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The scalar λ and the nonzero vector x satisfying system (1.1) are respectively called a
Pareto eigenvalue and an associated Pareto eigenvector of the given matrix pair (A,B). The
set

σ(A,B) = {λ ∈ R | (λ, x) solves (1.1) for some nonzero vectors x ∈ Rn
+}

consisting of all Pareto eigenvalues is called the Pareto spectrum of (A,B). It is well known
that Pareto EiCP always has a solution since it is equivalent to a Variational Inequality
Problem with a continuous function on the ordinary simplex [5]. The number of Pareto
eigenvalues may grow exponentially with the order of the problem [25, 21, 3, 26]. Therefore,
it is not easy to solve the Pareto spectrum for medium and large scale instances. Similar
to linear or nonlinear complementarity problems, the Pareto EiCP can be reformulated as
an equivalent system of nonsmooth equations by using nonlinear complementarity functions
(NCP- functions), and then semismooth Newton’s method can be applied to solve Pareto
EiCP [2, 1]. This kind of Newton-type method is efficient for solving the Pareto EiCP in
general. However, these algorithms may fail in many instances.

This paper is concerned with the symmetric Pareto EiCP, that is, the matrices A and B
are symmetric, and B is positive definite. From a computational point of view, the symmetric
Pareto EiCP is easier to solve. In addition, a large number of documents mention that each
stationary point of the following nonlinear programming problem is the solution of symmetric
Pareto EiCP [22, 14, 11, 4].

minx∈Rn f(x) = xTAx
xTBx

s.t. x ∈ Ω,
(1.2)

where Ω = {x | x ≥ 0, eTx = 1} and e ∈ Rn is a vector of ones. Among them, the equality
constraint eTx = 1 is to ensure x ̸= 0. As expected, a number of nonlinear programming
algorithms [18] can be used to solve the symmetric Pareto EiCP by computing a stationary
point of (1.2). In particular, some descent algorithms have been proposed for solving (1.2) by
constructing a feasible descent direction [22, 11]. For example, the canonic steepest ascent
method was slightly modified in [22] to solve the symmetric Pareto EiCP and the feasible
direction at each step is the projection of the negative gradient on the nonnegative cone Rn

+.
The difference of convex function (DC) programming [14] may also be useful for computing a
solution of the symmetric Pareto EiCP for large-scale instances. For the spectral projected
gradient (SPG) method proposed in [11], the feasible descent direction with the spectral
choice line search parameter is projected onto the compact set Ω in each step. Combining
the idea of the SPG method and the block active set method described in [6], a block active
set algorithm with spectral choice search direction (BAS) was proposed in [4]. Compared
with the SPG algorithm, the BAS algorithm determines an exact optimal step size along the
direction of the block active set algorithm in each iteration, and its efficiency has been proved
by a large number of calculation results. Recently [10], a solution of symmetric Pareto EiCP
can be computed as a stationary point x̄ of the quadratic programming problem:

minx∈Rn f(x) = 1
2x

T (A− λB)x
s.t. x ∈ Ω,

(1.3)

where λ = x̄TAx̄
x̄TBx̄

. The alternating direction method of multipliers (ADMM) [10] and a
sequential partial linearization (SPL) algorithm [7] are used to obtain an EiCP solution by
solving the quadratic programming problem (1.3). In the numerical experiments in [10, 7],
it can be found that the ADMM algorithm may be too slow for some instances, while
the SPL algorithm performs better. In [12], a new sequential fractional linear quadratic
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program (FLQP) algorithm was proposed for computing a solution of symmetric EiCP, as
this problem is equivalent to the computation of a stationary point of a fractional quadratic
program on the simplex.

The sequential quadratic programming (SQP) method has proved highly effective for
solving nonlinear programming problems with smooth nonlinear functions in the objective
and constraints [18, 17, 9, 8]. The idea of the SQP method is to use a series of quadratic
programming subproblems to solve the nonlinear programming problem, and the constraint
condition of each quadratic programming subproblem is the linearization of the constraint
condition in the original problem. In addition, the search direction can be constructed by
solving the quadratic programming subproblem in each iteration. In this paper, we attempt
to apply the SQP method for solving the symmetric Pareto EiCP, and make certain changes
to the SQP method.

The structure of the paper is as follows. In Section 2, the detailed description of the
SQP algorithm for solving the symmetric Pareto EiCP including the algorithm framework
and important basic properties. At the end of this section, we will discuss the exact line
search that ensures the reduction of the objective function. The global convergence of this
algorithm is shown in Section 3. In Section 4, a simple SQP algorithm is introduced, and
an effective method for solving the quadratic programming subproblem in each iteration is
introduced. Numerical experiments are given in Section 5, and some conclusions and future
work are introduced in the last section to conclude this article.
Notation : Sn represents the set of n order symmetric matrices, Sn+ represents the set of n
order symmetric positive definite matrices.

2 The SQP Method for Symmetric Pareto EiCP

2.1 The sequential quadratic programming algorithm

In this section, we present an SQP algorithm framework for solving the symmetric Pareto
EiCP. Currently, the nonlinear programming problem (1.2) is usually used as the optimiza-
tion model for solving the symmetric Pareto EiCP. However, the objective function f(x) in
(1.2) is a generalized Rayleigh quotient. It is not an easy task to construct an appropriate
quadratic programming subproblem in each iteration. In addition, the objective function
in the optimization problem (1.3) contains the parameter λ, which is unknown at the be-
ginning. To avoid the above problems, we consider the following quadratic programming
problem:

minx∈Rn f(x) = 1
2x

TAx
s.t. 1

2x
TBx = 1,
x ≥ 0.

(2.1)

The Lagrangian function of the optimization problem (2.1) can be formulated as:

L(x, λ, z) =
1

2
xTAx− λ(

1

2
xTBx− 1)− zTx, (2.2)

where the scalar λ ∈ R and the vector z ∈ Rn
+ are respectively the Lagrange multipliers

of the equality and inequality constraints in (2.1). Obviously, the stationary point of this
problem satisfies the Karush-Kuhn-Tucker conditions:

(A− λB)x = z,
z ≥ 0, x ≥ 0,
zTx = 0,
1
2x

TBx− 1 = 0.

(2.3)
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It follows from (2.3) that (λ, x) is a solution of the symmetric Pareto EiCP.
In this section, we introduce the SQP method to compute a stationary point of the

quadratic programming problem (2.1). The key of Algorithm SQP is to construct a sub-
problem at the current point and obtain the search direction by solving the subproblem.
Next, we construct the following subproblem at the current iteration point xk:

mind∈Rn gk(d) =
1
2d

TMd+ (Axk)
T d

s.t. xT
kBd+ 1

2x
T
kBxk − 1 = 0,

d+ xk ≥ 0,

(2.4)

where M is a symmetric positive definite matrix. Obviously, the quadratic programming
subproblem (2.4) is strictly convex function. Generally speaking, the symmetric positive
definite matrixM is usually an approximation to the Hessian of the Lagrangian function (2.2)
in the sequential quadratic programming algorithm and the matrix M of each subproblem
is different. The Lagrangian Hessian matrix of the problem (2.1) is A − λB. Therefore,
the most straightforward idea is that we can find an appropriate value λ

′
to approximate

the Lagrangian multiplier λ. Choosing λ
′
=

xT
k Axk

xT
k Bxk

is a good strategy, which is similar to

Algorithm SPL. But it is difficult to guarantee that the matrix M = A − λ
′
B is positive

definite. Solving non-convex subproblems becomes the hard part of the problem. In addition,
if the matrix M is updated with iterations, we can hardly guarantee that it is bounded. We
need a trade-off between a good update strategy and a good subproblem. In this paper, we
fix the symmetric positive definite matrix M in the objective function (2.4) and analyze its
convergence. This strategy not only reduces the difficulty of solving the subproblem, but
also ensures that the matrix M must be bounded. We describe the selection of the matrix M
in detail in Section 5 of the paper. Below, we present the basic properties of the quadratic
programming subproblem (2.4).

Theorem 2.1. Define the penalty function as

Pσ(x) := f(x) + σ|1
2
xTBx− 1|, (2.5)

where σ > 0 is the penalty parameter. If the current iteration point xk ≥ 0 and xk ̸= 0, then
the quadratic programming subproblem (2.4) is well defined. Let dk be the solution of (2.4),
then we have

1. dk is a descent direction of the penalty function Pσ(x) at xk as long as σ ≥ |λk|, where
λk ∈ R is the Lagrange multiplier of the equality constraint in (2.4),

2. xk + αdk ≥ 0 for all α ∈ [0, 1],

3. if dk = 0, then xk is a stationary point of (2.1), and vice versa.

Proof. If the feasible set is nonempty, there exists a unique solution of the quadratic pro-
gramming subproblem (2.4) due to the quadratic programming subproblem (2.4) is strictly
convex [18], that is, it is well defined.

Let yk := Bxk, since the current iteration point xk ≥ 0 and xk ̸= 0, then there exists at
least one component (yk)i > 0, otherwise it contradicts the fact that xT

k yk = xT
kBxk > 0.

