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by Chambolle and Pock in [4], which is named FOPDA, whose iterative scheme is described
as 

xk+1 = argmin
x∈X

{
Φ(x, yk) +

r

2
∥x− xk∥2

}
, (1.2a)

x̄k = xk+1 + τ(xk+1 − xk), (1.2b)

yk+1 = argmax
y∈Y

{
Φ(x̄k, y)− s

2
∥y − yk∥2

}
, (1.2c)

where τ is a relaxation (extrapolation) parameter, and r > 0 and s > 0 are proximal
parameters. In recent works [4, 16], we have witnessed many successful applications of
this method in the areas of the image processing problems. More importantly, a series of
Primal-Dual Hybrid Gradient (PDHG) based methods [10, 15, 32] can be viewed as special
cases of the FOPDA method with different choices of τ , which are originated from the
Arrow-Hurwicz-Uzawa method [1].

Considering the case of τ = 0, the FOPDA method turns into PDHG. By implementing
some restriction on the step sizes, the convergence of this method was proved in [10]. How-
ever, a counter example in [15] shows that PDHG may be divergent when the step sizes are
fixed as tiny constants. [15] also analyzed the global convergence of this method by assum-
ing that one of the objective functions is strongly convex. In the case of τ = 1, the global
convergence and the worst case O(1/k) convergence rate of FOPDA was proved in [4] under
the condition that rs > ∥A⊤A∥. Based on this algorithm framework, [4] proposed two accel-
erated primal-dual algorithms and analyzed the O(1/k2) sub-linear and linear convergence,
respectively. Then, [28] proposed a linearized primal-dual algorithm for minimizing the sum
of three convex functions. By adopting some approximation rules or line-search technique,
some inexact primal-dual algorithms were proposed for problem (1.1) in [18, 19, 20, 21, 24].

Considering the involved parameter τ ̸= 1, it is noteworthy that FOPDA could perform
better from the viewpoint of computing [2, 16]. However, the convergence is not easily
guaranteed in this circumstance. In order to ensure the global convergence, a series of
predictor-corrector primal-dual algorithms were presented in [2, 16], and demonstrated the
computational efficiency and flexibility in numerical simulations. By adopting some proxi-
mal regularization and linearized techniques, [17, 25] proposed some linearized primal-dual
approaches. Furthermore, [5] presented some generalizations of the primal-dual methods,
which covers non-linear proximal regularization and inertial variants as special cases. Re-
cently, [26] established the global linear convergence rate of FOPDA for more general case of
τ ∈ R under the strongly convex assumption or some error bound conditions. Furthermore,
[27] proposed a double extrapolation primal-dual algorithm for saddle point problem.

In [14], a generalized algorithmic framework of Primal-Dual Hybrid Gradient (GPDHG)
was put forward for problem (1.1), which updates the iterative points in predictor-corrector
fashion: 

x̃k = argmin
x∈X

{
Φ(x, yk) +

r

2
∥x− xk∥2

}
, (1.3a)

x̄k = x̃k + τ(x̃k − xk), (1.3b)

ỹk = argmax
y∈Y

{
Φ(x̄k, y)− s

2
∥y − yk∥2

}
; (1.3c)

xk+1 = xk − α(xk − x̃k), (1.3d)

yk+1 = yk − β(yk − ỹk), (1.3e)

and utilizes the constant step lengths α and β in the corrector step. This framework can be
transformed into diversified specific PDHG-like algorithms by setting different parameters.
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As we can see, this algorithm turns into the FOPDA in [4] in the case of α = β = 1. If
τ = 1 and α = β ∈ (0, 2), the approach (1.3) be equivalent to the fourth algorithm in
[16]. Additionally, a completely symmetric PDHG scheme with the golden-ratio step size
can be yielded by setting α = 1 and β = 1/τ . Under ergodic and non-ergodic conditions,
the proof frameworks of convergence and sub-linear convergence rate were also presented in
[14]. Based on this work, Chang and Yang presented a golden ratio primal-dual algorithm
and its accelerated version for structured convex programs in [6].

Although the convergence and sub-linear convergence of GPDHG are established in [14],
the analysis of linear convergence results is still missing. Hence, the main contribution of
this paper is analyzing the linear convergence rate of the GPDHG under two scenarios.
Firstly, we focus on the case that one of the objectives is strongly convex and its gradient
is Lipschitz continuous. Secondly, we also establish the linear convergence rate under the
error bound condition.

