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Another feasible way of recovering the unknown sparse signal x is the lq(0 < q < 1)-
minimization model

x̂ = arg min
x∈Rd

∥x∥qq subject to ∥y −Ax∥2 ≤ ϵ, (1.2)

where ∥x∥q = (
d∑

i=1

|xi|q)1/q is called lq-norm. It is a quasi norm and does not satisfy the

triangle inequality. It only satisfies the following q-triangle inequality: ∥x + y∥qq ≤ ∥x∥qq +
∥y∥qq, for x, y ∈ Rd.

One of the key research works of compressed sensing is designing an appropriate sensing
matrix to ensure good reconstruction performance of minimization problem (1.1) and (1.2).
The Restricted Isometry Property (RIP) introduced by Candès and Tao in [7], is shown to
provide stable recovery of signals nearly sparse via (1.1). A matrix A satisfies RIP of order
k, if there exists a constant δk ∈ [0, 1), such that

(1− δk)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δk)∥x∥22,

holds for all k-sprase vectors x ∈ Rd, and the smallest constant satisfying the above
inequality is defined as the Restricted Isometry Constant (RIC). Various sufficient con-
ditions based on the RIC for sparse signal recovery, exactly or stably, can be found in
[5, 7, 19, 9, 28, 8, 11, 10, 12]. Null space property (NSP) is another well-known property
used to characterize the sensing matrix. A matrix A satisfies the NSP of order k, which
means for any v ∈ kerA \ {0}, and any index set |T | ≤ k, it holds that

∥vT ∥1 < ∥vT c∥1.

The NSP is a necessary and sufficient condition which guarantees the exact reconstruction
of the sparse signal using the l1-minimization model (1.1). Many works are based on NSP
(see [17, 21, 20, 23, 24, 36]), especially [20], which proposed the stable NSP, the robust NSP,
and used them to characterize the solutions of (1.1). Moreover, it was shown that NSP
matrices can reach a similar stability result as RIP matrices, except that the constants may
be larger[1, 31].

Sparse signal recovery via lq(0 < q < 1)-minimization has been studied in a series of liter-
atures [19, 15, 22, 25, 32]. It was pointed out in [20] that lq(0 < q < 1)-minimization method
requires significantly fewer measurements if the sensing matrix is Gaussian. Compared
with the l1-minimization, a sufficiently sparse signal can be recovered perfectly with the
lq(0 < q < 1)-minimization under less restrictive RIP requirements [33]. The empirical re-
sults show that lq-minimization method would take much less time than the l0-minimization
[14]. These interesting phenomena inspire more and more research on the lq(0 < q < 1)
modeling although the lq-minimization problem for 0 < q < 1 is also NP-hard in general
[20].

The lq(0 < q ≤ 1)-minimization method shows good reconstruction performance for
signals which are sparse in the standard orthonormal basis or some other orthonormal basis.
However, in many practical applications, the signal of interest is not sparse in an orthonormal
basis. More often than not, sparsity is expressed in terms of an overcomplete dictionary.
This kind of signal is called dictionary-sparse signal or frame-sparse signal, and is called
D-sparse signal when the dictionary D is given, while the signals which are nearly sparse
in D will be called D-compressible. The signal x ∈ Rd we consider in this paper is now
expressed as x = Dz, where D ∈ Rd×n, d ≪ n is some overcomplete dictionary of Rd and
the coefficient z ∈ Rn is sparse or nearly sparse. The linear measurement is y0 = Ax0. We
refer to [25, 3, 34, 30, 2, 27, 26, 35] and the reference therein for details.