Define d̃ ∈ Rn, where the elements satisfy

(d̃)j :=

{
1
2x

T
k yk+1

(yk)j
− (xk)j , j = i,

−(xk)j , j ̸= i.
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It follows that d̃+ xk ≥ 0 and

xT
kBd̃ = yTk d̃ =

n∑
j=1

(yk)j(d̃)j

=
1

2
(xT

k yk + 1)−
n∑

j=1

(yk)j(xk)j

= −1

2
xT
k yk + 1 = −1

2
xT
kBxk + 1,

which means that d̃ belongs to the feasible set of (2.4), i.e., the quadratic programming
subproblem (2.4) is well defined.

(i) Let φ(α) := Pσ(xk+αdk). From the continuity of the penalty function Pσ(x) defined
in (2.5) and the convexity of the absolute value function, we have

φ
′
(α)|α=0 = limα→0+

Pσ(xk+αdk)−Pσ(xk)
α

= limα→0+
f(xk+αdk)−f(xk)+σ| 12 (xk+αdk)

TB(xk+αdk)−1|−σ| 12x
T
k Bxk−1|

α

≤ (Axk)
T dk + σ limα→0+

| 12x
T
k Bxk−1+αxT

k Bdk|−| 12x
T
k Bxk−1|

α

= (Axk)
T dk + σ limα→0+

|α( 1
2x

T
k Bxk−1+xT

k Bdk)+(1−α)( 1
2x

T
k Bxk−1)|−| 12x

T
k Bxk−1|

α

= (Axk)
T dk + σ limα→0+

|(1−α)( 1
2x

T
k Bxk−1)|−| 12x

T
k Bxk−1|

α
= (Axk)

T dk − σ | 1
2x

T
kBxk − 1 | .

(2.6)
The solution dk satisfies the Karush-Kuhn-Tucker conditions:

Mdk +Axk = λkBxk + zk,

zk ≥ 0, dk + xk ≥ 0,

zTk (dk + xk) = 0,

xT
kBdk + 1

2x
T
kBxk − 1 = 0,

(2.7)

where the scalar λk ∈ R and the vector zk ∈ Rn
+ are respectively the Lagrange multipliers

of the equality and inequality constraints in (2.4). It follows from (2.7) that

(Axk)
T dk = −dTkMdk + λkx

T
kBdk + zk

T dk

= −dTkMdk − zk
Txk + λk(1−

1

2
xT
kBxk).

(2.8)

Substituting (2.8) into (2.6), we obtain

φ
′
(α)|α=0 ≤ −dTkMdk − zk

Txk − λk(
1

2
xT
kBxk − 1)− σ | 1

2
xT
kBxk − 1 |

≤ −dTkMdk − zk
Txk − (σ− | λk |) | 1

2
xT
kBxk − 1 | .

(2.9)

Since the matrix M is symmetric positive definite and zk
Txk ≥ 0, we have φ

′
(α)|α=0 ≤ 0

as long as σ ≥ |λk|. Hence, dk is a descent direction of the penalty function Pσ(x) at xk for
given penalty parameter σ ≥ |λk|.

(ii) Since the solution dk satisfies the Karush-Kuhn-Tucker conditions (2.7), then the
assertion clearly holds by xk ≥ 0 and xk + dk ≥ 0.
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(iii) If the solution dk = 0, then the Karush-Kuhn-Tucker conditions (2.7) reduces to
(2.3), which implies xk is a stationary point of (2.1) and the corresponding Lagrange mul-
tiplier λk is a Pareto eigenvalue of (1.1).

Conversely, let xk be a stationary point of (2.1), then there exist λk ∈ R and nonnegative
vector zk ∈ Rn satisfy the Karush-Kuhn-Tucker conditions (2.3), i.e.,

Axk = λkBxk + zk,

zk ≥ 0, xk ≥ 0,

zTk xk = 0,

1
2x

T
kBxk − 1 = 0,

(2.10)

which implies dk = 0 ∈ Rn is a Karush-Kuhn-Tucker solution of (2.7). Moreover, 1
2x

T
kBxk =

1 yields that dk = 0 is a feasible solution of (2.4). Hence dk = 0 is also the unique solution of
(2.4) due to the fact that the quadratic programming subproblem (2.4) is strictly convex.

Theorem 2.1 shows that the solution of the quadratic programming subproblem (2.4)
can be considered as a search direction in each iteration, and the solution of (2.1) may be
found along this direction. Consequently, we can establish the SQP algorithm framework
for solving symmetric Pareto EiCP.

SQP: Sequential Quadratic Programming Algorithm

1. Initialization

(a) Give the symmetric matrix A ∈ Sn, and B ∈ Sn+ is symmetric positive definite;

(b) Choose a symmetric positive definite matrix M ∈ Sn+ and a penalty parameter
σ > 0;

(c) Choose a positive tolerance ϵ, the initial iteration point x0 ≥ 0 and x0 ̸= 0, and
set k = 0.

2. Iteration

Step 1. Find the unique solution dk of (2.4);

Step 2. If ∥dk∥2 ≤ ϵ, then stop; otherwise, go to step 3;

Step 3. Compute a step size αk ∈ [0, 1] such that

Pσ(xk + αkdk) = min
0≤α≤1

Pσ(xk + αdk);

Step 4. Let xk+1 = xk + αkdk, k = k + 1, and return to step 1.

For the sequence {xk} generated by the SQP algorithm, the assertion (2) in Theorem 2.1
shows the iteration point xk ≥ 0 for all k as long as the initial point x0 ≥ 0 and x0 ̸= 0.
Since the penalty function Pσ(x) is nearly quadratic, we attempt to compute the exact step
size αk in step 3 of the SQP algorithm at the end of this section.
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2.2 The exact step size

For the iteration point xk and the solution dk of (2.4), we denote τk := 1 − 1
2x

T
kBxk and

ck := 1
2d

T
kBdk for simplicity, then we have

φ(α) = Pσ(xk + αdk)

= f(xk + αdk) + σ | 1
2
(xk + αdk)

TB(xk + αdk)− 1 |

=
1

2
xT
kAxk +

1

2
α2dTkAdk + αxT

kAdk + σ | ckα2 + τkα− τk | .

(2.11)

Obviously, the function φ(α) is continuous, that is, the optimization problem in step 3 of
the SQP algorithm is well defined.

Theorem 2.2. Let xk and dk be generated by the SQP algorithm. Suppose dk ̸= 0 and
σ > ρ, where ρ is the spectral radius of matrix B−1A, then the exact step size αk is selected
by the following rules:

(i) when τk > 0, the exact step size αk in step 3 can be determined by

αk =


1, if 1 ≤ δk,

δk, if δ1k < δk < 1,

δ1k, if δk ≤ δ1k,

(2.12)

(ii) when τk ≤ 0, the exact step size αk in step 3 can be determined by

αk =

{
1, if 1 ≤ δk,

δk, if δk < 1,
(2.13)

where

δk = − xT
kAdk + στk

dTk (A+ σB)dk
, δ1k =

−τk +
√
τ2k + 4ckτk
2ck

. (2.14)

Proof. Note φ(α) is also a piecewise smooth function which is determined by the quadratic
function

q(α) := ckα
2 + τkα− τk. (2.15)

(i) when τk > 0, the quadratic equation q(α) = 0 has two distinct roots:

δ1k =
−τk +

√
τ2k + 4ckτk
2ck

and δ2k =
−τk −

√
τ2k + 4ckτk
2ck

. (2.16)

Obviously,

−τk −
√
τ2k + 4ckτk < 0 = −τk +

√
τ2k < −τk +

√
τ2k + 4ckτk (2.17)

and

−τk +
√
τ2k + 4ckτk < −τk +

√
τ2k + 4ckτk + (2ck)2

= −τk +
√
(τk + 2ck)2

= −τk + (τk + 2ck)

= 2ck.

(2.18)
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It follows from (2.16), (2.17), (2.18) that δ2k < 0 < δ1k < 1 and the function φ(α) within
the interval [0, 1] can be reformulated as

φ(α) =

{
1
2α

2dTk (A+ σB)dk + α(xT
kAdk + στk) +

1
2x

T
kAxk − στk, δ1k < α ≤ 1,

1
2α

2dTk (A− σB)dk + α(xT
kAdk − στk) +

1
2x

T
kAxk + στk, 0 ≤ α ≤ δ1k.

(2.19)
If the penalty parameter satisfies σ > ρ, then the matrices A + σB and A − σB are
respectively positive definite and negative definite, which means that the function φ(α)
within the interval [0, δ1k] is concave and within the interval [δ1k, 1] is convex. Since dk
is a descent direction, the function φ(α) is monotone decreasing in the interval [0, δ1k].

Since δk = − xT
k Adk+στk

dT
k (A+σB)dk

is the unique minimizer of the quadratic function

1

2
α2dTk (A+ σB)dk + α(xT

kAdk + στk) +
1

2
xT
kAxk − στk,

then we provide the formula (2.12) for αk by comparing three scalars 1, δk and δ1.