The remainder of this paper is organized as follows. In Section 2, we summarize some
basic notations and definitions, and present an equivalent variational inequality character-
ization of the saddle point problem (1.1). Section 3 presents the algorithmic framework of
GPDHG, and Section 4 proves the global linear convergence rate. In section 5, we show
some computational results. Finally, Section 6 makes the conclusions.

2 Preliminaries

In this section, we present some notations and definitions for facilitating the following con-
vergence analysis.

2.1 Notations and definitions

Let Rn be an n-dimensional Euclidean space. The symbol ⊤ represents the transpose. For
a given symmetric and positive definite matrix H, we let ∥x∥H =

√
⟨x,Hx⟩ be the H-norm

of x, and ∥x∥ be the Euclidean norm. Furthermore, the matrix norm of an arbitrary matrix
B be denoted by ∥B∥,

∥B∥ := supx ̸=0

{
∥Bx∥
∥x∥

}
.

Definition 2.1. A function θ(·) : Rn → R is said to be convex, if

θ(tu+ (1− t)v) ≤ tθ(u) + (1− t)θ(v), ∀u, v ∈ Rn, t ∈ [0, 1].

Furthermore, θ(·) is said to be µ-strongly convex if there exists a constant µ > 0 such that

θ(tu+ (1− t)v) ≤ tθ(u) + (1− t)θ(v)− t(1− t)
µ

2
∥u− v∥2, ∀u, v ∈ Rn, t ∈ [0, 1].

Definition 2.2. Let θ(·) : Rn → R∪{+∞} be a convex function and the domain of function
θ(·) is denoted by dom θ. Then, the subdifferential of θ(·) at a point v ∈ dom θ is defined
by

∂θ(v) =
{
ξ
∣∣ θ(u) ≥ θ(v) + ⟨ξ, u− v⟩ , ∀u ∈ dom θ

}
,

and the vector ξ is said to be a subgradient of θ(·) at v.

Accordingly, if ξ represents the subgradient of a µ-strongly convex function θ(·) at a
point v ∈ dom θ, from [23] it follows that

θ(u) ≥ θ(v) + ⟨ξ, u− v⟩+ µ

2
∥u− v∥2, ∀u ∈ dom θ.
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Definition 2.3. An operator f : Ω → Rn is said to be Lipschitz continuous on Ω if there
exists a constant Lf > 0 such that

∥f(x1)− f(x2)∥ ≤ Lf∥x1 − x2∥, ∀x1, x2 ∈ Ω. (2.1)

Definition 2.4. A function F : Rn ⇒ Rn is multi-function if F (x) is a set in Rn. We say
that F is linear if Gr(F ) := {(x, y)|y ∈ F (x)} is a polyhedron. If Gr(F ) is the union of
finitely many polyhedra, F is said to be a piecewise linear multi-function.

Now, let (x∗, y∗) be a solution of the saddle point problem (1.1). Then, from saddle
point optimality conditions, we get that

Φ(x∗, y) ≤ Φ(x∗, y∗) ≤ Φ(x, y∗), ∀x ∈ X , ∀y ∈ Y ,

which reduces to the following mixed variational inequalities (MVI):{
θ1(x)− θ1(x

∗) + ⟨x− x∗,−A⊤y∗⟩ ≥ 0, ∀x ∈ X ,
θ2(y)− θ2(y

∗) + ⟨y − y∗, Ax∗⟩ ≥ 0, ∀y ∈ Y .
(2.2)

The above variational inequality characterization can be compactly rewritten as a problem
MVI(U , θ,G): Finding u∗ ∈ U , such that

θ(u)− θ(u∗) + ⟨u− u∗,G(u∗)⟩ ≥ 0, ∀u ∈ U , (2.3a)

where

u :=

(
x
y

)
, θ(u) = θ1(x) + θ2(y), G(u) :=

(
−A⊤y
Ax

)
, and U := X × Y . (2.3b)

The underlying mapping G defined in (2.3b) is monotone because that

⟨u1 − u2, G(u1)− G(u2)⟩ = 0, ∀u1, u2 ∈ U .

As the solution set of (1.1) is assumed to be nonempty, the solution set of problem (2.3),
denoted by U∗, is also nonempty.