FRAME-BASED COMPRESSED SENSING VIA lq(0 < q ≤ 1) 571

A natural idea of recovering x0 from the measurements y is to solve the minimization
problem

ẑ = arg min
z∈Rn

∥z∥1, subject to y = ADz (1.3)

for the sparse coefficients ẑ at first, then synthesizing it to get x̂ = Dẑ. This method is
called l1-synthesis, it is related to the l1-analysis, which recovers the signal directly from
solving the problem

x̂ = arg min
x∈Rd

∥D∗x∥1, subject to y = Ax, (1.4)

where D∗ is the transpose of D.
Numerical experiments show that the l1-synthesis method can often perform good re-

construction results, however, it has a fundamental distinction with the l1-analysis method
[18]. It was shown that there was a large theory gap between these two techniques. In
[13] the authors introduced the l1-synthesis method and analyzed the essential differences
and relations between the two problems. They pointed out that since optimal dual based
l1-analysis is equivalent to l1 synthesis [29], l1-analysis appears to be a subproblem of the l1-
synthesis, and l1-synthesis would be more natural and more thorough way than l1-analysis.
The main contribution of [13] is to establish the first necessary and sufficient condition for
reconstructing D-sparse signal based on the l1-synthesis method by using a new null space
property of the frame D. Inspired by the work of [13], we consider frame-sparse signals re-
covery based on a new lq-norm null space property of the dictionary D, via the lq-synthesis
method, where 0 < q ≤ 1. For frame-sparse signal recovery in the noiseless case, we consider

ẑ = argmin∥z∥qq subject to y = ADz, (1.5)

while, for the recovery of D-compressible signals in the case of the measurements are per-
turbed, we naturally consider the following method:

ẑ = argmin∥z∥qq subject to ∥ADz − y∥2 ≤ ϵ. (1.6)

In this paper, we generalize the D-NSP proposed by [13] to lq-norm D-NSP (D-NSPq), and
show that the D-NSPq, is a sufficient and necessary condition for the lq-synthesis to exactly
recover all D-sparse signals of order k. Moreover, when the measurements are perturbed
and the signals are D-compressible, we prove that D-NSPq is still a sufficient and necessary
condition for stable recovery.

The remainder of this paper is organized as follows. Some notations, definitions and
some useful lemmas are introduced in section 2. In section 3, we present the main theorems
for recovering D-sparse signals in the noiseless case and D-compressible signals in noisy case.

2 Preliminaries

We provide the notations of this paper roughly as follows. For a vector z = (z1, z2, ..., zn)
T ∈

Rn, let supp(z) ⊆ {1, 2, ..., n} denote the support of z, which is the set of indices of nonzero
entries in z. The l0-norm of z is defined as ∥z∥0 = |supp(x)|, and z is called k-sparse when

|supp(x)| ≤ k. ∥z∥q = (
n∑

i=1

|zi|q)
1
q is the lq(0 < q ≤ 1)-norm of vector z. Denote zT ∈ Rn

be the vector of which the i-th coordinate (zT )i = zi, if i ∈ T , and (zT )i = 0 for i ̸∈ T , and
zT c = z − zT . For a given frame D ∈ Rd×n, we define DΣk = {x ∈ Rd|if there exists z ∈
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Rn, ∥z∥0 ≤ k such that x = Dz}. Denote σk(z0) = inf
∥z∥0≤k

∥z−z0∥q to be the optimal k-term

approximation of z0 in lq-norm.
The following two new null space properties are very important in characterizing the

reconstruction performance of lq-synthesis methods (1.5) and (1.6).

Definition 2.1. (k-order lq-norm null space property of a dictionary D (k-D-NSPq)). Given
a dictionary D ∈ Rd×n. A matrix A ∈ Rm×d satisfies the D-NSPq of order k (k-D-NSPq)
means that, for any index set T with |T | ≤ k, there exists u ∈ kerD , such that

∥vT + u∥qq < ∥vT c∥qq, ∀v ∈ D−1(kerA \ {0}). (2.1)

Definition 2.2. (k-order lq-norm strong null space property of a dictionary D (k-D-
SNSPq)) A matrix A satisfying the lq-norm strong null space property with respect to
D of order k if there is a positive constant c such that for any index set T with |T | ≤ k,
there exists u ∈ kerD, such that

∥vT c∥qq − ∥vT + u∥qq ≥ c∥Dv∥q2, ∀v ∈ ker(AD). (2.2)

The following lemmas will be useful in the next part of the paper.