(ii) when τk ≤ 0, we first discuss the quadratic function q(α) defined in (2.15) in two
cases:

(A1) If −4ck < τk ≤ 0, then q(α) ≥ 0 for all α ∈ R;

(A2) If τk ≤ −4ck, then δ1k and δ2k in (2.16) are the solutions of the equation q(α) = 0,
and

−τk −
√
τ2k + 4ckτk > −τk −

√
τ2k + 4ckτk + (2ck)2

= −τk −
√
(τk + 2ck)2

= −τk − |τk + 2ck|
= 2ck.

(2.20)

From the above inequalities (2.20) and (2.16), we can get 1 < δ2k ≤ δ1k, which
implies that q(α) ≥ 0 for all α ∈ [0, 1].

Hence, the function φ(α) within the interval [0, 1] for the case that τk ≤ 0 can be
reformulated as

φ(α) =
1

2
α2dTk (A+ σB)dk + α(xT

kAdk + στk) +
1

2
xT
kAxk − στk, 0 ≤ α ≤ 1. (2.21)

Since the function φ(α) is convex, we can provide the formula (2.13) for αk by comparing
the scalar 1 with the minimizer δk.

3 Global Convergence of the SQP Algorithm

In this section, we focus on the global convergence of the SQP algorithm. The convergence
of the classical sequential quadratic programming algorithm has been discussed in much lit-
erature. However, the proposed algorithm is different from the classical sequential quadratic
programming algorithm in the construction of the subproblems and the selection of the step
size. The following theoretical proof is inspired by [29, Theorem 12.2.3].
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Lemma 3.1. Let the sequence {dk} be generated by the SQP algorithm and the penalty
parameter σ satisfies σ > max{|λk|, ρ} for all k, where λk is the Lagrange multiplier of the
equation (2.7), ρ is the spectral radius of matrix B−1A. If there is an infinite set K with
||dk||2 ≥ η > 0 for any k ∈ K, then there exists a positive constant η̄ such that

∆Pk := Pσ(xk+1)− Pσ(xk) ≤ −η̄, ∀k ∈ K.

Proof. From the second part of the article, we know that the matrices M and A + σB
are symmetric positive definite matrices, the matrix A− σB is the negative definite matrix.
Obviously, there are constants m1 > 0, m2 > 0, m3 > 0, and m4 > 0, such that the following
inequality

dTkMdk ≥ m1||dk||22 ≥ m1η
2, dTk (A+ σB)dk ≤ m2||dk||22,

dTk (A− σB)dk ≤ −m3||dk||22 < 0, dTkBdk ≤ m4||dk||22
(3.1)

holds for all k ∈ K.

Theorem 2.2 shows that we can make Pσ(xk+1) = Pσ(xk + αkdk) = min0≤α≤1 Pσ(xk +
αdk) by choosing the exact step size αk, so we investigate the upper bound of ∆Pk according
to Theorem 2.2.

(i) When τk > 0, we investigate the following three cases according to (2.12):

(B1) If αk = 1, then it follows from (2.19), (2.8) and 1 ≤ δk that

∆Pk =
1

2
dTk (A+ σB)dk + xT

kAdk − στk

≤ 1

2
xT
kAdk − 1

2
στk

= −1

2
dTkMdk − 1

2
zTk xk − 1

2
(σ − λk)τk

≤ −1

2
m1η

2.

(3.2)

(B2) If αk = δk, then it follows from (2.19), (2.14) and (2.8) that

∆Pk =
1

2
δ2kd

T
k (A+ σB)dk + δk(x

T
kAdk + στk)− 2στk

= −1

2

(xT
kAdk + στk)

2

dTk (A+ σB)dk
− 2στk

=
1

2
δk(x

T
kAdk + στk)− 2στk

= −1

2
δkd

T
kMdk − 1

2
δkz

T
k xk +

1

2
δk(σ + λk)τk − 2στk

≤ −1

2
δkd

T
kMdk +

1

2
(σ + λk)τk − 2στk

= −1

2
δkd

T
kMdk − 1

2
(σ − λk)τk − στk

≤ −1

2
δkm1η

2 − στk.

(3.3)
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(B3) If αk = δ1k, then it follows from (2.19), (2.14) and (2.8) that

∆Pk =
1

2
(δ1k)

2dTk (A− σB)dk + δ1k(x
T
kAdk − στk)

=
1

2
(δ1k)

2dTk (A− σB)dk + δ1k(−dTkMdk − zk
Txk − (σ − λk)τk)

≤ 1

2
(δ1k)

2dTk (A− σB)dk − δ1kd
T
kMdk

=
(−τk +

√
τ2k + 4ckτk)

2dTk (A− σB)dk

4ckdTkBdk
− δ1kd

T
kMdk

≤ −
(−τk +

√
τ2k + 4ckτk)

2m3

4ckm4
− δ1km1η

2.

(3.4)

(ii) When τk ≤ 0, we investigate the following two cases according to (2.13):

(C1) If αk = 1, then it follows from (2.21), (2.8) and 1 ≤ δk that

∆Pk =
1

2
dTk (A+ σB)dk + xT

kAdk + στk

≤ 1

2
xT
kAdk +

1

2
στk

= −1

2
dTkMdk − 1

2
zTk xk +

1

2
(σ + λk)τk

≤ −1

2
m1η

2.

(3.5)

(C2) If αk = δk, it is clear that

δk = − xT
kAdk + στk

dTk (A+ σB)dk

=
dTkMdk + zTk xk − (σ + λk)τk

dTk (A+ σB)dk

≥ dTkMdk
dTk (A+ σB)dk

≥ m1

m2
.

(3.6)

It follows from (2.21), (2.8) and 0 < δk ≤ 1 that

∆Pk =
1

2
δ2kd

T
k (A+ σB)dk + δk(x

T
kAdk + στk)

= −1

2

(xT
kAdk + στk)

2

dTk (A+ σB)dk

=
1

2
δk(x

T
kAdk + στk)

≤ −1

2
δkm1η

2

≤ −m2
1η

2

2m2
.

(3.7)
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In the following, we focus on the cases (3.3) and (3.4) with τk > 0. First, we discuss the
case αk = δk. Define K1 := {k | αk = δk, k ∈ K}. If their exists a positive constant η

′

1 > 0
such that τk ≥ η

′

1 > 0 for any k ∈ K1, it means the upper bound of ∆Pk in (3.3) can be
updated as

∆Pk ≤ −ση
′

1. (3.8)

If there exists an infinite subset Q1 ⊂ K1, such that lim k∈Q1
k→∞

τk = 0. According to Theorem

2.1, we have

δk =
dTkMdk + zTk xk − (σ + λk)τk

dTk (A+ σB)dk

≥ dTkMdk − 2στk
dTk (A+ σB)dk

≥
m1 − 2

||dk||22
στk

m2

≥
m1 − 2

η2στk

m2
.

(3.9)

The second inequality in (3.9) dues to the fact that σ + λk ≤ 2σ by σ ≥ |λk|. Hence, we
have

lim
k∈Q1
k→∞

δk ≥ lim
k∈Q1
k→∞

m1 − 2
η2στk

m2

=
m1

m2

> 0,

(3.10)

which means that there exists a η
′

2 > 0 such that δk ≥ η
′

2 > 0 for any k ∈ Q1. Consequently,
the upper bound of ∆Pk in (3.3) can be updated as

∆Pk ≤ −1

2
η

′

2m1η
2, ∀k ∈ Q1. (3.11)

For the case αk = δ1k, we define K2 := {k | αk = δ1k, k ∈ K}. If there exists an infinite
subset P1 ⊂ K2, such that lim k∈P1

k→∞
τk = 0. According to formula (3.4) and (2.12), we have

∆Pk ≤ −
(−τk +

√
τ2k + 4ckτk)

2m3

4ckm4
− δ1km1η

2

≤ −δkm1η
2.

(3.12)

By (3.10) and (3.12), we get

∆Pk ≤ −η
′

2m1η
2, ∀k ∈ P1. (3.13)

Otherwise, we may assume that there is a constant η
′

3 > 0 such that

1 ≥ τk ≥ η
′

3 > 0, ∀k ∈ K2. (3.14)

If ck is bounded by a constant η
′

4, i.e.,

η
′

4 ≥ ck > 0, ∀k ∈ K2, (3.15)
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we have

δ1k =
−τk +

√
τ2k + 4ckτk
2ck

=
2τk

τk +
√
τ2k + 4ckτk

≥ 2τk

τk +
√
τ2k + 4ckτk + (2ck)2

=
τk

τk + ck

≥ η
′

3

1 + η
′
4

.

(3.16)

Therefore, we obtain

∆Pk ≤ −
(−τk +

√
τ2k + 4ckτk)

2m3

4ckm4
− δ1km1η

2

≤ −δ1km1η
2

≤ −η
′

3m1η
2

1 + η
′
4

.