2.2 Projection operator and its properties

Let C be a nonempty closed convex set of Rn and PC be the projection operator from Rn

onto C,
PC(x) = argmin

z∈C
∥x− z∥.

The projection operator PC plays an important role in the field of convex analysis, which
has many interesting properties and can be utilized in our paper. A property is that PC is
a nonexpansive map,

∥PC(x)− PC(z)∥ ≤ ∥x− z∥, ∀x, z ∈ Rn. (2.4)

We use dist(x, C) = miny∈C{∥x− y∥} to denote the distance from a vector x ∈ Rn to a set
C ⊂ Rn, and distH(x, C) = miny∈C{∥x − y∥H} denotes the distance in the sense of matrix
norm, where H is a given symmetric and positive definite matrix.

The above variational inequalities (2.3) can be also equivalently transformed into some
generalized projection equations.
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Lemma 2.5. The variational inequality problem MVI(U , θ,G) amounts to finding u∗, such
that 0 ∈ E(u∗, γ), i.e.

dist2(0, E(u∗, γ)) = 0,

where the set-valued mapping E(u, γ) is defined as

E(u, γ) :=
(

EX (u, γ) := x− PX [x− γ(ξx −A⊤y)]
EY(u, γ) := y − PY [y − γ(ζy +Ax)]

)
, (2.5)

where ξx ∈ ∂θ1(x), ζy ∈ ∂θ2(y), and γ > 0 is an arbitrary scalar.

In this paper, our convergence rate analysis under the error bound condition is based
on the variational inequality characterization (2.3) and the associated theory of variational
inequalities. Since U∗ denotes the solution set of MVI(U , θ,G), it follows that

U∗ = {u∗ | dist(0, E(u∗, γ)) = 0}.

The following theorem is established in [31, Theorem 3.3] and plays a fundamental role
in our linear rate of convergence analysis under error bound condition.

Theorem 2.6. Let F be a piecewise linear multi-function. For any ω > 0, there exists
η > 0 such that

dist(u, F−1(0)) ≤ ηdist(0, F (u)), ∀∥u∥ < ω.

3 Algorithm Framework

Define

M :=

(
αIn 0
0 βIm

)
and Q :=

(
rIn A⊤

τA sIm

)
, (3.1)

where α > 0, β > 0, τ ∈ (0, 1], rs > τ∥A⊤A∥ ≥ 0. Under these conditions, the matrices M
and Q are positive definite. The positive definiteness of the matrices M and Q are crucial
for the convergence analysis of primal-dual algorithms.

Now, we are ready to formally present the algorithmic framework of the primal-dual
algorithm.

4 Global Convergence Analysis

4.1 Global convergence

In this section, we review the result in [14] that Algorithm 1 is globally convergent to a
solution of (1.1) under the following assumption, which can be derived by [14, Theorem 4.1]
and [14, Theorem 4.2].

Assumption 4.1. Assume that θ1(x) in (1.1) is strongly convex function with modulus
µ > 0, θ2(x) is convex and rs ≥ ∥A⊤A∥. Define

H := QM−1 =

( r
αIn

1
βA

⊤

τ
αA

s
β Im

)
, (4.1)

and set β = α
τ . If we choose

τ = 1 and α ∈ (0, 2)
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Algorithm 1 Generalized Primal-Dual Hybrid Gradient Algorithm.

1: Select r > 0, s > 0, τ ∈ (0, 1] and rs > ∥A⊤A∥.
2: for k = 0, 1, 2, · · · do
3: Generate the intermediate points ũk := (x̃k, ỹk) via

x̃k = argmin
x∈X

{
Φ(x, yk) +

r

2
∥x− xk∥2

}
, (3.2a)

x̄k = x̃k + τ(x̃k − xk), (3.2b)

ỹk = argmax
y∈Y

{
Φ(x̄k, y)− s

2
∥y − yk∥2

}
. (3.2c)

4: Generate the next points uk+1 := (xk+1, yk+1) via{
xk+1 = xk − α(xk − x̃k), (3.3a)

yk+1 = yk − β(yk − ỹk), (3.3b)

where {
α = β ∈ (0, 2), if τ = 1; (3.4a)

α ∈
(
0, (1 + τ)−

√
1− τ

]
, β =

α

τ
, if τ ∈ (0, 1]. (3.4b)

5: end for

or
τ ∈ (0, 1) and 0 < α ≤ (1 + τ)−

√
1− τ ,

the matrices H ≻ 0, H = H⊤,

G := Q⊤ +Q−M⊤HM =

(
(2− α)rIn (1 + τ − α)A⊤

(1 + τ − α)A (2− α
τ )sIm

)
≻ 0.