Lemma 2.3. Let A ∈ Rm×d, for any a ∈ kerA, b ∈ kerA⊥, and 0 < p ≤ 1, the following
inequality holds.

∥a+ b∥q2 ≤ ∥a∥q2 + ∥b∥q2.

Proof. Since aT b = 0, so ∥a+ b∥q2 = (∥a∥22 + ∥b∥22)
q
2 . It is sufficient to show

(x2 + y2)
q
2 ≤ xq + yq, (2.3)

for all positive real numbers x, y. Define the real function f(x) = (1 + xq)
2
q − 1 + x2,

and then it will be easy to check that f(x) is monotonically increasing when x > 0, then

f(x) > f(0) = 0, and we will get (1 + xq)
2
q ≥ 1 + x2, which implies (2.3) holds.

Lemma 2.4. Let a, b, c be positive numbers, 0 < p ≤ 1, then the inequality

(aq + bq + cq)
1
q ≤ 3

1
q−1(a+ b+ c)

holds.

Remark 2.5. The results of lemma 2.3 and lemma 2.4 can be easily derived from Hölder
Inequality.

Given a index set T , and a vector v ∈ D−1(kerA \ {0}), for any u ∈ kerD and t > 0,
defined the real functions

ϕv(u, t) = sup
ũ∈kerD

(∥(tv + u)T c∥qq − ∥(tv + u)T + ũ∥qq)

and

fv(u, t) =
ϕv(u, t)

tp
. (2.4)

Lemma 2.6. Suppose that A satisfies the k-D-NSPq, then for any given index set T and
v ∈ D−1(kerA \ {0}), the function defined in (2.4) satisfies

inf
u∈kerD,t>0

fv(u, t) > 0.
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Proof. Since A satisfies the k-D-NSPq, it is easy to see that fv(u, t) > 0, for any v ∈
D−1(kerA\{0}), and it is sufficient to show that there is no v0 ∈ D−1(kerA\{0}) such that

inf
u∈kerD,t>0

fv0(u, t) = 0. If this is not ture, then for any η > 0, there is u0 ∈ kerD, t0 > 0

such that fv0(u0, t0) < η. By the definition of fv0(u0, t0), that is

1

tq0
sup

ũ∈kerD
(∥(t0v0 + u0)T c∥qq − ∥(t0v0 + u0)T + ũ∥qq) < η.

This will lead to ∥(t0v0 + u0)T c∥qq − ∥(t0v0 + u0)T + ũ∥qq ≤ 0, for any ũ ∈ kerD, and it is
contradicts with the assumption that A satisfies the k-D-NSPq.

3 Main Results

Theorem 3.1. D-NSPq is a necessary and sufficient condition for lq-synthesis (1.5) to
successfully recover all signals in the set DΣk.

Proof. (Sufficient part) Suppose that the sensing matrix A satisfies the D-NSPq of order
k, then the lq-synthesis (1.5) can successfully recover all D-sparse signals x ∈ DΣk from
measurements y = Ax. Otherwise, there is a vector x0 ∈ DΣk, the reconstruction of
which is x̂ = Dẑ ̸= x0. Denote x0 = Dz0, where |z0| ≤ k. Let v = z0 − ẑ, it is easy to
check that v ∈ D−1(kerA \ {0}). Denote T to be the support set of z0, by the definition
of D-NSPq, there must exist a u ∈ kerD, such that ∥vT + u∥qq < ∥vT c∥qq, which implies
∥(z0 − ẑ)T + u∥qq = ∥z0 − ẑT + u∥qq < ∥ẑT c∥qq, and

∥z0 + u∥qq ≤ ∥z0 − ẑT + u∥qq + ∥ẑT ∥qq
< ∥ẑT c∥qq + ∥ẑT ∥qq
= ∥ẑ∥qq.