(3.17)

If ck is unbounded, i.e., there exists a constant

η
′

5 =
2 +

√
4 + (η

′
3)

2

(η
′
3)

2
> 0,

such that ck ≥ min{ck, η
′

5} for all k ∈ K2. Consequently, we partition K2 into two parts
K2 = K11

⋃
K12, where

K11 = {k ∈ K1|0 < ck ≤ η
′

5}, K12 = {k ∈ K1|ck > η
′

5},

then the inequality (3.4) can be reformulated as

∆Pk ≤ −η
′

3m1η
2

1 + η
′
5

, k ∈ K11, (3.18)

and

∆Pk ≤ −
(τ2k + 2ckτk − τk

√
τ2k + 4ckτk)m3

2ckm4

≤ − ((η
′

3)
2 + 2ckη

′

3 −
√
1 + 4ck)m3

2ckm4

≤ −
(
η

′

3 −
√
1 + 4ck
2ck

)
m3

m4

≤ −η
′

3m3

2m4
,

(3.19)

for k ∈ K12.
Combining the above discussion, we conclude that there exists a positive constant

η̄ = min{1
2
m1η

2, ση
′

1,
1

2
η

′

2m1η
2,

η
′

3m1η
2

1 + η
′
4

,
η

′

3m1η
2

1 + η
′
5

,
η

′

3m3

2m4
,
m2

1η
2

2m2
} > 0 (3.20)
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such that

Pσ(xk+1) ≤ Pσ(xk)− η̄, ∀k ∈ K.

Lemma 3.2. Let {xk} and {dk} be the sequences generated by the SQP algorithm, the
penalty parameter σ satisfies σ > max{|λk|, ρ} for all k, where λk is the Lagrange multiplier
of the equation (2.7), ρ is the spectral radius of matrix B−1A. Then the sequence {xk} is
bounded and for all k > 1

∥ xk ∥22≤ max{ 2

λmin(B)
,
xT
0 Ax0 + σ|xT

0 Bx0 − 2|+ 2σ

λmin(A+ σB)
},

where λmin(A) denotes the smallest eigenvalue of the matrix A.

Proof. From Theorem 2.1, dk is a descent direction of the penalty function Pσ(x). And since

P (xk+1) = Pσ(xk + αkdk) = min
0≤α≤1

Pσ(xk + αdk),

we have P (xk+1)− P (xk) ≤ 0 for any k. Therefore, we can obtain

0 ≤
k∑

i=0

[Pσ(xi)− Pσ(xi+1)]

= Pσ(x0)− Pσ(xk+1)

=
1

2
xT
0 Ax0 + σ|1

2
xT
0 Bx0 − 1| − 1

2
xT
k+1Axk+1 − σ|1

2
xT
k+1Bxk+1 − 1|.

(3.21)

It is easy to get

1

2
xT
k+1Axk+1 + σ|1

2
xT
k+1Bxk+1 − 1| ≤ 1

2
xT
0 Ax0 + σ|1

2
xT
0 Bx0 − 1|.

The following discussion is divided into two situations:

(c1) If 1
2x

T
k+1Bxk+1 − 1 < 0, then ∥ xk+1 ∥22≤ 2

λmin(B) ;

(c2) If 1
2x

T
k+1Bxk+1 − 1 ≥ 0, then 1

2x
T
k+1Axk+1 + σ 1

2x
T
k+1Bxk+1 ≤ 1

2x
T
0 Ax0 + σ| 12x

T
0 Bx0 −

1|+ σ,

∥ xk+1 ∥22≤
xT
0 Ax0 + σ|xT

0 Bx0 − 2|+ 2σ

λmin(A+ σB)
. (3.22)

In summary, the sequence {xk} is bounded.

Now we proceed to establish convergence of the proposed algorithm.

Theorem 3.3. Let {xk} and {dk} be the sequences generated by the SQP algorithm and the
penalty parameter σ satisfies σ > max{|λk|, ρ} for all k, where λk is the Lagrange multiplier
of the equation (2.7), ρ is the spectral radius of matrix B−1A. If x̄ is an accumulation point
of the sequence {xk}, then x̄ is a stationary point of the minimization problem (2.1).
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Proof. From Lemma 3.2, the sequence {xk} is bounded. It can be assumed that there exists
a subsequence that converges to x̄. That means there is an infinite set of K0 such that

lim
k∈K0
k→∞

xk = x̄. (3.23)

Since {xk} and {dk} are sequences generated by Algorithm SQP, then xk and dk satisfy the
Karush-Kuhn-Tucker conditions (2.7). Next, we analyze the sequence {dk}.

If
lim
k∈K0
k→∞

||dk||2 = 0, (3.24)

without loss of generality, we can assume that

lim
k∈K0
k→∞

λk = λ̄, lim
k∈K0
k→∞

zk = z̄, (3.25)

where λk, zk are the Lagrange multipliers of the equality and inequality constraints in (2.7).
By taking limits as k → ∞ along the infinite subset K0 in (2.7), then we have

Ax̄ = λ̄Bx̄+ z̄,

z̄, x̄ ≥ 0,

z̄T x̄ = 0,

1
2 x̄

TBx̄− 1 = 0.

(3.26)

Thus, x̄ is the stationary point of the minimization problem (2.1).
If

||dk||2 ≥ η > 0, ∀k ∈ K0, (3.27)

where η is a constant. By Lemma 3.1, it is easy to get

Pσ(xk+1) ≤ Pσ(xk)− η̄, ∀k ∈ K0.

Therefore, we can be obtained∑
k∈K0

η̄ ≤
∑
k∈K0

[Pσ(xk)− Pσ(xk+1)]

≤
∞∑
k=1

[Pσ(xk)− Pσ(xk+1)].

(3.28)

Since
lim
k→∞

Pσ(xk) = Pσ(x̄), (3.29)

it can be derived ∑
k∈K0

η̄ ≤ Pσ(x1)− Pσ(x̄) < ∞. (3.30)

From the above formulas (3.30) and η̄ > 0, we know that K0 is a finite set. It contradicts
the assumption that K0 is an infinite set. This means that hypothesis (3.27) is not true.
Therefore, it can be seen that every accumulation point of {xk} is a stationary point of the
minimization problem (2.1).

If the sequences {xk} and {dk} generated by Algorithm SQP satisfy Theorem 3.3, The-
orem 3.3 shows the accumulation point x̄ is a stationary point of the minimization problem
(2.1), i.e., x̄ is a Pareto eigenvector of the symmetric Pareto EiCP (1.1) and λ̄ is the
corresponding Pareto eigenvalue.
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4 A Simple SQP Algorithm for Symmetric Pareto EiCP

In the previous parts of the paper, we have explained in detail how to choose the precise step
size and proved the global convergence of the SQP algorithm. Moreover, the search direction
can be obtained through the convex quadratic programming subproblem (2.4), which can
be solved efficiently by operating the MATLAB function “quadprog”. However, it requires
more computing time to solve the quadratic programming subproblem for the large-scale
symmetric Pareto EiCP. Next, we will propose a better way to solve the subproblems. In
addition, we will compare these two methods in the final numerical experiment.

Theorem 3.3 shows that the global convergence holds for any symmetric positive matrix
M in (2.4), and we can choose the matrix M as an n× n diagonal matrix, i.e.,

mind∈Rn gk(d) =
1
2d

TΘd+ (Axk)
T d

s.t. xT
kBd+ 1

2x
T
kBxk − 1 = 0,

d+ xk ≥ 0,

(4.1)

where Θ is a diagonal matrix with positive diagonal elements. In this paper, we refer to
(4.1) as a simple quadratic programming subproblem, and in this section, we used a simple
method to solve (4.1) to achieve the purpose of improving the iterative efficiency.

Theorem 4.1. Let dk be the solution of the simple quadratic programming subproblem (4.1)
and θi > 0 be the ith diagonal element of Θ. The ith component of dk can be expressed as

(dk)i =

{
1
θi
(λkBxk −Axk)i, λk(Bxk)i > (Axk)i − θi(xk)i,

−(xk)i, λk(Bxk)i ≤ (Axk)i − θi(xk)i,
(4.2)

where λk is the Lagrange multiplier of the equality constraint in (4.1).

Proof. The solution dk and the Lagrange multiplier λk of the simple quadratic programming
subproblem (4.1) satisfy the Karush-Kuhn-Tucker conditions (2.7) with M = Θ, so for each
component of the corresponding vectors we have

θi(dk)i = (λkBxk −Axk)i + (zk)i,

(zk)i ≥ 0, (dk + xk)i ≥ 0,

(zk)i(dk + xk)i = 0.

(4.3)

Let ui := (λkBxk − Axk)i, then (dk)i =
1
θi
(ui + (zk)i). Next, we discuss the following two

cases:

(C1) If ui > −θi(xk)i, i.e., λk(Bxk)i > (Axk)i − θi(xk)i, then

θi(dk + xk)i = ui + (zk)i + θi(xk)i > (zk)i ≥ 0,

which yields (dk+xk)i > 0 since θi > 0. Furthermore, we immediately have (zk)i(dk+
xk)i = 0 by taking (zk)i = 0.

(C2) If ui ≤ −θi(xk)i, i.e., λk(Bxk)i ≤ (Axk)i − θi(xk)i, then

(dk)i = −(xk)i =
1

θi
(ui + (zk)i),

which leads (dk + xk)i = 0 and (zk)i = −θi(xk)i − ui ≥ 0.
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We provide the result by concluding the above two case.

From Theorem 4.1, we know that the dk in (4.2) can be regarded as a function dk(λk)
about the variable λk and dk = dk(λk) satisfies the equality xT

kBdk + 1
2x

T
kBxk − 1 = 0. To

this end, we first give the bounds on the Lagrange multiplier λk in the following conclusion.