Lemma 4.1. Suppose Assumption 4.1 holds. Let the sequence {uk := (xk, yk)} be generated
by Algorithm 1. Then,

θ(u)− θ(ũk) + ⟨u− ũk,G(ũk)⟩

≥ ⟨u− ũk, Q(uk − ũk)⟩+ µ

2
∥x̃k − x∥2, ∀u ∈ U , (4.2)

where G(·) is given in (2.3b) and Q is defined in (3.1).

Proof. It follows from the first-order optimality conditions of (3.2a) and (3.2c) that

⟨x− x̃k, ξx̃k −A⊤yk + r(x̃k − xk)⟩ ≥ 0, ∀x ∈ X , (4.3)

and
⟨y − ỹk, ζỹk +A[(1 + τ)x̃k − τxk] + s(ỹk − yk)⟩ ≥ 0, ∀y ∈ Y , (4.4)

where ξx̃k ∈ ∂θ1(x̃
k) and ζỹk ∈ ∂θ2(ỹ

k).
Then, using the strong convexity of θ1(x) and the convexity of θ2(y) respectively, we

have
θ1(x)− θ1(x̃

k) ≥ ⟨x− x̃k, ξx̃k⟩+ µ

2
∥x̃k − x∥2, ∀x ∈ X , (4.5)
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and
θ2(y)− θ2(ỹ

k) ≥ ⟨y − ỹk, ζỹk⟩, ∀y ∈ Y . (4.6)

Combining (4.3) and (4.5), (4.4) and (4.6) yields

θ1(x)− θ1(x̃
k) + ⟨x− x̃k,−A⊤yk + r(x̃k − xk)⟩ ≥ µ

2
∥x̃k − x∥2, ∀x ∈ X ,

and
θ2(y)− θ2(ỹ

k) + ⟨y − ỹk, A[(1 + τ)x̃k − τxk] + s(ỹk − yk)⟩ ≥ 0, ∀y ∈ Y .

Adding the above two inequalities

θ(u)− θ(ũk)− µ

2
∥x̃k − x∥2

+

(
x− x̃k

y − ỹk

)⊤ {(
−A⊤ỹk

Ax̃k

)
+

(
r(x̃k − xk) +A⊤(ỹk − yk)
τA(x̃k − xk) + s(ỹk − yk)

)}
≥ 0. (4.7)

Then, it follows from the definitions of G(·) and Q, that the assertion of this lemma is
obtained.

Following the line of reasoning presented in [14] , we can also prove that Algorithm 1 is
globally convergent. Here we only state the following theorem and omit the proof.

Theorem 4.2. Let the sequence {uk := (xk, yk)} be generated by Algorithm 1. Then, we
have

θ(u)− θ(ũk) + ⟨u− ũk,G(ũk)⟩

≥ 1

2

(
∥uk+1 − u∥2H − ∥uk − u∥2H

)
+

1

2
∥uk − ũk∥2G +

µ

2
∥x̃k − x∥2, ∀u ∈ U , (4.8)

where G(·) is given in (2.3b).

Proof. The proof details can be found in [14, Theorem 3.1]

Remark 4.3. If θ1(·) is convex, the modulus µ = 0. Then, [14, Theorem 3.1] can be
recovered and

θ(u)− θ(ũk) + ⟨u− ũk,G(ũk)⟩

≥ 1

2

(
∥uk+1 − u∥2H − ∥uk − u∥2H

)
+

1

2
∥uk − ũk∥2G, ∀u ∈ U . (4.9)

The following theorem indicates that the sequence {uk} generated by Algorithm 1 is
Fejér monotone with respect to the solution set of (2.3).

Theorem 4.4. Let u∗ be an arbitrary solution of (1.1). Then, the sequence {uk} generated
by Algorithm 1 satisfies

∥uk+1 − u∗∥2H ≤ ∥uk − u∗∥2H − ∥uk − ũk∥2G − µ∥x̃k − x∗∥2. (4.10)

Proof. The proof details can be found in [14, Theorem 3.2].