This leads to the contradiction of the assumption that ẑ is a minimizer of the problem (1.5).
(Necessary part) Assuming lq-synthesis (1.5) can successfully recover all signals in DΣk,

we need to show that the sensing matrix A satisfies D-NSPq. For any v ∈ D−1(kerA \ {0})
and any index set T with |T | ≤ k, denote x0 = DvT , then x0 ∈ DΣk, and let y0 = Ax0 be
its measurements. Let ẑ be the solution of (1.5), and x̂ = Dẑ be the reconstructed signal
By the assumption, we have x̂ = x0, and there is a u ∈ kerD, such that ẑ = vT + u. Since
AD(vT − v) = y and vT − v ̸= vT + u for any u ∈ kerD, then vT − v cannot be a minimizer
of (1.5), therefor we get ∥vT + u||qq < ∥vT − v∥qq = ∥vcT ∥qq, which implies A is k-D-NSPq.

In classical compressed sensing theory, it is well-known that the null space property is
a sufficient and necessary condition not just for the sparse signal recovery in noiseless case,
but also for compressible signals with noisy measurements [1, 31]. We will show that this
result can be generalized to D-NSPq when the reconstruction is carried on a signal which is
sparse or nearly sparse in a given frame.

The D-SNSPq defined in definition 2.2 looks stronger than the D-NSPq. We now show
that, with this stronger property, D-compressible signals can be stably recovered via (1.6)
as follows.

Theorem 3.2. If the sensing matrix A ∈ Rm×d satisfies k-D-SNSPq, then any solution ẑ
of lq-synthesis (1.6) satisfies

∥Dẑ − x0∥2 ≤ C1σk(z0) + C2ϵ, (3.1)

where z0 is any representation of x0 in D, σk(z0) = inf
∥z∥0≤k

∥z − z0∥q,C1, C2 are constants.
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Proof. Denote x0 = Dz0 be the unknown signal we want to recover and T is the index set
with the k largest coefficients (in magnitude) of z0. Denote h = D(ẑ − z0), and decompose
it as h = t+ η where t ∈ kerA, η ∈ kerA⊥. Let w = DT (DDT )−1t, then h = Dw + η with
Dw ∈ kerA. It is not difficult to know that

∥η∥2 ≤ 1

VA
∥Ah∥2 ≤ 2ϵ

VA
, (3.2)

where VA is the smallest positive singular value of A. Let ξ = DT (DDT )−1η, then η =
Dξ,and it is easy to show

∥ξ∥2 ≤ 1

VD
∥η∥2 ≤ 2

VAVD
ϵ. (3.3)

Since h = D(w + ξ) and h = D(ẑ − z0),so ẑ − z0 = w + ξ + u1 with u1 ∈ kerD.
Let v = w+ u1, then ẑ − z0 = v + ξ and v ∈ kerAD. By the assumption, A satisfies the

k-D-SNSPq, then there is a u ∈ kerD such that

∥vT c∥qq − ∥vT + u∥qq ≥ c∥Dv∥q2.

Therefor

∥v + z0,T ∥qq − ∥ − u+ z0,T ∥qq = ∥vT c + vT + z0,T ∥qq − ∥ − uT + z0,T − uT c∥qq
= ∥vT c∥qq + ∥vT + z0, T∥qq − ∥ − uT + z0,T ∥qq − ∥uT c∥qq
= ∥vT c∥qq − (∥uT − z0,T ∥qq − ∥vT + z0,T ∥qq)− ∥uT c∥qq
≥ ∥vT c∥qq − ∥uT + vT ∥qq − ∥uT c∥qq
= ∥vT c∥qq − ∥u+ vT ∥qq ≥ c∥Dv∥q2. (3.4)

On the other side, since ẑ is a minimizer, we have

∥ − u+ z0,T ∥qq + ∥z0,T c∥qq ≥ ∥ − u+ z0∥qq ≥ ∥ẑ∥qq
= ∥z0 + v + ξ∥qq ≥ ∥v + z0∥qq − ∥ξ∥qq
≥ ∥v + z0,T ∥qq − ∥z0,T c∥qq − ∥ξ∥qq.