Theorem 4.2. Let λk be the Lagrange multiplier of the equality constraint in (4.1), then

min

{
(Axk)i − θi(xk)i

(Bxk)i
| (Bxk)i > 0

}
< λk ≤ max{Λ1,Λ2,Λ3}, (4.4)

where

Λ1 :=
xT
k BΘ−1Axk− 1

2x
T
k Bxk+1

xT
k BΘ−1Bxk

, Λ2 := max{ (Axk)i−θi(xk)i
(Bxk)i

| (Bxk)i > 0}, (4.5)

Λ3 :=
|Bxk|Θ−1 |Axk|+ 1− 1

2x
T
kBxk

min{ (Bxk)2i
θi

| (Bxk)2i ̸= 0}
. (4.6)

Proof. Define the index set

N := {i | λk(Bxk)i > (Axk)i − θi(xk)i}, R := {i | λk(Bxk)i ≤ (Axk)i − θi(xk)i},

then the set N is nonempty. Otherwise, we have λkBxk ≤ Axk − xk, it follows from
(4.2) that dk = −xk. Substituting it in the the equality xT

kBdk + 1
2x

T
kBxk − 1 = 0, we

get − 1
2x

T
kBxk = 1, which contradicts to the fact that the matrix B is symmetric positive

definite.
If (Bxk)i ≤ 0 for all i ∈ N , then we have∑

i∈N

(dk)i(Bxk)i ≤ −
∑
i∈N

(xk)i(Bxk)i

due to (dk)i > −(xk)i for all i ∈ N . Consequently, we have

xT
kBdk +

1

2
xT
kBxk − 1

=
∑
i∈N

(dk)i(Bxk)i −
∑
i∈R

(xk)i(Bxk)i +
1

2
xT
kBxk − 1

≤ −
∑
i∈N

(xk)i(Bxk)i −
∑
i∈R

(xk)i(Bxk)i +
1

2
xT
kBxk − 1

= −1

2
xT
kBxk − 1

< 0,

(4.7)

which contradicts to xT
kBdk +

1
2x

T
kBxk − 1 = 0. Hence, there at least exists an index i such

that (Bxk)i > 0 and λk(Bxk)i > (Axk)i − θi(xk)i, i.e.,

λk > min

{
(Axk)i − θi(xk)i

(Bxk)i
| (Bxk)i > 0

}
.
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On the other hand, it follows from (4.2) that

xT
kBdk +

1

2
xT
kBxk − 1

=
∑
i∈N

(dk)i(Bxk)i −
∑
i∈R

(xk)i(Bxk)i +
1

2
xT
kBxk − 1

=
∑
i∈N

1

θi
(λkBxk −Axk)i(Bxk)i −

∑
i∈R

(xk)i(Bxk)i +
1

2
xT
kBxk − 1

= 0.

So the λk can be formulated as

λk =

∑
i∈N

1
θi
(Bxk)i(Axk)i +

∑
i∈R(Bxk)i(xk)i + 1− 1

2x
T
kBxk∑

i∈N
1
θi
(Bxk)2i

. (4.8)

Below we make assumptions about the index set R:

(i) The set R is the empty set, i.e., λkBxk > Axk −Θxk. It follows from (4.2) that

d = λkΘ
−1Bxk −Θ−1Axk,

xT
kBdk + 1

2x
T
kBxk − 1 = λkx

T
kBΘ−1Bxk − xT

kBΘ−1Axk + 1
2x

T
kBxk − 1 = 0,

then we can get λk =
xT
k BΘ−1Axk− 1

2x
T
k Bxk+1

xT
k BΘ−1Bxk

.

(ii) The set R is nonempty, there exists i such that λk(Bxk)i ≤ (Axk)i − θi(xk)i.

(a) ∃ (Bxk)i > 0, i ∈ R, we have

λk ≤ (Axk)i − θi(xk)i
(Bxk)i

≤ max{ (Axk)i − θi(xk)i
(Bxk)i

| (Bxk)i > 0}.

(b) ∀i ∈ R, (Bxk)i ≤ 0, we have

λk ≤
∑

i∈N
1
θi
(Bxk)i(Axk)i + 1− 1

2x
T
kBxk∑

i∈N
1
θi
(Bxk)2i

≤
∑

i∈N
1
θi
(Bxk)i(Axk)i + 1− 1

2x
T
kBxk

min{ (Bxk)2i
θi

| (Bxk)2i ̸= 0}

≤
∑

i∈N
1
θi
|(Bxk)i| |(Axk)i|+

∑
i∈R

1
θi
|(Bxk)i| |(Axk)i|+ 1− 1

2x
T
kBxk

min{ (Bxk)2i
θi

| (Bxk)2i ̸= 0}

=
|Bxk|Θ−1 |Axk|+ 1− 1

2x
T
kBxk

min{ (Bxk)2i
θi

| (Bxk)2i ̸= 0}
.

Thus, the proof is completed.

From the range of λk in (4.4), we can easily get the desired λk which satisfies the equality
xT
kBdk(λk) +

1
2x

T
kBxk − 1 = 0 by the bisection method. Consequently, we can establish

an algorithm for the symmetric Pareto EiCP by solving the simple quadratic programming
subproblem (4.1).

SSQP: Simple Sequential Quadratic Programming Algorithm
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1. Initialization

a) Give the symmetric matrix A ∈ Sn, and B ∈ Sn+ is symmetric positive definite;

b) Choose a diagonal matrix Θ ∈ Rn×n with positive diagonal elements and a
penalty parameter σ > 0;

c) Choose a positive tolerance ϵ, the initial iteration point x0 ≥ 0 and x0 ̸= 0, and
set k = 0.

2. Iteration

Step 1. Find the solution dk of the subproblem (4.1) by the formula (4.2) and the bisection
method;

Step 2. If ∥dk∥2 ≤ ϵ, then stop; otherwise, go to step 3;

Step 3. Compute a step size αk ∈ [0, 1] by (2.12) and (2.13);

Step 4. Set xk+1 = xk + αkdk, k = k + 1, and return to step 1.

5 Numerical Experiments

In this section, we will provide important details for the implementation of the proposed
algorithm and describe how to set up the numerical experiments. Finally, we discuss their
numerical performance for computing complementary eigenvalues. All computations have
been performed on a personal computer with Intel(R) Core(TM)i7-8700 CPU. The algo-
rithms have been implemented in MATLAB environment.

5.1 Implementation details

The most indispensable part of the SQP algorithm is the choice about the symmetric positive
definite matrix M . Different choices of M may result in different numerical performance.
As mentioned in the second part of the article, the matrix M we selected in this paper is
a fixed approximate positive definite matrix, which is different from the classical sequential
quadratic programming algorithm. In our numerical experiments, we test the proposed SQP
algorithm with three kinds of choices about the matrix M and the corresponding algorithms
are respectively named SQP(G), SSQP(D), and SSQP(I) for convenience, i.e.,

1. SQP(G) : M =

{
A+ ρ1I, A ∈ Sn,
A, A ∈ Sn+,

2. SSQP(D) : M =

{
diag(A+ ρ1I), A ∈ Sn,
diag(A), A ∈ Sn+,

3. SSQP(I) : M = I,

where ρ1 = ρA + 0.01, ρA is the spectral radius of matrix A, I is the identity matrix and
diag(A) is the diagonal part of matrix A.

As mentioned in the previous parts of this paper, the critical step of the SQP and SSQP
algorithms is to determine the search direction dk by solving the convex quadratic program-
ming subproblems (2.4) and (4.1) in each iteration, respectively. In numerical experiments,
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the MATLAB function “quadprog” is used to solve the subproblem (2.4) of the SQP(G)
algorithm. In the SSQP(D) and SSQP(I) algorithms, the solution dk of each simple sub-
problem (4.1) is obtained from the explicit expression (4.2), where the bisection method is
required. We set the stopping tolerance of the bisection method with ϵ = 10−9.

As shown in Theorem 3.3, we should choose the penalty parameter σ such that σ >
max{|λk|, ρ} for all k to ensure the global convergence of the SQP algorithm. However,
it is not easy to give a proper penalty parameter σ in practical computations due to the
obstacles in the way of estimating an upper bound about the Lagrange multiplier λk for all
k. Moreover, the SQP algorithm would tend to get worse with the increase of the penalty
parameter σ, so it is inappropriate to choose a large penalty parameter in computational
practice. Indeed, the Lagrange multiplier λk is an approximation of a Pareto eigenvalue of
the symmetric Pareto EiCP, and as well known that the Pareto eigenvalues are less than
ρ, which means that the Lagrange multiplier λk will be no larger than ρ for the sufficient
large k in iteration. In the numerical experiments, we set σ0 = ρ + 0.01 and then update
σk = max{σ0, |λk|+0.1} as the algorithm iterates. We find that σ = max{ρ+0.01, |λ1|+0.1}
and remains almost constant in the later iterations.