Remark 4.5. If θ1(·) is convex, the modulus µ = 0. Then, [14, Theorem 3.2] can be
recovered and

∥uk+1 − u∗∥2H ≤ ∥uk − u∗∥2H − ∥uk − ũk∥2G. (4.11)

Theorem 4.6. The sequence {uk} generated by Algorithm 1 is globally convergent to a
solution point of saddle point problem (1.1).
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4.2 Linear convergence under strategy 1

In this section, we prove the linear rate of convergence of Algorithm 1 under the following
assumption.

Assumption 4.2. In problem (1.1), assume that X = Rn, A is full row rank, θ2 is convex,
θ1 is strongly convex with modulus µ > 0 and ∇θ1 is Lipschitz continuous with constant L.
For Algorithm 1, rs > ∥A⊤A∥, α, β and τ satisfy the conditions in Assumption 4.1.

First, we begin our analysis with a fundamental inequality, which gives the bound of
∥yk+1 − y∗∥2 by using the terms ∥x̃k − x∗∥2, ∥x̃k − xk∥2 and ∥ỹk − yk∥2.

Lemma 4.7. Suppose Assumption 4.2 holds. Let u∗ be a solution of (1.1). Then, the
sequence {uk} generated by Algorithm 1 satisfies

∥yk+1 − y∗∥2 ≤ 3κ
[
L2∥x̃k − x∗∥2 + β2∥A⊤A∥∥ỹk − yk∥2 + r2∥x̃k − xk∥2

]
, (4.12)

where
κ = [λmin(AA⊤)]−1 > 0, (4.13)

and λmin(·) is the smallest eigenvalue of a positive definite matrix.

Proof. Since A is full row rank, we have

∥yk+1 − y∗∥2 ≤ κ∥A⊤(yk+1 − y∗)∥2. (4.14)

Then, it follows from the first order optimality condition of the sub-problem (3.2a) and
X = Rn that

∇θ1(x̃
k)−A⊤yk + r(x̃k − xk) = 0.

Since (x∗, y∗) is a solution, we have

∇θ1(x
∗) = A⊤y∗.

Then, it follows from the above two equations that∥∥A⊤yk+1 −A⊤y∗
∥∥2

=
∥∥∇θ1(x̃

k) +A⊤(yk+1 − yk) + r(x̃k − xk)−∇θ1(x
∗)
∥∥2

≤ 3
∥∥∇θ1(x̃

k)−∇θ1(x
∗)
∥∥2 + 3∥A⊤(yk+1 − yk)∥2 + 3r2

∥∥x̃k − xk
∥∥2

≤ 3
[
L2∥x̃k − x∗∥2 + ∥A⊤A∥∥yk+1 − yk∥2 + r2

∥∥x̃k − xk
∥∥2]

≤ 3
[
L2∥x̃k − x∗∥2 + β2∥A⊤A∥∥ỹk − yk∥2 + r2

∥∥x̃k − xk
∥∥2] . (4.15)

Thus, combining the inequalities (4.14) and (4.15) leads to (4.12).

Theorem 4.8. Suppose Assumption 4.2 holds. Let u∗ be a solution of (1.1). Then, the
sequence {uk} generated by Algorithm 1 converges Q-linearly, i.e.,

∥uk+1 − u∗∥2H ≤ 1

1 + δ
∥uk − u∗∥2H , (4.16)

where δ := min{δ1, δ2, δ3} > 0 and
δ1 := µ

∥H∥(2+3κL2) ,

δ2 := λmin(G)
∥H∥(3r2κ+2(1−α)2) ,

δ3 := λmin(G)
3κ∥H∥∥A⊤A∥β2 .
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Proof. It follows from definition of the matrix H

δ∥uk+1 − u∗∥2H
≤ δ∥H∥

(
∥xk+1 − x∗∥2 + ∥yk+1 − y∗∥2

)
≤ δ∥H∥

(
2∥xk+1 − x̃k∥2 + 2∥x̃k − x∗∥2 + ∥yk+1 − y∗∥2

)
≤ δ∥H∥

(
2(1− α)2∥xk − x̃k∥2 + 2∥x̃k − x∗∥2 + ∥yk+1 − y∗∥2

)
.

Then, utilizing the above inequality and (4.12) leads to

δ∥uk+1 − u∗∥2H
≤ δ∥H∥

[
(2 + 3κL2)∥x̃k − x∗∥2 + 3κβ2∥A⊤A∥∥ỹk − yk∥2

+(3κr2 + 2(1− α)2)∥x̃k − xk∥2
]
.