By rearranging the above inequality, we will obtain

∥v + z0,T ∥qq − ∥ − u+ z0,T ∥qq ≤ 2∥z0,T c∥qq + ∥ξ∥qq. (3.5)

Combining (3.4) with (3.5), we get

c∥Dv∥q2 ≤ 2∥z0,T c∥qq + ∥ξ∥qq.

Using the Hölder inequality with ∥ξ∥qq, the above inequality will become

∥Dv∥q2 ≤ 2

c
∥z0,T c∥qq +

n1− q
2

c
∥ξ∥q2. (3.6)

Finally, using (3.2),(3.6), and lemma 2.3

∥h∥q2 = ∥Dv +Dξ∥q2 = ∥Dv + η∥q2 ≤ ∥Dv∥q2 + ∥η∥q2,

≤ 2

c
∥z0,T c∥qq +

n1− q
2

c
∥ξ∥q2 + ∥η∥q2.
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That is

∥x̂− x0∥2 ≤ (
2

c
∥z0,T c∥qq +

n1− q
2

c
∥ξ∥q2 + ∥η∥q2)

1
q .

By using lemma 2.4,(3.2) and (3.3), the above inequality can be modified such that

∥x̂− x0∥2 ≤ C1∥z0,T c∥q + C2ϵ = C1σk(z0) + C2ϵ, (3.7)

where C1 = 3
1
q−1( 2c )

1
q ,C2 = 3

1
q−1 2

VA
[(n

1− q
2

c )
1
q 1
VD

+ 1]ϵ.

Remark 3.3. (a) When p = 1, our result is consistent with Theorem 5.2 in [13].

(b) When z0 is k-sparse and ϵ = 0, it means that D-SNSPq sparse signals can be exactly
recovery by (1.5).

By definition 2.2, it is obvious that D-SNSPq is not weaker than D-NSPq. We want to
find it out that how much stronger it is than D-NSPq. The following theorem shows that
these two conditions are actually the same.

Theorem 3.4. Let A ∈ Rm×d, D ∈ Rd×n, matrix A satisfying D-NSPq is equivalent to A
satisfying D-SNSPq with the same order.

Proof. Suppose A satisfies k −D-NSPq. For any w ∈ kerAD, take u = 0, when w = 0, and
u = −w for w ̸= 0,Dw = 0, then ∥wT c∥qq − ∥wT + u∥qq = 0, and (2.2) holds for any positive
number C. To complete the proof, we just need to show the function

F (w) = sup
ũ∈kerD

∥wT c∥qq − ∥wT + ũ∥qq
∥Dw∥q2

has a positive lower bound on D−1(kerA \ {0}) for every |T | ≤ k.
Decompose w into two parts as w = tv + u, where u = PkerDw, tv = P(kerD)⊥w, with

∥v∥2 = 1, and t > 0. By the definition of infimum, we have

inf
w∈D−1(kerA\{0})

F (w) = inf
v∈kerD⊥,∥v∥2=1

inf
u kerD,t>0

fv(u, t)/∥Dv∥2.

By Lemma 2.6, the function inf
u∈kerD,t>0

fv(u, t) is always positive. Since (kerD)⊥ ∩ Sn−1

is a compact set, it is sufficient to prove that the function inf
u∈kerD,t>0

fv(u, t) is lower-semi

continuous with respect to v.
Since, for any v ∈ D−1(kerA \ {0}) and any η > 0, there is a δ = n1−1/qη1/q > 0, such

that for any ∥e∥1 < δ,

fv+e(u, t) = sup
ũ∈kerD

∥(tv + te+ u)T c∥qq − ∥(tv + te+ u)T + ũ∥qq
tq

≥ sup
ũ∈kerD

∥(tv + u)T c∥qq − ∥(tv + u)T + ũ∥qq
tq

− ∥e∥qq

≥ sup
ũ∈kerD

∥(tv + u)T c∥qq − ∥(tv + u)T + ũ∥qq
tq

− n1−q∥e∥q1.