To analyze the effectiveness of the SQP and SSQP algorithms, we also solved the test
problems by using the BAS algorithm in [4], the SPL algorithm in [7] and the sequential
FLQP algorithm in [12]. Here we briefly explain that the BBP algorithm is applied in
the sequential FLQP algorithm (FLQP). The initial point is the canonical vector es, where
s = argmax{ri|i = 1, ..., n}, ri = min{ajibii − aiibji|j = 1, ..., n} [4]. For the test problems,
the tolerance value for terminating these algorithms is ∥dk∥2 ≤ 10−6 unless otherwise noted,
and the maximum number of iterations is 100000. Here is a brief explanation, when the
matrix A is an indefinite matrix, we obtain the Pareto eigenvalue of matrix pair (A,B) by
solving the matrix pair (A+ρ1B,B) in the SPL and FLQP algorithms, where ρ1 = ρA+0.01
and ρA is the spectral radius of matrix A. This ensures that the matrix A+ ρ1B is positive
definite.

In the tables below, we use the following notations:

• n: the order of the matrix.

• λ: computed Pareto eigenvalue.

• IT: number of iterations required by the corresponding algorithm.

• CPU: computational time in seconds.

• Dualfeas = min{wi : i = 1, ..., n}, where wi are the components of the vector w =
Ax− λBx at the computed solution of the Pareto EiCP.

• ∗: the maximum number of iterations has been reached.

• −: the algorithm has not converged after running for more than 300 seconds.

In addition, the boldface numbers are the best performance in time.

5.2 Convergence performance

In this subsection, we report the convergence performance of Algorithms SQP(G), SSQP(D),
SSQP(I), FLQP, SPL, and BAS for solving the test problems. In order to test the feasibility
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of our algorithms, we first test a small problem. In this example, we set

A =


4 −7 0 0
−7 −2 6 0
0 6 2 −1
0 0 −1 0

 , B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

We arbitrarily choose a non-zero and non-negative initial vector, such as x0 = [0, 0, 1, 0]T .
We obtain

λ(x∗) = −0.4142 and x∗ =


0
0

0.5412
1.3066


by using Algorithms SQP(G), SSQP(D) and SSQP(I) respectively. By further concrete
computations, we have

Ax∗ − λ(x∗)Bx∗ =


0

3.2472
0
0

 ,

which means that λ(x∗) and x∗ are the Pareto eigenvalue and eigenvector of this problem.
This also proves that the algorithm we proposed is effective. The matrix pair (A,B) has
three non-zero Pareto eigenvalues with λ1 = −6.6158, λ2 = −0.4142, and λ3 = −0.2048,
respectively. In addition, we set the initial vector as x = rand(4, 1) and test it randomly
one hundred times. The Pareto eigenvalue we found in 83 experiments was λ1 = −6.6158,
while the Pareto eigenvalue found in the other 17 experiments was λ2 = −0.4142. We can
find out different eigenvalues by different initial vectors. But most cases will get the same
eigenvalue. The number of occurrences of eigenvalue λ3 = −0.2048 is zero. This is because
our algorithm is a descent algorithm that prefers to solve for the minimum of the objective
function. If we want to solve for other eigenvalues, the initial vectors need to be carefully
designed.

Test problem 1, 2, 3 and 4 are generated by setting A as follows:

A = QTDQ,

where Q ∈ Rn×n is an orthogonal matrix obtained from the QR decomposition of a random
matrix, and D ∈ Rn×n is a diagonal matrix, where diagonal entries di is a random generated
number. We set matrix B = I or B = CTC + I, where C ∈ Rn×n is a random matrix with
full rank. We choose diagonal entries di ∈ (1, 1000) in Test Problems 1. Test Problems 2, A is
a random produced positive definite matrix with di ∈ (1, 1000) and B = I. Test Problems 3,
A is a random produced positive definite matrix with di ∈ (1, 1000) and B = CTC+ I. Test
Problems 4, A is a random generated symmetric indefinite matrix with di ∈ (−100, 1000)
and B = I. For Test Problems 5, B is the identity matrix and A is a symmetric positive
definite matrix from the Harwell-Boeing collection.

It is well known that the program “fmincon” in MATLAB can also solve the problem
(2.1). To better appreciate the efficiency of our proposed algorithms, we use “fmincon” as
a benchmark to solve Test problems 1. We considered n = 20, 50, 70, 100, 150. It can be
seen from Table 1 that the program “fmincon” in MATLAB can solve the problem (2.1)
well in the low-order case. When the order of the problem exceeds 100, it is difficult to
get an accurate solution, as shown by the values given in the column “Dualfeas”. From
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Table 1: Performance of algorithms for solving Test Problems 1.
B = I

n 20 50 70 100 150

fmincon
λ 3.0210e+01 1.0643e+02 1.1159e+02 1.5952e+02 1.2151e+02

Dualfeas -7.0392e-05 -2.6635e-05 -4.3204e-05 -7.0511e-05 -3.4524e+00
CPU 3.0000e-02 1.4600e-01 1.8600e-01 3.7500e-01 1.3470e+00

SQP(G)
λ 3.0210e+01 1.0643e+02 1.1159e+02 1.5952e+02 1.2091e+02

Dualfeas -1.6251e-05 -5.4845e-05 -8.1087e-05 -5.9668e-05 -3.3822e-05
CPU 2.5000e-02 5.0000e-02 4.0000e-02 2.4900e-01 4.2000e-01

SSQP(D)
λ 3.0210e+01 1.0643e+02 1.1159e+02 1.5952e+02 1.2091e+02

Dualfeas -1.4942e-04 -2.0205e-04 -2.2208e-04 -1.6912e-04 -1.3276e-04
CPU 3.0000e-03 1.0000e-02 1.0000e-02 1.0000e-02 2.0000e-02

SSQP(I)
λ 3.0210e+01 1.0643e+02 1.1159e+02 1.5952e+02 1.2091e+02

Dualfeas -2.6364e-07 -3.6758e-07 -3.0330e-07 -2.0569e-07 -1.0911e-07
CPU 1.4300e-01 2.1000e-01 2.6000e-01 5.5100e-01 7.1700e-01

B = CTC + I

fmincon
λ 7.1620e-02 2.0291e-02 7.0364e-03 3.3512e-03 2.3627e-03

Dualfeas -6.3280e-05 -4.1203e-02 -4.6145e-01 -2.4257e-01 -2.5792e-01
CPU 5.3000e-02 7.3000e-02 3.5700e-01 5.3100e-01 1.4750e+00

SQP(G)
λ 7.1620e-02 9.7273e-03 5.1241e-03 2.7958e-03 1.4851e-03

Dualfeas -9.7893e-05 -3.0917e-05 -2.0608e-06 -4.3515e-07 -1.0827e-06
CPU 1.0000e-02 2.0000e-02 1.0000e-02 2.0000e-02 3.0000e-02

SSQP(D)
λ 7.1620e-02 9.7273e-03 5.1241e-03 2.7958e-03 1.4851e-03

Dualfeas -2.3715e-04 -1.5511e-04 -1.7208e-04 -1.4218e-04 -1.1456e-04
CPU 1.2700e-01 2.4700e-01 5.0000e-02 3.0000e-02 7.0100e-01

SSQP(I)
λ 7.1620e-02 9.7273e-03 5.1241e-03 2.7964e-03 1.4861e-03

Dualfeas -9.2069e-05 -8.9468e-05 -4.8748e-05 -2.3514e-03 -6.5100e-04
CPU 7.0200e+00 7.6920e+00 7.9870e+00 1.3836e+01 1.5209e+01

the benchmark results in Table 1, we can know that our proposed algorithms have good
performance.

Next, we compare the convergence performance of Algorithms SQP(G), SSQP(D),
SSQP(I), BAS, SPL and FLQP by four Test problems. We set the matrix A = QTDQ, where
Q ∈ R100×100 is an orthogonal matrices obtained from the QR decomposition of a random
matrix, and D ∈ R100×100 is a diagonal matrix with diagonal entries λ1 > λ2 > · · · > λ100,
and the ith is

λn−i+1 = λ100 +
i− 1

n− 1
(λ1 − λ100), i = 1, 2, . . . , n.

Obviously, the matrix A is symmetric positive definite if λ100 > 0, and A is symmetric
indefinite if λ1 > 0 and λ100 < 0. In addition, we set the matrix B = I or B = CTC + I,
where C ∈ R100×100 is a random matrix.

A is a symmetric positive definite matrix with the maximum eigenvalue λ1 = 1000 and
the minimum eigenvalue λ100 = 1 in Figure 1. In Figure 2, A is a symmetric and indefinite
matrix with the maximum eigenvalue λ1 = 100 and the minimum eigenvalue λ100 = −50. In
each figure, we plot the curves of the norm dk of the testing methods versus the number of
iteration steps. These figures clearly show that Algorithm SPL, Algorithm FLQP, Algorithm
SQP(G), and Algorithm SSQP(D) require fewer iterations in the computation than the other
algorithms. Algorithms SPL, FLQP, SQP(G), and SSQP (D) show relatively smooth norm
curves, whereas Algorithms SSQP(I) and BAS are oscillatory, and the convergence behav-
iors are erratic. Algorithms SQP(G) and SSQP(D) show better convergence performance
than the SSQP(I) algorithm because the corresponding convex quadratic programming sub-
problems (2.4) and (4.1) contain more information about the original constrained quadratic
programming subproblem (2.1).
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Figure 1: A is a symmetric positive definite matrix with λ1 = 1000 and λ100 = 1.