Furthermore, ∥∥ũk − uk
∥∥2
G
≥ λmin(G)

(∥∥x̃k − xk
∥∥2 + ∥∥ỹk − yk

∥∥2) .

where λmin(G) > 0 because of the positive definiteness of G. Then, it follows from the above
two inequalities and that

(1 + δ)
∥∥uk+1 − u∗∥∥2

H

≤ ∥uk − u∗∥2H − ∥uk − ũk∥2G − µ∥x̃k − x∗∥2 + δ∥uk+1 − u∗∥2H
≤ ∥uk − u∗∥2H −

(
µ− δ∥H∥(2 + 3κL2)

)
∥x̃k − x∗∥2

−
(
λmin(G)− δ∥H∥

(
2(1− α)2 + 3κr2

)) ∥∥x̃k − xk
∥∥2

−
(
λmin(G)− 3κδ∥H∥∥A⊤A∥β2

)
∥ỹk − yk∥2.

Thus, utilizing the definition of δ and the above inequality derives that

(1 + δ)
∥∥uk+1 − u∗∥∥2

H
≤ ∥uk − u∗∥2H ,

and the assertion of the theorem is proved.

Hence, the above theorem demonstrates that the Algorithm 1 can possess the Q-linear
convergence under Assumption 4.2.

4.3 Linear convergence under strategy 2

Next, we analyze the global linear convergence of Algorithm 1 under some error bound
hypotheses.

Assumption 4.3. In problem (1.1), both θ1 and θ2 are convex. Furthermore, assume that
for any ω > 0, there exists η > 0, such that

dist(u,U∗) ≤ ηdist(0, E(u, 1)), ∀∥u∥ ≤ ω, u ∈ U , (4.17)

where E(·) is defined by (2.5). For Algorithm 1, rs > ∥A⊤A∥, α, β and τ satisfy the
conditions in Assumption 4.2.
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If the subdiferentials ∂θ1 and ∂θ2 are piecewise linear multi-functions and X and Y
are polyhedral sets, then E(u, γ) are piecewise linear multi-functions and (4.17) holds by
Theorem 2.6. This fact was utilized in [12, 13, 29] to prove the linear rate of convergence of
Alternating Direction Methods of Multipliers (ADMM).

Lemma 4.9. Let the sequence {uk := (xk, yk)} be generated by Algorithm 1. Then, there
exists a constant σ1 > 0 such that

dist2(0, E(ũk, 1)) ≤ σ1∥uk − ũk∥2, (4.18)

where
σ1 = max{2(∥A⊤A∥+ s2), 2(r2 + τ2∥A⊤A∥)} > 0. (4.19)

Proof. It follows from the optimality condition of x−subproblem (3.2a) that

x̃k = PX [x̃k − (ξx̃k −A⊤yk + r(x̃k − xk))].

Then,

dist2
(
0, EX (ũk, 1)

)
= dist2

(
x̃k, PX (x̃k − (ξx̃k −A⊤ỹk))

)
= ∥PX [x̃k − (ξx̃k −A⊤yk + r(x̃k − xk))]− PX [x̃k − (ξx̃k −A⊤ỹk)]∥2

≤ ∥A⊤(yk − ỹk) + r(xk − x̃k)∥2

≤ 2∥A⊤A∥∥yk − ỹk∥2 + 2r2∥xk − x̃k∥2, (4.20)

where the last inequality is derived by the inequality

∥a+ b∥2 ≤ 2a2 + 2b2, ∀a, b ∈ Rn.

On the other hand, it follows from the optimality condition of the y−subproblem (3.2c) that

ỹk = PY [ỹ
k − (ζỹk +Ax̃k + τA(x̃k − xk) + s(ỹk − yk))].

Thus, we yield

dist2(0, EY(ũk, 1))

= dist2
(
ỹk, PY(ỹ

k − (ζỹk +A⊤x̃k))
)

≤ ∥PY [ỹ
k − (ζỹk +A⊤x̃k + τA(x̃k − xk) + s(ỹk − yk))]

− PY [ỹ
k − (ζỹk +A⊤x̃k)]∥2

≤
∥∥τA(

x̃k − xk) + s(ỹk − yk))
)∥∥2

≤ 2τ2∥A⊤A∥∥x̃k − xk∥2 + 2s2∥ỹk − yk∥2, (4.21)

Hence, combining (4.20) and (4.21) leads to

dist2(0, E(ũk, 1))

= dist2(0, EX (uk+1, 1)) + dist2(0, EY(uk+1, 1))

≤ 2(∥A⊤A∥+ s2)∥yk − ỹk∥2 + 2(τ2∥A⊤A∥+ r2)∥xk − x̃k∥2. (4.22)

The assertion of this lemma is in turn obtained by the definition of σ1.
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Now, we show the global linear convergence of Algorithm 1 under Assumption 4.3.