Taking the infimum over u in kerD and t > 0 of both sides, we get

inf
u∈kerD,t>0

fv+e(u, t) ≥ inf
u∈kerD,t>0

fv(u, t)− η,

which shows that the function is a lower semi continuous, and the proof is completed.
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4 Conclusion

In this paper, we generalized the D-NSP proposed by [13] to D-NSPq. We proved in the-
orem 3.1 that this new property is equivalent to the exact recovery of D-sparse signals
via lq-synthesis. In addition, a stable reconstruction result of D-compressible signals via
lq-synthesis in noise case was given in theorem 3.2. To the best of our knowledge, these
studies provide the first characterization of signal recovery with dictionaries via lq-synthesis
approach.

By theorem 3.4, we proved that A satisfies D-SNSPq is equivalent to A satisfies D-NSPq

with the same order. Combined with theorem 3.1 and theorem 3.2 it is clear that D-
NSPq is not only a sufficient and necessary condition for the success of lq-synthesis without
measurement noise, but also sufficient and necessary condition for stability of lq-synthesis
in the noisy case.

These results are helpful to characterize the reconstruction performance of lq-synthesis
approach, and of great significance to study and design the measurement matrix A.

References

[1] A. Aldroubi, X. Chen and A. M. Powell, Perturbations of measurement matrices and
dictionaries in compressed sensing, Appl. Comput. Harmon. A. 33 (2012) 282–291.

[2] W. Bajwa, R. Calderbank and S. Jafarpour, Why Gabor frames? Two fundamental
measures of coherence and their geometric significance, J. Commun. Netw. 12 (2010)
289–307.

[3] E.J. Candès, Y.C. Eldar, D. Needell and P. Randall, Compressed sensing with coherent
and redundant dictionaries, Appl. Comput. Harmon. A. 31 (2011) 59–73.

[4] E.J. Candès, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information, IEEE T. Inform. Theory
52 (2006) 489–509.

[5] E.J. Candès, J.K. Romberg and T. Tao, Stable signal recovery from incomplete and
inaccurate measurements, Commun. Pur. Appl. Mat. 59 (2006) 1207–1223.

[6] E.J. Candès, J. Romberg and T. Tao, Stable signal recovery from incomplete and
inaccurate measurements, Commun. Pur. Appl. Mat. 59 (2006) 1207–1223.

[7] E.J. Candès and T. Tao, Decoding by linear programming, IEEE T. Inform. Theory,
51 (2005) 4203–4215.

[8] T. Cai and A. Zhang, Sparse Representation of a Polytope and Recovery of Sparse
Signals and Low-rank Matrices, IEEE T. Inform Theory 60 (2014) 122–132.

[9] T. Cai, L. Wang and G. Xu, Shifting inequality and recovery of sparse signals, IEEE
T. Signal. Proces. 58 (2010) 1300–1308.

[10] T. Cai, L. Wang and G. Xu, New bounds for restricted isometry constants, IEEE T.
Inform. Theory 56 (2010) 4388–4394.

[11] T. Cai and A. Zhang, Compressed sensing and affine rank minimization under restricted
isometry, IEEE T. Signal. Proces. 61 (2013) 3279–3290.



FRAME-BASED COMPRESSED SENSING VIA lq(0 < q ≤ 1) 577

[12] T. Cai and A. Zhang, Sharp RIP bound for sparse signal and low-rank matrix recovery,
Appl. Comput. Harmon. A. 35 (2013) 74–93.

[13] X. Chen, H. Wang, and R. Wang, A null space analysis of the l1-synthesis method in
dictionary-based compressed sensing, Appl. Comput. Harmon. A. 37 (2014) 492–515.

[14] R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization, IEEE
Signal. Proc. Let. 14 (2007)707–710.