Figure 2: A is a symmetric indefinite matrix with λ1 = 100 and λ100 = −50.

The numerical results of various test problems with different sizes are displayed in Tables
2, 3, and 4 to compare Algorithms BAS, SPL, FLQP, SQP(G), SSQP(D), and SSQP(I). In
most cases, there is more than one solution to the Pareto EiCP, and these algorithms search
from different directions, so sometimes the algorithms may find distinct Pareto eigenvalues.
As discussed in [4, 7, 12], the BAS, SPL, and FQLP algorithms can effectively solve the
symmetric Pareto EiCP problem. From these numerical experiments, we can find that the
SSQP(D) algorithm is also effective in solving the symmetric Pareto EiCP problem and
has some advantages over other algorithms in terms of solution speed. In Table 3, all the
algorithms perform well except for the SSQP(I) algorithm. The BAS algorithm performs
well when the order of the matrix is low. We can observe that the FLQP algorithm and the
SQP(G) algorithm perform poorly when matrix A is indefinite. The FLQP and SQP(G)
algorithms fail to converge after running for more than 300 seconds when the matrix order is
2000. In Table 5, the SPL and SSQP(D) algorithms effectively solve the problem, although
the SQP(G) and SSQP(I) algorithms do not perform well in some cases.

From Table 1 to Table 5, it is easy to see that the SSQP(D) algorithm and the SPL
algorithm perform better among all the algorithms. To better understand the proposed
algorithm, we test the performance of the SSQP(D) algorithm and the SPL algorithm at
smaller stopping tolerance values. In Table 6, we test the performance of the SSQP(D)
and SPL algorithms under Problem 1, where the termination tolerance is ∥dk∥2 ≤ 10−8.
As can be seen from Table 6, the SSQP(D) algorithm also finds high-quality solutions.
Since the SPL algorithm solves the subproblems by the block principal pivoting algorithm,
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Table 2: Performance of algorithms for solving Test Problems 2.

n 50 100 200 500 700 1000 2000

BAS

λ 8.8601e+01 1.2850e+02 1.2572e+02 1.1043e+02 1.1788e+02 1.2895e+02 1.1539e+02

IT 21591 * 11536 * * * *

Dualfeas -7.3983e-08 -1.8990e-06 -1.0591e-07 -4.3928e-05 -4.2302e-05 -3.0565e-05 -2.4376e-05

CPU 3.2300e-01 3.2860e+00 3.9400e-01 7.7180e+00 1.0273e+01 1.6513e+01 1.5606e+02

SPL

λ 8.8601e+01 1.2850e+02 1.2572e+02 1.1042e+02 1.1787e+02 1.2895e+02 1.1538e+02

IT 32 75 84 148 126 273 340

Dualfeas -3.1165e-05 -3.5395e-05 -2.3875e-05 -2.0791e-05 -1.6995e-05 -1.8233e-05 -1.2027e-05

CPU 4.0000e-02 2.0000e-02 6.7000e-02 8.0300e-01 1.2210e+00 4.6640e+00 2.2764e+01

FLQP

λ 8.8601e+01 1.2850e+02 1.2572e+02 1.1042e+02 1.1787e+02 1.2895e+02 1.1538e+02

IT 30 69 79 134 121 268 327

Dualfeas -3.3252e-05 -3.6368e-05 -2.5940e-05 -2.0870e-05 -1.8083e-05 -1.8177e-05 -1.1975e-05

CPU 5.9000e-02 2.4300e-01 5.9000e-01 3.1120e+00 6.3160e+00 2.4954e+01 1.3897e+02

SQP(G)

λ 8.8601e+01 1.2850e+02 1.2572e+02 1.1042e+02 1.1787e+02 1.2895e+02 −
IT 34 73 173 674 382 1243 −

Dualfeas -3.7160e-05 -3.5969e-05 -3.5028e-05 -2.2816e-05 -1.8878e-05 -1.9240e-05 −
CPU 3.8000e-02 1.4700e-01 7.7700e-01 2.1382e+01 2.4922e+01 1.7126e+02 −

SSQP(D)

λ 8.8601e+01 1.2850e+02 1.2572e+02 1.1042e+02 1.1787e+02 1.2895e+02 1.1538e+02

IT 113 187 257 716 426 1136 1546

Dualfeas -1.5975e-04 -1.4199e-04 -1.2460e-04 -9.4285e-05 -8.7055e-05 -7.2075e-05 -5.2841e-05

CPU 8.0000e-03 1.0000e-02 2.0000e-02 1.3600e-01 1.7600e-01 3.5300e-01 3.2590e+00

SSQP(I)

λ 8.8601e+01 1.2850e+02 1.2572e+02 1.1042e+02 1.1787e+02 1.2895e+02 1.1538e+02

IT 3039 3629 3564 3874 4053 3876 4509

Dualfeas -2.7264e-07 -6.6573e-08 -2.4043e-07 -3.0016e-08 -1.0093e-07 -1.2692e-07 -8.1915e-08

CPU 2.9800e-01 6.5500e-01 8.0900e-01 1.4530e+00 2.1840e+00 2.9770e+00 1.1139e+01

which is a direct method, it has an advantage over the SSQP(D) algorithm in terms of
solution accuracy. In addition, the SSQP(D) algorithm loses some information when solving
the subproblem with a diagonal matrix instead of the Hessian matrix of the Lagrangian
function, which also causes a loss in the quality of the solution. The SSQP(D) algorithm
still has advantages in the speed of computation when extremely high-quality solutions are
not required.

In summary, the SSQP algorithm can solve the symmetric Pareto EiCP efficiently.
In some instances, the SQP(G) algorithm requires fewer iterations but takes more time
than the SSQP(D) algorithm, mainly because the SQP(G) algorithm pays too much on
the solution of the subproblem. The SSQP algorithm uses (4.2) to obtain the solution of
the simple subproblem (4.1), thus reducing the computation time. When matrix B is the
identity matrix, although the SSQP(I) algorithm obtains a higher quality solution, it costs
more time. The SSQP(D) algorithm combines the advantages of Algorithm SQP(G) and
Algorithm SSQP(I) to solve the problem quickly and efficiently. When extremely high-
quality solutions are not required, the SSQP(D) algorithm has advantages over existing
algorithms.

6 Conclusions

In this paper, a sequential quadratic programming (SQP) algorithm framework is proposed
for symmetric Pareto EiCP. The algorithm framework is to determine the search direc-
tion by a sequence of quadratic programming subproblems and a new approximate solution
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Table 3: Performance of algorithms for solving Test Problems 3.

n 50 100 200 500 700 1000 2000

BAS

λ 1.3871e-02 2.6722e-03 7.9018e-04 1.0975e-04 5.8905e-05 3.0448e-05 7.3462e-06

IT 84 73 70 197 93 254 197

Dualfeas -1.8737e-04 -9.6869e-05 -8.8549e-05 -3.1552e-04 -8.1174e-05 -2.7185e-04 -1.6257e-04

CPU 1.0000e-02 4.0000e-03 2.2000e-02 2.8000e-02 2.8000e-02 1.5600e-01 7.2000e-01

SPL

λ 1.3871e-02 2.6722e-03 7.9018e-04 1.0975e-04 5.8905e-05 3.0448e-05 7.3462e-06

IT 17 13 12 10 10 9 9

Dualfeas -1.8494e-05 -2.2241e-06 -1.2181e-06 -9.5447e-08 -4.4485e-08 -2.0345e-07 -3.0967e-08

CPU 1.0000e-02 1.1000e-02 6.7000e-02 1.3700e-01 3.1200e-01 5.1100e-01 2.3060e+00

FLQP

λ 1.3871e-02 2.6722e-03 7.9018e-04 1.0975e-04 5.8905e-05 3.0448e-05 7.3462e-06

IT 15 9 9 6 6 6 6

Dualfeas -9.5200e-06 -1.5879e-06 -3.2868e-07 -4.6977e-07 -1.4867e-07 -3.0152e-08 -1.6739e-09

CPU 2.0000e-02 3.4000e-02 8.2000e-02 2.4200e-01 4.3100e-01 9.0000e-01 3.7150e+00

SQP(G)

λ 1.3871e-02 2.6722e-03 7.9020e-04 1.0988e-04 5.8978e-05 3.0547e-05 7.4065e-06

IT 10 11 11 12 12 12 12

Dualfeas -3.6021e-05 -2.7197e-07 -2.7036e-06 -1.8458e-05 -1.6095e-05 -2.3437e-05 -2.1149e-05

CPU 1.3000e-02 2.5000e-02 9.9000e-02 2.7500e-01 6.3500e-01 1.3070e+00 6.3920e+00

SSQP(D)

λ 1.3871e-02 2.6722e-03 7.9019e-04 1.0975e-04 5.8908e-05 3.0451e-05 7.3478e-06

IT 2890 4889 2146 63 60 55 39

Dualfeas -1.9180e-04 -1.0813e-04 -9.4621e-05 -6.0933e-05 -6.0775e-05 -4.8960e-05 -4.0279e-05