Theorem 4.10. Suppose Assumption 4.3 holds. Let {uk := (xk, yk)} be generated by
Algorithm 1 and U∗ be the solution set of problem (1.1). Then,

(1 + ρ)dist2H(uk+1,U∗) ≤ dist2H(uk,U∗), (4.23)

where

ρ :=
1

σ∥H∥
, σ =

σ2

σ3
, σ3 = λmin(G),

and σ2 = max
{
2[(1− α)2 + η2σ1], 2[(1− β)2 + η2σ1]

}
Proof. It follows from Theorem 4.6 that the sequence {(xk, yk)} converges to a saddle point
in U∗, which is bounded. Then, using the Assumption 4.3, and (4.18) leads to that

dist2(ũk,U∗) ≤ η2dist2(0, E(ũk, 1)) ≤ η2σ1∥uk − ũk∥2. (4.24)

On the other hand,

dist2(uk+1,U∗)

≤ 2dist2(uk+1, ũk) + 2dist2(ũk,U∗)

≤ 2∥uk+1 − ũk∥2 + 2η2σ1∥uk − ũk∥2

= 2(1− α)2∥xk − x̃k∥2 + 2(1− β)2∥yk − ỹk∥2 + 2η2σ1∥uk − ũk∥2

≤ σ2∥uk − ũk∥2,

where σ2 = max{2[(1− α)2 + η2σ1], 2[(1− β)2 + η2σ1]}. Furthermore,

σ3{∥yk − ỹk∥2 + ∥xk − x̃k∥2} ≤ ∥uk − ũk∥2G,

where σ3 = λmin(G). Then, we conclude

dist2(uk+1,U∗) ≤ σ∥uk − ũk∥2G. (4.25)

by setting σ = σ2/σ3. Notice that

dist2H(uk+1,U∗) ≤ ∥H∥dist2(uk,U∗),

we obtain that
dist2H(uk+1,U∗) ≤ σ∥H∥∥uk − ũk∥2G. (4.26)

Hence, combining (4.11) and (4.26) leads to

∥uk+1 − u∗∥2H ≤ ∥uk − u∗∥2H − ∥uk − ũk∥2G

≤ ∥uk − u∗∥2H − 1

σ∥H∥
dist2H(uk+1,U∗). (4.27)

Let u∗ ∈ U∗ such that distH(uk,U∗) = ∥uk − u∗∥H . Then, it follows from (4.27) that

dist2H(uk+1,U∗) ≤ dist2H(uk,U∗)− 1

σ∥H∥
dist2H(uk+1,U∗).

Thus, we obtain the desired inequality (4.23) immediately by rearranging terms.

Remark 4.11. As mentioned in Remark 4.5, we can recover the convergence result in [14]
and obtain the inequality (4.2) without the strong convexity assumption on θ1. In this case,
we can also derive the linear convergence of Algorithm 1 under this error bound condition.
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5 Numerical Experiment

This section focuses on studying the numerical behavior of Algorithm 1. The algorithm was
coded by MATLAB R2016a, and all experiments were executed on a Lenovo laptop with
Windows 10 system and Inter(R) Core(TM) i7-7500 (2.70GH) CPU processor with a 16GB
memory.

5.1 Example 1

Firstly, we consider the image inpainting model tested in [4], which takes the form as follows:

min
x

max
y∈C

:

{
⟨y,Ax⟩+ λ

2
∥Sx− g∥2

}
, (5.1)

where g is a noisy input image, S ∈ RN×N is a mask operator, and the convex set C is
defined as C = {y | ∥y∥∞ ≤ 1}. It is noticed that this problem can be seen as a special case
of (1.1). Then, two color images: House.png (256 × 256) and Lena.png (512 × 512) were
processed in our numerical simulation. To generate corrupted images, we enforce a character
mask operator S for the first image House.png so that about 15% of pixels are missed, and
adopt a line mask representing operator S for the second image Lena.png so that a part of
pixels at rows are retained and the other (sdr= 75%) pixels are missed. Moreover, we add
zero-mean Gaussian noise with the standard deviation 0.02 to the incomplete images. The
original and degraded images are displayed in Figure 1.

