (1.1). At last, we proposed a modified adaptive restart strategy which can dramat-
ically improve the convergence rate of the proposed algorithm. The numerical comparisons
with several state-of-art methods demonstrated the efficiency of the proposed algorithm.
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