[15] M. Davies and R. Gribonval, Restricted isometry constants where lp sparse recovery
can fail for 0 < q ≤ 1, IEEE T. Inform. Theory 55 (2009) 2203–2214.

[16] D. Donoho, Compressed sensing, IEEE T. Inform. Theory 52 (2006) 1289–1306.

[17] M. Elad and A. M. Bruckstein, A generalized uncertainty principle and sparse repre-
sentation in pairs of bases, IEEE T. Inform. Theory 48 (2002) 2558–2567.

[18] M. Elad, P. Milanfar and R. Rubinstein, Analysis versus synthesis in signal priors,
Inverse. Probl. 23 (2007) 947–968.

[19] S. Foucart and M. J. Lai, Sparsest solutions of underdetermined linear systems via
lq-minimization for 0 < q ≤ 1, Appl. Comput. Harmon. A. 26 (2009) 395–407.

[20] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Springer Science Business Media, New York, NY, USA, 2013.

[21] R. Gribonval and M. Nielsen. Sparse decompositions in unions of bases. IEEE T. In-
form. Theory 49 (2003) 3320–3325.

[22] S. Foucart, A. Pajor, H. Rauhut, and T. Ullrich, The Gelfand widths of lq-balls for
0 < q ≤ 1, J. Complexity. 26 (2010) 629–640.

[23] B. S. Kashin and V. N. Temlyakov, A remark on compressed sensing,Math. Notes 82
(2007) 748–755.

[24] M. J. Lai and Y. Liu, The null space property for sparse recovery from multiple mea-
surement vectors, Appl. Comput. Harmon. A. 30 (2011) 402–406.

[25] J. Lin and S. Li, Sparse recovery with coherent tight frames via analysis Dantzig selector
and analysis LASSO, Appl. Comput. Harmon. A. 37 (2014) 126–139.

[26] J. Lin, S. Li and Y. Shen, New bounds for restricted isometry constants with coherent
tight frames, IEEE T. Signal. Proces. 61 (2013) 611–621.

[27] L. Song. and J Lin, Compressed Sensing with coherent tight frames via lq-minimization
for 0 < q ≤ 1, Inverse Probl. Imag. 8 (2017) 761–777.

[28] Q. Mo and S. Li, New bounds on the restricted isometry constant δ2k, Appl. Comput.
Harmon. A. 31 (2011) 460–468.

[29] J. Peng, S. Yue, and H. Li, NP/CLP equivalence: a phenomenon hidden among sparsity
models for information processing, http://arxiv.org/abs/1501.02018.

[30] H. Rauhut, K. Schnass and P. Vandergheynst, Compressed sensing and redundant dic-
tionaries, IEEE T. Inform. Theory 54 (2008) 2210–2219.



578 F. WU AND P. ZHONG

[31] Q. Sun. Sparse approximation property and stable recovery of sparse signals from noisy
measurements, IEEE T. Signal. Proces. 59 (2011) 5086–5090.

[32] Q. Sun, Recovery of sparsest signals via lq-minimization, Appl. Comput. Harmon. A.
32 (2012) 329–341.

[33] R. Saab and O. Yilmaz, Sparse recovery by non-convex optimization-instance optimal-
ity, Appl. Comput. Harmon. A. 29 (2010) 30–48.

[34] J. A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE T.
Inform. Theory 50 (2004) 2231–2242.

[35] F.G. Wu and D.H. Li, The restricted isometry property for signal recovery with coherent
tight frames, Bull. Aust. Math. Soc. 92 (2015) 496–507.

[36] Z. Q. Xu, Compressed sensing, Sci. China. Math. 42 (2012) 865–877.

Manuscript received 7 September 2021
revised 23 March 2022

accepted for publication 26 June 2022

Fengong Wu
Department of Mathematics
Guangdong University of Education
Guangzhou, 510303, China
E-mail address: wufengong@gdei.edu.cn

Penghong Zhong
Department of Mathematics
Guangdong University of Education
Guangzhou 510303, China
E-mail address: penghongzhong@yahoo.com