Furthermore, we set λ = 45 in model (5.1) and employ the following stopping criterion:

Rer :=
∥xk+1 − xk∥

∥xk+1∥
< Tol, (5.2)

where {xk} is the sequence generated by Algorithm 1, and Tol is the error tolerance and
set as 10−5. The maximum number of iterations is set as 150. All algorithms start their
iterations with the degraded images. The quality of restored images is measured by the
value of signal-to-noise (SNR), which is defined as

SNR := 20 log
∥x∗∥

∥xk − x∗∥

where xk is the restored image by certain algorithm and x∗ represents the original one.
To investigate the sensitivity of the parameters in Algorithm 1, six sets of the parameters
(τ , α, β) were tested in our numerical experiment. The related parameters are tuned by
Assumption 4.1 and numerical simulation. The proximal parameters r and s are selected as
(1/3, 25) by the strategy in [16].

Figure 2 draws the evolution curves of SNR and Relative error (Rer) with respect to
iterations. In Figure 2, we notice that Algorithm 1 can quickly achieve higher SNR values
for the cases of τ = 1, α = 1.8, β = 1.8 and τ = 0.95, α = 1.7, β = 1.7/0.95 as compared to
the other cases. Furthermore, Algorithm 1 can reach better relative error values in most of
cases except that τ = 1, α = 1, β = 1 and τ = 0.8, α = 1.5, β = 1.5/0.8. Hence, it implies
that Algorithm 1 is feasible and efficient when dealing with these image inpainting problems,
and is also sensitive about the values of τ , α and β. Moreover, the evolution curves in Figure
2 further support the linear convergence behaviors of Algorithm 1.
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Figure 1: From left to right: the original images, the degraded images (sdr= 75%), the
restored images.
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Figure 2: Evolution of SNRs and Relative errors defined by (5.2) with respect to itera-
tions. The first row and second row correspond to image House.png and Lena.png (75%),
respectively.



564 K. WANG AND Q. WANG

5.2 Example 2

Next, we deal with the matrix completion problem in [3]:

min
X

: {∥X∥∗ | Xij = Mij , (i, j) ∈ Ω} , (5.3)

where X ∈ Rm×n is the unknown matrix to be completed,

Ω = {(i, j)|i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}}

is an index set with cardinality p, Mij represent the sampled (known) entries of M and
∥X∥∗ is the nuclear norm. The data is generated by the way in [7]. By introducing a
Lagrangian multiplier ZΩ ∈ Rm×n, the model (5.3) can be equivalent to the following saddle
point problem:

min
X

max
ZΩ

: {∥X∥∗ − ⟨ZΩ, XΩ −MΩ⟩} ,

which can be seen as a special case of (1.1). Then, we use Algorithm 1 to solve the above
matrix completion problem and the tolerance of the stopping criterion is set as 10−5. The
proximal parameters r and s are chosen as 0.005 and 202 by the strategy in [7, 14]. Here,
we test five sets of the parameters: (τ, α, β) ∈ {(1, 1.5, 1.5), (0.618, 1, 1/0.618), (1, 1, 1),
(0.95, 1.7, 1.7/0.95), (0.9, 1.5, 1.5/0.9)}, and plot the evolution curves of Relative error with
respect to iterations and computing time (Second) in Figure 3. The results demonstrate
that Algorithm 1 still performs stable for different dimensions. Comparatively, Algorithm 1
with (0.618, 1, 1/0.618) performs better than the other cases. Moreover, the curves shown
in Figure 3 further support the linear convergence behaviors of Algorithm 1.
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Figure 3: Sensitivity analysis on parameters of Algorithm 1 for matrix completion problems.
Left: Dimension−500, Right: Dimension−1000.
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6 Conclusion

In this paper, we studied the linear convergence of the generalized primal-dual hybrid gra-
dient algorithm for the saddle point problem. This research project was completed by using
two strategies, the first one is that one of the objective functions is strongly convex with
Lipschitz continuous gradient, and the second one is that the problem possesses some error
bound conditions. Some computational results illustrate the feasibility and efficient of this
method.
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