CPU 2.7200e-01 7.2400e-01 5.1500e-01 1.8000e-02 4.1000e-02 6.0000e-02 1.7700e-01

SSQP(I)

λ 1.3871e-02 2.6724e-03 7.9085e-04 1.0982e-04 5.8909e-05 3.3961e-05 −
IT * * * * * * −

Dualfeas -6.9910e-05 -7.4194e-04 -1.8153e-03 -3.5793e-04 -1.7450e-04 -2.4797e-03 −
CPU 8.0280e+00 1.4048e+01 1.7484e+01 3.1096e+01 4.1766e+01 9.4249e+01 −

Table 4: Performance of algorithms for solving Test Problems 4.

n 50 100 200 500 700 1000 2000

BAS

λ 7.3288e+01 4.0515e+01 -1.6021e+00 5.2221e+00 2.0878e+01 1.1873e+01 1.0936e+01

IT * * * * * * *

Dualfeas -1.8012e-07 -5.7355e-05 -6.3618e-05 -1.3631e-05 -3.2646e-05 -5.0957e-05 -2.6534e-05

CPU 1.4590e+00 3.2640e+00 3.8680e+00 7.8790e+00 1.0375e+01 1.6538e+01 1.5602e+02

SPL

λ 4.8601e+01 4.0515e+01 -1.6034e+00 5.2221e+00 2.0875e+01 1.1869e+01 1.0932e+01

IT 299 633 236 543 1099 717 824

Dualfeas -3.3402e-04 -2.1729e-04 -1.9630e-04 -1.4881e-04 -1.4104e-04 -1.2635e-04 -8.1778e-05

CPU 4.7000e-02 1.6600e-01 1.7400e-01 2.4800e+00 7.3120e+00 9.8240e+00 5.2964e+01

FLQP

λ 4.8601e+01 4.0515e+01 -1.6034e+00 5.2221e+00 2.0875e+01 1.1869e+01 −
IT 285 628 226 543 1095 713 −

Dualfeas -3.3766e-04 -2.1786e-04 -2.1473e-04 -1.4676e-04 -1.4125e-04 -1.2668e-04 −
CPU 4.4400e-01 2.0090e+00 1.4190e+00 1.1881e+01 4.7843e+01 6.4447e+01 −

SQP(G)

λ 7.3288e+01 4.0515e+01 -1.6034e+00 5.2221e+00 2.0875e+01 1.1869e+01 −
IT 290 727 263 997 1498 871 −

Dualfeas -2.8018e-04 -2.2346e-04 -1.7544e-04 -1.7642e-04 -1.4517e-04 -1.2889e-04 −
CPU 3.9000e-01 1.4890e+00 1.0470e+00 2.5866e+01 8.3413e+01 1.0989e+02 −

SSQP(D)

λ 7.3288e+01 4.0515e+01 -1.6034e+00 5.2221e+00 2.0875e+01 1.1869e+01 1.0932e+01

IT 384 971 366 1329 2036 1173 1746

Dualfeas -3.7961e-04 -2.9850e-04 -2.7256e-04 -2.5001e-04 -2.0455e-04 -1.5590e-04 -1.4793e-04

CPU 1.3000e-02 5.5000e-02 2.1000e-02 2.0500e-01 3.8600e-01 4.4100e-01 3.3310e+00

SSQP(I)

λ 7.3288e+01 4.0515e+01 -1.6034e+00 5.2221e+00 2.0875e+01 1.1869e+01 1.0932e+01

IT 2988 2957 3058 3563 3747 4816 4151

Dualfeas -3.5169e-07 -6.4331e-08 -2.1290e-07 -3.9688e-08 -9.0270e-08 -2.7804e-08 -3.6852e-08

CPU 2.6200e-01 5.2400e-01 6.7800e-01 1.3540e+00 2.0150e+00 3.2540e+00 1.0255e+01
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Table 5: Performance of algorithms for solving Test Problems 5.
Problem BCSSTK02 BCSSTK19 BCSSTK26 GR 30 30 PLAT362

n 66 817 1922 900 362

SPL
λ 6.5918e+00 1.1979e+14 1.0355e+09 6.1463e-02 2.6173e-06
IT 19 2 1 8 36

Dualfeas -2.4058e-06 -1.2614e+01 -3.4983e-04 -2.4725e-09 -6.8982e-10
CPU 6.0000e-02 3.5000e-02 9.2000e-02 4.8000e-02 4.1400e-01

SQP(G)
λ 6.5918e+00 1.1979e+14 − 6.1463e-02 −
IT 19 28 − 13 −

Dualfeas -1.3010e-05 -7.2316e-01 − -1.1955e-06 −
CPU 1.4100e-01 2.0720e+00 − 4.1500e-01 −

SSQP(D)
λ 6.5918e+00 1.1979e+14 1.0355e+09 6.1463e-02 2.6173e-06
IT 1296 1 2 318 4980

Dualfeas -1.6292e-03 -1.9531e-03 -3.6320e-06 -7.1320e-07 -5.2154e-09
CPU 8.3000e-02 5.0000e-03 1.8000e-02 6.3000e-02 3.9300e-01

SSQP(I)
λ 6.1532e+00 1.1979e+14 − 6.1463e-02 2.6180e-06
IT 71758 * − 164 15972

Dualfeas -9.7936e-08 -2.5025e+01 − -7.6827e-08 -2.1574e-08
CPU 7.8550e+00 5.3890e+00 − 3.7000e-02 6.9100e-01

Table 6: Performance of algorithms for solving Test Problems 1.
B = I

n 100 200 500 700 1000 1500 2000

SPL

λ 9.4374e+01 1.2376e+02 1.0922e+02 1.1268e+02 1.1606e+02 1.2580e+02 1.1834e+02
IT 77 98 133 252 284 407 615

Dualfeas -2.6474e-07 -1.8047e-07 -1.7129e-07 -2.0534e-07 -1.5573e-07 -1.3007e-07 -1.2227e-07
CPU 2.3000e-02 9.2000e-02 7.5200e-01 1.7660e+00 4.5160e+00 1.4022e+01 3.6240e+01

SSQP(D)

λ 9.4374e+01 1.2376e+02 1.0922e+02 1.1268e+02 1.1606e+02 1.2580e+02 1.1834e+02
IT 285 342 549 1131 1265 1989 2390

Dualfeas -1.2425e-06 -8.9861e-07 -8.4537e-07 -8.9346e-07 -6.7249e-07 -5.3137e-07 -5.0757e-07
CPU 1.5000e-02 3.0000e-02 9.6000e-02 2.3800e-01 4.0500e-01 1.8030e+00 4.3690e+00

B = CTC + I

SPL

λ 2.8766e-03 7.0960e-04 1.2524e-04 6.9109e-05 3.0008e-05 1.1868e-05 7.7352e-06
IT 15 14 12 12 11 10 10

Dualfeas -3.5973e-08 -1.1712e-08 -1.4812e-09 -2.1534e-10 -3.3410e-10 -6.0960e-10 -4.3131e-10
CPU 1.0000e-02 2.0000e-02 1.4000e-01 2.7100e-01 6.0400e-01 1.2030e+00 2.1850e+00

SSQP(D)

λ 2.8766e-03 7.0960e-04 1.2524e-04 6.9109e-05 3.0008e-05 1.1868e-05 7.7352e-06
IT 1671 1228 113 195 97 91 89

Dualfeas -9.7200e-07 -8.8125e-07 -6.8473e-07 -6.1439e-07 -4.7135e-07 -4.2485e-07 -3.6926e-07
CPU 2.7800e-01 2.0000e-01 4.7000e-02 7.9000e-02 1.0900e-01 2.5500e-01 4.0300e-01

can be obtained along this search direction with the exact step size. The global conver-
gence analysis for the SQP algorithm framework is presented. The SQP algorithm seems
to be competitive to the existing algorithms from numerical results. In order to further
improve the computation efficiency, a kind of simple choices about the quadratic program-
ming subproblems is introduced in practice, and various numerical results illustrate that the
corresponding simple SQP algorithm (SSQP) is quite efficient for the solution of the large
symmetric Pareto EiCP.

The key of the SQP algorithm framework is to construct a series of suitable quadratic
programming subproblems. The computational efficiency of the SQP algorithm is closely
related to the selection of the symmetric positive definite matrix M , which has been con-
firmed by a large number of numerical experiments. This article mainly focuses on the fixed
matrix M , so in our future research, we will consider using a series of suitable symmetric
positive definite matrices to promote the SQP algorithm proposed in this article.



604 L. ZHU, Y. LEI AND J. XIE

References

[1] S. Adly and H. Rammal, A new method for solving Pareto eigenvalue complementarity
problems, Comput. Optim. Appl. 55 (2013) 703–731.

[2] S. Adly and A. Seeger, A nonsmooth algorithm for cone-constrained eigenvalue prob-
lems, Comput. Optim. Appl. 49 (2011) 299–318.

[3] J.-B Baillon and A. Seeger, New results on Pareto spectra, Linear Algebra Appl. 588
(2020) 338–363.
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